1
|
Sai CB, Chidambaranathan P. In-silico evolutionary analysis of plant-OBERON proteins during compatible MYMV infection in respect of improving host resistance. JOURNAL OF PLANT RESEARCH 2022; 135:405-422. [PMID: 35201523 DOI: 10.1007/s10265-022-01372-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Yellow mosaic disease (YMD) of pulses caused by mungbean yellow mosaic virus is a major threat to crop production. An infection that is compatible with regulating and interacting host proteins and the virus causes YMD. Oberon families of proteins OBE1-4 and VIN1-4 are imperative for plants, functions in meristem and vascular development, and were also regulated during compatible disease infection. Furthermore, in-silico expression results suggested the involvement of OBE1 and OBE2 proteins during virus infection of Vigna, Arabidopsis and soybean. Moreover, a common ancestor for the meristem and virus movement related Oberons was inferred through phylogenetic analysis. Protein interaction studies showed three amino acids (Aspartate, glutamate and lysine) in the plant homeodomain (PHD), involved in interaction with the N-terminal region of the virus movement protein and were also conserved in both monocot and dicots. Additionally, major differences in the nuclear localization signal (NLS) showing clade specific conservation and significant variation between dicots and monocots were ascertained in meristem and virus movement related Oberons. Consequently, a combination of PHD, CCD and their interactions with the VPg viral domain increases the susceptibility to YMD. Further, modification in the NLS regions of the viral movement clade Oberons, to knock out allele generation in the OBE1 and OBE2 homologs through genome-editing approaches could be established as alternate strategies for the improvement of host resistance and control yellow mosaic disease in plants, especially in pulse crops.
Collapse
Affiliation(s)
- Cayalvizhi B Sai
- ICAR-National Rice Research Institute (ICAR-NRRI), Cuttack, 753006, India.
| | | |
Collapse
|
2
|
Sai CB, Chidambaranathan P, Samantaray S. Role of histone deacetylase inhibitors in androgenic callus induction of Oryza sativa sub indica, in sight into evolution and mode of action of histone deacetylase genes. Mol Biol Rep 2022; 49:2169-2183. [PMID: 34985645 DOI: 10.1007/s11033-021-07036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The potential of paddy breeding has reached its pinnacle, and hybrids have been the principal research outcome. Hence, our hypothesis was based on improvising the callus induction efficiency of recalcitrant Oryza sativa sub. indica hybrids by intervening into their cellular functions like cell division and histone regulation for the production of doubled haploids, a better output compared to hybrids. METHODOLOGY AND RESULTS Insight into the mechanism of cell division is the foremost concern in altering the same and hence studies on evolution, expression and action of histone deacetylase and its 12 genes (9 HDA and 3 HD-tunin genes) were chosen in the hypothesis. Expression of HDA genes at three stages (anther dehiscence, 1st callusing and second callusing stages) with inhibitor (trichostatin-A) interventions indicated 1st callusing stage as the most important in influencing callus induction and also the genes HDA19, 6, 15 and 5 were the most important. TSA alone had a significant impact on the regulation of the genes HDT 702, HDA19, HDA9, and HDA6. Higher expression of HDA19 and HDA6 was involved in maximizing callus induction; HDA15 had an antagonistic expression compared to HDA19/6 and might be involved in chlorophyll regulation during regeneration. Results of evolutionary analysis on histone deacetylases indicated a long and single lineage of origin denoting its importance in the basic cellular functions. The tubulin deacetylation gene HDA5, which was exclusively found in dicotyledons, had a recent evolutionary history only from terrestrial plants, and also had significant conservation in its motifs and NLS region. CONCLUSION By combating the recalcitrant nature of Indica cultivars, molecular editing on a combination of HDA genes will enhance the callus induction and regeneration efficiency of the next generation of doubled haploids, therby improving the total yield.
Collapse
Affiliation(s)
- Cayalvizhi B Sai
- Lab No 225, Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), CRRI-Post, Cuttack, Odisha, 753006, India.
| | - Parameswaran Chidambaranathan
- Lab No 225, Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), CRRI-Post, Cuttack, Odisha, 753006, India
| | - Sangamitra Samantaray
- Lab No 225, Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), CRRI-Post, Cuttack, Odisha, 753006, India
| |
Collapse
|
3
|
KHARSHIING GAYLE, CHRUNGOO NIKHILK. Wx alleles in rice: relationship with apparent amylose content of starch and a possible role in rice domestication. J Genet 2021. [DOI: 10.1007/s12041-021-01311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Su W, Ren Y, Wang D, Huang L, Fu X, Ling H, Su Y, Huang N, Tang H, Xu L, Que Y. New insights into the evolution and functional divergence of the CIPK gene family in Saccharum. BMC Genomics 2020; 21:868. [PMID: 33287700 PMCID: PMC7720545 DOI: 10.1186/s12864-020-07264-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/22/2020] [Indexed: 11/20/2022] Open
Abstract
Background Calcineurin B-like protein (CBL)-interacting protein kinases (CIPKs) are the primary components of calcium sensors, and play crucial roles in plant developmental processes, hormone signaling transduction, and in the response to exogenous stresses. Results In this study, 48 CIPK genes (SsCIPKs) were identified from the genome of Saccharum spontaneum. Phylogenetic reconstruction suggested that the SsCIPK gene family may have undergone six gene duplication events from the last common ancestor (LCA) of SsCIPKs. Whole-genome duplications (WGDs) served as the driving force for the amplification of SsCIPKs. The Nonsynonymous to synonymous substitution ratio (Ka/Ks) analysis showed that the duplicated genes were possibly under strong purifying selection pressure. The divergence time of these duplicated genes had an average duplication time of approximately 35.66 Mya, suggesting that these duplication events occurred after the divergence of the monocots and eudicots (165 Mya). The evolution of gene structure analysis showed that the SsCIPK family genes may involve intron losses. Ten ScCIPK genes were amplified from sugarcane (Saccharum spp. hybrids). The results of real-time quantitative polymerase chain reaction (qRT-PCR) demonstrated that these ten ScCIPK genes had different expression patterns under abscisic acid (ABA), polyethylene glycol (PEG), and sodium chloride (NaCl) stresses. Prokaryotic expression implied that the recombinant proteins of ScCIPK3, − 15 and − 17 could only slightly enhance growth under salinity stress conditions, but the ScCIPK21 did not. Transient N. benthamiana plants overexpressing ScCIPKs demonstrated that the ScCIPK genes were involved in responding to external stressors through the ethylene synthesis pathway as well as to bacterial infections. Conclusions In generally, a comprehensive genome-wide analysis of evolutionary relationship, gene structure, motif composition, and gene duplications of SsCIPK family genes were performed in S. spontaneum. The functional study of expression patterns in sugarcane and allogenic expressions in E. coli and N. benthamiana showed that ScCIPKs played various roles in response to different stresses. Thus, these results improve our understanding of the evolution of the CIPK gene family in sugarcane as well as provide a basis for in-depth functional studies of CIPK genes in sugarcane. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07264-9.
Collapse
Affiliation(s)
- Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongjuan Ren
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Long Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xueqin Fu
- Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ning Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hanchen Tang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Seung D. Amylose in starch: towards an understanding of biosynthesis, structure and function. THE NEW PHYTOLOGIST 2020; 228:1490-1504. [PMID: 32767769 DOI: 10.1111/nph.16858] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 05/20/2023]
Abstract
Starch granules are composed of two distinct glucose polymers - amylose and amylopectin. Amylose constitutes 5-35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, this poses a great challenge for biochemical and structural analyses. However, the last two decades have seen vast progress in understanding amylose synthesis, including new insights into the action of GRANULE BOUND STARCH SYNTHASE (GBSS), the major glucosyltransferase that synthesises amylose, and the discovery of PROTEIN TARGETING TO STARCH1 (PTST1) that targets GBSS to starch granules. Advances in analytical techniques have resolved the fine structure of amylose, raising new questions on how structure is determined during biosynthesis. Furthermore, the discovery of wild plants that do not produce amylose revives a long-standing question of why starch granules contain amylose, rather than amylopectin alone. Overall, these findings contribute towards a full understanding of amylose biosynthesis, structure and function that will be essential for future approaches to improve starch quality in crops.
Collapse
Affiliation(s)
- David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
6
|
Xia Y, Chiu CH, Do YY, Huang PL. Expression Fluctuations of Genes Involved in Carbohydrate Metabolism Affected by Alterations of Ethylene Biosynthesis Associated with Ripening in Banana Fruit. PLANTS 2020; 9:plants9091120. [PMID: 32872583 PMCID: PMC7570234 DOI: 10.3390/plants9091120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022]
Abstract
The banana is a typical climacteric fruit that undergoes ethylene dependent ripening. During fruit ripening, ethylene production triggers a developmental cascade that results in a series of physiological and biochemical changes. The fruit transcriptomes of untransformated wild-type (WT) and RNAi transgenic banana plants for Mh-ACO1 and Mh-ACO2 have been previously sequenced and analyzed, and most of the differentially expressed genes were enriched in ‘carbon fixation in photosynthetic organism’, ‘cysteine and methionine metabolism’, ‘citrate cycle (tricarboxylic acid cycle, TCA cycle)’, and ‘starch and sucrose metabolism’ based on Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation. In this research, we investigated the expression fluctuations of genes involved in carbohydrate metabolism affected by alterations of ethylene biosynthesis associated with ripening in banana fruits. Expression profiles of sucrose synthase, sucrose phosphate synthase, neutral invertase, and acidic invertase/β-fructofuranosidase, as analyzed by Avadis and Trinity, showed that both analyses were complementary and consistent. The overall gene expression tendency was confirmed by the implementation of quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) with mRNAs of banana fruits in Mh-ACO1 and Mh-ACO2 RNAi transgenic plants. These results indicated that altered expression of genes associated with ethylene biosynthesis strongly influenced the expression levels of genes related to starch and sucrose metabolism, as well as the glycolysis pathway in ripening banana fruits.
Collapse
Affiliation(s)
- Yan Xia
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan; (Y.X.); (C.-H.C.)
| | - Chien-Hsiang Chiu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan; (Y.X.); (C.-H.C.)
| | - Yi-Yin Do
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan; (Y.X.); (C.-H.C.)
- Correspondence: (Y.-Y.D.); (P.-L.H.); Tel.: +886-2-33664835 (Y.-Y.D.); +886-2-33664836 (P.-L.H.)
| | - Pung-Ling Huang
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
- Correspondence: (Y.-Y.D.); (P.-L.H.); Tel.: +886-2-33664835 (Y.-Y.D.); +886-2-33664836 (P.-L.H.)
| |
Collapse
|
7
|
Seung D, Echevarría-Poza A, Steuernagel B, Smith AM. Natural Polymorphisms in Arabidopsis Result in Wide Variation or Loss of the Amylose Component of Starch. PLANT PHYSIOLOGY 2020; 182:870-881. [PMID: 31694903 PMCID: PMC6997676 DOI: 10.1104/pp.19.01062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/25/2019] [Indexed: 05/04/2023]
Abstract
Starch granules contain two Glc polymers, amylopectin and amylose. Amylose makes up approximately 10% to 30% (w/w) of all natural starches thus far examined, but mutants of crop and model plants that produce amylose-free starch are generally indistinguishable from their wild-type counterparts with respect to growth, starch content, and granule morphology. Since the function and adaptive significance of amylose are unknown, we asked whether there is natural genetic variation in amylose synthesis within a wild, uncultivated species. We examined polymorphisms among the 1,135 sequenced accessions of Arabidopsis (Arabidopsis thaliana) in GRANULE-BOUND STARCH SYNTHASE (GBSS), encoding the enzyme responsible for amylose synthesis. We identified 18 accessions that are predicted to have polymorphisms in GBSS that affect protein function, and five of these accessions produced starch with no or extremely low amylose (< 0.5% [w/w]). Eight further accessions had amylose contents that were significantly lower or higher than that of Col-0 (9% [w/w]), ranging from 5% to 12% (w/w). We examined the effect of the polymorphisms on GBSS function and uncovered three mechanisms by which GBSS sequence variation led to different amylose contents: (1) altered GBSS abundance, (2) altered GBSS activity, and (3) altered affinity of GBSS for binding PROTEIN TARGETING TO STARCH1-a protein that targets GBSS to starch granules. These findings demonstrate that amylose in leaves is not essential for the viability of some naturally occurring Arabidopsis genotypes, at least over short timescales and under some environmental conditions and open an opportunity to explore the adaptive significance of amylose.
Collapse
Affiliation(s)
- David Seung
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | | | - Alison M Smith
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
8
|
Strygina KV, Khlestkina EK. Structural and Functional Organization and Evolution of the WD40 Genes Involved in the Regulation of Flavonoid Biosynthesis in the Triticeae Tribe. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419110152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Veillet F, Chauvin L, Kermarrec MP, Sevestre F, Merrer M, Terret Z, Szydlowski N, Devaux P, Gallois JL, Chauvin JE. The Solanum tuberosum GBSSI gene: a target for assessing gene and base editing in tetraploid potato. PLANT CELL REPORTS 2019; 38:1065-1080. [PMID: 31101972 DOI: 10.1007/s00299-019-02426-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/08/2019] [Accepted: 05/08/2019] [Indexed: 05/20/2023]
Abstract
The StGBSSI gene was successfully and precisely edited in the tetraploid potato using gene and base-editing strategies, leading to plants with impaired amylose biosynthesis. Genome editing has recently become a method of choice for basic research and functional genomics, and holds great potential for molecular plant-breeding applications. The powerful CRISPR-Cas9 system that typically produces double-strand DNA breaks is mainly used to generate knockout mutants. Recently, the development of base editors has broadened the scope of genome editing, allowing precise and efficient nucleotide substitutions. In this study, we produced mutants in two cultivated elite cultivars of the tetraploid potato (Solanum tuberosum) using stable or transient expression of the CRISPR-Cas9 components to knock out the amylose-producing StGBSSI gene. We set up a rapid, highly sensitive and cost-effective screening strategy based on high-resolution melting analysis followed by direct Sanger sequencing and trace chromatogram analysis. Most mutations consisted of small indels, but unwanted insertions of plasmid DNA were also observed. We successfully created tetra-allelic mutants with impaired amylose biosynthesis, confirming the loss of function of the StGBSSI protein. The second main objective of this work was to demonstrate the proof of concept of CRISPR-Cas9 base editing in the tetraploid potato by targeting two loci encoding catalytic motifs of the StGBSSI enzyme. Using a cytidine base editor (CBE), we efficiently and precisely induced DNA substitutions in the KTGGL-encoding locus, leading to discrete variation in the amino acid sequence and generating a loss-of-function allele. The successful application of base editing in the tetraploid potato opens up new avenues for genome engineering in this species.
Collapse
Affiliation(s)
- Florian Veillet
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260, Ploudaniel, France.
| | - Laura Chauvin
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260, Ploudaniel, France
| | - Marie-Paule Kermarrec
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260, Ploudaniel, France
| | - François Sevestre
- Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, UMR8576, UGSF, Lille, France
- Univ. Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille, France
| | - Mathilde Merrer
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260, Ploudaniel, France
| | - Zoé Terret
- GAFL, INRA, Montfavet, France
- SYNGENTA SEEDS SAS, 346 Route des Pasquiers, 84260, Sarrians, France
| | - Nicolas Szydlowski
- Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, UMR8576, UGSF, Lille, France
- Univ. Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille, France
| | - Pierre Devaux
- Germicopa Breeding, Kerguivarc'h, 29520, Chateauneuf Du Faou, France
| | | | - Jean-Eric Chauvin
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260, Ploudaniel, France
| |
Collapse
|
10
|
Abstract
Background The members of the Triticeae tribe are characterised by the presence of orthologous and homoeologous gene copies regulating flavonoid biosynthesis. Among transcription factors constituting a regulatory MBW complex, the greatest contribution to the regulation of flavonoid biosynthetic pathway is invested by R2R3-Myb-type TFs. Differently expressed R2R3-Myb copies activate the synthesis of various classes of flavonoid compounds in different plant tissues. The aim of this research was the identification, comparison and analysis of full-length sequences of the duplicated R2R3-Myb Mpc1 (Myb protein c1) gene copies in barley and wheat genomes. Results The Mpc1 genes were identified in homoeologous group 4 and 7 chromosomes: a total of 3 copies in barley (Hordeum vulgare L.) and 8 copies in bread wheat (Triticum aestivum L.) genomes. All Mpc1 genes have a similar two-exon structure, and almost all of them are transcriptionally active. The calculation of the divergence time revealed that first duplication between 4 and 7 chromosomes of the common ancestor of the Triticeae tribe occurred about 35–46 million years ago (MYA); the last duplication arised about 16–19 MYA before the divergence Triticum and Hordeum genera The connection between gene expression and the appearance of anthocyanin pigmentation was found for three genes from homoeologous group 4 chromosomes: TaMpc1-A2 (5AL) in wheat coleoptile, HvMpc1-H2 (4HL) in barley lemma and aleurone layer, and HvMpc1-H3 (4HL) in barley aleurone layer. TaMpc1-D4 (4DL) from the wheat genome showed a strong level of expression regardless of the colour of coleoptile or pericarp. It is assumed, that this gene regulates the biosynthesis of uncoloured flavonoids in analysed tissues. Conclusions The regulatory R2R3-Myb genes involved in anthocyanin synthesis were identified and characterised in Triticeae tribe species. Genes designated HvMpc1-H2 and HvMpc1-H3 appeared to be the main factors underlying intraspecific variation of H. vulgare by lemma and aleurone colour. TaMpc1-A2 is the co-regulator of the Mpc1–1 genes in bread wheat genome controlling anthocyanin synthesis in coleoptile. Electronic supplementary material The online version of this article (10.1186/s12862-019-1378-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ksenia V Strygina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva ave. 10, Novosibirsk, 630090, Russia.
| | - Elena K Khlestkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva ave. 10, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova str., 1, Novosibirsk, 630090, Russia.,N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya Str., 42-44, St. Petersburg, 190000, Russia
| |
Collapse
|
11
|
Vikhorev AV, Strygina KV, Khlestkina EK. Duplicated flavonoid 3'-hydroxylase and flavonoid 3', 5'-hydroxylase genes in barley genome. PeerJ 2019; 7:e6266. [PMID: 30671306 PMCID: PMC6338099 DOI: 10.7717/peerj.6266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/11/2018] [Indexed: 11/20/2022] Open
Abstract
Background Anthocyanin compounds playing multiple biological functions can be synthesized in different parts of barley (Hordeum vulgare L.) plant. The diversity of anthocyanin molecules is related with branching the pathway to alternative ways in which dihydroflavonols may be modified either with the help of flavonoid 3'-hydroxylase (F3'H) or flavonoid 3',5'-hydroxylase (F3'5'H)-the cytochrome P450-dependent monooxygenases. The F3'H and F3'5'H gene families are among the least studied anthocyanin biosynthesis structural genes in barley. The aim of this study was to identify and characterise duplicated copies of the F3'H and F3'5'H genes in the barley genome. Results Four copies of the F3'5'H gene (on chromosomes 4HL, 6HL, 6HS and 7HS) and two copies of the F3'H gene (on chromosomes 1HL and 6HS) were identified in barley genome. These copies have either one or two introns. Amino acid sequences analysis demonstrated the presence of the flavonoid hydroxylase-featured conserved motifs in all copies of the F3'H and F3'5'H genes with the exception of F3'5'H-3 carrying a loss-of-function mutation in a conservative cytochrome P450 domain. It was shown that the divergence between F3'H and F3'5'H genes occurred 129 million years ago (MYA) before the emergence of monocot and dicot plant species. The F3'H copy approximately occurred 80 MYA; the appearance of F3'5'H copies occurred 8, 36 and 91 MYA. qRT-PCR analysis revealed the tissue-specific activity for some copies of the studied genes. The F3'H-1 gene was transcribed in aleurone layer, lemma and pericarp (with an increased level in the coloured pericarp), whereas the F3'H-2 gene was expressed in stems only. The F3'5'H-1 gene was expressed only in the aleurone layer, and in a coloured aleurone its expression was 30-fold higher. The transcriptional activity of F3'5'H-2 was detected in different tissues with significantly higher level in uncoloured genotype in contrast to coloured ones. The F3'5'H-3 gene expressed neither in stems nor in aleurone layer, lemma and pericarp. The F3'5'H-4 gene copy was weakly expressed in all tissues analysed. Conclusion F3'H and F3'5'H-coding genes involved in anthocyanin synthesis in H. vulgare were identified and characterised, from which the copies designated F3'H-1, F3'H-2, F3'5'H-1 and F3'5'H-2 demonstrated tissue-specific expression patterns. Information on these modulators of the anthocyanin biosynthesis pathway can be used in future for manipulation with synthesis of diverse anthocyanin compounds in different parts of barley plant. Finding both the copies with tissue-specific expression and a copy undergoing pseudogenization demonstrated rapid evolutionary events tightly related with functional specialization of the duplicated members of the cytochrome P450-dependent monooxygenases gene families.
Collapse
Affiliation(s)
| | - Ksenia V Strygina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena K Khlestkina
- Novosibirsk State University, Novosibirsk, Russia.,Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
12
|
Wirojsirasak W, Kalapanulak S, Saithong T. Pan- and core- gene association networks: Integrative approaches to understanding biological regulation. PLoS One 2019; 14:e0210481. [PMID: 30625202 PMCID: PMC6326509 DOI: 10.1371/journal.pone.0210481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/25/2018] [Indexed: 02/06/2023] Open
Abstract
The rapid increase in transcriptome data provides an opportunity to access the complex regulatory mechanisms in cellular systems through gene association network (GAN). Nonetheless, GANs derived from single datasets generally allow us to envisage only one side of the regulatory network, even under the particular condition of study. The circumstance is well demonstrated by inconsistent GANs of individual datasets proposed for similar experimental conditions, which always leads to ambiguous interpretation. Here, pan- and core-gene association networks (pan- and core-GANs), analogous to the pan- and core-genome concepts, are proposed to increase the power of inference through the integration of multiple, diverse datasets. The core-GAN represents the consensus associations of genes that were inferred from all individual networks. On the other hand, the pan-GAN represents the extensive gene-gene associations that occurred in each individual network. The pan- and core-GANs prospects were demonstrated based on three time series microarray datasets in leaves of Arabidopsis thaliana grown under diurnal conditions. We showed the overall performance of pan- and core-GANs was more robust to the number of data points in gene expression data compared to the GANs inferred from individual datasets. In addition, the incorporation of multiple data broadened our understanding of the biological regulatory system. While the pan-GAN enabled us to observe the landscape of gene association system, core-GAN highlighted the basic gene-associations in essence of the regulation regulating starch metabolism in leaves of Arabidopsis.
Collapse
Affiliation(s)
- Warodom Wirojsirasak
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Saowalak Kalapanulak
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Treenut Saithong
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- * E-mail:
| |
Collapse
|
13
|
Tappiban P, Smith DR, Triwitayakorn K, Bao J. Recent understanding of starch biosynthesis in cassava for quality improvement: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Jourda C, Cardi C, Gibert O, Giraldo Toro A, Ricci J, Mbéguié-A-Mbéguié D, Yahiaoui N. Lineage-Specific Evolutionary Histories and Regulation of Major Starch Metabolism Genes during Banana Ripening. FRONTIERS IN PLANT SCIENCE 2016; 7:1778. [PMID: 27994606 PMCID: PMC5133247 DOI: 10.3389/fpls.2016.01778] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/11/2016] [Indexed: 05/24/2023]
Abstract
Starch is the most widespread and abundant storage carbohydrate in plants. It is also a major feature of cultivated bananas as it accumulates to large amounts during banana fruit development before almost complete conversion to soluble sugars during ripening. Little is known about the structure of major gene families involved in banana starch metabolism and their evolution compared to other species. To identify genes involved in banana starch metabolism and investigate their evolutionary history, we analyzed six gene families playing a crucial role in plant starch biosynthesis and degradation: the ADP-glucose pyrophosphorylases (AGPases), starch synthases (SS), starch branching enzymes (SBE), debranching enzymes (DBE), α-amylases (AMY) and β-amylases (BAM). Using comparative genomics and phylogenetic approaches, these genes were classified into families and sub-families and orthology relationships with functional genes in Eudicots and in grasses were identified. In addition to known ancestral duplications shaping starch metabolism gene families, independent evolution in banana and grasses also occurred through lineage-specific whole genome duplications for specific sub-families of AGPase, SS, SBE, and BAM genes; and through gene-scale duplications for AMY genes. In particular, banana lineage duplications yielded a set of AGPase, SBE and BAM genes that were highly or specifically expressed in banana fruits. Gene expression analysis highlighted a complex transcriptional reprogramming of starch metabolism genes during ripening of banana fruits. A differential regulation of expression between banana gene duplicates was identified for SBE and BAM genes, suggesting that part of starch metabolism regulation in the fruit evolved in the banana lineage.
Collapse
Affiliation(s)
- Cyril Jourda
- CIRAD, UMR AGAPMontpellier, France
- CIRAD, UMR PVBMTSaint-Pierre, France
| | | | - Olivier Gibert
- CIRAD, UMR QUALISUDMontpellier, France
- CIRAD, UMR QUALISUDJakarta, Indonesia
| | | | | | | | | |
Collapse
|
15
|
Abstract
Starch-rich crops form the basis of our nutrition, but plants have still to yield all their secrets as to how they make this vital substance. Great progress has been made by studying both crop and model systems, and we approach the point of knowing the enzymatic machinery responsible for creating the massive, insoluble starch granules found in plant tissues. Here, we summarize our current understanding of these biosynthetic enzymes, highlighting recent progress in elucidating their specific functions. Yet, in many ways we have only scratched the surface: much uncertainty remains about how these components function together and are controlled. We flag-up recent observations suggesting a significant degree of flexibility during the synthesis of starch and that previously unsuspected non-enzymatic proteins may have a role. We conclude that starch research is not yet a mature subject and that novel experimental and theoretical approaches will be important to advance the field.
Collapse
Affiliation(s)
- Barbara Pfister
- Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Samuel C Zeeman
- Department of Biology, ETH Zurich, 8092, Zurich, Switzerland.
| |
Collapse
|
16
|
Subburaj S, Cao S, Xia X, He Z. Phylogenetic Analysis, Lineage-Specific Expansion and Functional Divergence of seed dormancy 4-Like Genes in Plants. PLoS One 2016; 11:e0153717. [PMID: 27300553 PMCID: PMC4907471 DOI: 10.1371/journal.pone.0153717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/01/2016] [Indexed: 12/13/2022] Open
Abstract
The rice gene seed dormancy 4 (OsSdr4) functions in seed dormancy and is a major factor associated with pre-harvest sprouting (PHS). Although previous studies of this protein family were reported for rice and other species, knowledge of the evolution of genes homologous to OsSdr4 in plants remains inadequate. Fifty four Sdr4-like (hereafter designated Sdr4L) genes were identified in nine plant lineages including 36 species. Phylogenetic analysis placed these genes in eight subfamilies (I-VIII). Genes from the same lineage clustered together, supported by analysis of conserved motifs and exon-intron patterns. Segmental duplications were present in both dicot and monocot clusters, while tandemly duplicated genes occurred only in monocot clusters indicating that both tandem and segmental duplications contributed to expansion of the grass I and II subfamilies. Estimation of the approximate ages of the duplication events indicated that ancestral Sdr4 genes evolved from a common angiosperm ancestor, about 160 million years ago (MYA). Moreover, diversification of Sdr4L genes in mono and dicot plants was mainly associated with genome-wide duplication and speciation events. Functional divergence was observed in all subfamily pairs, except IV/VIIIa. Further analysis indicated that functional constraints between subfamily pairs I/II, I/VIIIb, II/VI, II/VIIIb, II/IV, and VI/VIIIb were statistically significant. Site and branch-site model analyses of positive selection suggested that these genes were under strong adaptive selection pressure. Critical amino acids detected for both functional divergence and positive selection were mostly located in the loops, pointing to functional importance of these regions in this protein family. In addition, differential expression studies by transcriptome atlas of 11 Sdr4L genes showed that the duplicated genes may have undergone divergence in expression between plant species. Our findings showed that Sdr4L genes are functionally divergent and positively selected. These may contribute to further functional analysis and molecular evolution of Sdr4L gene families in land plants.
Collapse
Affiliation(s)
- Saminathan Subburaj
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Shuanghe Cao
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, 12 Zhongguancun South Street, Beijing, 100081, China
- * E-mail:
| |
Collapse
|
17
|
Yasui Y, Hirakawa H, Ueno M, Matsui K, Katsube-Tanaka T, Yang SJ, Aii J, Sato S, Mori M. Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes. DNA Res 2016; 23:215-24. [PMID: 27037832 PMCID: PMC4909311 DOI: 10.1093/dnares/dsw012] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/20/2016] [Indexed: 01/14/2023] Open
Abstract
Buckwheat (Fagopyrum esculentum Moench; 2n = 2x = 16) is a nutritionally dense annual crop widely grown in temperate zones. To accelerate molecular breeding programmes of this important crop, we generated a draft assembly of the buckwheat genome using short reads obtained by next-generation sequencing (NGS), and constructed the Buckwheat Genome DataBase. After assembling short reads, we determined 387,594 scaffolds as the draft genome sequence (FES_r1.0). The total length of FES_r1.0 was 1,177,687,305 bp, and the N50 of the scaffolds was 25,109 bp. Gene prediction analysis revealed 286,768 coding sequences (CDSs; FES_r1.0_cds) including those related to transposable elements. The total length of FES_r1.0_cds was 212,917,911 bp, and the N50 was 1,101 bp. Of these, the functions of 35,816 CDSs excluding those for transposable elements were annotated by BLAST analysis. To demonstrate the utility of the database, we conducted several test analyses using BLAST and keyword searches. Furthermore, we used the draft genome as a reference sequence for NGS-based markers, and successfully identified novel candidate genes controlling heteromorphic self-incompatibility of buckwheat. The database and draft genome sequence provide a valuable resource that can be used in efforts to develop buckwheat cultivars with superior agronomic traits.
Collapse
Affiliation(s)
- Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyou-ku, Kyoto 606-8502, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Mariko Ueno
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyou-ku, Kyoto 606-8502, Japan
| | - Katsuhiro Matsui
- NARO Kyushu Okinawa Agricultural Research Center, 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| | - Tomoyuki Katsube-Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyou-ku, Kyoto 606-8502, Japan
| | - Soo Jung Yang
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyou-ku, Kyoto 606-8502, Japan
| | - Jotaro Aii
- Faculty of Applied Life Science, Niigata University of Pharmacy and Applied Life Science, Akiha-ku, Niigata 956-8603, Japan
| | - Shingo Sato
- Faculty of Applied Life Science, Niigata University of Pharmacy and Applied Life Science, Akiha-ku, Niigata 956-8603, Japan
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 308 Suematsu, Nonoichi, Ishikawa 912-8836, Japan
| |
Collapse
|
18
|
Luo J, Ahmed R, Kosar-Hashemi B, Larroque O, Butardo VM, Tanner GJ, Colgrave ML, Upadhyaya NM, Tetlow IJ, Emes MJ, Millar A, Jobling SA, Morell MK, Li Z. The different effects of starch synthase IIa mutations or variation on endosperm amylose content of barley, wheat and rice are determined by the distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1407-19. [PMID: 25893467 DOI: 10.1007/s00122-015-2515-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/03/2015] [Indexed: 05/26/2023]
Abstract
The distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma plays an important role in determining endosperm amylose content of cereal grains. Starch synthase IIa (SSIIa) catalyses the polymerisation of intermediate length glucan chains of amylopectin in the endosperm of cereals. Mutations of SSIIa genes in barley and wheat and inactive SSIIa variant in rice induce similar effects on the starch structure and the amylose content, but the severity of the phenotypes is different. This study compared the levels of transcripts and partitioning of proteins of starch synthase I (SSI) and starch branching enzyme IIb (SBEIIb) inside and outside the starch granules in the developing endosperms of these ssIIa mutants and inactive SSIIa variant. Pleiotropic effects on starch granule-bound proteins suggested that the different effects of SSIIa mutations on endosperm amylose content of barley, wheat and rice are determined by the distribution of SSI and SBEIIb between the starch granule and amyloplast stroma in cereals. Regulation of starch synthesis in ssIIa mutants and inactive SSIIa variant may be at post-translational level or the altered amylopectin structure deprives the affinity of SSI and SBEIIb to amylopectin.
Collapse
Affiliation(s)
- Jixun Luo
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Suzuki Y, Arae T, Green PJ, Yamaguchi J, Chiba Y. AtCCR4a and AtCCR4b are Involved in Determining the Poly(A) Length of Granule-bound starch synthase 1 Transcript and Modulating Sucrose and Starch Metabolism in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2015; 56:863-74. [PMID: 25630334 DOI: 10.1093/pcp/pcv012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/21/2015] [Indexed: 05/11/2023]
Abstract
Removing the poly(A) tail is the first and rate-limiting step of mRNA degradation and apparently an effective step not only for modulating mRNA stability but also for translation of many eukaryotic transcripts. Carbon catabolite repressor 4 (CCR4) has been identified as a major cytoplasmic deadenylase in Saccharomyces cerevisiae. The Arabidopsis thaliana homologs of the yeast CCR4, AtCCR4a and AtCCR4b, were identified by sequence-based analysis; however, their role and physiological significance in plants remain to be elucidated. In this study, we revealed that AtCCR4a and AtCCR4b are localized to cytoplasmic mRNA processing bodies, which are specific granules consisting of many enzymes involved in mRNA turnover. Double mutants of AtCCR4a and AtCCR4b exhibited tolerance to sucrose application but not to glucose. The levels of sucrose in the seedlings of the atccr4a/4b double mutants were reduced, whereas no difference was observed in glucose levels. Further, amylose levels were slightly but significantly increased in the atccr4a/4b double mutants. Consistent with this observation, we found that the transcript encoding granule-bound starch synthase 1 (GBSS1), which is responsible for amylose synthesis, is accumulated to a higher level in the atccr4a/4b double mutant plants than in the control plants. Moreover, we revealed that GBSS1 has a longer poly(A) tail in the double mutant than in the control plant, suggesting that AtCCR4a and AtCCR4b can influence the poly(A) length of transcripts related to starch metabolism. Our results collectively suggested that AtCCR4a and AtCCR4b are involved in sucrose and starch metabolism in A. thaliana.
Collapse
Affiliation(s)
- Yuya Suzuki
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Toshihiro Arae
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Pamela J Green
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Junji Yamaguchi
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Yukako Chiba
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan JST PRESTO, Kawaguchi, 332-0012 Japan
| |
Collapse
|
20
|
Schwarte S, Wegner F, Havenstein K, Groth D, Steup M, Tiedemann R. Sequence variation, differential expression, and divergent evolution in starch-related genes among accessions of Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2015; 87:489-519. [PMID: 25663508 DOI: 10.1007/s11103-015-0293-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
Transitory starch metabolism is a nonlinear and highly regulated process. It originated very early in the evolution of chloroplast-containing cells and is largely based on a mosaic of genes derived from either the eukaryotic host cell or the prokaryotic endosymbiont. Initially located in the cytoplasm, starch metabolism was rewired into plastids in Chloroplastida. Relocation was accompanied by gene duplications that occurred in most starch-related gene families and resulted in subfunctionalization of the respective gene products. Starch-related isozymes were then evolutionary conserved by constraints such as internal starch structure, posttranslational protein import into plastids and interactions with other starch-related proteins. 25 starch-related genes in 26 accessions of Arabidopsis thaliana were sequenced to assess intraspecific diversity, phylogenetic relationships, and modes of selection. Furthermore, sequences derived from additional 80 accessions that are publicly available were analyzed. Diversity varies significantly among the starch-related genes. Starch synthases and phosphorylases exhibit highest nucleotide diversities, while pyrophosphatases and debranching enzymes are most conserved. The gene trees are most compatible with a scenario of extensive recombination, perhaps in a Pleistocene refugium. Most genes are under purifying selection, but disruptive selection was inferred for a few genes/substitutiones. To study transcript levels, leaves were harvested throughout the light period. By quantifying the transcript levels and by analyzing the sequence of the respective accessions, we were able to estimate whether transcript levels are mainly determined by genetic (i.e., accession dependent) or physiological (i.e., time dependent) parameters. We also identified polymorphic sites that putatively affect pattern or the level of transcripts.
Collapse
Affiliation(s)
- Sandra Schwarte
- Evolutionary Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Building 26, 14476, Potsdam, Germany,
| | | | | | | | | | | |
Collapse
|
21
|
Seung D, Soyk S, Coiro M, Maier BA, Eicke S, Zeeman SC. PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis. PLoS Biol 2015; 13:e1002080. [PMID: 25710501 PMCID: PMC4339375 DOI: 10.1371/journal.pbio.1002080] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/14/2015] [Indexed: 02/03/2023] Open
Abstract
The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin) or linear (amylose). The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS) is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST) is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM). We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is exclusively involved in amylose synthesis. The biosynthesis of starch in plant chloroplasts depends on a novel protein that targets starch synthase to the growing starch granules; this represents a potential target for the biotechnological modification of starch. Read the Synopsis. Starch plays a vital role in our everyday lives. It is not only a major dietary carbohydrate, but is also used to manufacture household products such as pharmaceuticals, paper, and textiles. Plants produce starch as a means of storing energy; it is composed of two glucose polymers—amylopectin and amylose. While amylose is present in a smaller quantity than amylopectin, it has a major impact on starch processing. Being able to control the amount of amylose is therefore a goal for biotechnology. Amylose is made by the enzyme GRANULE BOUND STARCH SYNTHASE (GBSS), which was for decades believed to be the only protein required for amylose production. We now report here that a second protein, PROTEIN TARGETING TO STARCH (PTST), is involved in the process. Mutants lacking the PTST protein in the model plant Arabidopsis thaliana fail to make any amylose in starch. This is because the GBSS protein, which normally binds to starch, cannot bind in the absence of PTST. This discovery sheds new light on a previously unknown protein targeting process by which enzymes are delivered to the starch. Furthermore, our discovery highlights PTST an ideal target gene for biotechnology.
Collapse
Affiliation(s)
- David Seung
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Sebastian Soyk
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Mario Coiro
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Simona Eicke
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Samuel C. Zeeman
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
22
|
Zhou Y, Zhou H, Lin-Wang K, Vimolmangkang S, Espley RV, Wang L, Allan AC, Han Y. Transcriptome analysis and transient transformation suggest an ancient duplicated MYB transcription factor as a candidate gene for leaf red coloration in peach. BMC PLANT BIOLOGY 2014; 14:388. [PMID: 25551393 PMCID: PMC4302523 DOI: 10.1186/s12870-014-0388-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 12/16/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Leaf red coloration is an important characteristic in many plant species, including cultivars of ornamental peach (Prunus persica). Peach leaf color is controlled by a single Gr gene on linkage group 6, with a red allele dominant over the green allele. Here, we report the identification of a candidate gene of Gr in peach. RESULTS The red coloration of peach leaves is due to accumulation of anthocyanin pigments, which is regulated at the transcriptional level. Based on transcriptome comparison between red- and green-colored leaves, an MYB transcription regulator PpMYB10.4 in the Gr interval was identified to regulate anthocyanin pigmentation in peach leaf. Transient expression of PpMYB10.4 in tobacco and peach leaves can induce anthocyain accumulation. Moreover, a functional MYB gene PpMYB10.2 on linkage group 3, which is homologous to PpMYB10.4, is also expressed in both red- and green-colored leaves, but plays no role in leaf red coloration. This suggests a complex mechanism underlying anthocyanin accumulation in peach leaf. In addition, PpMYB10.4 and other anthocyanin-activating MYB genes in Rosaceae responsible for anthocyanin accumulation in fruit are dated to a common ancestor about 70 million years ago (MYA). However, PpMYB10.4 has diverged from these anthocyanin-activating MYBs to generate a new gene family, which regulates anthocyanin accumulation in vegetative organs such as leaves. CONCLUSIONS Activation of an ancient duplicated MYB gene PpMYB10.4 in the Gr interval on LG 6, which represents a novel branch of anthocyanin-activating MYB genes in Rosaceae, is able to activate leaf red coloration in peach.
Collapse
Affiliation(s)
- Ying Zhou
- />Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, 430074 Wuhan, People’s Republic of China
| | - Hui Zhou
- />Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, 430074 Wuhan, People’s Republic of China
- />Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049 People’s Republic of China
| | - Kui Lin-Wang
- />The New Zealand Institute for Plant & Food Research Ltd, (Plant and Food Research), Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
| | - Sornkanok Vimolmangkang
- />Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, 430074 Wuhan, People’s Republic of China
- />Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330 Bangkok, Thailand
| | - Richard V Espley
- />The New Zealand Institute for Plant & Food Research Ltd, (Plant and Food Research), Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
| | - Lu Wang
- />Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, 430074 Wuhan, People’s Republic of China
| | - Andrew C Allan
- />The New Zealand Institute for Plant & Food Research Ltd, (Plant and Food Research), Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
- />School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Yuepeng Han
- />Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, 430074 Wuhan, People’s Republic of China
| |
Collapse
|
23
|
Chen J, Hu WJ, Wang C, Liu TW, Chalifour A, Chen J, Shen ZJ, Liu X, Wang WH, Zheng HL. Proteomic analysis reveals differences in tolerance to acid rain in two broad-leaf tree species, Liquidambar formosana and Schima superba. PLoS One 2014; 9:e102532. [PMID: 25025692 PMCID: PMC4099204 DOI: 10.1371/journal.pone.0102532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/18/2014] [Indexed: 11/19/2022] Open
Abstract
Acid rain (AR) is a serious environmental issue inducing harmful impacts on plant growth and development. It has been reported that Liquidambar formosana, considered as an AR-sensitive tree species, was largely injured by AR, compared with Schima superba, an AR-tolerant tree species. To clarify the different responses of these two species to AR, a comparative proteomic analysis was conducted in this study. More than 1000 protein spots were reproducibly detected on two-dimensional electrophoresis gels. Among them, 74 protein spots from L. formosana gels and 34 protein spots from S. superba gels showed significant changes in their abundances under AR stress. In both L. formosana and S. superba, the majority proteins with more than 2 fold changes were involved in photosynthesis and energy production, followed by material metabolism, stress and defense, transcription, post-translational and modification, and signal transduction. In contrast with L. formosana, no hormone response-related protein was found in S. superba. Moreover, the changes of proteins involved in photosynthesis, starch synthesis, and translation were distinctly different between L. formosana and S. superba. Protein expression analysis of three proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit, ascorbate peroxidase and glutathione-S-transferase) by Western blot was well correlated with the results of proteomics. In conclusion, our study provides new insights into AR stress responses in woody plants and clarifies the differences in strategies to cope with AR between L. formosana and S. superba.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Wen-Jun Hu
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Chao Wang
- Institute of Urban and Environment, Chinese Academy of Sciences, Xiamen, P.R. China
| | - Ting-Wu Liu
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
- Department of Biology, Huaiyin Normal University, Huaian, Jiangsu, P.R. China
| | - Annie Chalifour
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR, China
| | - Juan Chen
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Zhi-Jun Shen
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Xiang Liu
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Wen-Hua Wang
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Hai-Lei Zheng
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
24
|
Miao H, Sun P, Liu W, Xu B, Jin Z. Identification of genes encoding granule-bound starch synthase involved in amylose metabolism in banana fruit. PLoS One 2014; 9:e88077. [PMID: 24505384 PMCID: PMC3913707 DOI: 10.1371/journal.pone.0088077] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/05/2014] [Indexed: 11/19/2022] Open
Abstract
Granule-bound starch synthase (GBSS) is responsible for amylose synthesis, but the role of GBSS genes and their encoded proteins remains poorly understood in banana. In this study, amylose content and GBSS activity gradually increased during development of the banana fruit, and decreased during storage of the mature fruit. GBSS protein in banana starch granules was approximately 55.0 kDa. The protein was up-regulated expression during development while it was down-regulated expression during storage. Six genes, designated as MaGBSSI-1, MaGBSSI-2, MaGBSSI-3, MaGBSSI-4, MaGBSSII-1, and MaGBSSII-2, were cloned and characterized from banana fruit. Among the six genes, the expression pattern of MaGBSSI-3 was the most consistent with the changes in amylose content, GBSS enzyme activity, GBSS protein levels, and the quantity or size of starch granules in banana fruit. These results suggest that MaGBSSI-3 might regulate amylose metabolism by affecting the variation of GBSS levels and the quantity or size of starch granules in banana fruit during development or storage.
Collapse
Affiliation(s)
- Hongxia Miao
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, China Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Peiguang Sun
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, China Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Weixin Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, China Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Department of Agriculture, Hainan University, Haikou, Hainan, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, China Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- * E-mail: (BX); (ZJ)
| | - Zhiqiang Jin
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, China Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, China Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- * E-mail: (BX); (ZJ)
| |
Collapse
|
25
|
Giorno F, Guerriero G, Biagetti M, Ciccotti AM, Baric S. Gene expression and biochemical changes of carbohydrate metabolism in in vitro micro-propagated apple plantlets infected by 'Candidatus Phytoplasma mali'. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:311-317. [PMID: 23811119 DOI: 10.1016/j.plaphy.2013.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 05/29/2013] [Indexed: 06/02/2023]
Abstract
'Candidatus Phytoplasma mali' (Ca. P. mali) is the disease agent causing apple proliferation (AP), which has detrimental effects on production in many apple growing areas of Central and Southern Europe. The present study investigated transcriptional and biochemical changes related to the sugar metabolism as well as expression of pathogenesis-related (PR) protein genes in in vitro micro-propagated AP-infected and healthy control plantlets with the aim of shedding light on host plant response to 'Ca. P. mali' infection. Expression changes between infected and control plantlets were detected by quantitative real-time PCR analysis. The most significant transcriptional changes were observed for genes coding for pathogenesis-related proteins and for heat shock protein 70, as well as for some genes related to the sugar metabolism, such as a sorbitol transporter (SOT5), hexokinase, sucrose-phosphate synthase or granule bound starch synthase. Furthermore, biochemical analyses revealed that infected plantlets were characterized by a significant accumulation of starch and sucrose, while hexoses, such as glucose and fructose, and sorbitol were present at lower concentrations. In summary, the present analysis provides an overview of a gene set that is involved in response to phytoplasma infection and, therefore, it may help for a better understanding of the molecular mechanisms involved in phytoplasma-host plant interaction in apple.
Collapse
Affiliation(s)
- Filomena Giorno
- Laimburg Research Centre for Agriculture and Forestry, Laimburg 6 - Pfatten (Vadena), 39040 Auer (Ora), BZ, Italy.
| | | | | | | | | |
Collapse
|
26
|
Krishnan HB, Chen MH. Identification of an abundant 56 kDa protein implicated in food allergy as granule-bound starch synthase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5404-5409. [PMID: 23675783 DOI: 10.1021/jf4014372] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Rice, the staple food of south and east Asian counties, is considered to be hypoallergenic. However, several clinical studies have documented rice-induced allergy in sensitive patients. Rice proteins with molecular weights of 14-16, 26, 33, and 56 kDa have been identified as allergens. Recently, it was documented that the 56 kDa rice allergen was responsible for rice-induced anaphylaxis. The 14-16 kDa allergens have been identified as α-amylase inhibitors; the 26 kDa protein has been identified as α-globulin; and the 33 kDa protein has been identified as glyoxalase I. However, the identity of the 56 kDa rice allergen has not yet been determined. In this study, we demonstrate that serum from patients allergic to maize shows IgE binding to a 56 kDa protein that was present in both maize and rice but not in the oil seeds soybean and peanut. The 56 kDa IgE-binding protein was abundant in the rice endosperm. We have purified this protein from rice endosperm and demonstrated its reactivity to IgE antibodies from the serum of maize-allergic patients. The purified protein was subjected to matrix-assisted laser desorption ionization-time of flight-tandem mass spectrometry analysis, resulting in identification of this rice allergen as granule-bound starch synthase, a product of the Waxy gene. Immunoblot analysis using protein extracts from a waxy mutant of rice revealed the absence of the 56 kDa IgE-binding protein. Our results demonstrate that the 56 kDa rice allergen is granule-bound starch synthase and raise the possibility of using waxy mutants of rice as a potential source of the hypoallergenic diet for patients sensitized to the 56 kDa rice allergen.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), University of Missouri , Columbia, Missouri 65211, United States
| | | |
Collapse
|
27
|
Wei L, Miao H, Zhao R, Han X, Zhang T, Zhang H. Identification and testing of reference genes for Sesame gene expression analysis by quantitative real-time PCR. PLANTA 2013; 237:873-89. [PMID: 23229061 PMCID: PMC3579469 DOI: 10.1007/s00425-012-1805-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/30/2012] [Indexed: 05/07/2023]
Abstract
Sesame (Sesamum indicum L.) is an ancient and important oilseed crop. However, few sesame reference genes have been selected for quantitative real-time PCR until now. Screening and validating reference genes is a requisite for gene expression normalization in sesame functional genomics research. In this study, ten candidate reference genes, i.e., SiACT, SiUBQ6, SiTUB, Si18S rRNA, SiEF1α, SiCYP, SiHistone, SiDNAJ, SiAPT and SiGAPDH, were chosen and examined systematically in 32 sesame samples. Three qRT-PCR analysis methods, i.e., geNorm, NormFinder and BestKeeper, were evaluated systematically. Results indicated that all ten candidate reference genes could be used as reference genes in sesame. SiUBQ6 and SiAPT were the optimal reference genes for sesame plant development; SiTUB was suitable for sesame vegetative tissue development, SiDNAJ for pathogen treatment, SiHistone for abiotic stress, SiUBQ6 for bud development and SiACT for seed germination. As for hormone treatment and seed development, SiHistone, SiCYP, SiDNAJ or SiUBQ6, as well as SiACT, SiDNAJ, SiTUB or SiAPT, could be used as reference gene, respectively. To illustrate the suitability of these reference genes, we analyzed the expression variation of three functional sesame genes of SiSS, SiLEA and SiGH in different organs using the optimal qRT-PCR system for the first time. The stability levels of optimal and worst reference genes screened for seed development, anther sterility and plant development were validated in the qRT-PCR normalization. Our results provided a reference gene application guideline for sesame gene expression characterization using qRT-PCR system.
Collapse
Affiliation(s)
- Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Ruihong Zhao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Xiuhua Han
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Tide Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| |
Collapse
|
28
|
Chen W, Xie T, Shao Y, Chen F. Phylogenomic relationships between amylolytic enzymes from 85 strains of fungi. PLoS One 2012; 7:e49679. [PMID: 23166747 PMCID: PMC3499471 DOI: 10.1371/journal.pone.0049679] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/12/2012] [Indexed: 01/09/2023] Open
Abstract
Fungal amylolytic enzymes, including α-amylase, gluocoamylase and α-glucosidase, have been extensively exploited in diverse industrial applications such as high fructose syrup production, paper making, food processing and ethanol production. In this paper, amylolytic genes of 85 strains of fungi from the phyla Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota were annotated on the genomic scale according to the classification of glycoside hydrolase (GH) from the Carbohydrate-Active enZymes (CAZy) Database. Comparisons of gene abundance in the fungi suggested that the repertoire of amylolytic genes adapted to their respective lifestyles. Amylolytic enzymes in family GH13 were divided into four distinct clades identified as heterologous α- amylases, eukaryotic α-amylases, bacterial and fungal α-amylases and GH13 α-glucosidases. Family GH15 had two branches, one for gluocoamylases, and the other with currently unknown function. GH31 α-glucosidases showed diverse branches consisting of neutral α-glucosidases, lysosomal acid α-glucosidases and a new clade phylogenetically related to the bacterial counterparts. Distribution of starch-binding domains in above fungal amylolytic enzymes was related to the enzyme source and phylogeny. Finally, likely scenarios for the evolution of amylolytic enzymes in fungi based on phylogenetic analyses were proposed. Our results provide new insights into evolutionary relationships among subgroups of fungal amylolytic enzymes and fungal evolutionary adaptation to ecological conditions.
Collapse
Affiliation(s)
- Wanping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Ting Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yanchun Shao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei Province, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Fusheng Chen
- National Key Laboratory of Agro-Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei Province, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- * E-mail:
| |
Collapse
|
29
|
Li C, Li QG, Dunwell JM, Zhang YM. Divergent evolutionary pattern of starch biosynthetic pathway genes in grasses and dicots. Mol Biol Evol 2012; 29:3227-36. [PMID: 22586327 DOI: 10.1093/molbev/mss131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Starch is the most widespread and abundant storage carbohydrate in crops and its production is critical to both crop yield and quality. In regard to the starch content in the seeds of crop plants, there is a distinct difference between grasses (Poaceae) and dicots. However, few studies have described the evolutionary pattern of genes in the starch biosynthetic pathway in these two groups of plants. In this study, therefore, an attempt was made to compare evolutionary rate, gene duplication, and selective pattern of the key genes involved in this pathway between the two groups, using five grasses and five dicots as materials. The results showed 1) distinct differences in patterns of gene duplication and loss between grasses and dicots; duplication in grasses mainly occurred before the divergence of grasses, whereas duplication mostly occurred in individual species within the dicots; there is less gene loss in grasses than in dicots, 2) a considerably higher evolutionary rate in grasses than in dicots in most gene families analyzed, and 3) evidence of a different selective pattern between grasses and dicots; positive selection may have occurred asymmetrically in grasses in some gene families, for example, ADP-glucose pyrophosphorylase small subunit. Therefore, we deduced that gene duplication contributes to, and a higher evolutionary rate is associated with, the higher starch content in grasses. In addition, two novel aspects of the evolution of the starch biosynthetic pathway were observed.
Collapse
Affiliation(s)
- Chun Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, People's Republic of China
| | | | | | | |
Collapse
|