1
|
Jiang L, Wang P, Li C, Shen D, Chen A, Qian H, Zhao Q. Compensatory effects of other olfactory genes after CRISPR/cas9 editing of BmOR56 in silkworm, Bombyx mori. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101275. [PMID: 38901107 DOI: 10.1016/j.cbd.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Bombyx mori is an oligophagous economic insect. Cis-Jasmone is one of the main substances in mulberry leaf that attract silkworm for feeding and BmOR56 is its receptor. Potential interaction ways between BmOR56 and cis-Jasmone were explored, which included some crucial amino acids such as Gln172, Val173, Ser176, Lys182, His322, and Arg345. BmOR56 was edited using CRISPR/cas9 for Qiufeng, and a homozygous knockout strain QiufengM was obtained. Compared with Qiufeng, the feeding ability of QiufengM on mulberry leaf did not change significantly, but on artificial diet decreased significantly. QiufengM also showed a dependence on the concentration of mulberry leaf powder. The result indicated that other olfactory genes had a compensatory effect on the attractance of mulberry leaf after the loss of BmOR56. Transcriptome analysis of antennae showed that many genes differentially expressed between Qiufeng and QiufengM, which involved in olfactory system, glucose metabolism, protein metabolism, amino acid metabolism, and insect hormone biosynthesis. Particularly, BmIR21, BmOR53 and BmOR27 were significantly up-regulated, which may have a compensatory effect on BmOR56 loss. In addition, detoxification mechanism was activated and may cause the passivation of feeling external signals in silkworm.
Collapse
Affiliation(s)
- Li Jiang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Pingyang Wang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Guangxi Research Academy of Sericultural Science, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Cong Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Dongxu Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Anli Chen
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi 725000, China.
| | - Heying Qian
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
2
|
Pacalon J, Audic G, Magnat J, Philip M, Golebiowski J, Moreau CJ, Topin J. Elucidation of the structural basis for ligand binding and translocation in conserved insect odorant receptor co-receptors. Nat Commun 2023; 14:8182. [PMID: 38081900 PMCID: PMC10713630 DOI: 10.1038/s41467-023-44058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
In numerous insects, the olfactory receptor family forms a unique class of heteromeric cation channels. Recent progress in resolving the odorant receptor structures offers unprecedented opportunities for deciphering their molecular mechanisms of ligand recognition. Unexpectedly, these structures in apo or ligand-bound states did not reveal the pathway taken by the ligands between the extracellular space and the deep internal cavities. By combining molecular modeling with electrophysiological recordings, we identified amino acids involved in the dynamic entry pathway and the binding of VUAA1 to Drosophila melanogaster's odorant receptor co-receptor (Orco). Our results provide evidence for the exact location of the agonist binding site and a detailed and original mechanism of ligand translocation controlled by a network of conserved residues. These findings would explain the particularly high selectivity of Orcos for their ligands.
Collapse
Affiliation(s)
- Jody Pacalon
- Université Côte d'Azur, Institut de Chimie de Nice UMR7272, CNRS, Nice, France
| | | | | | - Manon Philip
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Jérôme Golebiowski
- Department of Brain & Cognitive Sciences, DGIST, 333, Techno JungAng, Daero, HyeongPoong Myeon, Daegu, Republic of Korea
| | | | - Jérémie Topin
- Université Côte d'Azur, Institut de Chimie de Nice UMR7272, CNRS, Nice, France.
| |
Collapse
|
3
|
Zhang Q, Chen J, Wang Y, Lu Y, Dong Z, Shi W, Pang L, Ren S, Chen X, Huang J. The odorant receptor co-receptor gene contributes to mating and host-searching behaviors in parasitoid wasps. PEST MANAGEMENT SCIENCE 2023; 79:454-463. [PMID: 36177949 DOI: 10.1002/ps.7214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Biological control of pest insects by parasitoid wasps is an effective and environmentally friendly strategy compared with the use of synthetic pesticides. Successful courtship and host-search behaviors of parasitoid wasps are important for biological control efficiency and are often mediated by chemical odorant cues. The odorant receptor co-receptor (Orco) gene has an essential role in the perception of odors in insects. However, the function of Orco in the mating and host-searching behaviors of parasitoid wasps remains underexplored. RESULTS We identified the full-length Orco genes of four Drosophila parasitoid species in the genus Leptopilina, namely L. heterotoma, L. boulardi, L. syphax and L. drosophilae. Sequence alignment and membrane-topology analysis showed that Leptopilina Orcos had similar amino acid sequences and topology structures. Phylogenetic analysis revealed that Leptopilina Orcos were highly conserved. Furthermore, the results of quantitative real-time polymerase chain reactions showed that all four Orco genes had a typical antennae-biased tissue expression pattern. After knockdown of Orco in these different parasitoid species, we found that Orco-deficient male parasitoid wasps, but not females, lost their courtship ability. Moreover, Orco-deficient female parasitoid wasps presented impaired host-searching performance and decreased oviposition rates. CONCLUSION Our study demonstrates that Orcos are essential in the mating and host-searching behaviors of parasitoid wasps. To our knowledge, this is the first time that the functions of Orco genes have been characterized in parasitoid wasps, which broadens our understanding of the chemoreception basis of parasitoid wasps and contributes to developing advanced pest management strategies. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qichao Zhang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiani Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Ying Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yueqi Lu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhi Dong
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Wenqi Shi
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lan Pang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Shaopeng Ren
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Xuexin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Kim K, Christov PP, Romaine I, Tian J, Jana S, Lamers AP, Dutter BF, Scaggs T, Jeon K, Guttentag B, Weaver CD, Lindsley CW, Waterson AG, Sulikowski GA. Ten-Year Retrospective of the Vanderbilt Institute of Chemical Biology Chemical Synthesis Core. ACS Chem Biol 2021; 16:787-793. [PMID: 33877812 DOI: 10.1021/acschembio.0c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chemical synthesis has been described as a central science. Its practice provides access to the chemical structures of known and/or designed function. In particular, human health is greatly impacted by synthesis that enables advancements in both basic science discoveries in chemical biology as well as translational research that can lead to new therapeutics. To support the chemical synthesis needs of investigators across campus, the Vanderbilt Institute of Chemical Biology established a chemical synthesis core as part of its foundation in 2008. Provided in this Review are examples of synthetic products, known and designed, produced in the core over the past 10 years.
Collapse
Affiliation(s)
- Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Plamen P. Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ian Romaine
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jianhua Tian
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Somnath Jana
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Alexander P. Lamers
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Brendan F. Dutter
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Toya Scaggs
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kyouk Jeon
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Benjamin Guttentag
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - C. David Weaver
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Alex G. Waterson
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Gary A. Sulikowski
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
5
|
Contributions of the Conserved Insect Carbon Dioxide Receptor Subunits to Odor Detection. Cell Rep 2021; 31:107510. [PMID: 32294446 DOI: 10.1016/j.celrep.2020.03.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/19/2019] [Accepted: 03/23/2020] [Indexed: 01/18/2023] Open
Abstract
The CO2 receptor in mosquitoes is broadly tuned to detect many diverse odorants. The receptor consists of three subunits (Gr1, Gr2, and Gr3) in mosquitoes but only two subunits in Drosophila: Gr21a (Gr1 ortholog) and Gr63a (Gr3 ortholog). We demonstrate that Gr21a is required for CO2 responses in Drosophila, as has been shown for Gr63a. Next, we generate a Drosophila double mutant for Gr21a and Gr63a, and in this background, we functionally express combinations of Aedes Gr1, Gr2, and Gr3 genes in the CO2 empty neuron. Only two subunits, Gr2 and Gr3, suffice for response to CO2. Addition of Gr1 increases sensitivity to CO2, whereas it decreases the response to pyridine. The inhibitory effect of the antagonist isobutyric acid is observed upon addition of Gr1. Gr1 therefore increases the diversity of ligands of the receptor and modulates the response of the receptor complex.
Collapse
|
6
|
Shrestha B, Lee Y. Cellular and molecular mechanisms of DEET toxicity and disease-carrying insect vectors: a review. Genes Genomics 2020; 42:1131-1144. [DOI: 10.1007/s13258-020-00991-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022]
|
7
|
Grant GG, Estrera RR, Pathak N, Hall CD, Tsikolia M, Linthicum KJ, Bernier UR, Hall AC. Interactions of DEET and Novel Repellents With Mosquito Odorant Receptors. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1032-1040. [PMID: 32048720 DOI: 10.1093/jme/tjaa010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Indexed: 06/10/2023]
Abstract
The carboxamide N,N-di-ethyl-meta-toluamide (DEET) is the most effective and widely used insect repellent today. However, drawbacks concerning the efficacy and the safety of the repellent have led to efforts to design new classes of insect repellents. Through quantitative structure-activity relationships, chemists have discovered two chemical groups of novel repellents: the acylpiperidines and the carboxamides, with the acylpiperidines generally more potent in biological assays. Although the exact mechanism of action of DEET and other repellents has not yet been thoroughly elucidated, previous research shows that the activity of insect odorant receptors are inhibited in the presence of repellents. The present electrophysiological study employs two-electrode voltage clamp with Xenopus laevis oocytes expressing AgOR2/AgOrco and AgOR8/AgOrco receptors to assess the effects of the novel repellents on Anopheles gambiae Giles (Insecta: Diptera: Culicidae) mosquito odorant receptors. The novel acylpiperidines and carboxamides reversibly inhibited (12-91%) odorant-evoked currents from both AgOR2/AgOrco and AgOR8/AgOrco receptors in a dose-dependent manner at all tested concentrations (30 μM to 1 mM). Furthermore, all the novel agents were more potent inhibitors of the receptors than DEET, with the acylpiperidines producing on average greater inhibition than the carboxamides. Interestingly, there was a correlation (r2 = 0.72) between the percentage inhibition of AgOR2/AgOrco receptor currents and protection times of the acylpiperidines. Our results add to existing evidence that the repellency of a compound is linked to its ability to disrupt the insect olfactory system and that the acylpiperidines could represent a class of more effective alternatives to the current gold standard, DEET.
Collapse
Affiliation(s)
- Gariel G Grant
- Department of Biological Sciences, Smith College, Northampton, MA
| | | | - Narendra Pathak
- Department of Biological Sciences, Smith College, Northampton, MA
| | - C Dennis Hall
- Department of Chemistry, University of Florida, Gainesville, FL
| | - Maia Tsikolia
- Department of Chemistry, University of Florida, Gainesville, FL
| | - Kenneth J Linthicum
- Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL
| | - Ulrich R Bernier
- Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL
| | - Adam C Hall
- Department of Biological Sciences, Smith College, Northampton, MA
- Neuroscience Program, Smith College, Northampton, MA
| |
Collapse
|
8
|
Ferguson ST, Park KY, Ruff AA, Bakis I, Zwiebel LJ. Odor coding of nestmate recognition in the eusocial ant Camponotus floridanus. J Exp Biol 2020; 223:jeb215400. [PMID: 31900348 PMCID: PMC7033718 DOI: 10.1242/jeb.215400] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/23/2019] [Indexed: 11/20/2022]
Abstract
In eusocial ants, aggressive behaviors require the ability to discriminate between chemical signatures such as cuticular hydrocarbons that distinguish nestmate friends from non-nestmate foes. It has been suggested that a mismatch between a chemical signature (label) and the internal, neuronal representation of the colony odor (template) leads to aggression between non-nestmates. Moreover, a definitive demonstration that odorant receptors are responsible for the processing of the chemical signals that regulate nestmate recognition has thus far been lacking. To address these issues, we have developed an aggression-based bioassay incorporating highly selective modulators that target odorant receptor functionality to characterize their role in nestmate recognition in the formicine ant Camponotus floridanus Electrophysiological studies were used to show that exposure to either a volatilized antagonist or an agonist eliminated or dramatically altered signaling, respectively. Administration of these compounds to adult workers significantly reduced aggression between non-nestmates without altering aggression levels between nestmates. These studies provide direct evidence that odorant receptors are indeed necessary and sufficient for mediating aggression towards non-nestmates. Furthermore, our observations support a hypothesis in which rejection of non-nestmates depends on the precise decoding of chemical signatures present on non-nestmates as opposed to the absence of any information or the active acceptance of familiar signatures.
Collapse
Affiliation(s)
- Stephen T Ferguson
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37235, USA
| | - Kyu Young Park
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37235, USA
| | - Alexandra A Ruff
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37235, USA
| | - Isaac Bakis
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37235, USA
| | - Laurence J Zwiebel
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37235, USA
| |
Collapse
|
9
|
Kepchia D, Xu P, Terryn R, Castro A, Schürer SC, Leal WS, Luetje CW. Use of machine learning to identify novel, behaviorally active antagonists of the insect odorant receptor co-receptor (Orco) subunit. Sci Rep 2019; 9:4055. [PMID: 30858563 PMCID: PMC6411751 DOI: 10.1038/s41598-019-40640-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/18/2019] [Indexed: 12/24/2022] Open
Abstract
Olfaction is a key component of the multimodal approach used by mosquitoes to target and feed on humans, spreading various diseases. Current repellents have drawbacks, necessitating development of more effective agents. In addition to variable odorant specificity subunits, all insect odorant receptors (ORs) contain a conserved odorant receptor co-receptor (Orco) subunit which is an attractive target for repellent development. Orco directed antagonists allosterically inhibit odorant activation of ORs and we previously showed that an airborne Orco antagonist could inhibit insect olfactory behavior. Here, we identify novel, volatile Orco antagonists. We functionally screened 83 structurally diverse compounds against Orco from Anopheles gambiae. Results were used for training machine learning models to rank probable activity of a library of 1280 odorant molecules. Functional testing of a representative subset of predicted active compounds revealed enrichment for Orco antagonists, many structurally distinct from previously known Orco antagonists. Novel Orco antagonist 2-tert-butyl-6-methylphenol (BMP) inhibited odorant responses in electroantennogram and single sensillum recordings in adult Drosophila melanogaster and inhibited OR-mediated olfactory behavior in D. melanogaster larvae. Structure-activity analysis of BMP analogs identified compounds with improved potency. Our results provide a new approach to the discovery of behaviorally active Orco antagonists for eventual use as insect repellents/confusants.
Collapse
Affiliation(s)
- Devin Kepchia
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Pingxi Xu
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Raymond Terryn
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA.,Center for Computational Science, University of Miami, Coral Gables, FL, 33146, USA
| | - Ana Castro
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Stephan C Schürer
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA.,Center for Computational Science, University of Miami, Coral Gables, FL, 33146, USA
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Charles W Luetje
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA.
| |
Collapse
|
10
|
Khadka R, Aydemir N, Carraher C, Hamiaux C, Baek P, Cheema J, Kralicek A, Travas‐Sejdic J. Investigating Electrochemical Stability and Reliability of Gold Electrode‐electrolyte Systems to Develop Bioelectronic Nose Using Insect Olfactory Receptor. ELECTROANAL 2019. [DOI: 10.1002/elan.201800733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Roshan Khadka
- Polymer Electronic Research Centre, School of Chemical SciencesUniversity of Auckland Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Kelburn Parade Wellington 6140 New Zealand
| | - Nihan Aydemir
- Polymer Electronic Research Centre, School of Chemical SciencesUniversity of Auckland Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Kelburn Parade Wellington 6140 New Zealand
| | - Colm Carraher
- The New Zealand Institute for Plant & Food Research Limited Private Bag 92169 Auckland 1142 New Zealand
| | - Cyril Hamiaux
- The New Zealand Institute for Plant & Food Research Limited Private Bag 92169 Auckland 1142 New Zealand
| | - Paul Baek
- Polymer Electronic Research Centre, School of Chemical SciencesUniversity of Auckland Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Kelburn Parade Wellington 6140 New Zealand
| | - Jamal Cheema
- Polymer Electronic Research Centre, School of Chemical SciencesUniversity of Auckland Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Kelburn Parade Wellington 6140 New Zealand
| | - Andrew Kralicek
- The New Zealand Institute for Plant & Food Research Limited Private Bag 92169 Auckland 1142 New Zealand
| | - Jadranka Travas‐Sejdic
- Polymer Electronic Research Centre, School of Chemical SciencesUniversity of Auckland Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Kelburn Parade Wellington 6140 New Zealand
| |
Collapse
|
11
|
Li S, Zhou C, Zhou Y. Olfactory co-receptor Orco stimulated by Rice stripe virus is essential for host seeking behavior in small brown planthopper. PEST MANAGEMENT SCIENCE 2019; 75:187-194. [PMID: 29797766 DOI: 10.1002/ps.5086] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/23/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Laodelphax striatellus, the small brown planthopper (SBPH), is an economically important pest, besides sucking damage, which transmits rice viruses to cause severe damages to rice. In the process of virus transmission, the host orientation behavior of insect is mainly driven by olfaction. In this context, the molecular basis of olfaction in SBPH is of particular interest. RESULTS Here, we identified the gene that encodes olfactory receptor co-receptor (Orco) and analyzed its expression profiles in Rice stripe virus (RSV)-infected and RSV-free SBPH. It was found that LstrOrco shared high identity with other Orcos from different order insects. LstrOrco was mainly expressed in the head of SBPH, and its expression was significantly stimulated by RSV-infection. The behavioral bioassay revealed that viruliferous SBPH might have a stronger olfactory and seeking ability for rice than RSV-free insect. After silencing of LstrOrco expression, the olfaction and seeking behavior of nymphs for rice seedlings was significantly inhibited, mainly in the increase of the 'no response' percent and the prolongation of the response time. CONCLUSION These results suggested that Orco played an important role in olfactory signaling and seeking behavior of SBPH, which provided a basic for future development of olfactory-based agriculture pest management strategies. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuo Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Changwei Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
12
|
Devillers J. 2D and 3D structure-activity modelling of mosquito repellents: a review $. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2018; 29:693-723. [PMID: 30220218 DOI: 10.1080/1062936x.2018.1513218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Repellents disrupt the behaviour of blood-seeking mosquitoes protecting humans against their bites which can transmit serious diseases. Since the mid-1950s, N,N-diethyl-m-toluamide (DEET) is considered as the standard mosquito repellent worldwide. However, DEET presents numerous shortcomings. Faced with the heightening risk of mosquito expansion caused by global climate changes and increasing international exchanges, there is an urgent need for a better repellent than DEET and the very few other commercialised repelling molecules such as picaridin and IR3535. In silico approaches have been used to find new repellents and to provide better insights into their mechanism of action. In this context, the goal of our study was to retrieve from the literature all the papers dealing with qualitative and quantitative structure-activity relationships on mosquito repellents. A critical analysis of the SAR and QSAR models was made focusing on the quality of the biological data, the significance of the molecular descriptors and the validity of the statistical tools used for deriving the models. The predictive power and domain of application of these models were also discussed. The hypotheses to compute homology and pharmacophore models, their interest to find new repellents and to provide insights into the mechanisms of repellency in mosquitoes were analysed. The interest to consider the mosquito olfactory system as the target to compute new repellents was discussed. The potential environmental impact of these chemicals as well as new ways of research were addressed.
Collapse
|
13
|
Venthur H, Zhou JJ. Odorant Receptors and Odorant-Binding Proteins as Insect Pest Control Targets: A Comparative Analysis. Front Physiol 2018; 9:1163. [PMID: 30197600 PMCID: PMC6117247 DOI: 10.3389/fphys.2018.01163] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023] Open
Abstract
Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely odorant-binding proteins (OBPs) and odorant receptors (ORs). Located in insect antennae, OBPs are thought to be involved in the transport of odorants to ORs for the specific signal transduction of behaviorally active odorants. There is rich information on OBP binding affinity and molecular docking to bioactive compounds as well as ample 3D crystal structures due to feasible production of recombinant proteins. Although these provide excellent opportunities for them to be considered as pest control targets and a tool to design pest control agents, the debates on their binding specificity represent an obstacle. On the other hand, ORs have recently been functionally characterized with increasing evidence for their specificity, sensitivity and functional roles in pest behaviors. However, a major barrier to use ORs for semiochemical discovery is the lack of 3D crystal structures. Thus, OBPs and ORs have not been analyzed comparatively together so far for their feasibility as pest control targets. Here, we summarize the state of OBPs and ORs research in terms of its application in insect pest management. We discuss the suitability of both proteins as pest control targets and their selection toward the discovery of new potent semiochemicals. We argue that both proteins represent promising targets for pest control and can be used to identify new super-ligands likely present in nature and with reduced risk of resistance development than insect pesticides currently used in agriculture. We discuss that with the massive identification of OBPs through RNA-seq and improved binding affinity measurements, these proteins could be reconsidered as suitable targets for semiochemical discovery.
Collapse
Affiliation(s)
- Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Biotechnology Research Applied to the Environment (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, United Kingdom.,Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| |
Collapse
|
14
|
Moore EL, Scott MA, Rodriguez SD, Mitra S, Vulcan J, Cordova JJ, Chung HN, Linhares Lino de Souza D, Gonzales KK, Hansen IA. An online survey of personal mosquito-repellent strategies. PeerJ 2018; 6:e5151. [PMID: 30002979 PMCID: PMC6034598 DOI: 10.7717/peerj.5151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Mosquito repellents can be an effective method for personal protection against mosquito bites that are a nuisance and carry the risk of transmission of mosquito-borne pathogens like plasmodia, dengue virus, chikungunya virus, and Zika virus. A multitude of commercially available products are currently on the market, some of them highly effective while others have low or no efficacy. Many home remedies of unknown efficacy are also widely used. Methods We conducted a survey study to determine what kind of mosquito repellents and other mosquito control strategies people use. Our online survey was focused on unconventional methods and was answered by 5,209 participants. Results The majority of participants resided in the United States, were female (67%), had higher education (81% had a university degree), and were 18 to 37 years old (50%). The most commonly used repellent was DEET spray (48%), followed closely by citronella candles (43%) and ‘natural’ repellent sprays (36%). We collected a plethora of home remedies and other strategies people use that warrant further research into their effectiveness. Discussion Our study lays the foundation for future research in alternative, unconventional methods to repel mosquitoes that may be culturally acceptable and accessible for people.
Collapse
Affiliation(s)
- Emily Lucille Moore
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Mary Alice Scott
- Department of Anthropology, New Mexico State University, Las Cruces, NM, United States of America
| | - Stacy Deadra Rodriguez
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Soumi Mitra
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Julia Vulcan
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Joel Javierla Cordova
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Hae-Na Chung
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | | | - Kristina Kay Gonzales
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Immo Alex Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America.,Institute for Applied Biosciences, New Mexico State University, Las Cruces, NM, United States of America
| |
Collapse
|
15
|
Ouedraogo L, den Otter CJ. Comparison of single cell sensitivities to acetone, 1-octen-3-ol and 3-methylphenol in the riverine tsetse species Glossina fuscipes fuscipes and G. palpalis palpalis. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:144-151. [PMID: 29559304 DOI: 10.1016/j.jinsphys.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Action potentials from individual cells were recorded from antennae (funiculi) of living tsetse flies, Glossina p. palpalis and Glossina f. fuscipes using a "surface-contact" recording technique. Stimuli were vapours of 1-octen-3-ol, acetone and 3-methylphenol. Of the 101 and 128 olfactory cells tested for their sensitivity to odour stimuli in G. p. palpalis and G. f. fuscipes, respectively, the majority (83 and 77%) were activated by more than one chemical. The numbers of these "generalist" cells were 20 and 15% higher in females than in males. Response intensity increased with increasing odour dose. Temporal patterns of excitation were phasic-tonic and showed cells with relatively rapid cessation of spike activity after the end of stimulation and cells which continued firing for several seconds or even minutes after stimulation. Inhibition by odours only occurred in a minority of cells and was dose-dependent. For each of the three substances the excitatory response was significantly higher in G. f. fuscipes than in G. p. palpalis, whereas no significant differences between inhibitory responses were found. In G. f. fuscipes each stimulus evoked equal excitatory responses. In G. p. palpalis, however, acetone induced significantly higher responses than 1-octen-3-ol and 3-methylphenol. Response intensities to each of the three chemicals did not differ between male and female G. p. palpalis, whereas in G. f. fuscipes 1-octen-3-ol evoked significantly higher responses in males. Possible mechanisms of receptor cell odour coding and behavioural effects of the various cell type activities are discussed.
Collapse
Affiliation(s)
- Lamini Ouedraogo
- Laboratoire de Physiologie Animale, Unité de Formation et de la Recherche en Sciences de la Vie et de la Terre (UFR/SVT), Universite Ouaga I Pr Joseph KI-ZERBO, Burkina Faso.
| | - C J den Otter
- FRES, Rijksstraatweg 377, 9752 CH Haren, The Netherlands.
| |
Collapse
|
16
|
Guo L, Zhao H, Xu B, Jiang Y. Odorant receptor might be related to sperm DNA integrity in Apis cerana cerana. Anim Reprod Sci 2018; 193:33-39. [PMID: 29628206 DOI: 10.1016/j.anireprosci.2018.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
Olfactory receptors (ORs) are important for insects to recognize and discriminate odorants in the environment and are mainly expressed in olfactory and gustatory organs. Little is known about the potential OR functions in non-olfactory tissues. In the present study, we evaluated the possibility of odorant receptors AcerOr1 and AcerOr2 (AcerOr2 is orthologous to the co-receptor) mediating sperm DNA integrity, and the relationship between sperm DNA integrity and semen parameters in Apis cerana cerana. Based on previous findings in mammals, we speculated that the Ca2+/calmodulin (CaM)/CaM-dependent protein kinase II (CaMKII) signaling pathway might be involved in the regulation of sperm motility in A. cerana cerana. The results showed that both AcerOr1 and AcerOr2 are expressed in the sperms and testis, that components associated with the putative Ca2+/CaM/CaMKII signaling pathway are present in A. cerana cerana sperms, and that at least CaM and CaMKII are localized in the sperms and testis. The AcerOr2 agonist VUAA1 significantly improved sperm motility parameters and apoptosis of sperm cells effect DNA integrity, whereas the CaM inhibitor W7 decreased sperm motility parameters and apoptosis of sperm cells, which affects DNA integrity. We also found a positive correlation between sperm DNA integrity and semen quality. These results indirectly as well as directly suggest that OR-mediated sperm responses and the Ca2+/CaM/CaMKII signaling pathway might affect semen quality and might be useful in regulating insect reproduction in future.
Collapse
Affiliation(s)
- Lina Guo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Huiting Zhao
- College of Life Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Bing Xu
- College of Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yusuo Jiang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| |
Collapse
|
17
|
Wang Q, Wang Q, Zhou YL, Shan S, Cui HH, Xiao Y, Dong K, Khashaveh A, Sun L, Zhang YJ. Characterization and Comparative Analysis of Olfactory Receptor Co-Receptor Orco Orthologs Among Five Mirid Bug Species. Front Physiol 2018; 9:158. [PMID: 29556202 PMCID: PMC5845112 DOI: 10.3389/fphys.2018.00158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/16/2018] [Indexed: 01/08/2023] Open
Abstract
The phytophagous mirid bugs of Apolygus lucorum, Lygus pratensis as well as three Adelphocoris spp., including Adelphocoris lineolatus, A. suturalis, and A. fasciaticollis are major pests of multiple agricultural crops in China, which have distinct geographical distribution and occurrence ranges. Like many insect species, these bugs heavily rely on olfactory cues to search preferred host plants, thereby investigation on functional co-evolution and divergence of olfactory genes seems to be necessary and is of great interest. In the odorant detection pathway, olfactory receptor co-receptor (Orco) plays critical role in the perception of odors. In this study, we identified the full-length cDNA sequences encoding three putative Orcos (AsutOrco, AfasOrco, and LpraOrco) in bug species of A. suturalis, A. fasciaticollis, and L. pratensis based on homology cloning method. Next, sequence alignment, membrane topology and gene structure analysis showed that these three Orco orthologs together with previously reported AlinOrco and AlucOrco shared high amino acid identities and similar topology structure, but had different gene structure especially at the length and insertion sites of introns. Furthermore, the evolutional estimation on the ratios of non-synonymous to synonymous (Ka/Ks) revealed that Orco genes were under strong purifying selection, but the degrees of variation were significant different between genera. The results of quantitative real-time PCR experiments showed that these five Orco genes had a similar antennae-biased tissue expression pattern. Taking these data together, it is thought that Orco genes in the mirid species could share conserved olfaction roles but had different evolution rates. These findings would lay a foundation to further investigate the molecular mechanisms of evolutionary interactions between mirid bugs and their host plants, which might in turn contribute to the development of pest management strategy for mirid bugs.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yan-Le Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,DanDong Entry-Exit Inspection and Quarantine Bureau, Dandong, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan-Huan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kun Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Corcoran JA, Sonntag Y, Andersson MN, Johanson U, Löfstedt C. Endogenous insensitivity to the Orco agonist VUAA1 reveals novel olfactory receptor complex properties in the specialist fly Mayetiola destructor. Sci Rep 2018; 8:3489. [PMID: 29472565 PMCID: PMC5823858 DOI: 10.1038/s41598-018-21631-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/06/2018] [Indexed: 11/12/2022] Open
Abstract
Insect olfactory receptors are routinely expressed in heterologous systems for functional characterisation. It was recently discovered that the essential olfactory receptor co-receptor (Orco) of the Hessian fly, Mayetiola destructor (Mdes), does not respond to the agonist VUAA1, which activates Orco in all other insects analysed to date. Here, using a mutagenesis-based approach we identified three residues in MdesOrco, located in different transmembrane helices as supported by 3D modelling, that confer sensitivity to VUAA1. Reciprocal mutations in Drosophila melanogaster (Dmel) and the noctuid moth Agrotis segetum (Aseg) Orcos diminish sensitivity of these proteins to VUAA1. Additionally, mutating these residues in DmelOrco and AsegOrco compromised odourant receptor (OR) dependent ligand-induced Orco activation. In contrast, both wild-type and VUAA1-sensitive MdesOrco were capable of forming functional receptor complexes when coupled to ORs from all three species, suggesting unique complex properties in M. destructor, and that not all olfactory receptor complexes are “created” equal.
Collapse
Affiliation(s)
| | - Yonathan Sonntag
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund, Sweden
| | | | - Urban Johanson
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund, Sweden
| | | |
Collapse
|
19
|
Liu Q, Liu W, Zeng B, Wang G, Hao D, Huang Y. Deletion of the Bombyx mori odorant receptor co-receptor (BmOrco) impairs olfactory sensitivity in silkworms. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 86:58-67. [PMID: 28577927 DOI: 10.1016/j.ibmb.2017.05.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/20/2017] [Accepted: 05/29/2017] [Indexed: 05/14/2023]
Abstract
Olfaction plays an essential role in many important insect behaviors such as feeding and reproduction. To detect olfactory stimuli, an odorant receptor co-receptor (Orco) is required. In this study, we deleted the Orco gene in the Lepidopteran model insect, Bombyx mori, using a binary transgene-based clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 system. We initially generated somatic mutations in two targeted sites, from which we obtained homozygous mutants with deletion of a 866 base pair sequence. Because of the flight inability of B. mori, we developed a novel method to examine the adult mating behavior. Considering the specialization in larval feeding, we examined food selection behavior in Orco somatic mutants by the walking trail analysis of silkworm position over time. Single sensillum recordings indicated that the antenna of the homozygous mutant was unable to respond to either of the two sex pheromones, bombykol or bombykal. An adult mating behavior assay revealed that the Orco mutant displayed a significantly impaired mating selection behavior in response to natural pheromone released by a wild-type female moth as well as an 11:1 mixture of bombykol/bombykal. The mutants also exhibited a decreased response to bombykol and, similar to wild-type moths, they displayed no response to bombykal. A larval feeding behavior assay revealed that the Orco mutant displayed defective selection for mulberry leaves and different concentrations of the volatile compound cis-jasmone found in mulberry leaves. Deletion of BmOrco severely disrupts the olfactory system, suggesting that BmOrco is indispensable in the olfactory pathway. The approach used for generating somatic and homozygous mutations also highlights a novel method for mutagenesis. This study on BmOrco function provides insights into the insect olfactory system and also provides a paradigm for agroforestry pest control.
Collapse
Affiliation(s)
- Qun Liu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Baosheng Zeng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dejun Hao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
20
|
Kepchia D, Moliver S, Chohan K, Phillips C, Luetje CW. Inhibition of insect olfactory behavior by an airborne antagonist of the insect odorant receptor co-receptor subunit. PLoS One 2017; 12:e0177454. [PMID: 28562598 PMCID: PMC5451006 DOI: 10.1371/journal.pone.0177454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/27/2017] [Indexed: 11/19/2022] Open
Abstract
Response to volatile environmental chemosensory cues is essential for insect survival. The odorant receptor (OR) family is an important class of receptors that detects volatile molecules; guiding insects towards food, mates, and oviposition sites. ORs are odorant-gated ion channels, consisting of a variable odorant specificity subunit and a conserved odorant receptor co-receptor (Orco) subunit, in an unknown stoichiometry. The Orco subunit possesses an allosteric site to which modulators can bind and noncompetitively inhibit odorant activation of ORs. In this study, we characterized several halogen-substituted versions of a phenylthiophenecarboxamide Orco antagonist structure. Orco antagonist activity was assessed on ORs from Drosophila melanogaster flies and Culex quinquefasciatus mosquitoes, expressed in Xenopus laevis oocytes and assayed by two-electrode voltage clamp electrophysiology. One compound, OX1w, was also shown to inhibit odorant activation of a panel of Anopheles gambiae mosquito ORs activated by diverse odorants. Next, we asked whether Orco antagonist OX1w could affect insect olfactory behavior. A Drosophila melanogaster larval chemotaxis assay was utilized to address this question. Larvae were robustly attracted to highly diluted ethyl acetate in a closed experimental chamber. Attraction to ethyl acetate was Orco dependent and also required the odorant specificity subunit Or42b. The addition of the airborne Orco antagonist OX1w to the experimental chamber abolished larval chemotaxis towards ethyl acetate. The Orco antagonist was not a general inhibitor of sensory behavior, as behavioral repulsion from a light source was unaffected. This is the first demonstration that an airborne Orco antagonist can alter olfactory behavior in an insect. These results suggest a new approach to insect control and emphasize the need to develop more potent Orco antagonists.
Collapse
Affiliation(s)
- Devin Kepchia
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Scott Moliver
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Kunal Chohan
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Cameron Phillips
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Charles W. Luetje
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
21
|
Raji JI, DeGennaro M. Genetic Analysis of Mosquito Detection of Humans. CURRENT OPINION IN INSECT SCIENCE 2017; 20:34-38. [PMID: 28428935 PMCID: PMC5393449 DOI: 10.1016/j.cois.2017.03.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mosquitoes detect the presence of humans by integrating chemosensory, thermal, and visual cues. Among these, odors are crucial for mosquito host detection. Insects have evolved a diverse repertoire of receptors to detect their plant and animal hosts. Genetic analysis of these receptors in Drosophila has set the stage for similar studies in mosquitoes. The diversity of the cues involved in mosquito host-seeking has made designing behavioral control strategies a challenge. The sensory receptors that are most important for mosquito detection of humans can now be determined using genome editing. Here, we will review our current understanding of the salient cues that attract mosquitoes, their receptors, and suggest ways forward for novel olfaction-based vector control strategies.
Collapse
Affiliation(s)
- Joshua I. Raji
- Biomolecular Sciences Institute & Department of Biological Sciences, Florida International University, Miami, FL USA
| | - Matthew DeGennaro
- Biomolecular Sciences Institute & Department of Biological Sciences, Florida International University, Miami, FL USA
| |
Collapse
|
22
|
Andersson MN, Newcomb RD. Pest Control Compounds Targeting Insect Chemoreceptors: Another Silent Spring? Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Tsitoura P, Iatrou K. Positive Allosteric Modulation of Insect Olfactory Receptor Function by ORco Agonists. Front Cell Neurosci 2016; 10:275. [PMID: 28018173 PMCID: PMC5145856 DOI: 10.3389/fncel.2016.00275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022] Open
Abstract
Insect olfactory receptors (ORs) are heteromeric ligand-gated cation channels composed of a common olfactory receptor subunit (ORco) and a variable subunit (ORx) of as yet unknown structures and undetermined stoichiometries. In this study, we examined the allosteric modulation exerted on Anopheles gambiae heteromeric ORx/ORco olfactory receptors in vitro by a specific class of ORco agonists (OAs) comprising ORcoRAM2 and VUAA1. High OA concentrations produced stronger functional responses in cells expressing heteromeric receptor channels relative to cells expressing ORco alone. These OA-induced responses of ORx/ORco channels were also notably much stronger than those obtained upon administration of ORx-specific ligands to the same receptors. Most importantly, small concentrations of OAs were found to act as strong potentiators of ORx/ORco function, increasing dramatically both the efficacy and potency of ORx-specific odorants. These results suggest that insect heteromeric ORs are highly dynamic complexes adopting different conformations that change in a concerted fashion as a result of the interplay between the subunits of the oligomeric assemblies, and that allosteric modulation may constitute an important element in the modulation and fining tuning of olfactory reception function.
Collapse
Affiliation(s)
| | - Kostas Iatrou
- Insect Molecular Genetics and Biotechnology Group, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”Athens, Greece
| |
Collapse
|
24
|
Clark JT, Ray A. Olfactory Mechanisms for Discovery of Odorants to Reduce Insect-Host Contact. J Chem Ecol 2016; 42:919-930. [PMID: 27628342 DOI: 10.1007/s10886-016-0770-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/25/2016] [Accepted: 09/08/2016] [Indexed: 11/29/2022]
Abstract
Insects have developed highly sophisticated and sensitive olfactory systems to find animal or plant hosts for feeding. Some insects vector pathogens that cause diseases in hundreds of millions of people and destroy billions of dollars of food products every year. There is great interest, therefore, in understanding how the insect olfactory system can be manipulated to reduce their contact with hosts. Here, we review recent advances in our understanding of insect olfactory detection mechanisms, which may serve as a foundation for designing insect control programs based on manipulation of their behaviors by using odorants. Because every insect species has a unique set of olfactory receptors and olfactory-mediated behaviors, we focus primarily on general principles of odor detection that potentially apply to most insects. While these mechanisms have emerged from studies on model systems for study of insect olfaction, such as Drosophila melanogaster, they provide a foundation for discovery of odorants to repel vector insects or reduce their host-seeking behavior.
Collapse
Affiliation(s)
- Jonathan T Clark
- Interdepartmental Neuroscience Program, University of California, Riverside, CA, 92521, USA
| | - Anandasankar Ray
- Interdepartmental Neuroscience Program, University of California, Riverside, CA, 92521, USA. .,Entomology Department, University of California, Riverside, CA, 92521, USA. .,Center for Disease Vector Research, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
25
|
Carraher C, Dalziel J, Jordan MD, Christie DL, Newcomb RD, Kralicek AV. Towards an understanding of the structural basis for insect olfaction by odorant receptors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:31-41. [PMID: 26416146 DOI: 10.1016/j.ibmb.2015.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Insects have co-opted a unique family of seven transmembrane proteins for odour sensing. Odorant receptors are believed to have evolved from gustatory receptors somewhere at the base of the Hexapoda and have expanded substantially to become the dominant class of odour recognition elements within the Insecta. These odorant receptors comprise an obligate co-receptor, Orco, and one of a family of highly divergent odorant "tuning" receptors. The two subunits are thought to come together at some as-yet unknown stoichiometry to form a functional complex that is capable of both ionotropic and metabotropic signalling. While there are still no 3D structures for these proteins, site-directed mutagenesis, resonance energy transfer, and structural modelling efforts, all mainly on Drosophila odorant receptors, are beginning to inform hypotheses of their structures and how such complexes function in odour detection. Some of the loops, especially the second extracellular loop that has been suggested to form a lid over the binding pocket, and the extracellular regions of some transmembrane helices, especially the third and to a less extent the sixth and seventh, have been implicated in ligand recognition in tuning receptors. The possible interaction between Orco and tuning receptor subunits through the final intracellular loop and the adjacent transmembrane helices is thought to be important for transducing ligand binding into receptor activation. Potential phosphorylation sites and a calmodulin binding site in the second intracellular loop of Orco are also thought to be involved in regulating channel gating. A number of new methods have recently been developed to express and purify insect odorant receptor subunits in recombinant expression systems. These approaches are enabling high throughput screening of receptors for agonists and antagonists in cell-based formats, as well as producing protein for the application of biophysical methods to resolve the 3D structure of the subunits and their complexes.
Collapse
Affiliation(s)
- Colm Carraher
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Julie Dalziel
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Private Bag 11008, Palmerston North 4442, New Zealand
| | - Melissa D Jordan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - David L Christie
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Richard D Newcomb
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew V Kralicek
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand.
| |
Collapse
|
26
|
Fan J, Zhang Y, Francis F, Cheng D, Sun J, Chen J. Orco mediates olfactory behaviors and winged morph differentiation induced by alarm pheromone in the grain aphid, Sitobion avenae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 64:16-24. [PMID: 26187252 DOI: 10.1016/j.ibmb.2015.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/27/2015] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
Olfaction is crucial for short distance host location and pheromone detection by insects. Complexes of olfactory receptors (ORs) are composed of odor-specific ORs and OR co-receptors (Orco). Orcos are widely co-expressed with odor-specific ORs and are conserved across insect taxa. A number of Orco orthologs have been studied to date, although none has been identified in cereal aphids. In this study, an Orco gene ortholog was cloned from the grain aphid, Sitobion avenae, and named "SaveOrco"; RNA interference (RNAi) reduced the expression of SaveOrco to 34.11% in aphids, resulting in weaker EAG (electroantennogram) responses to plant volatiles (Z-3-hexene-1-ol; methyl salicylate, MeSA) and aphid alarm pheromone (E-β-farnesene, EBF). Aphid wing differentiation induced by EBF was investigated in both RNAi treated and untreated aphids. EBF induced production of winged aphids in both pre-natal and post-natal periods in untreated aphids, but no such induction was observed in the RNAi-treated aphids. We conclude that SaveOrco is crucial for the aphid's response to pheromones and other volatiles, and is involved in wing differentiation triggered by EBF.
Collapse
Affiliation(s)
- Jia Fan
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yong Zhang
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, B-5030, Belgium
| | - Dengfa Cheng
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jingrun Sun
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Julian Chen
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
27
|
Sharma KR, Enzmann BL, Schmidt Y, Moore D, Jones GR, Parker J, Berger SL, Reinberg D, Zwiebel LJ, Breit B, Liebig J, Ray A. Cuticular Hydrocarbon Pheromones for Social Behavior and Their Coding in the Ant Antenna. Cell Rep 2015; 12:1261-71. [PMID: 26279569 DOI: 10.1016/j.celrep.2015.07.031] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/10/2015] [Accepted: 07/15/2015] [Indexed: 01/08/2023] Open
Abstract
The sophisticated organization of eusocial insect societies is largely based on the regulation of complex behaviors by hydrocarbon pheromones present on the cuticle. We used electrophysiology to investigate the detection of cuticular hydrocarbons (CHCs) by female-specific olfactory sensilla basiconica on the antenna of Camponotus floridanus ants through the utilization of one of the largest family of odorant receptors characterized so far in insects. These sensilla, each of which contains multiple olfactory receptor neurons, are differentially sensitive to CHCs and allow them to be classified into three broad groups that collectively detect every hydrocarbon tested, including queen and worker-enriched CHCs. This broad-spectrum sensitivity is conserved in a related species, Camponotus laevigatus, allowing these ants to detect CHCs from both nestmates and non-nestmates. Behavioral assays demonstrate that these ants are excellent at discriminating CHCs detected by the antenna, including enantiomers of a candidate queen pheromone that regulates the reproductive division of labor.
Collapse
Affiliation(s)
- Kavita R Sharma
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | | | - Yvonne Schmidt
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| | - Dani Moore
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Graeme R Jones
- Chemical Ecology Group, School of Physical and Geographical Sciences, Lennard-Jones Laboratory, Keele University, Staffordshire ST5 5GB, UK
| | - Jane Parker
- Chemical Ecology Group, School of Physical and Geographical Sciences, Lennard-Jones Laboratory, Keele University, Staffordshire ST5 5GB, UK
| | - Shelley L Berger
- Departments of Cell and Developmental Biology, Genetics, and Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danny Reinberg
- Department of Molecular Pharmacology and Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | - Laurence J Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| | - Jürgen Liebig
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Anandasankar Ray
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
28
|
Abstract
Mosquitoes use their sense of smell to find hosts, nectar, and oviposition sites, and to avoid repellents. A small number of mosquito species are adapted to feed on humans and have a major impact on public health by transmitting diseases such as malaria, dengue and filariasis. The application of odorants for behavioral control has not been fully realized yet due to complexity of the mosquito olfactory system. Recent progress in molecular and computational tools has enabled rigorous investigations of the mosquito olfactory system function and has started to reveal how specific receptors contribute to attractive and aversive behaviors. Here we discuss recent advances in linking odors to receptors and in exploiting this knowledge in finding attractants and repellents for mosquitoes.
Collapse
Affiliation(s)
- Anandasankar Ray
- Department of Entomology, Center for Disease Vector Research, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
29
|
Lin W, Yu Y, Zhou P, Zhang J, Dou L, Hao Q, Chen H, Zhu S. Identification and Knockdown of the Olfactory Receptor (OrCo) in Gypsy Moth, Lymantria dispar. Int J Biol Sci 2015; 11:772-80. [PMID: 26078719 PMCID: PMC4466458 DOI: 10.7150/ijbs.11898] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/08/2015] [Indexed: 11/05/2022] Open
Abstract
The gypsy moth, Lymantria dispar, is an important economic pest that causes large-scale damage to forests worldwide. Because of its important role in initiating and controlling insect behavior, olfaction-and olfaction-based pest management-has drawn increasing attention from entomologists. In this study, we identified the gene that encodes the olfactory receptor co-receptor (OrCo). Through amino acid sequence alignment, we found that LdisOrCo shares high identity with other OrCo proteins from different insect orders. Next, we performed RNA-interference (RNAi) to assess the role of OrCo in olfaction. Electroantennographic assays showed that after RNAi, the average value of males' response to sex pheromones was 0.636 mV, significantly lower than that of the positive control (average = 1.472 mV). Females showed no response to sex pheromones before or after RNAi. Finally, quantitative PCR showed a strong decrease in the expression of OrCo after RNAi, by ~74% in males and by 23% in females relative to the positive controls. These results indicate that OrCo is not only critical to odor recognition, but it may also represent a new target for development of semiochemicals that can influence insect behavior.
Collapse
Affiliation(s)
- Wei Lin
- 1. Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China 100029; ; 2. College of Agriculture and Biotechnology, China Agricultural University, Beijing, China, 100193
| | - Yanxue Yu
- 1. Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China 100029
| | - Ping Zhou
- 4. College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong Province, China, 271000
| | - Junhua Zhang
- 1. Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China 100029
| | - Liduo Dou
- 1. Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China 100029
| | - Qin Hao
- 1. Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China 100029
| | - Hongjun Chen
- 3. Division of Animal and Plant Quarantine Supervision, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Beijing, China, 100088
| | - Shuifang Zhu
- 1. Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China 100029
| |
Collapse
|
30
|
Tsitoura P, Koussis K, Iatrou K. Inhibition of Anopheles gambiae odorant receptor function by mosquito repellents. J Biol Chem 2015; 290:7961-72. [PMID: 25657000 PMCID: PMC4367294 DOI: 10.1074/jbc.m114.632299] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/28/2015] [Indexed: 11/06/2022] Open
Abstract
The identification of molecular targets of insect repellents has been a challenging task, with their effects on odorant receptors (ORs) remaining a debatable issue. Here, we describe a study on the effects of selected mosquito repellents, including the widely used repellent N,N-diethyl-meta-toluamide (DEET), on the function of specific ORs of the African malaria vector Anopheles gambiae. This study, which has been based on quantitative measurements of a Ca(2+)-activated photoprotein biosensor of recombinant OR function in an insect cell-based expression platform and a sequential compound addition protocol, revealed that heteromeric OR (ORx/Orco) function was susceptible to strong inhibition by all tested mosquito repellents except DEET. Moreover, our results demonstrated that the observed inhibition was due to efficient blocking of Orco (olfactory receptor coreceptor) function. This mechanism of repellent action, which is reported for the first time, is distinct from the mode of action of other characterized insect repellents including DEET.
Collapse
Affiliation(s)
- Panagiota Tsitoura
- From the Insect Molecular Genetics and Biotechnology Group, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", 15310 Athens and
| | - Konstantinos Koussis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | - Kostas Iatrou
- From the Insect Molecular Genetics and Biotechnology Group, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", 15310 Athens and
| |
Collapse
|
31
|
Suh E, Bohbot J, Zwiebel LJ. Peripheral olfactory signaling in insects. CURRENT OPINION IN INSECT SCIENCE 2014; 6:86-92. [PMID: 25584200 PMCID: PMC4288021 DOI: 10.1016/j.cois.2014.10.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Olfactory signaling is a crucial component in the life history of insects. The development of precise and parallel mechanisms to analyze the tremendous amount of chemical information from the environment and other sources has been essential to their evolutionary success. Considerable progress has been made in the study of insect olfaction fueled by bioinformatics- based utilization of genomics along with rapid advances in functional analyses. Here we review recent progress in our rapidly emerging understanding of insect peripheral sensory reception and signal transduction. These studies reveal that the nearly unlimited chemical space insects encounter is covered by distinct chemosensory receptor repertoires that are generally derived by species-specific, rapid gene gain and loss, reflecting the evolutionary consequences of adaptation to meet their specific biological needs. While diverse molecular mechanisms have been put forth, often in the context of controversial models, the characterization of the ubiquitous, highly conserved and insect-specific Orco odorant receptor co-receptor has opened the door to the design and development of novel insect control methods to target agricultural pests, disease vectors and even nuisance insects.
Collapse
Affiliation(s)
- Eunho Suh
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37205
| | - Jonathan Bohbot
- Department of Entomology, The Hebrew University, Rehovot 76100, Israel
| | - Laurence J. Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37205
- Correspondence to be sent to: Laurence J. Zwiebel, Department of Biological Sciences, Vanderbilt University, Nashville, USA.
| |
Collapse
|
32
|
The odorant receptor co-receptor from the bed bug, Cimex lectularius L. PLoS One 2014; 9:e113692. [PMID: 25411789 PMCID: PMC4239089 DOI: 10.1371/journal.pone.0113692] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/27/2014] [Indexed: 11/19/2022] Open
Abstract
Recently, the bed bug, Cimex lectularius L. has re-emerged as a serious and growing problem in many parts of the world. Presence of resistant bed bugs and the difficulty to eliminate them has renewed interest in alternative control tactics. Similar to other haematophagous arthropods, bed bugs rely on their olfactory system to detect semiochemicals in the environment. Previous studies have morphologically characterized olfactory organs of bed bugs’ antenna and have physiologically evaluated the responses of olfactory receptor neurons (ORNs) to host-derived chemicals. To date, odorant binding proteins (OBPs) and odorant receptors (ORs) associated with these olfaction processes have not been studied in bed bugs. Chemoreception in insects requires formation of heteromeric complexes of ORs and a universal OR coreceptor (Orco). Orco is the constant chain of every odorant receptor in insects and is critical for insect olfaction but does not directly bind to odorants. Orco agonists and antagonists have been suggested as high-value targets for the development of novel insect repellents. In this study, we have performed RNAseq of bed bug sensory organs and identified several odorant receptors as well as Orco. We characterized Orco expression and investigated the effect of chemicals targeting Orco on bed bug behavior and reproduction. We have identified partial cDNAs of six C. lectularius OBPs and 16 ORs. Full length bed bug Orco was cloned and sequenced. Orco is widely expressed in different parts of the bed bug including OR neurons and spermatozoa. Treatment of bed bugs with the agonist VUAA1 changed bed bug pheromone-induced aggregation behavior and inactivated spermatozoa. We have described and characterized for the first time OBPs, ORs and Orco in bed bugs. Given the importance of these molecules in chemoreception of this insect they are interesting targets for the development of novel insect behavior modifiers.
Collapse
|
33
|
Corcoran JA, Jordan MD, Carraher C, Newcomb RD. A novel method to study insect olfactory receptor function using HEK293 cells. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 54:22-32. [PMID: 25174788 DOI: 10.1016/j.ibmb.2014.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/05/2014] [Accepted: 08/19/2014] [Indexed: 05/27/2023]
Abstract
The development of rapid and reliable assays to characterize insect odorant receptors (ORs) and pheromone receptors (PRs) remains a challenge for the field. Typically ORs and PRs are functionally characterized either in vivo in transgenic Drosophila or in vitro through expression in Xenopus oocytes. While these approaches have succeeded, they are not well suited for high-throughput screening campaigns, primarily due to inherent characteristics that limit their ability to screen large quantities of compounds in a short period of time. The development of a practical, robust and consistent in vitro assay for functional studies on ORs and PRs would allow for high-throughput screening for ligands, as well as for compounds that could be used as novel olfactory-based pest management tools. Here we describe a novel method of utilizing human embryonic kidney cells (HEK293) transfected with inducible receptor constructs for the functional characterization of ORs in 96-well plates using a fluorescent spectrophotometer. Using EposOrco and EposOR3 from the pest moth, Epiphyas postvittana as an example, we generated HEK293 cell lines with robust and consistent responses to ligands in functional assays. Single-cell sorting of cell lines by FACS facilitated the selection of isogenic cell lines with maximal responses, and the addition of epitope tags on the N-termini allowed the detection of recombinant proteins in homogenates by western blot and in cells by immunocytochemistry. We thoroughly describe the methods used to generate these OR-expressing cell lines, demonstrating that they have all the necessary features required for use in high-throughput screening platforms.
Collapse
Affiliation(s)
- Jacob A Corcoran
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Melissa D Jordan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Colm Carraher
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Richard D Newcomb
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand.
| |
Collapse
|
34
|
Turner RM, Derryberry SL, Kumar BN, Brittain T, Zwiebel LJ, Newcomb RD, Christie DL. Mutational analysis of cysteine residues of the insect odorant co-receptor (Orco) from Drosophila melanogaster reveals differential effects on agonist- and odorant-tuning receptor-dependent activation. J Biol Chem 2014; 289:31837-31845. [PMID: 25271160 DOI: 10.1074/jbc.m114.603993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insect odorant receptors are heteromeric odorant-gated cation channels comprising a conventional odorant-sensitive tuning receptor (ORx) and a highly conserved co-receptor known as Orco. Orco is found only in insects, and very little is known about its structure and the mechanism leading to channel activation. In the absence of an ORx, Orco forms homomeric channels that can be activated by a synthetic agonist, VUAA1. Drosophila melanogaster Orco (DmelOrco) contains eight cysteine amino acid residues, six of which are highly conserved. In this study, we replaced individual cysteine residues with serine or alanine and expressed Orco mutants in Flp-In 293 T-Rex cells. Changes in intracellular Ca(2+) levels were used to determine responses to VUAA1. Replacement of two cysteines (Cys-429 and Cys-449) in a predicted intracellular loop (ICL3), individually or together, gave variants that all showed similar increases in the rate of response and sensitivity to VUAA1 compared with wild-type DmelOrco. Kinetic modeling indicated that the response of the Orco mutants to VUAA1 was faster than wild-type Orco. The enhanced sensitivity and faster response of the Cys mutants was confirmed by whole-cell voltage clamp electrophysiology. In contrast to the results from direct agonist activation of Orco, the two cysteine replacement mutants when co-expressed with a tuning receptor (DmelOR22a) showed an ∼10-fold decrease in potency for activation by 2-methyl hexanoate. Our work has shown that intracellular loop 3 is important for Orco channel activation. Importantly, this study also suggests differences in the structural requirements for the activation of homomeric and heteromeric Orco channel complexes.
Collapse
Affiliation(s)
- Rebecca M Turner
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephen L Derryberry
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232, and
| | - Brijesh N Kumar
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Thomas Brittain
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Laurence J Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232, and
| | - Richard D Newcomb
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand,; Plant & Food Research, Private Bag 92169, Auckland 1142, New Zealand
| | - David L Christie
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand,.
| |
Collapse
|
35
|
Romaine IM, Taylor RW, Saidu SP, Kim K, Sulikowski GA, Zwiebel LJ, Waterson AG. Narrow SAR in odorant sensing Orco receptor agonists. Bioorg Med Chem Lett 2014; 24:2613-6. [PMID: 24813736 PMCID: PMC4111141 DOI: 10.1016/j.bmcl.2014.04.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 11/22/2022]
Abstract
The systematic exploration of a series of triazole-based agonists of the cation channel insect odorant receptor is reported. The structure-activity relationships of independent sections of the molecules are examined. Very small changes to the compound structure were found to exert a large impact on compound activity. Optimal substitutions were combined using a 'mix-and-match' strategy to produce best-in-class compounds that are capable of potently agonizing odorant receptor activity and may form the basis for the identification of a new mode of insect behavior modification.
Collapse
Affiliation(s)
- Ian M. Romaine
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37322
| | - Robert W. Taylor
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37322
| | - Samsudeen P. Saidu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37322
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37322
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37322
| | - Gary A. Sulikowski
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37322
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37322
| | - Laurence J. Zwiebel
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37322
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37322
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37322
| | - Alex G. Waterson
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37322
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37322
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37322
| |
Collapse
|
36
|
Chen S, Luetje CW. Trace amines inhibit insect odorant receptor function through antagonism of the co-receptor subunit. F1000Res 2014; 3:84. [PMID: 25075297 PMCID: PMC4097363 DOI: 10.12688/f1000research.3825.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2014] [Indexed: 01/05/2023] Open
Abstract
Many insect behaviors are driven by olfaction, making insect olfactory receptors (ORs) appealing targets for insect control. Insect ORs are odorant-gated ion channels, with each receptor thought to be composed of a representative from a large, variable family of odorant binding subunits and a highly conserved co-receptor subunit (Orco), assembled in an unknown stoichiometry. Synthetic Orco directed agonists and antagonists have recently been identified. Several Orco antagonists have been shown to act via an allosteric mechanism to inhibit OR activation by odorants. The high degree of conservation of Orco across insect species results in Orco antagonists having broad activity at ORs from a variety of insect species and suggests that the binding site for Orco ligands may serve as a modulatory site for compounds endogenous to insects or may be a target of exogenous compounds, such as those produced by plants. To test this idea, we screened a series of biogenic and trace amines, identifying several as Orco antagonists. Of particular interest were tryptamine, a plant-produced amine, and tyramine, an amine endogenous to the insect nervous system. Tryptamine was found to be a potent antagonist of Orco, able to block Orco activation by an Orco agonist and to allosterically inhibit activation of ORs by odorants. Tyramine had effects similar to those of tryptamine, but was less potent. Importantly, both tryptamine and tyramine displayed broad activity, inhibiting odorant activation of ORs of species from three different insect orders (Diptera, Lepidoptera and Coleoptera), as well as odorant activation of six diverse ORs from a single species (the human malaria vector mosquito, Anopheles gambiae). Our results suggest that endogenous and exogenous natural compounds serve as Orco ligands modulating insect olfaction and that Orco can be an important target for the development of novel insect repellants.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33101, USA
| | - Charles W. Luetje
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33101, USA
| |
Collapse
|
37
|
Mukunda L, Miazzi F, Kaltofen S, Hansson BS, Wicher D. Calmodulin modulates insect odorant receptor function. Cell Calcium 2014; 55:191-9. [PMID: 24661599 DOI: 10.1016/j.ceca.2014.02.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 11/25/2022]
Abstract
Insect odorant receptors (ORs) are heteromeric complexes of an odor-specific receptor protein (OrX) and a ubiquitous co-receptor protein (Orco). The ORs operate as non-selective cation channels, also conducting Ca(2+) ions. The Orco protein contains a conserved putative calmodulin (CaM)-binding motif indicating a role of CaM in its function. Using Ca(2+) imaging to monitor OR activity we investigated the effect of CaM inhibition on the function of OR proteins. Ca(2+) responses elicited in Drosophila olfactory sensory neurons by stimulation with the synthetic OR agonist VUAA1 were reduced and prolonged by CaM inhibition with the potent antagonist W7 but not with the weak antagonist W5. A similar effect was observed for Orco proteins heterologously expressed in CHO cells when CaM was inhibited with W7, trifluoperazine or chlorpromazine, or upon overexpression of CaM-EF-hand mutants. With the Orco CaM mutant bearing a point mutation in the putative CaM site (K339N) the Ca(2+) responses were akin to those obtained for wild type Orco in the presence of W7. There was no uniform effect of W7 on Ca(2+) responses in CHO cells expressing complete ORs (Or22a/Orco, Or47a/Orco, Or33a/Orco, Or56a/Orco). For Or33a and Or47a we observed no significant effect of W7, while it caused a reduced response in cells expressing Or22a and a shortened response for Or56a.
Collapse
Affiliation(s)
- Latha Mukunda
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-St. 8, D-07745 Jena, Germany
| | - Fabio Miazzi
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-St. 8, D-07745 Jena, Germany
| | - Sabine Kaltofen
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-St. 8, D-07745 Jena, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-St. 8, D-07745 Jena, Germany
| | - Dieter Wicher
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-St. 8, D-07745 Jena, Germany.
| |
Collapse
|
38
|
Pitts RJ, Liu C, Zhou X, Malpartida JC, Zwiebel LJ. Odorant receptor-mediated sperm activation in disease vector mosquitoes. Proc Natl Acad Sci U S A 2014; 111:2566-71. [PMID: 24550284 PMCID: PMC3932880 DOI: 10.1073/pnas.1322923111] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insects, such as the malaria vector mosquito, Anopheles gambiae, depend upon chemoreceptors to respond to volatiles emitted from a range of environmental sources, most notably blood meal hosts and oviposition sites. A subset of peripheral signaling pathways involved in these insect chemosensory-dependent behaviors requires the activity of heteromeric odorant receptor (OR) ion channel complexes and ligands for numerous A. gambiae ORs (AgOrs) have been identified. Although AgOrs are expressed in nonhead appendages, studies characterizing potential AgOr function in nonolfactory tissues have not been conducted. In the present study, we explore the possibility that AgOrs mediate responses of spermatozoa to endogenous signaling molecules in A. gambiae. In addition to finding AgOr transcript expression in testes, we show that the OR coreceptor, AgOrco, is localized to the flagella of A. gambiae spermatozoa where Orco-specific agonists, antagonists, and other odorant ligands robustly activate flagella beating in an Orco-dependent process. We also demonstrate Orco expression and Orco-mediated activation of spermatozoa in the yellow fever mosquito, Aedes aegypti. Moreover, we find Orco localization in testes across distinct insect taxa and posit that OR-mediated responses in spermatozoa may represent a general characteristic of insect reproduction and an example of convergent evolution.
Collapse
Affiliation(s)
- R. Jason Pitts
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235; and
| | - Chao Liu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235; and
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235; and
| | - Juan C. Malpartida
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235; and
| | - Laurence J. Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235; and
- Department of Pharmacology, Vanderbilt Brain Institute, Program in Developmental Biology and Institutes of Chemical Biology and Global Health, Vanderbilt University Medical Center, Nashville, TN 37235
| |
Collapse
|
39
|
Detection of sweet tastants by a conserved group of insect gustatory receptors. Proc Natl Acad Sci U S A 2014; 111:1598-603. [PMID: 24474785 DOI: 10.1073/pnas.1311724111] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sweet taste cells play critical roles in food selection and feeding behaviors. Drosophila sweet neurons express eight gustatory receptors (Grs) belonging to a highly conserved clade in insects. Despite ongoing efforts, little is known about the fundamental principles that underlie how sweet tastants are detected by these receptors. Here, we provide a systematic functional analysis of Drosophila sweet receptors using the ab1C CO2-sensing olfactory neuron as a unique in vivo decoder. We find that each of the eight receptors of this group confers sensitivity to one or more sweet tastants, indicating direct roles in ligand recognition for all sweet receptors. Receptor response profiles are validated by analysis of taste responses in corresponding Gr mutants. The response matrix shows extensive overlap in Gr-ligand interactions and loosely separates sweet receptors into two groups matching their relationships by sequence. We then show that expression of a bitter taste receptor confers sensitivity to selected aversive tastants that match the responses of the neuron that the Gr is derived from. Finally, we characterize an internal fructose-sensing receptor, Gr43a, and its ortholog in the malaria mosquito, AgGr25, in the ab1C expression system. We find that both receptors show robust responses to fructose along with a number of other sweet tastants. Our results provide a molecular basis for tastant detection by the entire repertoire of sweet taste receptors in the fly and lay the foundation for studying Grs in mosquitoes and other insects that transmit deadly diseases.
Collapse
|
40
|
Chen S, Luetje CW. Phenylthiophenecarboxamide antagonists of the olfactory receptor co-receptor subunit from a mosquito. PLoS One 2013; 8:e84575. [PMID: 24358366 PMCID: PMC3866151 DOI: 10.1371/journal.pone.0084575] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/22/2013] [Indexed: 01/04/2023] Open
Abstract
Insects detect environmental chemicals using chemosensory receptors, such as the ORs, a family of odorant-gated ion channels. Insect ORs are multimeric complexes of unknown stoichiometry, formed by a common subunit (the odorant receptor co-receptor subunit, Orco) and one of many variable subunits that confer odorant specificity. The recent discovery of Orco directed ligands, including both agonists and antagonists, suggests Orco as a promising target for chemical control of insects. In addition to competitively inhibiting OR activation by Orco agonists, several Orco antagonists have been shown to act through a non-competitive mechanism to inhibit OR activation by odorants. We previously identified a series of Orco antagonists, including N-(4-ethylphenyl)-2-thiophenecarboxamide (OX1a, previously referred to as OLC20). Here, we explore the chemical space around the OX1a structure to identify more potent Orco antagonists. Cqui\Orco+Cqui\Or21, an OR from Culex quinquefasciatus (the Southern House Mosquito) that responds to 3-methylindole (skatole) and is thought to mediate oviposition behavior, was expressed in Xenopus oocytes and receptor function assayed by two-electrode voltage clamp electrophysiology. 22 structural analogs of OX1a were screened for antagonism of OR activation by an Orco agonist. By varying the moieties decorating the phenyl and thiophene rings, and altering the distance between the rings, we were able to identify antagonists with improved potency. Detailed examination of three of these compounds (N-mesityl-2-thiophenecarboxamide, N-(4-methylbenzyl)-2-thiophenecarboxamide and N-(2-ethylphenyl)-3-(2-thienyl)-2-propenamide) demonstrated competitive inhibition of receptor activation by an Orco agonist and non-competitive inhibition of receptor activation by an odorant. The ability to inhibit OR activation by odorants may be a general property of this class of Orco antagonist, suggesting that odorant mediated behaviors can be manipulated through Orco antagonism. The high conservation of Orco across insect species and previous demonstrations that various Orco ligands are active at ORs derived from several different insect orders suggests that Orco antagonists may have broad applicability.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Charles W. Luetje
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
41
|
A conserved aspartic acid is important for agonist (VUAA1) and odorant/tuning receptor-dependent activation of the insect odorant co-receptor (Orco). PLoS One 2013; 8:e70218. [PMID: 23894621 PMCID: PMC3720905 DOI: 10.1371/journal.pone.0070218] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
Insect odorant receptors function as heteromeric odorant-gated cation channels comprising a conventional odorant-sensitive tuning receptor, and a conserved co-receptor (Orco). An Orco agonist, VUAA1, is able to activate both heteromeric and homomeric Orco-containing channels. Very little is known about specific residues in Orco that contribute to cation permeability and gating. We investigated the importance of two conserved Asp residues, one in each of transmembrane domains 5 and 7, for channel function by mutagenesis. Drosophila melanogaster Orco and its substitution mutants were expressed in HEK cells and VUAA1-stimulated channel activity was determined by Ca(2+) influx and whole-cell patch clamp electrophysiology. Substitution of D466 in transmembrane 7 with amino acids other than glutamic acid resulted in a substantial reduction in channel activity. The D466E Orco substitution mutant was ~2 times more sensitive to VUAA1. The permeability of the D466E Orco mutant to cations was unchanged relative to wild-type Orco. When D466E Orco is co-expressed with a conventional tuning odorant receptor, the heteromeric complex also shows increased sensitivity to an odorant. Thus, the effect of the D466E mutation is not specific to VUAA1 agonism or dependent on homomeric Orco assembly. We suggest the gain-of-activation characteristic of the D466E mutant identifies an amino acid that is likely to be important for activation of both heteromeric and homomeric insect odorant receptor channels.
Collapse
|
42
|
The role of the coreceptor Orco in insect olfactory transduction. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:897-909. [PMID: 23824225 DOI: 10.1007/s00359-013-0837-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022]
Abstract
Insects sense odorants with specialized odorant receptors (ORs). Each antennal olfactory receptor neuron expresses one OR with an odorant binding site together with a conserved coreceptor called Orco which does not bind odorants. Orco is necessary for localization of ORs to dendritic membranes and, thus, is essential for odorant detection. It forms a spontaneously opening cation channel, activated via phosphorylation by protein kinase C. Thereafter, Orco is also activated via cyclic adenosine monophosphate (cAMP). Orco forms homo-as well as heteromers with ORs with unknown stoichiometry. Contradictory publications suggest different mechanisms of olfactory transduction. On the one hand, evidence accumulates for the employment of more than one G protein-coupled olfactory transduction cascade in different insects. On the other hand, results from other studies suggest that the OR-Orco complex functions as an odorant-gated cation channel mediating ionotropic signal transduction. This review analyzes conflicting hypotheses concerning the role of Orco in insect olfactory transduction. In conclusion, in situ studies in hawkmoths falsify the hypothesis that Orco underlies odorant-induced ionotropic signal transduction in all insect species. Instead, Orco forms a metabotropically gated, slow cation channel which controls odorant response threshold and kinetics of the sensory neuron.
Collapse
|
43
|
Carraher C, Nazmi AR, Newcomb RD, Kralicek A. Recombinant expression, detergent solubilisation and purification of insect odorant receptor subunits. Protein Expr Purif 2013; 90:160-9. [PMID: 23770557 DOI: 10.1016/j.pep.2013.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 12/16/2022]
Abstract
Insect odorant receptors (ORs) are seven transmembrane domain proteins that comprise a novel family of ligand-gated non-selective cation channels. The functional channel is made up of an odour activated ligand-binding OR and the OR co-receptor, Orco. However, the structure, stoichiometry and mechanism of activation of the receptor complex are not well understood. Here we demonstrate that baculovirus-mediated Sf9 cell expression and wheat germ cell-free expression, but not Escherichia coli cell-based or cell-free expression, can be used successfully to over-express a selection of insect ORs. From a panel of 19 detergents, 1%w/v Zwittergent 3-16 was able to solubilise five Drosophila melanogaster ORs produced from both eukaryotic expression systems. A large-scale purification protocol was then developed for DmOrco and the ligand-binding receptor, DmOr22a. The proteins were nickel-affinity purified using a deca-histidine tag in a buffer containing 0.2 mM Zwittergent 3-16, followed by size exclusion chromatography. These purified ORs appear to form similarly sized protein-detergent complexes when isolated from both expression systems. Circular dichroism analysis of both purified proteins suggests they are folded correctly. We also provide evidence that when DmOrco is expressed in Sf9 cells it undergoes post translational modification, probably glycosylation. Finally we show that the recombinant ORs can be incorporated into pre-formed liposomes. The ability to recombinantly express and purify insect ORs to homogeneity on a preparative scale, as well as insert them into liposomes, is a major step forward in enabling future structural and functional studies, as well as their use in OR based biosensors.
Collapse
Affiliation(s)
- Colm Carraher
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | | | | | | |
Collapse
|
44
|
Nakagawa T, Touhara K. Extracellular modulation of the silkmoth sex pheromone receptor activity by cyclic nucleotides. PLoS One 2013; 8:e63774. [PMID: 23755109 PMCID: PMC3670925 DOI: 10.1371/journal.pone.0063774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 04/06/2013] [Indexed: 11/25/2022] Open
Abstract
Odorants and pheromones are essential to insects as chemical cues for finding food or an appropriate mating partner. These volatile compounds bind to olfactory receptors (Ors) expressed by olfactory sensory neurons. Each insect Or functions as a ligand-gated ion channel and is a heteromeric complex that comprises one type of canonical Or and a highly conserved Orco subunit. Because there are many Or types, insect Ors can recognize with high specificity a myriad of chemical cues. Cyclic nucleotides can modulate the activity of insect Or-Orco complexes; however, the mechanism of action of these nucleotides is under debate. Here, we show that cyclic nucleotides, including cAMP and cGMP, interact with the silkmoth sex pheromone receptor complex, BmOr-1-BmOrco, from the outside of the cell and that these nucleotides act as antagonists at low concentrations and weak agonists at high concentrations. These cyclic nucleotides do not compete with the sex pheromone, bombykol, for binding to the BmOr-1 subunit. ATP and GTP also weakly inhibited BmOr-1-BmOrco activity, but D-ribose had no effect; these findings indicated that the purine moiety was crucial for the inhibition. Only the bombykol receptors have been so far shown to be subject to modulation by nucleotide-related compounds, indicating that this responsiveness to these compounds is not common for all insect Or-Orco complexes.
Collapse
Affiliation(s)
- Tatsuro Nakagawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- JST ERATO Touhara Chemosensory Signal Project, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
45
|
Nolte A, Funk NW, Mukunda L, Gawalek P, Werckenthin A, Hansson BS, Wicher D, Stengl M. In situ tip-recordings found no evidence for an Orco-based ionotropic mechanism of pheromone-transduction in Manduca sexta. PLoS One 2013; 8:e62648. [PMID: 23671617 PMCID: PMC3643954 DOI: 10.1371/journal.pone.0062648] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/25/2013] [Indexed: 11/24/2022] Open
Abstract
The mechanisms of insect odor transduction are still controversial. Insect odorant receptors (ORs) are 7TM receptors with inverted membrane topology. They colocalize with a conserved coreceptor (Orco) with chaperone and ion channel function. Some studies suggest that insects employ exclusively ionotropic odor transduction via OR-Orco heteromers. Other studies provide evidence for different metabotropic odor transduction cascades, which employ second messenger-gated ion channel families for odor transduction. The hawkmoth Manduca sexta is an established model organism for studies of insect olfaction, also due to the availability of the hawkmoth-specific pheromone blend with its main component bombykal. Previous patch-clamp studies on primary cell cultures of M. sexta olfactory receptor neurons provided evidence for a pheromone-dependent activation of a phospholipase Cβ. Pheromone application elicited a sequence of one rapid, apparently IP3-dependent, transient and two slower Ca2+-dependent inward currents. It remains unknown whether additionally an ionotropic pheromone-transduction mechanism is employed. If indeed an OR-Orco ion channel complex underlies an ionotropic mechanism, then Orco agonist-dependent opening of the OR-Orco channel pore should add up to pheromone-dependent opening of the pore. Here, in tip-recordings from intact pheromone-sensitive sensilla, perfusion with the Orco agonist VUAA1 did not increase pheromone-responses within the first 1000 ms. However, VUAA1 increased spontaneous activity of olfactory receptor neurons Zeitgebertime- and dose-dependently. We conclude that we find no evidence for an Orco-dependent ionotropic pheromone transduction cascade in M. sexta. Instead, in M. sexta Orco appears to be a slower, second messenger-dependent pacemaker channel which affects kinetics and threshold of pheromone-detection via changes of intracellular Ca2+ baseline concentrations.
Collapse
Affiliation(s)
- Andreas Nolte
- Department of Animal Physiology, University of Kassel, Kassel, Germany
| | - Nico W. Funk
- Department of Animal Physiology, University of Kassel, Kassel, Germany
| | - Latha Mukunda
- Department Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Petra Gawalek
- Department of Animal Physiology, University of Kassel, Kassel, Germany
| | - Achim Werckenthin
- Department of Animal Physiology, University of Kassel, Kassel, Germany
| | - Bill S. Hansson
- Department Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dieter Wicher
- Department Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Monika Stengl
- Department Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- * E-mail:
| |
Collapse
|
46
|
Olafson PU. Molecular characterization and immunolocalization of the olfactory co-receptor Orco from two blood-feeding muscid flies, the stable fly (Stomoxys calcitrans, L.) and the horn fly (Haematobia irritans irritans, L.). INSECT MOLECULAR BIOLOGY 2013; 22:131-142. [PMID: 23278866 PMCID: PMC3594380 DOI: 10.1111/imb.12009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Biting flies are economically important blood-feeding pests of medical and veterinary significance. Chemosensory-based biting fly behaviours, such as host/nutrient source localization and ovipositional site selection, are intriguing targets for the development of supplemental control strategies. In an effort to expand our understanding of biting fly chemosensory pathways, transcripts encoding the highly conserved insect odorant co-receptor (Orco) were isolated from two representative biting fly species, the stable fly (Scal\Orco) and the horn fly (Hirr\Orco). Orco forms a complex with an odour-specific odorant receptor to form an odour-gated ion channel. The biting fly transcripts were predicted to encode proteins with 87-94% amino acid similarity to published insect Orco sequences and were detected in various immature stages as well as in adult structures associated with olfaction, i.e. the antennae and maxillary palps, and gustation, i.e. the proboscis. Further, the relevant proteins were immunolocalized to specific antennal sensilla using anti-serum raised against a peptide sequence conserved between the two fly species. Results from the present study provide a basis for functional evaluation of repellent/attractant effects on as yet uncharacterized stable fly and horn fly conventional odorant receptors.
Collapse
Affiliation(s)
- P U Olafson
- USDA-ARS, Knipling-Bushland US Livestock Insects Research Laboratory, Kerrville, TX 78028, USA.
| |
Collapse
|
47
|
Rospars JP. Interactions of odorants with olfactory receptors and other preprocessing mechanisms: how complex and difficult to predict? Chem Senses 2013; 38:283-7. [PMID: 23386560 DOI: 10.1093/chemse/bjt004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this issue of Chemical Senses, Münch et al. present a thorough analysis of how mixtures of odorants interact with olfactory receptors (ORs) borne by olfactory receptor neurons (ORNs). Using fruit fly ORNs expressing the receptor OR22a, they provide a clear example of mixture interaction and confirm that the response of an ORN to a binary mixture can be sometimes predicted quantitatively knowing the ORN responses to its components as shown previously in rat ORNs. The prediction is based on a nonlinear model that assumes a classical 2-step activation of the OR and competition of the 2 odorants in the mixture for the same binding site. Can this success be generalized to all odorant-receptor pairs? This would be an encouraging perspective, especially for the fragrance and flavor industries, as it would permit the prediction of all mixtures. To address this question, I outline its conceptual framework and discuss the variety of mixture interactions found so far. In accordance with the effects described in the study of other receptors, several kinds of mixture interactions have been found that are not easily predictable. The relative importance of the predictable and less predictable effects thus appears as a major issue for future developments.
Collapse
Affiliation(s)
- Jean-Pierre Rospars
- UMR 1272 Physiologie de l'Insecte: Signalisation et Communication & Unité Mathématiques et Informatique Appliquées, INRA, F-78000 Versailles, France.
| |
Collapse
|
48
|
Pask GM, Bobkov YV, Corey EA, Ache BW, Zwiebel LJ. Blockade of insect odorant receptor currents by amiloride derivatives. Chem Senses 2013; 38:221-9. [PMID: 23292750 DOI: 10.1093/chemse/bjs100] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Insect odorant receptors (ORs) function as heteromeric odorant-gated ion channels consisting of a conserved coreceptor, Orco, and an odorant-sensitive tuning subunit. Although some OR modulators have been identified, an extended library of pharmacological tools is currently lacking and would aid in furthering our understanding of insect OR complexes. We now demonstrate that amiloride and several derivatives, which have been extensively used as blockers for various ion channels and transporters, also block odorant-gated currents from 2 OR complexes from the malaria vector mosquito Anopheles gambiae. In addition, both heteromeric and homomeric ORs were susceptible to amiloride blockade when activated by VUAA1, an agonist that targets the Orco channel subunit. Amiloride derivatives therefore represent a valuable class of channel blockers that can be used to investigate the pharmacological and biophysical properties of insect OR function.
Collapse
Affiliation(s)
- Gregory M Pask
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
49
|
Pask GM, Romaine IM, Zwiebel LJ. The molecular receptive range of a lactone receptor in Anopheles gambiae. Chem Senses 2013; 38:19-25. [PMID: 22944613 PMCID: PMC3522515 DOI: 10.1093/chemse/bjs074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In an environment filled with a complex spectrum of chemical stimuli, insects rely on the specificity of odorant receptors (ORs) to discern odorants of ecological importance. In nature, cyclic esters, or lactones, represent a common class of semiochemicals that exhibit a range of diversity through ring size and substituents, as well as stereochemistry. We have used heterologous expression to explore the lactone sensitivity of AgOr48, an odorant-sensitive OR from the principal malaria vector mosquito, Anopheles gambiae. Voltage clamp and calcium-imaging experiments revealed that AgOr48 is particularly sensitive to changes in the size of the lactone ring and in the length of the carbon chain substituent. In addition, the two enantiomers of a strong agonist, δ-decalactone, elicited significantly different potency values, implicating AgOr48 as an enantioselective odorant receptor. Investigation of the molecular receptive range of this lactone receptor may contribute to a greater understanding of ligand-OR interactions and provide insight into the chemical ecology of An. gambiae.
Collapse
Affiliation(s)
- Gregory M Pask
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennesse, USA.
| | | | | |
Collapse
|
50
|
Taylor RW, Romaine IM, Liu C, Murthi P, Jones PL, Waterson AG, Sulikowski GA, Zwiebel LJ. Structure-activity relationship of a broad-spectrum insect odorant receptor agonist. ACS Chem Biol 2012; 7:1647-52. [PMID: 22924767 DOI: 10.1021/cb300331z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Agonism of insect odorant receptor (OR) cation channels may represent a new strategy for the manipulation of destructive insect olfactory-driven behaviors. We have explored the chemical space around VUAA1, the first in class agonist of the obligate OR co-receptor ion channel (Orco), and describe novel compound analogues with increased potency across insect taxa. Functional analyses reveal several of these VUAA1 structural analogues display significantly greater potency as compared to the activity of the previously described active compounds in mobility-based behavioral assays on mosquito larvae.
Collapse
Affiliation(s)
- Robert W. Taylor
- Department
of Biological Sciences, and ‡Department of Chemistry, Vanderbilt Institute of
Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Pharmacology, and ∥Center for Molecular Neuroscience, Institute of Global Health and
Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37235,
United States
| | - Ian M. Romaine
- Department
of Biological Sciences, and ‡Department of Chemistry, Vanderbilt Institute of
Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Pharmacology, and ∥Center for Molecular Neuroscience, Institute of Global Health and
Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37235,
United States
| | - Chao Liu
- Department
of Biological Sciences, and ‡Department of Chemistry, Vanderbilt Institute of
Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Pharmacology, and ∥Center for Molecular Neuroscience, Institute of Global Health and
Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37235,
United States
| | - Poornima Murthi
- Department
of Biological Sciences, and ‡Department of Chemistry, Vanderbilt Institute of
Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Pharmacology, and ∥Center for Molecular Neuroscience, Institute of Global Health and
Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37235,
United States
| | - Patrick L. Jones
- Department
of Biological Sciences, and ‡Department of Chemistry, Vanderbilt Institute of
Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Pharmacology, and ∥Center for Molecular Neuroscience, Institute of Global Health and
Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37235,
United States
| | - Alex G. Waterson
- Department
of Biological Sciences, and ‡Department of Chemistry, Vanderbilt Institute of
Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Pharmacology, and ∥Center for Molecular Neuroscience, Institute of Global Health and
Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37235,
United States
| | - Gary A. Sulikowski
- Department
of Biological Sciences, and ‡Department of Chemistry, Vanderbilt Institute of
Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Pharmacology, and ∥Center for Molecular Neuroscience, Institute of Global Health and
Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37235,
United States
| | - Laurence J. Zwiebel
- Department
of Biological Sciences, and ‡Department of Chemistry, Vanderbilt Institute of
Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Pharmacology, and ∥Center for Molecular Neuroscience, Institute of Global Health and
Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37235,
United States
| |
Collapse
|