1
|
Nargan K, Glasgow JN, Nadeem S, Naidoo T, Wells G, Hunter RL, Hutton A, Lumamba K, Msimang M, Benson PV, Steyn AJC. Spatial distribution of Mycobacterium tuberculosis mRNA and secreted antigens in acid-fast negative human antemortem and resected tissue. EBioMedicine 2024; 105:105196. [PMID: 38880068 PMCID: PMC11233921 DOI: 10.1016/j.ebiom.2024.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND The ability to detect evidence of Mycobacterium tuberculosis (Mtb) infection within human tissues is critical to the study of Mtb physiology, tropism, and spatial distribution within TB lesions. The capacity of the widely-used Ziehl-Neelsen (ZN) staining method for identifying Mtb acid-fast bacilli (AFB) in tissue is highly variable, which can limit detection of Mtb bacilli for research and diagnostic purposes. Here, we sought to circumvent these limitations via detection of Mtb mRNA and secreted antigens in human tuberculous tissue. METHODS We adapted RNAscope, an RNA in situ hybridisation (RISH) technique, to detect Mtb mRNA in ante- and postmortem human TB tissues and developed a dual ZN/immunohistochemistry staining approach to identify AFB and bacilli producing antigen 85B (Ag85B). FINDINGS We identified Mtb mRNA within intact and disintegrating bacilli as well as extrabacillary mRNA. Mtb mRNA was distributed zonally within necrotic and non-necrotic granulomas. We also found Mtb mRNA within, and adjacent to, necrotic granulomas in ZN-negative lung tissue and in Ag85B-positive bronchiolar epithelium. Intriguingly, we observed accumulation of Mtb mRNA and Ag85B in the cytoplasm of host cells. Notably, many AFB were negative for Ag85B staining. Mtb mRNA was observed in ZN-negative antemortem lymph node biopsies. INTERPRETATION RNAscope and dual ZN/immunohistochemistry staining are well-suited for identifying subsets of intact Mtb and/or bacillary remnants in human tissue. RNAscope can identify Mtb mRNA in ZN-negative tissues from patients with TB and may have diagnostic potential in complex TB cases. FUNDING Wellcome Leap Delta Tissue Program, Wellcome Strategic Core Award, the National Institutes of Health (NIH, USA), the Mary Heersink Institute for Global Health at UAB, the UAB Heersink School of Medicine.
Collapse
Affiliation(s)
- Kievershen Nargan
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Threnesan Naidoo
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa; Department of Forensic and Legal Medicine, Walter Sisulu University, Mthatha, South Africa
| | - Gordon Wells
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Robert L Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Anneka Hutton
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kapongo Lumamba
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Mpumelelo Msimang
- Department of Anatomical Pathology, National Health Laboratory Service, IALCH, Durban, South Africa
| | - Paul V Benson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrie J C Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA; Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Zhang XX, Sun YZ, Wang W, Gao Y, Wei XY, Sun HC, Wang CR, Ni HB, Yang X, Elsheikha HM, Guo HP. Altered landscape of total RNA, tRNA and sncRNA modifications in the liver and spleen of mice infected by Toxoplasma gondii. PLoS Negl Trop Dis 2024; 18:e0012281. [PMID: 38905319 PMCID: PMC11221703 DOI: 10.1371/journal.pntd.0012281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/03/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Pathogens can impact host RNA modification machinery to establish a favorable cellular environment for their replication. In the present study, we investigated the effect of Toxoplasma gondii infection on host RNA modification profiles and explored how these modifications may influence the host-parasite interaction. METHODOLOGY/PRINCIPAL FINDINGS We analyzed the modification levels of ∼ 80 nt tRNA and 17-50 nt sncRNAs in mouse liver, spleen, and serum using liquid chromatography and tandem mass spectrometry analysis. The results revealed alterations in RNA modification profiles, particularly during acute infection. The liver exhibited more differentially abundant RNA modifications than the spleen. RNA modification levels in serum were mostly downregulated during acute infection compared to control mice. Correlations were detected between different RNA modifications in the liver and spleen during infection and between several RNA modifications and many cytokines. Alterations in RNA modifications affected tRNA stability and protein translation. CONCLUSIONS/SIGNIFICANCE These findings provide new insight into the role of RNA modifications in mediating the murine host response to T. gondii infection.
Collapse
Affiliation(s)
- Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, PR China
| | - Yu-Zhe Sun
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, PR China
| | - Wei Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, PR China
| | - Yang Gao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agriculture University, Daqing, PR China
| | - Xin-Yu Wei
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agriculture University, Daqing, PR China
| | - Hong-Chao Sun
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, PR China
| | - Chun-Ren Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agriculture University, Daqing, PR China
| | - Hong-Bo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, PR China
| | - Xing Yang
- Department of Medical Microbiology and Immunology, School of Basic Medicine, Dali University, Dali, PR China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Huan-Ping Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| |
Collapse
|
3
|
Ma M, Duan Y, Peng C, Wu Y, Zhang X, Chang B, Wang F, Yang H, Zheng R, Cheng H, Cheng Y, He Y, Huang J, Lei J, Ma H, Li L, Wang J, Huang X, Tang F, Liu J, Li J, Ying R, Wang P, Sha W, Gao Y, Wang L, Ge B. Mycobacterium tuberculosis inhibits METTL14-mediated m 6A methylation of Nox2 mRNA and suppresses anti-TB immunity. Cell Discov 2024; 10:36. [PMID: 38548762 PMCID: PMC10978938 DOI: 10.1038/s41421-024-00653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/29/2024] [Indexed: 04/01/2024] Open
Abstract
Internal N6-methyladenosine (m6A) modifications are among the most abundant modifications of messenger RNA, playing a critical role in diverse biological and pathological processes. However, the functional role and regulatory mechanism of m6A modifications in the immune response to Mycobacterium tuberculosis infection remains unknown. Here, we report that methyltransferase-like 14 (METTL14)-dependent m6A methylation of NAPDH oxidase 2 (Nox2) mRNA was crucial for the host immune defense against M. tuberculosis infection and that M. tuberculosis-secreted antigen EsxB (Rv3874) inhibited METTL14-dependent m6A methylation of Nox2 mRNA. Mechanistically, EsxB interacted with p38 MAP kinase and disrupted the association of TAB1 with p38, thus inhibiting the TAB1-mediated autophosphorylation of p38. Interaction of EsxB with p38 also impeded the binding of p38 with METTL14, thereby inhibiting the p38-mediated phosphorylation of METTL14 at Thr72. Inhibition of p38 by EsxB restrained liquid-liquid phase separation (LLPS) of METTL14 and its subsequent interaction with METTL3, preventing the m6A modification of Nox2 mRNA and its association with the m6A-binding protein IGF2BP1 to destabilize Nox2 mRNA, reduce ROS levels, and increase intracellular survival of M. tuberculosis. Moreover, deletion or mutation of the phosphorylation site on METTL14 impaired the inhibition of ROS level by EsxB and increased bacterial burden or histological damage in the lungs during infection in mice. These findings identify a previously unknown mechanism that M. tuberculosis employs to suppress host immunity, providing insights that may empower the development of effective immunomodulators that target M. tuberculosis.
Collapse
Affiliation(s)
- Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yongjia Duan
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Cheng Peng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - You Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinning Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Boran Chang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Hongyu Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yuanna Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yifan He
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Jingping Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Jinming Lei
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Hanyu Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Liru Li
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Fen Tang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Jun Liu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ruoyan Ying
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Wang
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China.
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Nargan K, Naidoo T, Msimang M, Nadeem S, Wells G, Hunter RL, Hutton A, Lumamba K, Glasgow JN, Benson PV, Steyn AJ. Detection of Mycobacterium tuberculosis in human tissue via RNA in situ hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560963. [PMID: 37873458 PMCID: PMC10592959 DOI: 10.1101/2023.10.04.560963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Rationale Accurate TB diagnosis is hampered by the variable efficacy of the widely-used Ziehl-Neelsen (ZN) staining method to identify Mycobacterium tuberculosis ( Mtb ) acid-fast bacilli (AFB). Here, we sought to circumvent this current limitation through direct detection of Mtb mRNA. Objectives To employ RNAscope to determine the spatial distribution of Mtb mRNA within tuberculous human tissue, to appraise ZN-negative tissue from confirmed TB patients, and to provide proof-of-concept of RNAscope as a platform to inform TB diagnosis and Mtb biology. Methods We examined ante- and postmortem human TB tissue using RNAscope to detect Mtb mRNA and a dual ZN/immunohistochemistry staining approach to identify AFB and bacilli producing antigen 85B (Ag85B). Measurements and main results We adapted RNAscope for Mtb and identified intact and disintegrated Mtb bacilli and intra- and extracellular Mtb mRNA. Mtb mRNA was distributed zonally within necrotic and non-necrotic granulomas. We also found Mtb mRNA within, and adjacent to, necrotic granulomas in ZN-negative lung tissue and in Ag85B-positive bronchial epithelium. Intriguingly, we observed accumulation of Mtb mRNA and Ag85B in the cytoplasm of host cells. Notably, many AFB were negative for Ag85B staining. Mtb mRNA was observed in ZN-negative antemortem lymph node biopsies. Conclusions RNAscope has diagnostic potential and can guide therapeutic intervention as it detects Mtb mRNA and morphology in ZN-negative tissues from TB patients, and Mtb mRNA in ZN-negative antemortem biopsies, respectively. Lastly, our data provide evidence that at least two phenotypically distinct populations of Mtb bacilli exist in vivo .
Collapse
|
5
|
Krohmaly KI, Freishtat RJ, Hahn AL. Bioinformatic and experimental methods to identify and validate bacterial RNA-human RNA interactions. J Investig Med 2023; 71:23-31. [PMID: 36162901 DOI: 10.1136/jim-2022-002509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 01/21/2023]
Abstract
Ample evidence supports the importance of the microbiota on human health and disease. Recent studies suggest that extracellular vesicles are an important means of bacterial-host communication, in part via the transport of small RNAs (sRNAs). Bacterial sRNAs have been shown to co-precipitate with human and mouse RNA-induced silencing complex, hinting that some may regulate gene expression as eukaryotic microRNAs do. Bioinformatic tools, including those that can incorporate an sRNA's secondary structure, can be used to predict interactions between bacterial sRNAs and human messenger RNAs (mRNAs). Validation of these potential interactions using reproducible experimental methods is essential to move the field forward. This review will cover the evidence of interspecies communication via sRNAs, bioinformatic tools currently available to identify potential bacterial sRNA-host (specifically, human) mRNA interactions, and experimental methods to identify and validate those interactions.
Collapse
Affiliation(s)
- Kylie I Krohmaly
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, District of Columbia, USA.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, District of Columbia, USA.,Division of Emergency Medicine, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Andrea L Hahn
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, District of Columbia, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA.,Division of Infectious Diseases, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
6
|
Boldrin F, Cioetto Mazzabò L, Lanéelle MA, Rindi L, Segafreddo G, Lemassu A, Etienne G, Conflitti M, Daffé M, Garzino Demo A, Manganelli R, Marrakchi H, Provvedi R. LysX2 is a Mycobacterium tuberculosis membrane protein with an extracytoplasmic MprF-like domain. BMC Microbiol 2022; 22:85. [PMID: 35365094 PMCID: PMC8974105 DOI: 10.1186/s12866-022-02493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Aminoacyl-phosphatidylglycerol (aaPG) synthases are bacterial enzymes that usually catalyze transfer of aminoacyl residues to the plasma membrane phospholipid phosphatidylglycerol (PG). The result is introduction of positive charges onto the cytoplasmic membrane, yielding reduced affinity towards cationic antimicrobial peptides, and increased resistance to acidic environments. Therefore, these enzymes represent an important defense mechanism for many pathogens, including Staphylococcus aureus and Mycobacterium tuberculosis (Mtb), which are known to encode for lysyl-(Lys)-PG synthase MprF and LysX, respectively. Here, we used a combination of bioinformatic, genetic and bacteriological methods to characterize a protein encoded by the Mtb genome, Rv1619, carrying a domain with high similarity to MprF-like domains, suggesting that this protein could be a new aaPG synthase family member. However, unlike homologous domains of MprF and LysX that are positioned in the cytoplasm, we predicted that the MprF-like domain in LysX2 is in the extracytoplasmic region. RESULTS Using genetic fusions to the Escherichia coli proteins PhoA and LacZ of LysX2, we confirmed this unique membrane topology, as well as LysX and MprF as benchmarks. Expression of lysX2 in Mycobacterium smegmatis increased cell resistance to human β-defensin 2 and sodium nitrite, enhanced cell viability and delayed biofilm formation in acidic pH environment. Remarkably, MtLysX2 significantly reduced the negative charge on the bacterial surface upon exposure to an acidic environment. Additionally, we found LysX2 orthologues in major human pathogens and in rapid-growing mycobacteria frequently associated with human infections, but not in environmental and non-pathogenic mycobacteria. CONCLUSIONS Overall, our data suggest that LysX2 is a prototype of a new class within the MprF-like protein family that likely enhances survival of the pathogenic species through its catalytic domain which is exposed to the extracytoplasmic side of the cell membrane and is required to decrease the negative charge on the bacterial surface through a yet uncharacterized mechanism.
Collapse
Affiliation(s)
| | | | - Marie-Antoinette Lanéelle
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laura Rindi
- Department of Translational Research, University of Pisa, Pisa, Italy
| | - Greta Segafreddo
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Anne Lemassu
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gilles Etienne
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marta Conflitti
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alfredo Garzino Demo
- Department of Molecular Medicine, University of Padua, Padua, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | | | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | |
Collapse
|
7
|
Pandey KK, Madhry D, Ravi Kumar YS, Malvankar S, Sapra L, Srivastava RK, Bhattacharyya S, Verma B. Regulatory roles of tRNA-derived RNA fragments in human pathophysiology. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:161-173. [PMID: 34513302 PMCID: PMC8413677 DOI: 10.1016/j.omtn.2021.06.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hundreds of tRNA genes and pseudogenes are encoded by the human genome. tRNAs are the second most abundant type of RNA in the cell. Advancement in deep-sequencing technologies have revealed the presence of abundant expression of functional tRNA-derived RNA fragments (tRFs). They are either generated from precursor (pre-)tRNA or mature tRNA. They have been found to play crucial regulatory roles during different pathological conditions. Herein, we briefly summarize the discovery and recent advances in deciphering the regulatory role played by tRFs in the pathophysiology of different human diseases.
Collapse
Affiliation(s)
- Kush Kumar Pandey
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Deeksha Madhry
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Y S Ravi Kumar
- Department of Biotechnology, M.S. Ramaiah, Institute of Technology, MSR Nagar, Bengaluru, India
| | - Shivani Malvankar
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
8
|
Extracellular RNAs in Bacterial Infections: From Emerging Key Players on Host-Pathogen Interactions to Exploitable Biomarkers and Therapeutic Targets. Int J Mol Sci 2020; 21:ijms21249634. [PMID: 33348812 PMCID: PMC7766527 DOI: 10.3390/ijms21249634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are key regulators of post-transcriptional gene expression in prokaryotic and eukaryotic organisms. These molecules can interact with mRNAs or proteins, affecting a variety of cellular functions. Emerging evidence shows that intra/inter-species and trans-kingdom regulation can also be achieved with exogenous RNAs, which are exported to the extracellular medium, mainly through vesicles. In bacteria, membrane vesicles (MVs) seem to be the more common way of extracellular communication. In several bacterial pathogens, MVs have been described as a delivery system of ncRNAs that upon entry into the host cell, regulate their immune response. The aim of the present work is to review this recently described mode of host-pathogen communication and to foster further research on this topic envisaging their exploitation in the design of novel therapeutic and diagnostic strategies to fight bacterial infections.
Collapse
|
9
|
Tosar JP, Cayota A. Extracellular tRNAs and tRNA-derived fragments. RNA Biol 2020; 17:1149-1167. [PMID: 32070197 PMCID: PMC7549618 DOI: 10.1080/15476286.2020.1729584] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 01/08/2023] Open
Abstract
Fragmentation of tRNAs generates a family of small RNAs collectively known as tRNA-derived fragments. These fragments vary in sequence and size but have been shown to regulate many processes involved in cell homoeostasis and adaptations to stress. Additionally, the field of extracellular RNAs (exRNAs) is rapidly growing because exRNAs are a promising source of biomarkers in liquid biopsies, and because exRNAs seem to play key roles in intercellular and interspecies communication. Herein, we review recent descriptions of tRNA-derived fragments in the extracellular space in all domains of life, both in biofluids and in cell culture. The purpose of this review is to find consensus on which tRNA-derived fragments are more prominent in each extracellular fraction (including extracellular vesicles, lipoproteins and ribonucleoprotein complexes). We highlight what is becoming clear and what is still controversial in this field, in order to stimulate future hypothesis-driven studies which could clarify the role of full-length tRNAs and tRNA-derived fragments in the extracellular space.
Collapse
Affiliation(s)
- Juan Pablo Tosar
- Analytical Biochemistry Unit, Nuclear Research Center, Faculty of Science, Universidad de la República, Montevideo, Uruguay
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alfonso Cayota
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Department of Medicine, University Hospital, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
10
|
Chai Q, Wang L, Liu CH, Ge B. New insights into the evasion of host innate immunity by Mycobacterium tuberculosis. Cell Mol Immunol 2020; 17:901-913. [PMID: 32728204 PMCID: PMC7608469 DOI: 10.1038/s41423-020-0502-z] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an extremely successful intracellular pathogen that causes tuberculosis (TB), which remains the leading infectious cause of human death. The early interactions between Mtb and the host innate immune system largely determine the establishment of TB infection and disease development. Upon infection, host cells detect Mtb through a set of innate immune receptors and launch a range of cellular innate immune events. However, these innate defense mechanisms are extensively modulated by Mtb to avoid host immune clearance. In this review, we describe the emerging role of cytosolic nucleic acid-sensing pathways at the host-Mtb interface and summarize recently revealed mechanisms by which Mtb circumvents host cellular innate immune strategies such as membrane trafficking and integrity, cell death and autophagy. In addition, we discuss the newly elucidated strategies by which Mtb manipulates the host molecular regulatory machinery of innate immunity, including the intranuclear regulatory machinery, the ubiquitin system, and cellular intrinsic immune components. A better understanding of innate immune evasion mechanisms adopted by Mtb will provide new insights into TB pathogenesis and contribute to the development of more effective TB vaccines and therapies.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 100101, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Lin Wang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 100101, Beijing, China. .,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China.
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China.
| |
Collapse
|
11
|
Zhu C, Sun B, Nie A, Zhou Z. The tRNA-associated dysregulation in immune responses and immune diseases. Acta Physiol (Oxf) 2020; 228:e13391. [PMID: 31529760 DOI: 10.1111/apha.13391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/31/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022]
Abstract
Transfer RNA (tRNA), often considered as a housekeeping molecule, mainly participates in protein translation by transporting amino acids to the ribosome. Nevertheless, accumulating evidence has shown that tRNAs are closely related to various physiological and pathological processes. The proper functioning of the immune system is the key to human health. The aim of this review is to investigate the relationships between tRNAs and the immune system. We detail the biogenesis and structure of tRNAs and summarize the pathogen tRNA-mediated infection and host responses. In addition, we address recent advances in different aspects of tRNA-associated dysregulation in immune responses and immune diseases, such as tRNA molecules, tRNA modifications, tRNA derivatives and tRNA aminoacylation. Therefore, tRNAs play an important role in immune regulation. Although our knowledge of tRNAs in the context of immunity remains, for the most part, unknown, this field deserves in-depth research to provide new ideas for the treatment of immune diseases.
Collapse
Affiliation(s)
- Chunsheng Zhu
- Department of Chinese Medicine The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Bao Sun
- Department of Clinical Pharmacology Xiangya Hospital Central South University Changsha China
- Hunan Key Laboratory of Pharmacogenetics Institute of Clinical Pharmacology Central South University Changsha China
| | - Anzheng Nie
- Department of Chinese Medicine The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Zheng Zhou
- Department of Chinese Medicine The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|
12
|
Imre G. The involvement of regulated cell death forms in modulating the bacterial and viral pathogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:211-253. [PMID: 32381176 PMCID: PMC7102569 DOI: 10.1016/bs.ircmb.2019.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apoptosis, necroptosis and pyroptosis represent three distinct types of regulated cell death forms, which play significant roles in response to viral and bacterial infections. Whereas apoptosis is characterized by cell shrinkage, nuclear condensation, bleb formation and retained membrane integrity, necroptosis and pyroptosis exhibit osmotic imbalance driven cytoplasmic swelling and early membrane damage. These three cell death forms exert distinct immune stimulatory potential. The caspase driven apoptotic cell demise is considered in many circumstances as anti-inflammatory, whereas the two lytic cell death modalities can efficiently trigger immune response by releasing damage associated molecular patterns to the extracellular space. The relevance of these cell death modalities in infections can be best demonstrated by the presence of viral proteins that directly interfere with cell death pathways. Conversely, some pathogens hijack the cell death signaling routes to initiate a targeted attack against the immune cells of the host, and extracellular bacteria can benefit from the destruction of intact extracellular barriers upon cell death induction. The complexity and the crosstalk between these cell death modalities reflect a continuous evolutionary race between pathogens and host. This chapter discusses the current advances in the research of cell death signaling with regard to viral and bacterial infections and describes the network of the cell death initiating molecular mechanisms that selectively recognize pathogen associated molecular patterns.
Collapse
Affiliation(s)
- Gergely Imre
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Nontuberculous Mycobacteria Persistence in a Cell Model Mimicking Alveolar Macrophages. Microorganisms 2019; 7:microorganisms7050113. [PMID: 31035520 PMCID: PMC6560506 DOI: 10.3390/microorganisms7050113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Nontuberculous Mycobacteria (NTM) respiratory infections have been gradually increasing. Here, THP-1 cells were used as a model to evaluate intracellular persistence of three NTM species (reference and clinical strains) in human alveolar macrophages. The contribution of phagosome acidification, nitric oxide (NO) production and cell dead on NTM intracellular fate was assessed. In addition, strains were characterized regarding their repertoire of virulence factors by whole-genome sequencing. NTM experienced different intracellular fates: M. smegmatis and M. fortuitum ATCC 6841 were cleared within 24h. In contrast, M. avium strains (reference/clinical) and M. fortuitum clinical strain were able to replicate. Despite this fact, unexpectedly high percentages of acidified phagosomes were found harbouring rab7, but not CD63. All NTM were able to survive in vitro at acidic pHs, with the exception of M. smegmatis. Our data further suggested a minor role for NO in intracellular persistence and that apoptosis mediated by caspase 8 and 3/7, but not necrosis, is triggered during NTM infection. Insights regarding the bacteria genomic backbone corroborated the virulence potential of M. avium and M. fortuitum. In conclusion, the phenotypic traits detected contrast with those described for M. tuberculosis, pointing out that NTM adopt distinct strategies to manipulate the host immune defense and persist intracellularly.
Collapse
|
14
|
Cheng Y, Schorey JS. Mycobacterium tuberculosis-induced IFN-β production requires cytosolic DNA and RNA sensing pathways. J Exp Med 2018; 215:2919-2935. [PMID: 30337468 PMCID: PMC6219742 DOI: 10.1084/jem.20180508] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/26/2018] [Accepted: 09/21/2018] [Indexed: 01/01/2023] Open
Abstract
RNA sensing pathways are key elements in a host immune response to viral pathogens, but little is known of their importance during bacterial infections. We found that Mycobacterium tuberculosis (M.tb) actively releases RNA into the macrophage cytosol using the mycobacterial SecA2 and ESX-1 secretion systems. The cytosolic M.tb RNA induces IFN-β production through the host RIG-I/MAVS/IRF7 RNA sensing pathway. The inducible expression of IRF7 within infected cells requires an autocrine signaling through IFN-β and its receptor, and this early IFN-β production is dependent on STING and IRF3 activation. M.tb infection studies using Mavs-/- mice support a role for RNA sensors in regulating IFN-β production and bacterial replication in vivo. Together, our data indicate that M.tb RNA is actively released during an infection and promotes IFN-β production through a regulatory mechanism involving cross-talk between DNA and RNA sensor pathways, and our data support the hypothesis that bacterial RNA can drive a host immune response.
Collapse
Affiliation(s)
- Yong Cheng
- Department of Biological Sciences, Eck Institute for Global Health, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN
| | - Jeffrey S Schorey
- Department of Biological Sciences, Eck Institute for Global Health, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN
| |
Collapse
|
15
|
Slayden RA, Dawson CC, Cummings JE. Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis. Pathog Dis 2018; 76:4969681. [PMID: 29788125 DOI: 10.1093/femspd/fty039] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/01/2018] [Indexed: 11/14/2022] Open
Abstract
There has been a significant reduction in annual tuberculosis incidence since the World Health Organization declared tuberculosis a global health threat. However, treatment of M. tuberculosis infections requires lengthy multidrug therapeutic regimens to achieve a durable cure. The development of new drugs that are active against resistant strains and phenotypically diverse organisms continues to present the greatest challenge in the future. Numerous phylogenomic analyses have revealed that the Mtb genome encodes a significantly expanded repertoire of toxin-antitoxin (TA) loci that makes up the Mtb TA system. A TA loci is a two-gene operon encoding a 'toxin' protein that inhibits bacterial growth and an interacting 'antitoxin' partner that neutralizes the inhibitory activity of the toxin. The presence of multiple chromosomally encoded TA loci in Mtb raises important questions in regard to expansion, regulation and function. Thus, the functional roles of TA loci in Mtb pathogenesis have received considerable attention over the last decade. The cumulative results indicate that they are involved in regulating adaptive responses to stresses associated with the host environment and drug treatment. Here we review the TA families encoded in Mtb, discuss the duplication of TA loci in Mtb, regulatory mechanism of TA loci, and phenotypic heterogeneity and pathogenesis.
Collapse
Affiliation(s)
- Richard A Slayden
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Clinton C Dawson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Jason E Cummings
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| |
Collapse
|
16
|
Malabirade A, Habier J, Heintz-Buschart A, May P, Godet J, Halder R, Etheridge A, Galas D, Wilmes P, Fritz JV. The RNA Complement of Outer Membrane Vesicles From Salmonella enterica Serovar Typhimurium Under Distinct Culture Conditions. Front Microbiol 2018; 9:2015. [PMID: 30214435 PMCID: PMC6125333 DOI: 10.3389/fmicb.2018.02015] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/09/2018] [Indexed: 12/20/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs), as well as OMV-associated small RNAs, have been demonstrated to play a role in host-pathogen interactions. The presence of larger RNA transcripts in OMVs has been less studied and their potential role in host-pathogen interactions remains largely unknown. Here we analyze RNA from OMVs secreted by Salmonella enterica serovar Typhimurium (S. Typhimurium) cultured under different conditions, which mimic host-pathogen interactions. S. Typhimurium was grown to exponential and stationary growth phases in minimal growth control medium (phosphate-carbon-nitrogen, PCN), as well as in acidic and phosphate-depleted PCN, comparable to the macrophage environment and inducing therefore the expression of Salmonella pathogenicity island 2 (SPI-2) genes. Moreover, Salmonella pathogenicity island 1 (SPI-1), which is required for virulence during the intestinal phase of infection, was induced by culturing S. Typhimurium to the stationary phase in Lysogeny Broth (LB). For each condition, we identified OMV-associated RNAs that are enriched in the extracellular environment relative to the intracellular space. All RNA classes could be observed, but a vast majority of rRNA was exported in all conditions in variable proportions with a notable decrease in LB SPI-1 inducing media. Several mRNAs and ncRNAs were specifically enriched in/on OMVs dependent on the growth conditions. Important to note is that some RNAs showed identical read coverage profiles intracellularly and extracellularly, whereas distinct coverage patterns were observed for other transcripts, suggesting a specific processing or degradation. Moreover, PCR experiments confirmed that distinct RNAs were present in or on OMVs as full-length transcripts (IsrB-1/2; IsrA; ffs; SsrS; CsrC; pSLT035; 10Sa; rnpB; STM0277; sseB; STM0972; STM2606), whereas others seemed to be rather present in a processed or degraded form. Finally, we show by a digestion protection assay that OMVs are able to prevent enzymatic degradation of given full-length transcripts (SsrS, CsrC, 10Sa, and rnpB). In summary, we show that OMV-associated RNA is clearly different in distinct culture conditions and that at least a fraction of the extracellular RNA is associated as a full-length transcripts with OMVs, indicating that some RNAs are protected by OMVs and thereby leaving open the possibility that those might be functionally active.
Collapse
Affiliation(s)
- Antoine Malabirade
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janine Habier
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Julien Godet
- UMR CNRS 7021, Laboratoire de BioImagerie et Pathologies, Université de Strasbourg, Strasbourg, France
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alton Etheridge
- Pacific Northwest Research Institute, Seattle, WA, United States
| | - David Galas
- Pacific Northwest Research Institute, Seattle, WA, United States
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Joëlle V Fritz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
17
|
Keegan C, Krutzik S, Schenk M, Scumpia PO, Lu J, Pang YLJ, Russell BS, Lim KS, Shell S, Prestwich E, Su D, Elashoff D, Hershberg RM, Bloom BR, Belisle JT, Fortune S, Dedon PC, Pellegrini M, Modlin RL. Mycobacterium tuberculosis Transfer RNA Induces IL-12p70 via Synergistic Activation of Pattern Recognition Receptors within a Cell Network. THE JOURNAL OF IMMUNOLOGY 2018; 200:3244-3258. [PMID: 29610140 DOI: 10.4049/jimmunol.1701733] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/02/2018] [Indexed: 12/14/2022]
Abstract
Upon recognition of a microbial pathogen, the innate and adaptive immune systems are linked to generate a cell-mediated immune response against the foreign invader. The culture filtrate of Mycobacterium tuberculosis contains ligands, such as M. tuberculosis tRNA, that activate the innate immune response and secreted Ags recognized by T cells to drive adaptive immune responses. In this study, bioinformatics analysis of gene-expression profiles derived from human PBMCs treated with distinct microbial ligands identified a mycobacterial tRNA-induced innate immune network resulting in the robust production of IL-12p70, a cytokine required to instruct an adaptive Th1 response for host defense against intracellular bacteria. As validated by functional studies, this pathway contained a feed-forward loop, whereby the early production of IL-18, type I IFNs, and IL-12p70 primed NK cells to respond to IL-18 and produce IFN-γ, enhancing further production of IL-12p70. Mechanistically, tRNA activates TLR3 and TLR8, and this synergistic induction of IL-12p70 was recapitulated by the addition of a specific TLR8 agonist with a TLR3 ligand to PBMCs. These data indicate that M. tuberculosis tRNA activates a gene network involving the integration of multiple innate signals, including types I and II IFNs, as well as distinct cell types to induce IL-12p70.
Collapse
Affiliation(s)
- Caroline Keegan
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095.,Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Stephan Krutzik
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Mirjam Schenk
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Philip O Scumpia
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jing Lu
- Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Yan Ling Joy Pang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Brandon S Russell
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kok Seong Lim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Scarlet Shell
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Erin Prestwich
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Dan Su
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - David Elashoff
- Division of General Internal Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | | | - Barry R Bloom
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - John T Belisle
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523; and
| | - Sarah Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.,Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore 138602, Singapore
| | - Matteo Pellegrini
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095.,Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095; .,Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
18
|
Dauros-Singorenko P, Blenkiron C, Phillips A, Swift S. The functional RNA cargo of bacterial membrane vesicles. FEMS Microbiol Lett 2018; 365:4830096. [DOI: 10.1093/femsle/fny023] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Priscila Dauros-Singorenko
- Department of Molecular Medicine and Pathology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Obstetrics and Gynaecology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Anthony Phillips
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Surgery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
19
|
Ghosal A. Importance of secreted bacterial RNA in bacterial-host interactions in the gut. Microb Pathog 2017; 104:161-163. [PMID: 28111325 DOI: 10.1016/j.micpath.2017.01.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/12/2017] [Accepted: 01/18/2017] [Indexed: 11/24/2022]
Abstract
Bacteria are ubiquitous in nature and found to be associated with human. Humans are benefited significantly from these associated bacteria. Our understanding is quite limited about these beneficial associations and how bacteria communicate with the host. It is assumed that secreted bacterial products contribute in bacterial-host signaling. A few studies have shown that bacteria secrete RNA into their extracellular medium, and these secreted RNA are capable of altering the host immune response. Multiple studies in eukaryotes have confirmed that secreted RNA can influence the functioning of other cells and their role in the development of several diseases, although not much is known about the composition of secreted bacterial RNA, how they are trafficked and how they impact on the functioning of host cells. By uncovering the beneficial role of secreted bacterial RNA, it would be possible to improve the human health.
Collapse
Affiliation(s)
- Anubrata Ghosal
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
20
|
Simonov D, Swift S, Blenkiron C, Phillips AR. Bacterial RNA as a signal to eukaryotic cells as part of the infection process. Discoveries (Craiova) 2016; 4:e70. [PMID: 32309589 PMCID: PMC7159825 DOI: 10.15190/d.2016.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The discovery of regulatory RNA has identified an underappreciated area for microbial subversion of the host. There is increasing evidence that RNA can be delivered from bacteria to host cells associated with membrane vesicles or by direct release from intracellular bacteria. Once inside the host cell, RNA can act by activating sequence-independent receptors of the innate immune system, where recent findings suggest this can be more than simple pathogen detection, and may contribute to the subversion of immune responses. Sequence specific effects are also being proposed, with examples from nematode, plant and human models providing support for the proposition that bacteria-to-human RNA signaling and the subversion of host gene expression may occur.
Collapse
Affiliation(s)
- Denis Simonov
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Anthony R Phillips
- Department of Surgery, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Domenech M, Pedrero-Vega E, Prieto A, García E. Evidence of the presence of nucleic acids and β-glucan in the matrix of non-typeable Haemophilus influenzae in vitro biofilms. Sci Rep 2016; 6:36424. [PMID: 27805043 PMCID: PMC5090351 DOI: 10.1038/srep36424] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is a Gram-negative bacterium that frequently colonizes the human nasopharynx; it is a common cause of chronic and recurrent otitis media in children and of exacerbations of chronic obstructive pulmonary disease. To date, no exopolysaccharide clearly contributing to NTHi biofilms has been identified. Consequently, there is some debate as to whether NTHi forms biofilms during colonization and infection. The present work shows that NTHi can form biofilms in vitro, producing an extracellular matrix composed of proteins, nucleic acids, and a β-glucan. Extracellular DNA, visualized by immunostaining and using fluorochromes, is an important component of this matrix and appears to be essential in biofilm maintenance. Extracellular RNA appears to be required only in the first steps of biofilm formation. Evidence of a matrix polysaccharide was obtained by staining with Calcofluor white M2R and by disaggregating biofilms with cellulase. Using strain 54997, residues of Glcp(1→4) in the NTHi biofilm were confirmed by gas-liquid chromatography-mass spectrometry. Evidence that N-acetyl-L-cysteine shows notable killing activity towards in vitro NTHi biofilm-forming bacteria is also provided.
Collapse
Affiliation(s)
- Mirian Domenech
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Monforte de Lemos 3–5, 28029 Madrid, Spain
| | - Elena Pedrero-Vega
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Alicia Prieto
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ernesto García
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Monforte de Lemos 3–5, 28029 Madrid, Spain
| |
Collapse
|
22
|
Fritz JV, Heintz-Buschart A, Ghosal A, Wampach L, Etheridge A, Galas D, Wilmes P. Sources and Functions of Extracellular Small RNAs in Human Circulation. Annu Rev Nutr 2016; 36:301-36. [PMID: 27215587 PMCID: PMC5479634 DOI: 10.1146/annurev-nutr-071715-050711] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Various biotypes of endogenous small RNAs (sRNAs) have been detected in human circulation, including microRNAs, transfer RNAs, ribosomal RNA, and yRNA fragments. These extracellular sRNAs (ex-sRNAs) are packaged and secreted by many different cell types. Ex-sRNAs exhibit differences in abundance in several disease states and have, therefore, been proposed for use as effective biomarkers. Furthermore, exosome-borne ex-sRNAs have been reported to elicit physiological responses in acceptor cells. Exogenous ex-sRNAs derived from diet (most prominently from plants) and microorganisms have also been reported in human blood. Essential issues that remain to be conclusively addressed concern the (a) presence and sources of exogenous ex-sRNAs in human bodily fluids, (b) detection and measurement of ex-sRNAs in human circulation, (c) selectivity of ex-sRNA export and import, (d) sensitivity and specificity of ex-sRNA delivery to cellular targets, and (e) cell-, tissue-, organ-, and organism-wide impacts of ex-sRNA-mediated cell-to-cell communication. We survey the present state of knowledge of most of these issues in this review.
Collapse
MESH Headings
- Animals
- Biological Transport
- Biomarkers/blood
- Cell Communication
- Diet
- Gastrointestinal Microbiome/immunology
- Gene Expression Regulation
- Host-Parasite Interactions
- Host-Pathogen Interactions
- Humans
- Immunity, Innate
- MicroRNAs/blood
- MicroRNAs/metabolism
- Models, Biological
- RNA, Bacterial/blood
- RNA, Bacterial/metabolism
- RNA, Plant/blood
- RNA, Plant/metabolism
- RNA, Ribosomal/blood
- RNA, Ribosomal/metabolism
- RNA, Small Interfering/blood
- RNA, Small Interfering/metabolism
- RNA, Small Untranslated/blood
- RNA, Small Untranslated/metabolism
- RNA, Transfer/blood
- RNA, Transfer/metabolism
- RNA, Viral/blood
- RNA, Viral/metabolism
Collapse
Affiliation(s)
- Joëlle V Fritz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Anubrata Ghosal
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Linda Wampach
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Alton Etheridge
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - David Galas
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| |
Collapse
|
23
|
Flór TB, Blom B. Pathogens Use and Abuse MicroRNAs to Deceive the Immune System. Int J Mol Sci 2016; 17:538. [PMID: 27070595 PMCID: PMC4848994 DOI: 10.3390/ijms17040538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence has demonstrated that microRNAs (miRs) play a role in the survival and amplification of viruses, bacteria and other pathogens. There are various ways in which pathogens can benefit from miR-directed alterations in protein translation and signal transduction. Members of the herpesviridae family have previously been shown to encode multiple miRs, while the production of miRs by viruses like HIV-1 remained controversial. Recently, novel techniques have facilitated the elucidation of true miR targets by establishing miR-argonaute association and the subsequent interactions with their cognate cellular mRNAs. This, in combination with miR reporter assays, has generated physiologically relevant evidence that miRs from the herpesviridae family have the potential to downregulate multiple cellular targets, which are involved in immune activation, cytokine signaling and apoptosis. In addition, viruses and bacteria have also been linked to the induction of host cellular miRs, which have the capacity to mitigate immune activation, cytokine signaling and apoptosis. Interfering with miR expression may be clinically relevant. In the case of hepatitis C infection, the cellular miR-122 is already targeted therapeutically. This not only exemplifies how important miRs can be for the survival of specific viruses, but it also delineates the potential to use miRs as drug targets. In this paper we will review the latest reports on viruses and bacteria that abuse miR regulation for their benefit, which may be of interest in the development of miR-directed therapies.
Collapse
Affiliation(s)
- Thomas B Flór
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| | - Bianca Blom
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
24
|
Bhargava A, Khare NK, Bunkar N, Lenka RK, Mishra PK. Role of mitochondrial oxidative stress on lymphocyte homeostasis in patients diagnosed with extra-pulmonary tuberculosis. Cell Biol Int 2015; 40:166-76. [PMID: 26431927 DOI: 10.1002/cbin.10549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/30/2015] [Indexed: 12/11/2022]
Abstract
Extra-pulmonary tuberculosis is often an underrated illness. Recent clinical studies have pointed out that lymphocyte homeostasis is dramatically disturbed as revealed through a series of signs and symptoms. Lymphocytes, the known effector cells of our immune system, play an important role in providing immunologic resistance against Mycobacterium infection. It is important to have quantitative insights into the lifespan of these cells; therefore, we aimed to study the precise effect of gastrointestinal tuberculosis infection on peripheral blood lymphocyte subpopulations and function. Our results indicated that gastrointestinal tuberculosis could increase mitochondrial oxidative stress, lower mitochondrial DNA copy number, promote nuclear DNA damage and repair response, decrease mitochondrial respiratory chain enzyme activities, and upregulate Bcl-2 and caspase-3 gene expression in lymphocytes. We further revealed that Mycobacterium infection induces autophagy for selective sequestration and subsequent degradation of the dysfunctional mitochondrion before activating cellular apoptosis in the peripheral lymphocyte pool. Together, these observations uncover a new role of mitochondrial-nuclear crosstalk that apparently contributes to lymphocyte homeostasis in gastrointestinal tuberculosis infection.
Collapse
Affiliation(s)
- Arpit Bhargava
- Translational Research Laboratory, School of Biological Sciences, Dr. H. S. Gour Central University, Sagar, Madhya Pradesh, India
| | - Naveen Kumar Khare
- Division of Translational Research, Tata Memorial Centre, ACTREC, Navi Mumbai, Maharashtra, India
| | - Neha Bunkar
- Translational Research Laboratory, School of Biological Sciences, Dr. H. S. Gour Central University, Sagar, Madhya Pradesh, India
| | - Rajesh Kumar Lenka
- Department of Microbiology, I.M.S. & SUM Hospital, Bhubaneswar, Odisha, India
| | - Pradyumna Kumar Mishra
- Translational Research Laboratory, School of Biological Sciences, Dr. H. S. Gour Central University, Sagar, Madhya Pradesh, India
| |
Collapse
|
25
|
Singh PP, Li L, Schorey JS. Exosomal RNA from Mycobacterium tuberculosis-Infected Cells Is Functional in Recipient Macrophages. Traffic 2015; 16:555-71. [PMID: 25753779 DOI: 10.1111/tra.12278] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 12/31/2022]
Abstract
Exosomes are extracellular vesicles released by cells that carry proteins, lipids and nucleic acids and function in intercellular communication. Previously, we determined that exosomes released from Mycobacterium tuberculosis (M.tb)-infected macrophages carry mycobacterial proteins and lipids. However, the RNA composition within these exosomes has not been defined. In this study, we characterized the exosomes released from M.tb-infected macrophages and identified a cohort of mouse messenger RNA (mRNA) and microRNA (miRNA). Quantitative reverse-transcriptase polymerase chain reaction analysis showed less abundance of miRNAs in exosomes released from infected compared with uninfected macrophages. Moreover, more than 100 transcripts were found to be enriched or unique to exosomes from infected cells including transcripts involved in regulating an immune response. The exosomal RNA could be transferred and expressed in naïve macrophages and was biologically active, stimulating production of inflammatory mediators and inducing apoptosis in recipient cells. Interestingly, we also identified mycobacterial transcripts in exosomes released from infected macrophages. To our knowledge, this is the first study to identify bacterial-derived RNA in exosomes. Our results suggest that exosomal RNA released from M.tb-infected macrophages may have functional and diagnostic potential in the context of a mycobacterial infection.
Collapse
Affiliation(s)
- Prachi Pratap Singh
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Li Li
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jeffrey Scott Schorey
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
26
|
Blenkiron C, Tsai P, Brown LA, Tintinger V, Askelund KJ, Windsor JA, Phillips AR. Characterisation of the small RNAs in the biomedically important green-bottle blowfly Lucilia sericata. PLoS One 2015; 10:e0122203. [PMID: 25803701 PMCID: PMC4372549 DOI: 10.1371/journal.pone.0122203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 02/08/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The green bottle fly maggot, Lucilia sericata, is a species with importance in medicine, agriculture and forensics. Improved understanding of this species' biology is of great potential benefit to many research communities. MicroRNAs (miRNA) are a short non-protein coding regulatory RNA, which directly regulate a host of protein coding genes at the translational level. They have been shown to have developmental and tissue specific distributions where they impact directly on gene regulation. In order to improve understanding of the biology of L. sericata maggots we have performed small RNA-sequencing of their secretions and tissue at different developmental stages. RESULTS We have successfully isolated RNA from the secretions of L. sericata maggots. Illumina small RNA-sequencing of these secretions and the three tissues (crop, salivary gland, gut) revealed that the most common small RNA fragments were derived from ribosomal RNA and transfer RNAs of both insect and bacterial origins. These RNA fragments were highly specific, with the most common tRNAs, such as GlyGCC, predominantly represented by reads derived from the 5' end of the mature maggot tRNA. Each library also had a unique profile of miRNAs with a high abundance of miR-10-5p in the maggot secretions and gut and miR-8 in the food storage organ the crop and salivary glands. The pattern of small RNAs in the bioactive maggot secretions suggests they originate from a combination of saliva, foregut and hindgut tissues. Droplet digital RT-PCR validation of the RNA-sequencing data shows that not only are there differences in the tissue profiles for miRNAs and small RNA fragments but that these are also modulated through developmental stages of the insect. CONCLUSIONS We have identified the small-RNAome of the medicinal maggots L. sericata and shown that there are distinct subsets of miRNAs expressed in specific tissues that also alter during the development of the insect. Furthermore there are very specific RNA fragments derived from other non-coding RNAs present in tissues and in the secretions. This new knowledge has applicability in diverse research fields including wound healing, agriculture and forensics.
Collapse
Affiliation(s)
- Cherie Blenkiron
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Auckland, Auckland, New Zealand
- * E-mail:
| | - Peter Tsai
- Bioinformatics Institute, University of Auckland, Auckland, New Zealand
| | - Lisa A. Brown
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Vernon Tintinger
- Department of Anthropology, University of Auckland, Auckland, New Zealand
| | - Kathryn J. Askelund
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - John A. Windsor
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Anthony R. Phillips
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Auckland, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Wen SH, Wu HJ, Lin L, Chong L, Zhu LL, Zhang WX, Zhang HL, Li CC. Adjunctive dexamethasone therapy improves lung injury by inhibiting inflammation and reducing RIP3 expression during Staphylococcus aureus pneumonia in mice. Int Immunopharmacol 2014; 23:709-18. [DOI: 10.1016/j.intimp.2014.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 11/29/2022]
|
28
|
Killick KE, Magee DA, Park SDE, Taraktsoglou M, Browne JA, Conlon KM, Nalpas NC, Gormley E, Gordon SV, MacHugh DE, Hokamp K. Key Hub and Bottleneck Genes Differentiate the Macrophage Response to Virulent and Attenuated Mycobacterium bovis. Front Immunol 2014; 5:422. [PMID: 25324841 PMCID: PMC4181336 DOI: 10.3389/fimmu.2014.00422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/19/2014] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium bovis is an intracellular pathogen that causes tuberculosis in cattle. Following infection, the pathogen resides and persists inside host macrophages by subverting host immune responses via a diverse range of mechanisms. Here, a high-density bovine microarray platform was used to examine the bovine monocyte-derived macrophage transcriptome response to M. bovis infection relative to infection with the attenuated vaccine strain, M. bovis Bacille Calmette-Guérin. Differentially expressed genes were identified (adjusted P-value ≤0.01) and interaction networks generated across an infection time course of 2, 6, and 24 h. The largest number of biological interactions was observed in the 24-h network, which exhibited scale-free network properties. The 24-h network featured a small number of key hub and bottleneck gene nodes, including IKBKE, MYC, NFKB1, and EGR1 that differentiated the macrophage response to virulent and attenuated M. bovis strains, possibly via the modulation of host cell death mechanisms. These hub and bottleneck genes represent possible targets for immuno-modulation of host macrophages by virulent mycobacterial species that enable their survival within a hostile environment.
Collapse
Affiliation(s)
- Kate E Killick
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland ; Systems Biology Ireland, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin , Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Stephen D E Park
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland ; IdentiGEN Ltd. , Dublin , Ireland
| | - Maria Taraktsoglou
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland ; Biological Agents Unit, Health and Safety Executive , Leeds , UK
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Kevin M Conlon
- UCD School of Veterinary Medicine, University College Dublin , Dublin , Ireland ; Science Foundation Ireland (SFI) , Dublin , Ireland
| | - Nicolas C Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Centre, UCD School of Veterinary Medicine, University College Dublin , Dublin , Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin , Dublin , Ireland ; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin , Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland ; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin , Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College , Dublin , Ireland
| |
Collapse
|
29
|
Ackart DF, Hascall-Dove L, Caceres SM, Kirk NM, Podell BK, Melander C, Orme IM, Leid JG, Nick JA, Basaraba RJ. Expression of antimicrobial drug tolerance by attached communities of Mycobacterium tuberculosis. Pathog Dis 2014; 70:359-69. [PMID: 24478060 PMCID: PMC4361083 DOI: 10.1111/2049-632x.12144] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 11/28/2022] Open
Abstract
There is an urgent need to improve methods used to screen antituberculosis drugs. An in vitro assay was developed to test drug treatment strategies that specifically target drug-tolerant Mycobacterium tuberculosis. The H37Rv strain of M. tuberculosis survived antimicrobial treatment as attached microbial communities when maintained in tissue culture media (RPMI-1640) with or without lysed human peripheral blood leukocytes. When cultured planktonically in the presence of Tween-80, bacilli failed to form microbial communities or reach logarithmic phase growth yet remained highly susceptible to antimicrobial drugs. In the absence of Tween, bacilli tolerated drug therapy by forming complex microbial communities attached to untreated well surfaces or to the extracellular matrix derived from lysed human leukocytes. Treatment of microbial communities with DNase I or Tween effectively dispersed bacilli and restored drug susceptibility. These data demonstrate that in vitro expression of drug tolerance by M. tuberculosis is linked to the establishment of attached microbial communities and that dispersion of bacilli targeting the extracellular matrix including DNA restores drug susceptibility. Modifications of this in vitro assay may prove beneficial in a high-throughput platform to screen new antituberculosis drugs especially those that target drug-tolerant bacilli.
Collapse
Affiliation(s)
- David F. Ackart
- Department of Microbiology, Immunology and Pathology, Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States of America
| | - Laurel Hascall-Dove
- Department of Microbiology, Immunology and Pathology, Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States of America
| | - Silvia M. Caceres
- Department of Medicine, National Jewish Health, Denver, CO, United States of America
| | - Natalie M. Kirk
- Department of Microbiology, Immunology and Pathology, Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States of America
| | - Brendan K. Podell
- Department of Microbiology, Immunology and Pathology, Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States of America
| | - Christian Melander
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States of America
| | - Ian M. Orme
- Department of Microbiology, Immunology and Pathology, Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States of America
| | - Jeff G. Leid
- Medical Products Division, W.L. Gore and Associates, Flagstaff, AZ, United States of America
| | - Jerry A. Nick
- Department of Medicine, National Jewish Health, Denver, CO, United States of America
| | - Randall J. Basaraba
- Department of Microbiology, Immunology and Pathology, Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
30
|
Abstract
Tuberculosis globally results in almost 2 million human deaths annually, with 1 in 4 deaths from tuberculosis being human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS)-related. Primarily a pathogen of the respiratory system, aerobic Mycobacterium tuberculosis complex (MTBC) infects the lungs via the inhalation of infected aerosol droplets generated by people with pulmonary disease through coughing. This review focuses on M. tuberculosis transmission, epidemiology, detection methods and technologies.
Collapse
Affiliation(s)
- Balkis A Talip
- Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine
| | - Roy D Sleator
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Colm J Lowery
- Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine
| | - James S G Dooley
- Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine
| | - William J Snelling
- Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine
| |
Collapse
|
31
|
Huang Y, Huang Y, Fang Y, Wang J, Li Y, Wang N, Zhang J, Gao M, Huang L, Yang F, Wang C, Lin S, Yao Y, Ren L, Chen Y, Du X, Xie D, Wu R, Zhang K, Jiang L, Yu X, Lai X. Relatively low level of antigen-specific monocytes detected in blood from untreated tuberculosis patients using CD4+ T-cell receptor tetramers. PLoS Pathog 2012; 8:e1003036. [PMID: 23209409 PMCID: PMC3510242 DOI: 10.1371/journal.ppat.1003036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 10/04/2012] [Indexed: 12/22/2022] Open
Abstract
The in vivo kinetics of antigen-presenting cells (APCs) in patients with advanced and convalescent tuberculosis (TB) is not well characterized. In order to target Mycobacterium tuberculosis (MTB) peptides- and HLA-DR-holding monocytes and macrophages, 2 MTB peptide-specific CD4+ T-cell receptor (TCR) tetramers eu and hu were successfully constructed. Peripheral blood (PBL) samples from inpatients with advanced pulmonary TB (PTB) were analyzed using flow cytometry, and the percentages of tetramer-bound CD14+ monocytes ranged from 0.26–1.44% and 0.21–0.95%, respectively; significantly higher than those measured in PBL samples obtained from non-TB patients, healthy donors, and umbilical cords. These tetramers were also able to specifically detect macrophages in situ via immunofluorescent staining. The results of the continuous time-point tracking of the tetramer-positive rates in PBL samples from active PTB outpatients undergoing treatment show that the median percentages were at first low before treatment, increased to their highest levels during the first month, and then began to decrease during the second month until finally reaching and maintaining a relatively low level after 3–6 months. These results suggest that there is a relatively low level of MTB-specific monocytes in advanced and untreated patients. Further experiments show that MTB induces apoptosis in CD14+ cells, and the percentage of apoptotic monocytes dramatically decreases after treatment. Therefore, the relatively low level of MTB-specific monocytes is probably related to the apoptosis or necrosis of APCs due to live bacteria and their growth. The bactericidal effects of anti-TB drugs, as well as other unknown factors, would induce a peak value during the first month of treatment, and a relatively low level would be subsequently reached and maintained until all of the involved factors reached equilibrium. These tetramers have diagnostic potential and can provide valuable insights into the mechanisms of antigen presentation and its relationship with TB infection and latent TB infection. Mycobacterium tuberculosis (MTB) is one of the most dangerous pathogens in the world. It is estimated that one-third of the world population contracts the bacteria during their lives. Approximately 5–10% of infected individuals will eventually develop an active form of the disease. Cellular immunity plays an important role in immunity against tuberculosis (TB); however, the host's defense mechanisms are not completely understood. Here, we developed a novel tool: MTB antigen-specific tetrameric CD4+ T-cell receptor (TCR) complexes that can detect MTB peptide-specific antigen presenting cells (APCs) in blood and local tissues. We found that a relatively low level of antigen-specific monocytes (i.e., APCs) was detected in peripheral blood (PBL) samples from untreated TB patients, and then increased to their peak levels during the first month after treatment, which probably had something to do with the decrease in APC apoptosis. Our research provides a new method for tracking dynamic changes in APCs that are associated with TB infection and latent TB infection, and an additional tool for the studies of TB immunity and its pathogenesis.
Collapse
Affiliation(s)
- Yuhong Huang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan Huang
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yimin Fang
- Guangzhou Chest Hospital, Guangzhou, China
| | - Juan Wang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Nan Wang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianbo Zhang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ming Gao
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lirong Huang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fangfang Yang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cong Wang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuxian Lin
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanan Yao
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liangliang Ren
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yi Chen
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuanjing Du
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dan Xie
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rongshun Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kouxing Zhang
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lifang Jiang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail: (Lifang Jiang); (Xinbing Yu); (Xiaomin Lai)
| | - Xinbing Yu
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail: (Lifang Jiang); (Xinbing Yu); (Xiaomin Lai)
| | - Xiaomin Lai
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail: (Lifang Jiang); (Xinbing Yu); (Xiaomin Lai)
| |
Collapse
|
32
|
Butler RE, Brodin P, Jang J, Jang MS, Robertson BD, Gicquel B, Stewart GR. The balance of apoptotic and necrotic cell death in Mycobacterium tuberculosis infected macrophages is not dependent on bacterial virulence. PLoS One 2012; 7:e47573. [PMID: 23118880 PMCID: PMC3484146 DOI: 10.1371/journal.pone.0047573] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/14/2012] [Indexed: 02/03/2023] Open
Abstract
Background An important mechanism of Mycobacterium tuberculosis pathogenesis is the ability to control cell death pathways in infected macrophages: apoptotic cell death is bactericidal, whereas necrotic cell death may facilitate bacterial dissemination and transmission. Methods We examine M.tuberculosis control of spontaneous and chemically induced macrophage cell death using automated confocal fluorescence microscopy, image analysis, flow cytometry, plate-reader based vitality assays, and M.tuberculosis strains including H37Rv, and isogenic virulent and avirulent strains of the Beijing lineage isolate GC1237. Results We show that bacterial virulence influences the dynamics of caspase activation and the total level of cytotoxicity. We show that the powerful ability of M.tuberculosis to inhibit exogenously stimulated apoptosis is abrogated by loss of virulence. However, loss of virulence did not influence the balance of macrophage apoptosis and necrosis – both virulent and avirulent isogenic strains of GC1237 induced predominantly necrotic cell death compared to H37Rv which induced a higher relative level of apoptosis. Conclusions This reveals that macrophage necrosis and apoptosis are independently regulated during M. tuberculosis infection of macrophages. Virulence affects the level of host cell death and ability to inhibit apoptosis but other strain-specific characteristics influence the ultimate mode of host cell death and alter the balance of apoptosis and necrosis.
Collapse
Affiliation(s)
- Rachel E. Butler
- Division of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- * E-mail: (GRS); (REB)
| | - Priscille Brodin
- Institut Pasteur Korea, Seoul, South Korea
- Institut Pastuer Lille, Lille, France
| | | | | | - Brian D. Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, South Kensington, London, United Kingdom
| | | | - Graham R. Stewart
- Division of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- * E-mail: (GRS); (REB)
| |
Collapse
|
33
|
van der Windt D, Bootsma HJ, Burghout P, van der Gaast-de Jongh CE, Hermans PWM, van der Flier M. Nonencapsulated Streptococcus pneumoniae resists extracellular human neutrophil elastase- and cathepsin G-mediated killing. ACTA ACUST UNITED AC 2012; 66:445-8. [PMID: 22943431 DOI: 10.1111/j.1574-695x.2012.01028.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/17/2012] [Accepted: 08/22/2012] [Indexed: 11/29/2022]
Abstract
Although the Streptococcus pneumoniae polysaccharide capsule is an important virulence factor, ~ 15% of carriage isolates are nonencapsulated. Nonencapsulated S. pneumoniae are a cause of mucosal infections. Recent studies have shown that neutrophils kill S. pneumoniae predominately through neutrophil proteases, such as elastase and cathepsin G. Another recent finding is that nonencapsulated pneumococci have greater resistance to resist cationic antimicrobial peptides that are important in mucosal immunity. We here show that nonencapsulated pneumococci have greater resistance to extracellular human neutrophil elastase- and cathepsin G-mediated killing than isogenic encapsulated pneumococci. Resistance to extracellular neutrophil protease-mediated killing is likely to be of greater relative importance on mucosal surfaces compared to other body sites.
Collapse
Affiliation(s)
- Dieke van der Windt
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|