1
|
Lkham-Erdene B, Choijookhuu N, Kubota T, Uto T, Mitoma S, Shirouzu S, Ishizuka T, Kai K, Higuchi K, Mo Aung K, Batmunkh JE, Sato K, Hishikawa Y. Effect of Hepatic Lipid Overload on Accelerated Hepatocyte Proliferation Promoted by HGF Expression via the SphK1/S1PR2 Pathway in MCD-diet Mouse Partial Hepatectomy. Acta Histochem Cytochem 2024; 57:175-188. [PMID: 39552932 PMCID: PMC11565223 DOI: 10.1267/ahc.24-00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/17/2024] [Indexed: 11/19/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is becoming a major health problem worldwide. Liver regeneration is crucial for restoring liver function, and is regulated by extraordinary complex process, involving numerous factors under both physiologic and pathologic conditions. Sphingosine-1-phosphate (S1P), a bioactive sphingolipid synthesized by sphingosine kinase 1 (SphK1), plays an important role in liver function through S1P receptors (S1PRs)-expressing cells. In this study, we investigated the effect of lipid overload on hepatocyte proliferation in a mouse hepatic steatosis model induced by feeding a methionine- and choline-deficient (MCD) diet. After 50% partial hepatectomy (PHx), liver tissues were sampled at various timepoints and then analyzed by immunohistochemistry, oil Red-O staining, quantitative-polymerase chain reaction (qPCR), and flow cytometry. In mice fed the MCD-diet, significantly exacerbated hepatic steatosis and accelerated liver regeneration were observed. After PHx, hepatocyte proliferation peaked at 48 and 36 hr in the liver of chow- and MCD-diet fed mice, respectively. By contrast, increased expression of S1PR2 was observed in hepatic neutrophils and macrophages of MCD-diet fed mice. Flow cytometry and qPCR experiments demonstrated that levels of HGF and FGF2 released by neutrophils and macrophages were significantly higher in MCD-diet fed mice. In conclusion, hepatic lipid overload recruits Kupffer cells and neutrophils that release HGF and FGF2 via SphK1/S1PR2 activation to accelerate hepatocyte proliferation.
Collapse
Affiliation(s)
- Baljinnyam Lkham-Erdene
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
- Thoracic surgery department, National Cancer Center, Ulaanbaatar, Mongolia
| | - Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
- Department of Pathology and Forensic Medicine, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Toshiki Kubota
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Tomofumi Uto
- Division of Immunology, Department of Infectious diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Shuya Mitoma
- Division of Immunology, Department of Infectious diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Shinichiro Shirouzu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Takumi Ishizuka
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Kengo Kai
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Kazuhiro Higuchi
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
- Department of Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Kham Mo Aung
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Jargal-Erdene Batmunkh
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Katsuaki Sato
- Division of Immunology, Department of Infectious diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| |
Collapse
|
2
|
Gongye X, Xia P, Ma T, Chai Y, Chen Z, Zhu Y, Qu C, Liu J, Guo WW, Zhang M, Liu Y, Tian M, Yuan Y. Liver Extracellular Vesicles and Particles Enriched β-Sitosterol Effectively Promote Liver Regeneration in Mice. Int J Nanomedicine 2024; 19:8117-8137. [PMID: 39139504 PMCID: PMC11319097 DOI: 10.2147/ijn.s465346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Background The liver's regenerative capacity allows it to repair itself after injury. Extracellular vesicles and particles (EVPs) in the liver's interstitial space are crucial for signal transduction, metabolism, and immune regulation. Understanding the role and mechanism of liver-derived EVPs in regeneration is significant, particularly after partial hepatectomy, where the mechanisms remain unclear. Methods A 70% hepatectomy model was established in mice, and EVPs were isolated and characterized using electron microscopy, nanocharacterization, and Western blot analysis. Combined metabolomic and transcriptomic analyses revealed β-sitosterol enrichment in EVPs and activation of the Hedgehog signaling pathway during regeneration. The role of β-sitosterol in EVPs on the Hedgehog pathway and its targets were identified using qRT-PCR, Western blot analysis. The regulation of carnitine synthesis by this pathway was determined using a dual luciferase assay. The effect of a β-sitosterol diet on liver regeneration was verified in mice. Results After 70% hepatectomy, the liver successfully regenerated without liver failure or death. At 24 hours post-surgery, tissue staining showed transient regeneration-associated steatosis (TRAS), with increased Ki67 positivity at 48 hours. EVPs displayed a spherical lipid bilayer structure with particle sizes of 70-130 nm. CD9, CD63, and CD81 in liver-derived EVPs were confirmed. Transcriptomic and metabolomic analyses showed EVPs supplementation significantly promoted carnitine synthesis and fatty acid oxidation. Tissue staining confirmed accelerated TRAS resolution and enhanced liver regeneration with EVP supplementation. Mass spectrometry identified β-sitosterol in EVPs, which binds to Smo protein, activating the Hedgehog pathway. This led to the nuclear transport of Gli3, stimulating Setd5 transcription and inducing carnitine synthesis, thereby accelerating fatty acid oxidation. Mice with increased β-sitosterol intake showed faster TRAS resolution and liver regeneration compared to controls. Conclusion Liver-derived EVPs promote regeneration after partial hepatectomy. β-sitosterol from EVPs accelerates fatty acid oxidation and promotes liver regeneration by activating Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Xiangdong Gongye
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Tianyin Ma
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yibo Chai
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Zhang Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yimin Zhu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Chengming Qu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Jie Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Wing Wa Guo
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Minghe Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yingyi Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Ming Tian
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
3
|
Choijookhuu N, Yano K, Lkham-Erdene B, Shirouzu S, Kubota T, Fidya, Ishizuka T, Kai K, Chosa E, Hishikawa Y. HMGB2 Promotes De Novo Lipogenesis to Accelerate Hepatocyte Proliferation During Liver Regeneration. J Histochem Cytochem 2024; 72:245-264. [PMID: 38544368 PMCID: PMC11020747 DOI: 10.1369/00221554241241569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 04/16/2024] Open
Abstract
Liver regeneration is a well-orchestrated compensatory process that is regulated by multiple factors. We recently reported the importance of the chromatin protein, a high-mobility group box 2 (HMGB2) in mouse liver regeneration. However, the molecular mechanism remains unclear. In this study, we aimed to study how HMGB2 regulates hepatocyte proliferation during liver regeneration. Seventy-percent partial hepatectomy (PHx) was performed in wild-type (WT) and HMGB2-knockout (KO) mice, and the liver tissues were used for microarray, immunohistochemistry, quantitative polymerase chain reaction (qPCR), and Western blotting analyses. In the WT mice, HMGB2-positive hepatocytes colocalized with cell proliferation markers. In the HMGB2-KO mice, hepatocyte proliferation was significantly decreased. Oil Red O staining revealed the transient accumulation of lipid droplets at 12-24 hr after PHx in the WT mouse livers. In contrast, decreased amount of lipid droplets were found in HMGB2-KO mouse livers, and it was preserved until 36 hr. The microarray, immunohistochemistry, and qPCR results demonstrated that the expression of lipid metabolism-related genes was significantly decreased in the HMGB2-KO mouse livers. The in vitro experiments demonstrated that a decrease in the amount of lipid droplets correlated with decreased cell proliferation activity in HMGB2-knockdown cells. HMGB2 promotes de novo lipogenesis to accelerate hepatocyte proliferation during liver regeneration.
Collapse
Affiliation(s)
- Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology
- Faculty of Medicine, University of Miyazaki, Miyazaki, Japan; and Department of Pathology and Forensic Medicine, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Koichi Yano
- Department of Anatomy, Histochemistry and Cell Biology
- Department of Surgery
| | | | - Shinichiro Shirouzu
- Department of Anatomy, Histochemistry and Cell Biology
- Department of Oral and Maxillofacial Surgery
| | - Toshiki Kubota
- Department of Anatomy, Histochemistry and Cell Biology
- Department of Oral and Maxillofacial Surgery
| | - Fidya
- Department of Anatomy, Histochemistry and Cell Biology
| | | | - Kengo Kai
- Department of Anatomy, Histochemistry and Cell Biology
- Department of Surgery
| | | | | |
Collapse
|
4
|
Grinberg MV, Lokhonina AV, Vishnyakova PA, Makarov AV, Kananykhina EY, Eremina IZ, Glinkina VV, Elchaninov AV, Fatkhudinov TK. Migration, proliferation and cell death of regenerating liver macrophages in an experimental model. RUDN JOURNAL OF MEDICINE 2023; 27:449-458. [DOI: 10.22363/2313-0245-2023-27-4-449-458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Relevance . Macrophages are the leading regulatory cell-lineage taking part in reparative processes in mammals, and the liver is no exception. The ratio of monocyte migration, proliferation and death of macrophages during liver regeneration requires further studies. The aim was to quantify the intensity of monocyte migration, cell proliferation and apoptosis of resident liver macrophages after its 70 % resection in a mouse model. Materials and Methods. We performed 70 % liver resection in sexually mature male BalbC mice. Cells of liver monocyte-macrophage system were obtained by magnetic sorting by marker F4/80. The immunophenotype of the isolated cells was further studied by cytofluorimetry, the level of proliferation and cell death, the content of cyclins and P53 was determined by western blot. Results and Discussion . It was found that after partial hepatectomy there is a marked migration of monocytes/macrophages positive for Ly6C and CD11b markers to the liver, the migration process starts already in the first day after the operation. On the same terms there is a rise in proliferative activity of macrophages, established by Ki67 marker, the peak of proliferation - 3 days after partial hepatectomy. A significant increase in the number of dying macrophages was found early after liver resection. Conclusion . The obtained data indicate that liver regeneration in mammals on the model in mice is accompanied by proliferation migration and cell death of macrophages. Taking into account the immunophenotype of macrophages, we can conclude that Ly6C+ blood monocytes migrate to the liver, and resident macrophages participate in proliferation. The obtained data confirm the universality of the course of reparative processes in mammals.
Collapse
|
5
|
Sanchez-Quant E, Richter ML, Colomé-Tatché M, Martinez-Jimenez CP. Single-cell metabolic profiling reveals subgroups of primary human hepatocytes with heterogeneous responses to drug challenge. Genome Biol 2023; 24:234. [PMID: 37848949 PMCID: PMC10583437 DOI: 10.1186/s13059-023-03075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Xenobiotics are primarily metabolized by hepatocytes in the liver, and primary human hepatocytes are the gold standard model for the assessment of drug efficacy, safety, and toxicity in the early phases of drug development. Recent advances in single-cell genomics demonstrate liver zonation and ploidy as main drivers of cellular heterogeneity. However, little is known about the impact of hepatocyte specialization on liver function upon metabolic challenge, including hepatic metabolism, detoxification, and protein synthesis. RESULTS Here, we investigate the metabolic capacity of individual human hepatocytes in vitro. We assess how chronic accumulation of lipids enhances cellular heterogeneity and impairs the metabolisms of drugs. Using a phenotyping five-probe cocktail, we identify four functional subgroups of hepatocytes responding differently to drug challenge and fatty acid accumulation. These four subgroups display differential gene expression profiles upon cocktail treatment and xenobiotic metabolism-related specialization. Notably, intracellular fat accumulation leads to increased transcriptional variability and diminishes the drug-related metabolic capacity of hepatocytes. CONCLUSIONS Our results demonstrate that, upon a metabolic challenge such as exposure to drugs or intracellular fat accumulation, hepatocyte subgroups display different and heterogeneous transcriptional responses.
Collapse
Affiliation(s)
- Eva Sanchez-Quant
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Maria Lucia Richter
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Maria Colomé-Tatché
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354, Freising, Germany.
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 82152, Munich, Germany.
| | - Celia Pilar Martinez-Jimenez
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, 85764, Neuherberg, Germany.
- TUM School of Medicine, Technical University of Munich, Munich (TUM), 80333, Munich, Germany.
| |
Collapse
|
6
|
Hu Y, Wang R, Liu J, Wang Y, Dong J. Lipid droplet deposition in the regenerating liver: A promoter, inhibitor, or bystander? Hepatol Commun 2023; 7:e0267. [PMID: 37708445 PMCID: PMC10503682 DOI: 10.1097/hc9.0000000000000267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/29/2023] [Indexed: 09/16/2023] Open
Abstract
Liver regeneration (LR) is a complex process involving intricate networks of cellular connections, cytokines, and growth factors. During the early stages of LR, hepatocytes accumulate lipids, primarily triacylglycerol, and cholesterol esters, in the lipid droplets. Although it is widely accepted that this phenomenon contributes to LR, the impact of lipid droplet deposition on LR remains a matter of debate. Some studies have suggested that lipid droplet deposition has no effect or may even be detrimental to LR. This review article focuses on transient regeneration-associated steatosis and its relationship with the liver regenerative response.
Collapse
Affiliation(s)
- Yuelei Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ruilin Wang
- Department of Cadre’s Wards Ultrasound Diagnostics. Ultrasound Diagnostic Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Chiu YC, Huang KW, Lin YH, Yin WR, Hou YT. Development of a decellularized liver matrix-based nanocarrier for liver regeneration after partial hepatectomy. JOURNAL OF MATERIALS SCIENCE 2023; 58:15162-15180. [DOI: 10.1007/s10853-023-08971-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2024]
|
8
|
Hammoutene A, Tanguy M, Calmels M, Pravisani R, Albuquerque M, Casteleyn C, Slimani L, Sadoine J, Boulanger CM, Paradis V, Gilgenkrantz H, Rautou PE. Endothelial autophagy is not required for liver regeneration after partial hepatectomy in mice with fatty liver. Liver Int 2023; 43:2309-2319. [PMID: 37403133 DOI: 10.1111/liv.15665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND & AIMS Patients with non-alcoholic fatty liver disease (NAFLD) have impaired liver regeneration. Liver endothelial cells play a key role in liver regeneration. In non-alcoholic steatohepatitis (NASH), liver endothelial cells display a defect in autophagy, contributing to NASH progression. We aimed to determine the role of endothelial autophagy in liver regeneration following liver resection in NAFLD. METHODS First, we assessed autophagy in primary endothelial cells from wild type mice fed a high fat diet and subjected to partial hepatectomy. Then, we assessed liver regeneration after partial hepatectomy in mice deficient (Atg5lox/lox ;VE-cadherin-Cre+ ) or not (Atg5lox/lox ) in endothelial autophagy and fed a high fat diet. The role of endothelial autophagy in liver regeneration was also assessed in ApoE-/- hypercholesterolemic mice and in mice with NASH induced by methionine- and choline-deficient diet. RESULTS First, autophagy (LC3II/protein) was strongly increased in liver endothelial cells following hepatectomy. Then, we observed at 40 and 48 h and at 7 days after partial hepatectomy, that Atg5lox/lox ;VE-cadherin-Cre+ mice fed a high fat diet had similar liver weight, plasma AST, ALT and albumin concentration, and liver protein expression of proliferation (PCNA), cell-cycle (Cyclin D1, BrdU incorporation, phospho-Histone H3) and apoptosis markers (cleaved Caspase-3) as Atg5lox/lox mice fed a high fat diet. Same results were obtained in ApoE-/- and methionine- and choline-deficient diet fed mice, 40 h after hepatectomy. CONCLUSION These results demonstrate that the defect in endothelial autophagy occurring in NASH does not account for the impaired liver regeneration occurring in this setting.
Collapse
Affiliation(s)
- Adel Hammoutene
- Université Paris Cité, PARCC, INSERM, Paris, France
- Université Paris-Cité, Inserm, Centre de recherche sur l'inflammation, UMR 1149, Paris, France
| | - Marion Tanguy
- Université Paris Cité, PARCC, INSERM, Paris, France
- Université Paris-Cité, Inserm, Centre de recherche sur l'inflammation, UMR 1149, Paris, France
| | | | - Riccardo Pravisani
- Service de chirurgie hépatobiliaire et pancréatique, Hôpital Beaujon, AP-HP, Clichy, France
| | - Miguel Albuquerque
- Université Paris-Cité, Inserm, Centre de recherche sur l'inflammation, UMR 1149, Paris, France
- Service d'Anatomie Pathologique, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Christophe Casteleyn
- Department of Morphology, Imaging, Orthopaedics, Physiotherapy and Nutrition, Ghent University, Ghent, Belgium
| | - Lotfi Slimani
- Laboratory of Orofacial Pathologies, Imaging and Biotherapies URP2496, Université Paris Cité, Montrouge, France
- Plateforme Imageries du Vivant, Faculté de Chirurgie Dentaire, Université Paris Cité, Montrouge, France
| | - Jeremy Sadoine
- Laboratory of Orofacial Pathologies, Imaging and Biotherapies URP2496, Université Paris Cité, Montrouge, France
- Plateforme Imageries du Vivant, Faculté de Chirurgie Dentaire, Université Paris Cité, Montrouge, France
| | | | - Valérie Paradis
- Université Paris-Cité, Inserm, Centre de recherche sur l'inflammation, UMR 1149, Paris, France
- Service d'Anatomie Pathologique, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Hélène Gilgenkrantz
- Université Paris-Cité, Inserm, Centre de recherche sur l'inflammation, UMR 1149, Paris, France
| | - Pierre-Emmanuel Rautou
- Université Paris Cité, PARCC, INSERM, Paris, France
- Université Paris-Cité, Inserm, Centre de recherche sur l'inflammation, UMR 1149, Paris, France
- Service d'Hépatologie, AP-HP, Hôpital Beaujon, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Clichy, France
| |
Collapse
|
9
|
Ozmen Yaylaci A, Canbek M. The role of ubiquitin signaling pathway on liver regeneration in rats. Mol Cell Biochem 2023; 478:131-147. [PMID: 35750978 DOI: 10.1007/s11010-022-04482-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
The ubiquitin signalling pathway is a large system associated with numerous intracellular mechanisms. However, its function in the liver regeneration process remains unknown. This particular study investigates the intracellular effect mechanisms of the ubiquitin signalling pathway. It also determines the differences in the expression of 88 genes belonging to the ubiquitin pathway using the RT-PCR array method. To conduct this research, three genes-that differed in the expression analysis were selected. Moreover, their proteins were analysed by western blot analysis while using Ki67 immunohistochemical analysis that determines proliferation rates by hour. It was determined that BRCA1 and BARD1, which are effective in DNA repair, play an active role at PH24. Similarly, Ube2t expression, which belongs to the Fanconi anaemia pathway associated with DNA repair, was also found to be high at PH12-72 h. In addition, it was revealed that the expressions of Anapc2, Anapc11, Cdc20 belonging to the APC/CCdc20 complex, which participate in cell cycle regulation, differed at different hours after PH. Expression of Mul1, which is involved in mitochondrial biogenesis and mitophagy mechanisms, peaked at PH12 under the observation. Considering the Mul1 gene expression difference, MUL1-mediated mitophagy and mitochondrial fission mechanism may be associated with liver regeneration. It was also determined that PARKIN-mediated mitophagy mechanisms are not active in 0-72 h of liver regeneration since PARKIN expression did not show a significant change in PH groups.
Collapse
Affiliation(s)
- Ayse Ozmen Yaylaci
- Department of Biology, Faculty of Arts and Science, Hitit University, 19030, Corum, Turkey.
| | - Mediha Canbek
- Department of Biology, Faculty of Arts and Science, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey
| |
Collapse
|
10
|
Zuñiga-Aguilar E, Ramírez-Fernández O. Fibrosis and hepatic regeneration mechanism. Transl Gastroenterol Hepatol 2022; 7:9. [PMID: 35243118 PMCID: PMC8826211 DOI: 10.21037/tgh.2020.02.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/10/2020] [Indexed: 11/26/2023] Open
Abstract
Liver cirrhosis is the final stage of continuous hepatic inflammatory activity derived by viral, metabolic or autoimmune origin. In the last years, cirrhosis was considered a unique and static condition; recently was accepted some patients subgroups with different liver injury degrees that coexist under the same diagnosis, with implications about the natural disease history. The liver growth factor (LGF) is a potent in vivo and in vitro mitogenic agent and an inducer of hepatic regeneration (HR) through the hepatocytes DNA synthesis. The clinical implications of the LGF levels in cirrhosis, are not clear and even with having a fundamental role in the liver regeneration processes, the studies suggest that it could be a cirrhosis severity marker, in acute liver failure and in chronic hepatitis. Its role as predictor of mortality in fulminant hepatic insufficiency patients has been suggested. HR is one of the most enigmatic and fascinating biological phenomena. The rapid volume and liver function restoration after a major hepatectomy (>70%) or severe hepatocellular damage and its strict regulation of tissue damage response after the cessation, is an exclusive property of the liver. HR is the clinical applications fundament, such as extensive hepatic resections (>70% of the liver parenchyma), segmental transplantation or living donor transplantation, sequential hepatectomies, isolated portal embolization or associated with in situ hepatic transection, temporary artificial support in acute liver failure and the possible cell therapy clinical applications.
Collapse
Affiliation(s)
- Esmeralda Zuñiga-Aguilar
- Universidad Autonoma de Ciudad Juárez, Depto de Ingeniería Eléctrica y Computación, Ciudad Juárez, Chih., México
| | - Odin Ramírez-Fernández
- Tecnologico Nacional de Mexico, Depto. De Ciencias Basicas, Tlalnepantla de Baz, Mexico
- Facultad de Medicina, HIPAM, Universidad Nacional Autonoma de Mexico, Ciudad de México, Mexico
| |
Collapse
|
11
|
Jiang H, Garcia V, Yanum JA, Lee J, Dai G. Circadian clock core component Bmal1 dictates cell cycle rhythm of proliferating hepatocytes during liver regeneration. Am J Physiol Gastrointest Liver Physiol 2021; 321:G389-G399. [PMID: 34431407 PMCID: PMC8560370 DOI: 10.1152/ajpgi.00204.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023]
Abstract
After partial hepatectomy (PH), the majority of remnant hepatocytes synchronously enter and rhythmically progress through the cell cycle for three major rounds to regain lost liver mass. Whether and how the circadian clock core component Bmal1 modulates this process remains elusive. We performed PH on Bmal1+/+ and hepatocyte-specific Bmal1 knockout (Bmal1hep-/-) mice and compared the initiation and progression of the hepatocyte cell cycle. After PH, Bmal1+/+ hepatocytes exhibited three major waves of nuclear DNA synthesis. In contrast, in Bmal1hep-/- hepatocytes, the first wave of nuclear DNA synthesis was delayed by 12 h, and the third such wave was lost. Following PH, Bmal1+/+ hepatocytes underwent three major waves of mitosis, whereas Bmal1hep-/- hepatocytes fully abolished mitotic oscillation. These Bmal1-dependent disruptions in the rhythmicity of hepatocyte cell cycle after PH were accompanied by suppressed expression peaks of a group of cell cycle components and regulators and dysregulated activation patterns of mitogenic signaling molecules c-Met and epidermal growth factor receptor. Moreover, Bmal1+/+ hepatocytes rhythmically accumulated fat as they expanded following PH, whereas this phenomenon was largely inhibited in Bmal1hep-/- hepatocytes. In addition, during late stages of liver regrowth, Bmal1 absence in hepatocytes caused the activation of redox sensor Nrf2, suggesting an oxidative stress state in regenerated liver tissue. Collectively, we demonstrated that during liver regeneration, Bmal1 partially modulates the oscillation of S-phase progression, fully controls the rhythmicity of M-phase advancement, and largely governs fluctuations in fat metabolism in replicating hepatocytes, as well as eventually determines the redox state of regenerated livers.NEW & NOTEWORTHY We demonstrated that Bmal1 centrally controls the synchronicity and rhythmicity of the cell cycle and lipid accumulation in replicating hepatocytes during liver regeneration. Bmal1 plays these roles, at least in part, by ensuring formation of the expression peaks of cell cycle components and regulators, as well as the timing and levels of activation of mitogenic signaling molecules.
Collapse
Affiliation(s)
- Huaizhou Jiang
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Veronica Garcia
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Jennifer Abla Yanum
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Joonyong Lee
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Guoli Dai
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
12
|
Elchaninov A, Lokhonina A, Vishnyakova P, Soboleva A, Poltavets A, Artemova D, Makarov A, Glinkina V, Goldshtein D, Bolshakova G, Sukhikh G, Fatkhudinov T. MARCO + Macrophage Dynamics in Regenerating Liver after 70% Liver Resection in Mice. Biomedicines 2021; 9:1129. [PMID: 34572315 PMCID: PMC8471044 DOI: 10.3390/biomedicines9091129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophages play a key role in liver regeneration. The fates of resident macrophages after 70% resection are poorly investigated. In this work, using the MARCO macrophage marker (abbreviated from macrophage receptor with collagenous structure), we studied the dynamics of mouse liver resident macrophages after 70% resection. METHODS In BALB/c male mice, a model of liver regeneration after 70% resection was reproduced. The dynamics of markers CD68, TIM4, and MARCO were studied immunohistochemically and by using a Western blot. RESULTS The number of MARCO- and CD68-positive macrophages in the regenerating liver increased 1 day and 3 days after resection, respectively. At the same time, the content of the MARCO protein increased in the sorted macrophages of the regenerating liver on the third day. CONCLUSIONS The data indicate that the number of MARCO-positive macrophages in the regenerating liver increases due to the activation of MARCO synthesis in the liver macrophages. The increased expression of MARCO by macrophages can be regarded as a sign of their activation. In the present study, stimulation with LPS led to an increase in the expression of the Marco gene in both Kupffer cells and macrophages of bone marrow origin.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
| | - Anastasia Lokhonina
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
| | - Anna Soboleva
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (A.S.); (D.A.); (G.B.)
| | - Anastasiya Poltavets
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
| | - Daria Artemova
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (A.S.); (D.A.); (G.B.)
| | - Andrey Makarov
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
| | - Valeria Glinkina
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia;
| | - Dmitry Goldshtein
- Stem Cell Genetics Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia;
| | - Galina Bolshakova
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (A.S.); (D.A.); (G.B.)
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
| | - Timur Fatkhudinov
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (A.S.); (D.A.); (G.B.)
| |
Collapse
|
13
|
Ruby CL, Major RJ, Hinrichsen RD. Regulation of tissue regeneration by the circadian clock. Eur J Neurosci 2021; 53:3576-3597. [PMID: 33893679 DOI: 10.1111/ejn.15244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022]
Abstract
Circadian rhythms are regulated by a highly conserved transcriptional/translational feedback loop that maintains approximately 24-hr periodicity from cellular to organismal levels. Much research effort is being devoted to understanding how the outputs of the master clock affect peripheral oscillators, and in turn, numerous biological processes. Recent studies have revealed roles for circadian timing in the regulation of numerous cellular behaviours in support of complex tissue regeneration. One such role involves the interaction between the circadian clockwork and the cell cycle. The molecular mechanisms that control the cell cycle create a system of regulation that allows for high fidelity DNA synthesis, mitosis and apoptosis. In recent years, it has become clear that clock gene products are required for proper DNA synthesis and cell cycle progression, and conversely, elements of the cell cycle cascade feedback to influence molecular circadian timing mechanisms. It is through this crosstalk that the circadian system orchestrates stem cell proliferation, niche exit and control of the signalling pathways that govern differentiation and self-renewal. In this review, we discuss the evidence for circadian control of tissue homeostasis and repair and suggest new avenues for research.
Collapse
Affiliation(s)
- Christina L Ruby
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA
| | - Robert J Major
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA
| | | |
Collapse
|
14
|
Baier FA, Sánchez-Taltavull D, Yarahmadov T, Castellà CG, Jebbawi F, Keogh A, Tombolini R, Odriozola A, Dias MC, Deutsch U, Furuse M, Engelhardt B, Zuber B, Odermatt A, Candinas D, Stroka D. Loss of Claudin-3 Impairs Hepatic Metabolism, Biliary Barrier Function, and Cell Proliferation in the Murine Liver. Cell Mol Gastroenterol Hepatol 2021; 12:745-767. [PMID: 33866021 PMCID: PMC8273426 DOI: 10.1016/j.jcmgh.2021.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Tight junctions in the liver are essential to maintain the blood-biliary barrier, however, the functional contribution of individual tight junction proteins to barrier and metabolic homeostasis remains largely unexplored. Here, we describe the cell type-specific expression of tight junction genes in the murine liver, and explore the regulation and functional importance of the transmembrane protein claudin-3 in liver metabolism, barrier function, and cell proliferation. METHODS The cell type-specific expression of hepatic tight junction genes is described using our mouse liver single-cell sequencing data set. Differential gene expression in Cldn3-/- and Cldn3+/+ livers was assessed in young and aged mice by RNA sequencing (RNA-seq), and hepatic tissue was analyzed for lipid content and bile acid composition. A surgical model of partial hepatectomy was used to induce liver cell proliferation. RESULTS Claudin-3 is a highly expressed tight junction protein found in the liver and is expressed predominantly in hepatocytes and cholangiocytes. The histology of Cldn3-/- livers showed no overt phenotype, and the canalicular tight junctions appeared intact. Nevertheless, by RNA-seq we detected a down-regulation of metabolic pathways in the livers of Cldn3-/- young and aged mice, as well as a decrease in lipid content and a weakened biliary barrier for primary bile acids, such as taurocholic acid, taurochenodeoxycholic acid, and taurine-conjugated muricholic acid. Coinciding with defects in the biliary barrier and lower lipid metabolism, there was a diminished hepatocyte proliferative response in Cldn3-/- mice after partial hepatectomy. CONCLUSIONS Our data show that, in the liver, claudin-3 is necessary to maintain metabolic homeostasis, retention of bile acids, and optimal hepatocyte proliferation during liver regeneration. The RNA-seq data set can be accessed at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159914.
Collapse
Affiliation(s)
- Felix Alexander Baier
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Daniel Sánchez-Taltavull
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Tural Yarahmadov
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Cristina Gómez Castellà
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Fadi Jebbawi
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Adrian Keogh
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Riccardo Tombolini
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | | | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
| | | | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Daniel Candinas
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
15
|
Liss KH, Ek SE, Lutkewitte AJ, Pietka TA, He M, Skaria P, Tycksen E, Ferguson D, Blanc V, Graham MJ, Hall AM, McGill MR, McCommis KS, Finck BN. Monoacylglycerol Acyltransferase 1 Knockdown Exacerbates Hepatic Ischemia/Reperfusion Injury in Mice With Hepatic Steatosis. Liver Transpl 2021; 27:116-133. [PMID: 32916011 PMCID: PMC7785593 DOI: 10.1002/lt.25886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the most common indication for liver transplantation. The growing prevalence of NAFLD not only increases the demand for liver transplantation, but it also limits the supply of available organs because steatosis predisposes grafts to ischemia/reperfusion injury (IRI) and many steatotic grafts are discarded. We have shown that monoacylglycerol acyltransferase (MGAT) 1, an enzyme that converts monoacylglycerol to diacylglycerol, is highly induced in animal models and patients with NAFLD and is an important mediator in NAFLD-related insulin resistance. Herein, we sought to determine whether Mogat1 (the gene encoding MGAT1) knockdown in mice with hepatic steatosis would reduce liver injury and improve liver regeneration following experimental IRI. Antisense oligonucleotides (ASO) were used to knockdown the expression of Mogat1 in a mouse model of NAFLD. Mice then underwent surgery to induce IRI. We found that Mogat1 knockdown reduced hepatic triacylglycerol accumulation, but it unexpectedly exacerbated liver injury and mortality following experimental ischemia/reperfusion surgery in mice on a high-fat diet. The increased liver injury was associated with robust effects on the hepatic transcriptome following IRI including enhanced expression of proinflammatory cytokines and chemokines and suppression of enzymes involved in intermediary metabolism. These transcriptional changes were accompanied by increased signs of oxidative stress and an impaired regenerative response. We have shown that Mogat1 knockdown in a mouse model of NAFLD exacerbates IRI and inflammation and prolongs injury resolution, suggesting that Mogat1 may be necessary for liver regeneration following IRI and that targeting this metabolic enzyme will not be an effective treatment to reduce steatosis-associated graft dysfunction or failure.
Collapse
Affiliation(s)
- Kim H.H. Liss
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Shelby E. Ek
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Terri A. Pietka
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Priya Skaria
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Eric Tycksen
- Department of Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Daniel Ferguson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Valerie Blanc
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Angela M. Hall
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mitchell R. McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Kyle S. McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Brian N. Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
16
|
Fifield BA, Talia J, Stoyanovich C, Elliott MJ, Bakht MK, Basilious A, Samsoondar JP, Curtis M, Stringer KF, Porter LA. Cyclin-like proteins tip regenerative balance in the liver to favour cancer formation. Carcinogenesis 2020; 41:850-862. [PMID: 31574533 DOI: 10.1093/carcin/bgz164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/30/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. A variety of factors can contribute to the onset of this disease, including viral infection, obesity, alcohol abuse and non-alcoholic fatty liver disease (NAFLD). These stressors predominantly introduce chronic inflammation leading to liver cirrhosis and finally the onset of HCC; however, approximately 20% of HCC cases arise in the absence of cirrhosis via a poorly defined mechanism. The atypical cyclin-like protein Spy1 is capable of overriding cell cycle checkpoints, promoting proliferation and has been implicated in HCC. We hypothesize that Spy1 promotes sustained proliferation making the liver more susceptible to accumulation of deleterious mutations, leading to the development of non-cirrhotic HCC. We report for the first time that elevation of Spy1 within the liver of a transgenic mouse model leads to enhanced spontaneous liver tumourigenesis. We show that the abundance of Spy1 enhanced fat deposition within the liver and decreased the inflammatory response. Interestingly, Spy1 transgenic mice have a significant reduction in fibrosis and sustained rates of hepatocyte proliferation, and endogenous levels of Spy1 are downregulated during the normal fibrotic response. Our results provide support that abnormal regulation of Spy1 protein drives liver tumorigenesis in the absence of elevated fibrosis and, hence, may represent a potential mechanism behind non-cirrhotic HCC. This work may implicate Spy1 as a prognostic indicator and/or potential target in the treatment of diseases of the liver, such as HCC. The cyclin-like protein Spy1 enhances lipid deposition and reduces fibrosis in the liver. Spy1 also promotes increased hepatocyte proliferation and onset of non-cirrhotic hepatocellular carcinoma (HCC). Thus, Spy1 may be used as a potential target in the treatment of HCC.
Collapse
Affiliation(s)
- Bre-Anne Fifield
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - John Talia
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Carlee Stoyanovich
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Mitchell J Elliott
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Martin K Bakht
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Amy Basilious
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Joshua P Samsoondar
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Madison Curtis
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Keith F Stringer
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada.,Department of Pathology, Cincinnati Children's Hospital Medical Center Cincinnati, Cincinnati, OH, USA
| | - Lisa A Porter
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
17
|
Römermann D, Ansari N, Schultz-Moreira AR, Michael A, Marhenke S, Hardtke-Wolenski M, Longerich T, Manns MP, Wedemeyer H, Vogel A, Buitrago-Molina LE. Absence of Atg7 in the liver disturbed hepatic regeneration after liver injury. Liver Int 2020; 40:1225-1238. [PMID: 32141704 DOI: 10.1111/liv.14425] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Autophagy is a critical process in cell survival and the maintenance of homeostasis. However, the implementation of therapeutic approaches based on autophagy mechanisms after liver damage is still challenging. METHODS We used a hepatospecific Atg7-deficient murine model to address this question. RESULTS We showed that the proliferation and regeneration capacity of Atg7-deficient hepatocytes was impaired. On the one hand, Atg7-deficient hepatocytes showed steady-state hyperproliferation. On the other hand, external triggers such as partial hepatectomy (PHx) or cell transplantation did not induce hepatocellular proliferation or liver repopulation. After PHx, hepatocyte proliferation was strongly decreased, accompanied by high mortality. This increase in mortality could be overcome by pharmacological mTOR inhibition. In accordance with hepatocyte hypoproliferation after damage, Atg7-deficient hepatocytes failed to repopulate the liver in a hepatic injury model. Atg7-deficient mice showed hepatic hypertrophy, transient cellular hypertrophy, and high transaminase levels followed by strong perisinusoidal/pericellular fibrosis with age. Their elevated modified hepatic activity index (mHAI) was almost exclusively due to apoptosis without any inflammation. These parameters were associated with variations in the triglyceride content and compromised lipid droplet formation after PHx. Mechanistically, we also observed a modulation of HGF, PAK4, NOTCH3 and YES1, which are proteins involved in cell cycle regulation. CONCLUSION We demonstrated the important role of autophagy in the regeneration capacity of hepatocytes. We showed the causative relationship between autophagy and triglycerides that is essential for promoting liver recovery. Finally, pharmacological mTOR inhibition overcame the impact of autophagy deficiency after liver damage and prevented mortality.
Collapse
Affiliation(s)
- Dorothee Römermann
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Nadiea Ansari
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Adriana Rita Schultz-Moreira
- Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Alina Michael
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Silke Marhenke
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Thomas Longerich
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Laura Elisa Buitrago-Molina
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Lee J, Garcia V, Nambiar SM, Jiang H, Dai G. Pregnancy facilitates maternal liver regeneration after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 2020; 318:G772-G780. [PMID: 32003603 PMCID: PMC7191459 DOI: 10.1152/ajpgi.00125.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Liver resection induces robust liver regrowth or regeneration to compensate for the lost tissue mass. In a clinical setting, pregnant women may need liver resection without terminating pregnancy in some cases. However, how pregnancy affects maternal liver regeneration remains elusive. We performed 70% partial hepatectomy (PH) in nonpregnant mice and gestation day 14 mice, and histologically and molecularly compared their liver regrowth during the next 4 days. We found that compared with the nonpregnant state, pregnancy altered the molecular programs driving hepatocyte replication, indicated by enhanced activities of epidermal growth factor receptor and STAT5A, reduced activities of cMet and p70S6K, decreased production of IL-6, TNFα, and hepatocyte growth factor, suppressed cyclin D1 expression, increased cyclin A1 expression, and early activated cyclin A2 expression. As a result, pregnancy allowed the remnant hepatocytes to enter the cell cycle at least 12 h earlier, increased hepatic fat accumulation, and enhanced hepatocyte mitosis. Consequently, pregnancy ameliorated maternal liver regeneration following PH. In addition, a report showed that maternal liver regrowth after PH is driven mainly by hepatocyte hypertrophy rather than hyperplasia during the second half of gestation in young adult mice. In contrast, we demonstrate that maternal liver relies mainly on hepatocyte hyperplasia instead of hypertrophy to restore the lost mass after PH. Overall, we demonstrate that pregnancy facilitates maternal liver regeneration likely via triggering an early onset of hepatocyte replication, accumulating excessive liver fat, and promoting hepatocyte mitosis. The results from our current studies enable us to gain more insights into how maternal liver regeneration progresses during gestation.NEW & NOTEWORTHY We demonstrate that pregnancy may generate positive effects on maternal liver regeneration following partial hepatectomy, which are manifested by early entry of the cell cycle of remnant hepatocytes, increased hepatic fat accumulation, enhanced hepatocyte mitosis, and overall accelerated liver regrowth.
Collapse
Affiliation(s)
- Joonyong Lee
- 1Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Veronica Garcia
- 1Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Shashank Manohar Nambiar
- 1Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Huaizhou Jiang
- 1Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana,2School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Anhui, China
| | - Guoli Dai
- 1Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
19
|
Ritschka B, Knauer-Meyer T, Gonçalves DS, Mas A, Plassat JL, Durik M, Jacobs H, Pedone E, Di Vicino U, Cosma MP, Keyes WM. The senotherapeutic drug ABT-737 disrupts aberrant p21 expression to restore liver regeneration in adult mice. Genes Dev 2020; 34:489-494. [PMID: 32139422 PMCID: PMC7111259 DOI: 10.1101/gad.332643.119] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
In this study, Ritschka et al. investigated whether cellular senescence might play a role in loss of regenerative capacity during liver regeneration. They show that following partial hepatectomy, the senescence-associated genes p21, p16Ink4a, and p19Arf become dynamically expressed in different cell types when regenerative capacity decreases, but without a full senescent response, and that treatment with a senescence-inhibiting drug improves regeneration through targeting aberrantly prolonged p21 expression. Young mammals possess a limited regenerative capacity in some tissues, which is lost upon maturation. We investigated whether cellular senescence might play a role in such loss during liver regeneration. We found that following partial hepatectomy, the senescence-associated genes p21, p16Ink4a, and p19Arf become dynamically expressed in different cell types when regenerative capacity decreases, but without a full senescent response. However, we show that treatment with a senescence-inhibiting drug improves regeneration, by disrupting aberrantly prolonged p21 expression. This work suggests that senescence may initially develop from heterogeneous cellular responses, and that senotherapeutic drugs might be useful in promoting organ regeneration.
Collapse
Affiliation(s)
- Birgit Ritschka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch 67404, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Tania Knauer-Meyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch 67404, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Daniel Sampaio Gonçalves
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch 67404, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Alba Mas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch 67404, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Jean-Luc Plassat
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch 67404, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Matej Durik
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch 67404, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Hugues Jacobs
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch 67404, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Elisa Pedone
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Umberto Di Vicino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.,Institución Catalana de Investigación y Estudios Avanzados (ICREA), Barcelona 08010, Spain
| | - William M Keyes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch 67404, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| |
Collapse
|
20
|
Wang G, Chu P, Chen M, Cheng L, Zhao C, Chen S, Li X, Yang G, Chang C. Osteopontin promotes rat hepatocyte proliferation both in vitro and in vivo. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3745-3757. [PMID: 31544532 DOI: 10.1080/21691401.2019.1666862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aim: This study aimed to examine the effects of osteopontin (OPN) on hepatocyte growth and liver regeneration (LR). Methods: A recombinant lentivirus expressing OPN and OPN-siRNAs were used to treat BRL-3A cells, while the adenovirus expressing OPN or OPN-targeted shRNA were applied for rat primary hepatocytes. Moreover, rrOPN and OPN-Ab were added to treat BRL-3A. Next, rrOPN was administrated into rat regenerating livers. Then in vitro and in vivo assays were performed to evaluate the biological function of OPN in hepatocyte growth and LR. Results: OPN overexpression facilitated proliferation and viability of BRL-3A cells and primary hepatocytes, while OPN silencing reversed these effects. Similarly, rrOPN stimulated cell cycle progression and viability, but OPN-Ab led to cell cycle arrest and decreased viability. OPN overexpression induced the expression of p-STAT3, p-AKT and CCND1, and OPN siRNA led to reduction of p-AKT and CCND1. Furthermore, rrOPN promoted the expression of p-STAT3 and p-AKT, while OPN-Ab and PI3K/Akt inhibitor LY294002 both inhibited the expressions of p-AKT and Bcl2. Moreover, LR rate, serum IL-6 and TNF-α, Ki-67+ proportion and the phosphorylation of STAT3, AKT and p65 were augmented by rrOPN treatment. Conclusion: OPN promotes hepatocyte proliferation both in vitro and in vivo through STAT3 and AKT signaling pathways.
Collapse
Affiliation(s)
- Gaiping Wang
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Peipei Chu
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Meng Chen
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Liya Cheng
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Congcong Zhao
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Shasha Chen
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Xiaofang Li
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| | - Ganggang Yang
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,Henan Engineering Research Center of Functional Protein Application, Henan Normal University , Xinxiang , Henan Province , China
| | - Cuifang Chang
- College of Life Science, Henan Normal University , Xinxiang , Henan Province , China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University , Xinxiang , Henan Province , China
| |
Collapse
|
21
|
Meyer K, Morales‐Navarrete H, Seifert S, Wilsch‐Braeuninger M, Dahmen U, Tanaka EM, Brusch L, Kalaidzidis Y, Zerial M. Bile canaliculi remodeling activates YAP via the actin cytoskeleton during liver regeneration. Mol Syst Biol 2020; 16:e8985. [PMID: 32090478 PMCID: PMC7036714 DOI: 10.15252/msb.20198985] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
The mechanisms of organ size control remain poorly understood. A key question is how cells collectively sense the overall status of a tissue. We addressed this problem focusing on mouse liver regeneration. Using digital tissue reconstruction and quantitative image analysis, we found that the apical surface of hepatocytes forming the bile canalicular network expands concomitant with an increase in F-actin and phospho-myosin, to compensate an overload of bile acids. These changes are sensed by the Hippo transcriptional co-activator YAP, which localizes to apical F-actin-rich regions and translocates to the nucleus in dependence of the integrity of the actin cytoskeleton. This mechanism tolerates moderate bile acid fluctuations under tissue homeostasis, but activates YAP in response to sustained bile acid overload. Using an integrated biophysical-biochemical model of bile pressure and Hippo signaling, we explained this behavior by the existence of a mechano-sensory mechanism that activates YAP in a switch-like manner. We propose that the apical surface of hepatocytes acts as a self-regulatory mechano-sensory system that responds to critical levels of bile acids as readout of tissue status.
Collapse
Affiliation(s)
- Kirstin Meyer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | | | - Sarah Seifert
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | | | - Uta Dahmen
- Experimental Transplantation SurgeryDepartment of General, Visceral and Vascular SurgeryJena University HospitalJenaGermany
| | - Elly M Tanaka
- Research Institute of Molecular PathologyVienna BioCenterViennaAustria
| | - Lutz Brusch
- Center for Information Services and High Performance ComputingTechnische Universität DresdenDresdenGermany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Faculty of Bioengineering and BioinformaticsMoscow State UniversityMoscowRussia
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| |
Collapse
|
22
|
Sivertsen Åsrud K, Pedersen L, Aesoy R, Muwonge H, Aasebø E, Nitschke Pettersen IK, Herfindal L, Dobie R, Jenkins S, Berge RK, Henderson NC, Selheim F, Døskeland SO, Bakke M. Mice depleted for Exchange Proteins Directly Activated by cAMP (Epac) exhibit irregular liver regeneration in response to partial hepatectomy. Sci Rep 2019; 9:13789. [PMID: 31551444 PMCID: PMC6760117 DOI: 10.1038/s41598-019-50219-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
The exchange proteins directly activated by cAMP 1 and 2 (Epac1 and Epac2) are expressed in a cell specific manner in the liver, but their biological functions in this tissue are poorly understood. The current study was undertaken to begin to determine the potential roles of Epac1 and Epac2 in liver physiology and disease. Male C57BL/6J mice in which expression of Epac1 and/or Epac2 are deleted, were subjected to partial hepatectomy and the regenerating liver was analyzed with regard to lipid accumulation, cell replication and protein expression. In response to partial hepatectomy, deletion of Epac1 and/or Epac2 led to increased hepatocyte proliferation 36 h post surgery, and the transient steatosis observed in wild type mice was virtually absent in mice lacking both Epac1 and Epac2. The expression of the protein cytochrome P4504a14, which is implicated in hepatic steatosis and fibrosis, was substantially reduced upon deletion of Epac1/2, while a number of factors involved in lipid metabolism were significantly decreased. Moreover, the number of Küpffer cells was affected, and Epac2 expression was increased in the liver of wild type mice in response to partial hepatectomy, further supporting a role for these proteins in liver function. This study establishes hepatic phenotypic abnormalities in mice deleted for Epac1/2 for the first time, and introduces Epac1/2 as regulators of hepatocyte proliferation and lipid accumulation in the regenerative process.
Collapse
Affiliation(s)
| | - Line Pedersen
- Department of Biomedicine, The University of Bergen, Bergen, Norway
| | - Reidun Aesoy
- Department of Clinical Science, The University of Bergen, Bergen, Norway
| | - Haruna Muwonge
- Department of Biomedicine, The University of Bergen, Bergen, Norway
| | - Elise Aasebø
- Department of Clinical Science, The University of Bergen, Bergen, Norway
- Department of Biomedicine, The Proteomic Unit at The University of Bergen (PROBE), University of Bergen, 5009, Bergen, Norway
| | | | - Lars Herfindal
- Department of Clinical Science, The University of Bergen, Bergen, Norway
| | - Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Stephen Jenkins
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Rolf Kristian Berge
- Department of Clinical Science, The University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Neil Cowan Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Frode Selheim
- Department of Biomedicine, The University of Bergen, Bergen, Norway
- Department of Clinical Science, The University of Bergen, Bergen, Norway
| | | | - Marit Bakke
- Department of Biomedicine, The University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
Srisowanna N, Choijookhuu N, Yano K, Batmunkh B, Ikenoue M, Nhat Huynh Mai N, Yamaguchi Y, Hishikawa Y. The Effect of Estrogen on Hepatic Fat Accumulation during Early Phase of Liver Regeneration after Partial Hepatectomy in Rats. Acta Histochem Cytochem 2019; 52:67-75. [PMID: 31592200 PMCID: PMC6773610 DOI: 10.1267/ahc.19018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Fatty liver is common in men and post-menopausal women, suggesting that estrogen may be involved in liver lipid metabolism. The aim of this study is to be clear the role of estrogen and estrogen receptor alpha (ERα) in fat accumulation during liver regeneration using the 70% partial hepatectomy (PHX) model in male, female, ovariectomized (OVX) and E2-treated OVX (OVX-E2) rats. Liver tissues were sampled at 0–48 hr after PHX and fat accumulation, fatty acid translocase (FAT/CD36), sterol regulatory element-binding protein (SREBP1c), peroxisome proliferator-activated receptor α (PPARα), proliferative cell nuclear antigen (PCNA) and ERα were examined by Oil Red O, qRT-PCR and immunohistochemistry, respectively. Hepatic fat accumulation was abundant in female and OVX-E2 compared to male and OVX rats. FAT/CD36 expression was observed in female, OVX and OVX-E2 at 0–12 hr after PHX, but not in male rats. At 0 hr, SREBP1c and PPARα were elevated in female and male rats, respectively, but were decreased after PHX in all rats. The PCNA labeling index reached a maximum at 36 hr and 48 hr in OVX-E2 and OVX rats, respectively. ERα expression in OVX-E2 was higher than OVX at 0–36 hr after PHX. In conclusion, these results indicated that estrogen and ERα might play an important role in fat accumulation related to FAT/CD36 during early phase of rat liver regeneration.
Collapse
Affiliation(s)
- Naparee Srisowanna
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Koichi Yano
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Baatarsuren Batmunkh
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
- Department of Surgery, Mongolian National University of Medical Sciences
| | - Makoto Ikenoue
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Nguyen Nhat Huynh Mai
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Yuya Yamaguchi
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| |
Collapse
|
24
|
Rius-Pérez S, Tormos AM, Pérez S, Finamor I, Rada P, Valverde ÁM, Nebreda AR, Sastre J, Taléns-Visconti R. p38α deficiency restrains liver regeneration after partial hepatectomy triggering oxidative stress and liver injury. Sci Rep 2019; 9:3775. [PMID: 30846722 PMCID: PMC6405944 DOI: 10.1038/s41598-019-39428-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/30/2018] [Indexed: 12/19/2022] Open
Abstract
p38α MAPK negatively regulates the G1/S and G2/M cell cycle transitions. However, liver-specific p38α deficiency impairs cytokinesis and reduces hepatocyte proliferation during cirrhosis and aging in mice. In this work, we have studied how p38α down-regulation affects hepatocyte proliferation after partial hepatectomy, focusing on mitotic progression, cytokinesis and oxidative stress. We found that p38α deficiency triggered up-regulation of cyclins A1, B1, B2, and D1 under basal conditions and after hepatectomy. Moreover, p38α-deficient hepatocytes showed enhanced binucleation and increased levels of phospho-histone H3 but impaired phosphorylation of MNK1 after hepatectomy. The recovery of liver mass was transiently delayed in mice with p38α-deficient hepatocytes vs wild type mice. We also found that p38α deficiency caused glutathione oxidation in the liver, increased plasma aminotransferases and lactate dehydrogenase activities, and decreased plasma protein levels after hepatectomy. Interestingly, p38α silencing in isolated hepatocytes markedly decreased phospho-MNK1 levels, and silencing of either p38α or Mnk1 enhanced binucleation of hepatocytes in culture. In conclusion, p38α deficiency impairs mitotic progression in hepatocytes and restrains the recovery of liver mass after partial hepatectomy. Our results also indicate that p38α regulates cytokinesis by activating MNK1 and redox modulation.
Collapse
Affiliation(s)
- Sergio Rius-Pérez
- Department of Physiology, University of Valencia. Burjassot, Valencia, 46100, Spain
| | - Ana M Tormos
- Department of Physiology, University of Valencia. Burjassot, Valencia, 46100, Spain
| | - Salvador Pérez
- Department of Physiology, University of Valencia. Burjassot, Valencia, 46100, Spain
| | - Isabela Finamor
- Department of Physiology, University of Valencia. Burjassot, Valencia, 46100, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029, Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029, Madrid, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Juan Sastre
- Department of Physiology, University of Valencia. Burjassot, Valencia, 46100, Spain
| | - Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia. Burjassot, Valencia, 46100, Spain.
| |
Collapse
|
25
|
Wu H, Ploeger JM, Kamarajugadda S, Mashek DG, Mashek MT, Manivel JC, Shekels LL, Lapiro JL, Albrecht JH. Evidence for a Novel Regulatory Interaction Involving Cyclin D1, Lipid Droplets, Lipolysis, and Cell Cycle Progression in Hepatocytes. Hepatol Commun 2019; 3:406-422. [PMID: 30859152 PMCID: PMC6396375 DOI: 10.1002/hep4.1316] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022] Open
Abstract
During normal proliferation, hepatocytes accumulate triglycerides (TGs) in lipid droplets (LDs), but the underlying mechanisms and functional significance of this steatosis are unknown. In the current study, we examined the coordinated regulation of cell cycle progression and LD accumulation. As previously shown, hepatocytes develop increased LD content after mitogen stimulation. Cyclin D1, in addition to regulating proliferation, was both necessary and sufficient to promote LD accumulation in response to mitogens. Interestingly, cyclin D1 promotes LD accumulation by inhibiting the breakdown of TGs by lipolysis through a mechanism involving decreased lipophagy, the autophagic degradation of LDs. To examine whether inhibition of lipolysis is important for cell cycle progression, we overexpressed adipose TG lipase (ATGL), a key enzyme involved in TG breakdown. As expected, ATGL reduced LD content but also markedly inhibited hepatocyte proliferation, suggesting that lipolysis regulates a previously uncharacterized cell cycle checkpoint. Consistent with this, in mitogen-stimulated cells with small interfering RNA-mediated depletion of cyclin D1 (which inhibits proliferation and stimulates lipolysis), concurrent ATGL knockdown restored progression into S phase. Following partial hepatectomy, a model of robust hepatocyte proliferation in vivo, ATGL overexpression led to decreased LD content, cell cycle inhibition, and marked liver injury, further indicating that down-regulation of lipolysis is important for normal hepatocyte proliferation. Conclusion: We suggest a new relationship between steatosis and proliferation in hepatocytes: cyclin D1 inhibits lipolysis, resulting in LD accumulation, and suppression of lipolysis is necessary for cell cycle progression.
Collapse
Affiliation(s)
- Heng Wu
- Gastroenterology DivisionMinneapolis VA Health Care SystemMinneapolisMN
- Division of Gastroenterology, Hepatology, and NutritionUniversity of MinnesotaMinneapolisMN
| | - Jonathan M. Ploeger
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisMN
| | | | - Douglas G. Mashek
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisMN
| | - Mara T. Mashek
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisMN
| | - Juan C. Manivel
- Department of PathologyMinneapolis VA Health Care SystemMinneapolisMN
| | - Laurie L. Shekels
- Gastroenterology DivisionMinneapolis VA Health Care SystemMinneapolisMN
| | - Jessica L. Lapiro
- Gastroenterology DivisionMinneapolis VA Health Care SystemMinneapolisMN
- Division of Gastroenterology, Hepatology, and NutritionUniversity of MinnesotaMinneapolisMN
| | - Jeffrey H. Albrecht
- Gastroenterology DivisionMinneapolis VA Health Care SystemMinneapolisMN
- Division of Gastroenterology, Hepatology, and NutritionUniversity of MinnesotaMinneapolisMN
| |
Collapse
|
26
|
Liver-specific Repin1 deficiency impairs transient hepatic steatosis in liver regeneration. Sci Rep 2018; 8:16858. [PMID: 30442920 PMCID: PMC6237840 DOI: 10.1038/s41598-018-35325-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
Transient hepatic steatosis upon liver resection supposes functional relationships between lipid metabolism and liver regeneration. Repin1 has been suggested as candidate gene for obesity and dyslipidemia by regulating key genes of lipid metabolism and lipid storage. Herein, we characterized the regenerative potential of mice with a hepatic deletion of Repin1 (LRep1−/−) after partial hepatectomy (PH) in order to determine the functional significance of Repin1 in liver regeneration. Lipid dynamics and the regenerative response were analyzed at various time points after PH. Hepatic Repin1 deficiency causes a significantly decreased transient hepatic lipid accumulation. Defects in lipid uptake, as analyzed by decreased expression of the fatty acid transporter Cd36 and Fatp5, may contribute to attenuated and shifted lipid accumulation, accompanied by altered extent and chronological sequence of liver cell proliferation in LRep1−/− mice. In vitro steatosis experiments with primary hepatocytes also revealed attenuated lipid accumulation and occurrence of smaller lipid droplets in Repin1-deficient cells, while no direct effect on proliferation in HepG2 cells was observed. Based on these results, we propose that hepatocellular Repin1 might be of functional significance for early accumulation of lipids in hepatocytes after PH, facilitating efficient progression of liver regeneration.
Collapse
|
27
|
Markose D, Kirkland P, Ramachandran P, Henderson N. Immune cell regulation of liver regeneration and repair. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.regen.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Model Prediction and Validation of an Order Mechanism Controlling the Spatiotemporal Phenotype of Early Hepatocellular Carcinoma. Bull Math Biol 2018; 80:1134-1171. [PMID: 29568983 DOI: 10.1007/s11538-017-0375-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/27/2017] [Indexed: 12/11/2022]
Abstract
Recently, hepatocyte-sinusoid alignment (HSA) has been identified as a mechanism that supports the coordination of hepatocytes during liver regeneration to reestablish a functional micro-architecture (Hoehme et al. in Proc Natl Acad Sci 107(23):10371-10376, 2010). HSA means that hepatocytes preferentially align along the closest micro-vessels. Here, we studied whether this mechanism is still active in early hepatocellular tumors. The same agent-based spatiotemporal model that previously correctly predicted HSA in liver regeneration was further developed to simulate scenarios in early tumor development, when individual initiated hepatocytes gain increased proliferation capacity. The model simulations were performed under conditions of realistic liver micro-architectures obtained from 3D reconstructions of confocal laser scanning micrographs. Interestingly, the established model predicted that initiated hepatocytes at first arrange in elongated patterns. Only when the tumor progresses to cell numbers of approximately 4000, does it adopt spherical structures. This prediction may have relevant consequences, since elongated tumors may reach critical structures faster, such as larger vessels, compared to a spherical tumor of similar cell number. Interestingly, this model prediction was confirmed by analysis of the spatial organization of initiated hepatocytes in a rat liver tumor initiation study using single doses of 250 mg/kg of the genotoxic carcinogen N-nitrosomorpholine (NNM). Indeed, small clusters of GST-P positive cells induced by NNM were elongated, almost columnar, while larger GDT-P positive foci of approximately the size of liver lobuli adopted spherical shapes. From simulations testing numerous possible mechanisms, only HSA could explain the experimentally observed initial deviation from spherical shape. The present study demonstrates that the architecture of small cell clusters of hepatocytes early after initiation is still controlled by physiological mechanisms. However, this coordinating influence is lost when the tumor grows to approximately 4000 cells, leading to further growth in spherical shape. Our findings stress the potential importance of organ micro-architecture in understanding tumor phenotypes.
Collapse
|
29
|
Kamarajugadda S, Becker JR, Hanse EA, Mashek DG, Mashek MT, Hendrickson AM, Mullany LK, Albrecht JH. Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation. Oncotarget 2018; 7:47674-47686. [PMID: 27351284 PMCID: PMC5216970 DOI: 10.18632/oncotarget.10274] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/04/2016] [Indexed: 01/27/2023] Open
Abstract
Cyclin D1 is a cell cycle protein that promotes proliferation by mediating progression through key checkpoints in G1 phase. It is also a proto-oncogene that is commonly overexpressed in human cancers. In addition to its canonical role in controlling cell cycle progression, cyclin D1 affects other aspects of cell physiology, in part through transcriptional regulation. In this study, we find that cyclin D1 inhibits the activity of a key metabolic transcription factor, peroxisome proliferator-activated receptor α (PPARα), a member of nuclear receptor family that induces fatty acid oxidation and may play an anti-neoplastic role. In primary hepatocytes, cyclin D1 inhibits PPARα transcriptional activity and target gene expression in a cdk4-independent manner. In liver and breast cancer cells, knockdown of cyclin D1 leads to increased PPARα transcriptional activity, expression of PPARα target genes, and fatty acid oxidation. Similarly, cyclin D1 depletion enhances binding of PPARα to target sequences by chromatin immunoprecipitation. In proliferating hepatocytes and regenerating liver in vivo, induction of endogenous cyclin D1 is associated with diminished PPARα activity. Cyclin D1 expression is both necessary and sufficient for growth factor-mediated repression of fatty acid oxidation in proliferating hepatocytes. These studies indicate that in addition to playing a pivotal role in cell cycle progression, cyclin D1 represses PPARα activity and inhibits fatty acid oxidation. Our findings establish a new link between cyclin D1 and metabolism in both tumor cells and physiologic hepatocyte proliferation.
Collapse
Affiliation(s)
- Sushama Kamarajugadda
- Gastroenterology Division, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| | - Jennifer R Becker
- Minneapolis Medical Research Foundation, Minneapolis, MN, 55404, USA
| | - Eric A Hanse
- Minneapolis Medical Research Foundation, Minneapolis, MN, 55404, USA
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mara T Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Lisa K Mullany
- Minneapolis Medical Research Foundation, Minneapolis, MN, 55404, USA
| | - Jeffrey H Albrecht
- Gastroenterology Division, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| |
Collapse
|
30
|
Dairy Consumption and Body Mass Index Among Adults: Mendelian Randomization Analysis of 184802 Individuals from 25 Studies. Clin Chem 2017; 64:183-191. [PMID: 29187356 DOI: 10.1373/clinchem.2017.280701] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/10/2017] [Indexed: 11/06/2022]
Abstract
BACKGROUND Associations between dairy intake and body mass index (BMI) have been inconsistently observed in epidemiological studies, and the causal relationship remains ill defined. METHODS We performed Mendelian randomization (MR) analysis using an established dairy intake-associated genetic polymorphism located upstream of the lactase gene (LCT-13910 C/T, rs4988235) as an instrumental variable (IV). Linear regression models were fitted to analyze associations between (a) dairy intake and BMI, (b) rs4988235 and dairy intake, and (c) rs4988235 and BMI in each study. The causal effect of dairy intake on BMI was quantified by IV estimators among 184802 participants from 25 studies. RESULTS Higher dairy intake was associated with higher BMI (β = 0.03 kg/m2 per serving/day; 95% CI, 0.00-0.06; P = 0.04), whereas the LCT genotype with 1 or 2 T allele was significantly associated with 0.20 (95% CI, 0.14-0.25) serving/day higher dairy intake (P = 3.15 × 10-12) and 0.12 (95% CI, 0.06-0.17) kg/m2 higher BMI (P = 2.11 × 10-5). MR analysis showed that the genetically determined higher dairy intake was significantly associated with higher BMI (β = 0.60 kg/m2 per serving/day; 95% CI, 0.27-0.92; P = 3.0 × 10-4). CONCLUSIONS The present study provides strong evidence to support a causal effect of higher dairy intake on increased BMI among adults.
Collapse
|
31
|
Christ B, Dahmen U, Herrmann KH, König M, Reichenbach JR, Ricken T, Schleicher J, Ole Schwen L, Vlaic S, Waschinsky N. Computational Modeling in Liver Surgery. Front Physiol 2017; 8:906. [PMID: 29249974 PMCID: PMC5715340 DOI: 10.3389/fphys.2017.00906] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
The need for extended liver resection is increasing due to the growing incidence of liver tumors in aging societies. Individualized surgical planning is the key for identifying the optimal resection strategy and to minimize the risk of postoperative liver failure and tumor recurrence. Current computational tools provide virtual planning of liver resection by taking into account the spatial relationship between the tumor and the hepatic vascular trees, as well as the size of the future liver remnant. However, size and function of the liver are not necessarily equivalent. Hence, determining the future liver volume might misestimate the future liver function, especially in cases of hepatic comorbidities such as hepatic steatosis. A systems medicine approach could be applied, including biological, medical, and surgical aspects, by integrating all available anatomical and functional information of the individual patient. Such an approach holds promise for better prediction of postoperative liver function and hence improved risk assessment. This review provides an overview of mathematical models related to the liver and its function and explores their potential relevance for computational liver surgery. We first summarize key facts of hepatic anatomy, physiology, and pathology relevant for hepatic surgery, followed by a description of the computational tools currently used in liver surgical planning. Then we present selected state-of-the-art computational liver models potentially useful to support liver surgery. Finally, we discuss the main challenges that will need to be addressed when developing advanced computational planning tools in the context of liver surgery.
Collapse
Affiliation(s)
- Bruno Christ
- Molecular Hepatology Lab, Clinics of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Matthias König
- Department of Biology, Institute for Theoretical Biology, Humboldt University of Berlin, Berlin, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Tim Ricken
- Mechanics, Structural Analysis, and Dynamics, TU Dortmund University, Dortmund, Germany
| | - Jana Schleicher
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany.,Department of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany
| | | | - Sebastian Vlaic
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Navina Waschinsky
- Mechanics, Structural Analysis, and Dynamics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
32
|
Minocha S, Villeneuve D, Rib L, Moret C, Guex N, Herr W. Segregated hepatocyte proliferation and metabolic states within the regenerating mouse liver. Hepatol Commun 2017; 1:871-885. [PMID: 29404499 PMCID: PMC5721458 DOI: 10.1002/hep4.1102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 12/20/2022] Open
Abstract
Mammalian partial hepatectomy (PH) induces an orchestrated compensatory hyperplasia, or regeneration, in remaining tissue to restore liver mass; during this process, liver functions are maintained. We probed this process in mice with feeding- and light/dark-entrained animals subjected to sham or PH surgery. Early on (i.e., 10 hours), irrespective of sham or PH surgery, hepatocytes equidistant from the portal and central veins (i.e., midlobular) accumulated the G1-phase cell-division-cycle marker cyclin D1. By 24 hours, however, cyclin D1 disappeared absent PH but was reinforced in midlobular hepatocytes after PH. At 48 hours after PH and 2 hours fasting, synchronously mitotic hepatocytes possessed less glycogen than surrounding nonproliferating hepatocytes. The differential glycogen content generated a conspicuous entangled pattern of proliferating midlobular and nonproliferating periportal and pericentral hepatocytes. The nonproliferating hepatocytes maintained aspects of normal liver properties. Conclusion: In the post-PH regenerating mouse liver, a binary switch segregates midlobular cells to proliferate side-by-side with nonproliferating periportal and pericentral cells, which maintain metabolic functions. Our results also indicate that mechanisms of liver regeneration display evolutionary flexibility. (Hepatology Communications 2017;1:871-885).
Collapse
Affiliation(s)
- Shilpi Minocha
- Center for Integrative Genomics, Génopode University of Lausanne Lausanne Switzerland
| | - Dominic Villeneuve
- Center for Integrative Genomics, Génopode University of Lausanne Lausanne Switzerland
| | - Leonor Rib
- Center for Integrative Genomics, Génopode University of Lausanne Lausanne Switzerland.,Vital-IT Group, SIB Swiss Institute of Bioinformatics, Génopode Lausanne Switzerland.,Present address: Present address for Leonor Rib is the Bioinformatics Center, Department of Biology & Biotech Research and Innovation Center University of Copenhagen Copenhagen Denmark
| | - Catherine Moret
- Center for Integrative Genomics, Génopode University of Lausanne Lausanne Switzerland
| | - Nicolas Guex
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Génopode Lausanne Switzerland
| | - Winship Herr
- Center for Integrative Genomics, Génopode University of Lausanne Lausanne Switzerland
| |
Collapse
|
33
|
Regeneration and Cell Recruitment in an Improved Heterotopic Auxiliary Partial Liver Transplantation Model in the Rat. Transplantation 2017; 101:92-100. [PMID: 28009756 DOI: 10.1097/tp.0000000000001511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Auxiliary partial liver transplantation (APLT) in humans is a therapeutic modality used especially to treat liver failure in children or congenital metabolic disease. Animal models of APLT have helped to explore therapeutic options. Though many groups have suggested improvements, standardizing the surgical procedure has been challenging. Additionally, the question of whether graft livers are reconstituted by recipient-derived cells after transplantation has been controversial. The aim of this study was to improve experimental APLT in rats and to assess cell recruitment in the liver grafts. METHODS To inhibit recipient liver regeneration and to promote graft regeneration, we treated recipients with retrorsine and added arterial anastomosis. Using green fluorescence protein transgenic rats as recipients, we examined liver resident cell recruitment within graft livers by immunofluorescence costaining. RESULTS In the improved APLT model, we achieved well-regenerated grafts that could maintain regeneration for at least 4 weeks. Regarding the cell recruitment, there was no evidence of recipient-derived hepatocyte, cholangiocyte, or hepatic stellate cell recruitment into the graft. Macrophages/monocytes, however, were consistently recruited into the graft and increased over time, which might be related to inflammatory responses. Very few endothelial cells showed colocalization of markers. CONCLUSIONS We have successfully established an improved rat APLT model with arterial anastomosis as a standard technique. Using this model, we have characterized cell recruitment into the regenerating grafts.
Collapse
|
34
|
Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8910821. [PMID: 28210629 PMCID: PMC5292184 DOI: 10.1155/2017/8910821] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/29/2016] [Accepted: 12/27/2016] [Indexed: 12/14/2022]
Abstract
The emerging field of regenerative medicine offers innovative methods of cell therapy and tissue/organ engineering as a novel approach to liver disease treatment. The ultimate scientific foundation of both cell therapy of liver diseases and liver tissue and organ engineering is delivered by the in-depth studies of the cellular and molecular mechanisms of liver regeneration. The cellular mechanisms of the homeostatic and injury-induced liver regeneration are unique. Restoration of the mass of liver parenchyma is achieved by compensatory hypertrophy and hyperplasia of the differentiated parenchymal cells, hepatocytes, while expansion and differentiation of the resident stem/progenitor cells play a minor or negligible role. Participation of blood-borne cells of the bone marrow origin in liver parenchyma regeneration has been proven but does not exceed 1-2% of newly formed hepatocytes. Liver regeneration is activated spontaneously after injury and can be further stimulated by cell therapy with hepatocytes, hematopoietic stem cells, or mesenchymal stem cells. Further studies aimed at improving the outcomes of cell therapy of liver diseases are underway. In case of liver failure, transplantation of engineered liver can become the best option in the foreseeable future. Engineering of a transplantable liver or its major part is an enormous challenge, but rapid progress in induced pluripotency, tissue engineering, and bioprinting research shows that it may be doable.
Collapse
|
35
|
Elchaninov A, Fatkhudinov T, Usman N, Kananykhina E, Arutyunyan I, Makarov A, Bolshakova G, Goldshtein D, Sukhikh G. Molecular Survey of Cell Source Usage during Subtotal Hepatectomy-Induced Liver Regeneration in Rats. PLoS One 2016; 11:e0162613. [PMID: 27631110 PMCID: PMC5025203 DOI: 10.1371/journal.pone.0162613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023] Open
Abstract
Proliferation of hepatocytes is known to be the main process in the hepatectomy-induced liver regrowth; however, in cases of extensive loss it may be insufficient for complete recovery unless supported by some additional sources e.g. mobilization of undifferentiated progenitors. The study was conducted on rat model of 80% subtotal hepatectomy; the objective was to evaluate contributions of hepatocytes and resident progenitor cells to the hepatic tissue recovery via monitoring specific mRNA and/or protein expression levels for a panel of genes implicated in growth, cell differentiation, angiogenesis, and inflammation. Some of the genes showed distinctive temporal expression patterns, which were loosely associated with two waves of hepatocyte proliferation observed at 2 and 7 days after the surgery. Focusing on genes implicated in regulation of the progenitor cell activity, we came across slight increases in expression levels for Sox9 and two genes encoding tumor necrosis factor-like cytokine TWEAK (Tnfsf12) and its receptor Fn14 (Tnfrsf12a). At the same time, no increase in numbers of cytokeratin 19-positive (CK19+) cells was observed in periportal areas, and no CK19+ cells were found in hepatic plates. Since CK19 is thought to be a specific marker of both cholangiocytes and the hepatic progenitor cells, the data indicate a lack of activation of the resident progenitor cells during recovery of hepatic tissue after 80% subtotal hepatectomy. Thus, proliferation of hepatocytes invariably makes the major contribution to the hepatic tissue recovery, although in the cases of subtotal loss this contribution is distinctively modulated. In particular, induction of Sox9 and TWEAK/Fn14 regulatory pathways, conventionally attributed to progenitor cell activation, may incidentally stimulate mitotic activity of hepatocytes.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Timur Fatkhudinov
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
| | - Natalia Usman
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Evgeniya Kananykhina
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
| | - Irina Arutyunyan
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
| | - Andrey Makarov
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Galina Bolshakova
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
| | - Dmitry Goldshtein
- Research Centre of Medical Genetics, 1 Moskvorechie Street, Moscow 115478, Russia
| | - Gennady Sukhikh
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
| |
Collapse
|
36
|
Studer P, da Silva CG, Revuelta Cervantes JM, Mele A, Csizmadia E, Siracuse JJ, Damrauer SM, Peterson CR, Candinas D, Stroka DM, Ma A, Bhasin M, Ferran C. Significant lethality following liver resection in A20 heterozygous knockout mice uncovers a key role for A20 in liver regeneration. Cell Death Differ 2015; 22:2068-77. [PMID: 25976305 PMCID: PMC4816110 DOI: 10.1038/cdd.2015.52] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/24/2015] [Accepted: 03/13/2015] [Indexed: 12/14/2022] Open
Abstract
Hepatic expression of A20, including in hepatocytes, increases in response to injury, inflammation and resection. This increase likely serves a hepatoprotective purpose. The characteristic unfettered liver inflammation and necrosis in A20 knockout mice established physiologic upregulation of A20 as integral to the anti-inflammatory and anti-apoptotic armamentarium of hepatocytes. However, the implication of physiologic upregulation of A20 in modulating hepatocytes' proliferative responses following liver resection remains controversial. To resolve the impact of A20 on hepatocyte proliferation and the liver's regenerative capacity, we examined whether decreased A20 expression, as in A20 heterozygous knockout mice, affects outcome following two-third partial hepatectomy. A20 heterozygous mice do not demonstrate a striking liver phenotype, indicating that their A20 expression levels are still sufficient to contain inflammation and cell death at baseline. However, usually benign partial hepatectomy provoked a staggering lethality (>40%) in these mice, uncovering an unsuspected phenotype. Heightened lethality in A20 heterozygous mice following partial hepatectomy resulted from impaired hepatocyte proliferation due to heightened levels of cyclin-dependent kinase inhibitor, p21, and deficient upregulation of cyclins D1, E and A, in the context of worsened liver steatosis. A20 heterozygous knockout minimally affected baseline liver transcriptome, mostly circadian rhythm genes. Nevertheless, this caused differential expression of >1000 genes post hepatectomy, hindering lipid metabolism, bile acid biosynthesis, insulin signaling and cell cycle, all critical cellular processes for liver regeneration. These results demonstrate that mere reduction of A20 levels causes worse outcome post hepatectomy than full knockout of bona fide liver pro-regenerative players such as IL-6, clearly ascertaining A20's primordial role in enabling liver regeneration. Clinical implications of these data are of utmost importance as they caution safety of extensive hepatectomy for donation or tumor in carriers of A20/TNFAIP3 single nucleotide polymorphisms alleles that decrease A20 expression or function, and prompt the development of A20-based liver pro-regenerative therapies.
Collapse
Affiliation(s)
- P Studer
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland
| | - C G da Silva
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J M Revuelta Cervantes
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - A Mele
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - E Csizmadia
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J J Siracuse
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - S M Damrauer
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - C R Peterson
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - D Candinas
- Department of Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland
| | - D M Stroka
- Department of Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland
| | - A Ma
- Division of Interdisciplinary Medicine and Biotechnology, Bioinformatics core, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M Bhasin
- Division of Gastroenterology, Department of Medicine, University of California in San Francisco, San Fransisco, CA, USA
| | - C Ferran
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Melgar-Lesmes P, Edelman ER. Monocyte-endothelial cell interactions in the regulation of vascular sprouting and liver regeneration in mouse. J Hepatol 2015; 63:917-25. [PMID: 26022689 PMCID: PMC4575901 DOI: 10.1016/j.jhep.2015.05.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/21/2015] [Accepted: 05/11/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Regeneration of the hepatic mass is crucial to liver repair. Proliferation of hepatic parenchyma is intimately dependent on angiogenesis and resident macrophage-derived cytokines. However the role of circulating monocyte interactions in vascular and hepatic regeneration is not well-defined. We investigated the role of these interactions in regeneration in the presence and absence of intact monocyte adhesion. METHODS Partial hepatectomy was performed in wild-type mice and those lacking the monocyte adhesion molecule CD11b. Vascular architecture, angiogenesis and macrophage location were analyzed in the whole livers using simultaneous angiography and macrophage staining with fluorescent multiphoton microscopy. Monocyte adhesion molecule expression and sprouting-related pathways were evaluated. RESULTS Resident macrophages (Kupffer cells) did not migrate to interact with vessels whereas infiltrating monocytes were found adjacent to sprouting points. Infiltrated monocytes colocalized with Wnt5a, angiopoietin 1 and Notch-1 in contact points and commensurate with phosphorylation and disruption of VE-cadherin. Mice deficient in CD11b showed a severe reduction in angiogenesis, liver mass regeneration and survival following partial hepatectomy, and developed unstable and leaky vessels that eventually produced an aberrant hepatic vascular network and Kupffer cell distribution. CONCLUSIONS Direct vascular interactions of infiltrating monocytes are required for an ordered vascular growth and liver regeneration. These outcomes provide insight into hepatic repair and new strategies for hepatic regeneration.
Collapse
Affiliation(s)
- Pedro Melgar-Lesmes
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, US,Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, US
| |
Collapse
|
38
|
Hu M, Zou Y, Nambiar SM, Lee J, Yang Y, Dai G. Keap1 modulates the redox cycle and hepatocyte cell cycle in regenerating liver. Cell Cycle 2015; 13:2349-58. [PMID: 25483186 DOI: 10.4161/cc.29298] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Keap1 negatively controls the activity of transcription factor Nrf2. This Keap1/Nrf2 pathway plays a critical role in combating oxidative stress. We aimed at determining whether and how Keap1 modulates the cell cycle of replicating hepatocytes during liver regeneration. Two-thirds partial hepatectomy (PH) was performed on wild-type mice and Keap1+/- (Keap1 knockdown) mice. We found that, following PH, Keap1 knockdown resulted in a delay in S-phase entry, disruption of S-phase progression, and loss of mitotic rhythm of replicating hepatocytes. These events are associated with dysregulation of c-Met, EGFR, Akt1, p70S6K, Cyclin A2, and Cyclin B1 in regenerating livers. Astonishingly, normal regenerating livers exhibited the redox fluctuation coupled with hepatocyte cell cycle progression, while keeping Nrf2 quiescent. Keap1 knockdown caused severe disruption in both the redox cycle and the cell cycle of replicating hepatocytes. Thus, we demonstrate that Keap1 is a potent regulator of hepatic redox cycle and hepatocyte cell cycle during liver regeneration.
Collapse
Affiliation(s)
- Min Hu
- a Department of Pharmacology; Anhui Medical University; Hefei, China
| | | | | | | | | | | |
Collapse
|
39
|
Edelmann S, Fahrner R, Malinka T, Song BH, Stroka D, Mermod N. Nuclear Factor I-C acts as a regulator of hepatocyte proliferation at the onset of liver regeneration. Liver Int 2015; 35:1185-94. [PMID: 25293436 DOI: 10.1111/liv.12697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 10/01/2014] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Knockout studies of the murine Nuclear Factor I-C (NFI-C) transcription factor revealed abnormal skin wound healing and growth of its appendages, suggesting a role in controlling cell proliferation in adult regenerative processes. Liver regeneration following partial hepatectomy (PH) is a well-established regenerative model whereby changes elicited in hepatocytes lead to their rapid and phased proliferation. Although NFI-C is highly expressed in the liver, no hepatic function was yet established for this transcription factor. This study aimed to determine whether NFI-C may play a role in hepatocyte proliferation and liver regeneration. METHODS Liver regeneration and cell proliferation pathways following two-thirds PH were investigated in NFI-C knockout (ko) and wild-type (wt) mice. RESULTS We show that the absence of NFI-C impaired hepatocyte proliferation because of plasminogen activator I (PAI-1) overexpression and the subsequent suppression of urokinase plasminogen activator (uPA) activity and hepatocyte growth factor (HGF) signalling, a potent hepatocyte mitogen. This indicated that NFI-C first acts to promote hepatocyte proliferation at the onset of liver regeneration in wt mice. The subsequent transient down regulation of NFI-C, as can be explained by a self-regulatory feedback loop with transforming growth factor beta 1 (TGF-ß1), may limit the number of hepatocytes entering the first wave of cell division and/or prevent late initiations of mitosis. CONCLUSION NFI-C acts as a regulator of the phased hepatocyte proliferation during liver regeneration.
Collapse
Affiliation(s)
- Simone Edelmann
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
40
|
Zou Y, Hu M, Lee J, Nambiar SM, Garcia V, Bao Q, Chan JY, Dai G. Nrf2 is essential for timely M phase entry of replicating hepatocytes during liver regeneration. Am J Physiol Gastrointest Liver Physiol 2015; 308:G262-8. [PMID: 25524062 PMCID: PMC4329475 DOI: 10.1152/ajpgi.00332.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates various cellular activities, including redox balance, detoxification, metabolism, autophagy, proliferation, and apoptosis. Several studies have demonstrated that Nrf2 regulates hepatocyte proliferation during liver regeneration. The aim of this study was to investigate how Nrf2 modulates the cell cycle of replicating hepatocytes in regenerating livers. Wild-type and Nrf2 null mice were subjected to 2/3 partial hepatectomy (PH) and killed at multiple time points for various analyses. Nrf2 null mice exhibited delayed liver regrowth, although the lost liver mass was eventually restored 7 days after PH. Nrf2 deficiency did not affect the number of hepatocytes entering the cell cycle but did delay hepatocyte mitosis. Mechanistically, the lack of Nrf2 resulted in increased mRNA and protein levels of hepatic cyclin A2 when the remaining hepatocytes were replicating in response to PH. Moreover, Nrf2 deficiency in regenerating livers caused dysregulation of Wee1, Cdc2, and cyclin B1 mRNA and protein expression, leading to decreased Cdc2 activity. Thus, Nrf2 is required for timely M phase entry of replicating hepatocytes by ensuring proper regulation of cyclin A2 and the Wee1/Cdc2/cyclin B1 pathway during liver regeneration.
Collapse
Affiliation(s)
- Yuhong Zou
- 1Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana;
| | - Min Hu
- 1Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana; ,2Department of Pathology, Anhui University of Traditional Chinese Medicine, Hefei, China; and
| | - Joonyong Lee
- 1Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana;
| | - Shashank Manohar Nambiar
- 1Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana;
| | - Veronica Garcia
- 1Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana;
| | - Qi Bao
- 1Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana;
| | - Jefferson Y. Chan
- 3Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, California
| | - Guoli Dai
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana;
| |
Collapse
|
41
|
Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc Natl Acad Sci U S A 2014; 111:13409-14. [PMID: 25197050 DOI: 10.1073/pnas.1415287111] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Whole-chromosome copy number alterations, also known as aneuploidy, are associated with adverse consequences in most cells and organisms. However, high frequencies of aneuploidy have been reported to occur naturally in the mammalian liver and brain, fueling speculation that aneuploidy provides a selective advantage in these organs. To explore this paradox, we used single cell sequencing to obtain a genome-wide, high-resolution assessment of chromosome copy number alterations in mouse and human tissues. We find that aneuploidy occurs much less frequently in the liver and brain than previously reported and is no more prevalent in these tissues than in skin. Our results highlight the rarity of chromosome copy number alterations across mammalian tissues and argue against a positive role for aneuploidy in organ function. Cancer is therefore the only known example, in mammals, of altering karyotype for functional adaptation.
Collapse
|
42
|
Jeon M, Kwon HJ, Kim YH, Han KI, Nam KW, Baik Y, Lee S, Kim WJ, Han MD. Pretreatment with recombinant human interleukin 2 (rhIL-2) Up-regulates PCNA-positive cells after partial hepatectomy in rat liver. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0667-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Fu L, Kettner NM. The circadian clock in cancer development and therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:221-82. [PMID: 23899600 PMCID: PMC4103166 DOI: 10.1016/b978-0-12-396971-2.00009-9] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The central and peripheral clocks coordinately generate rhythmic gene expression in a tissue-specific manner in vivo to couple diverse physiological and behavioral processes to periodic changes in the environment. However, with the industrialization of the world, activities that disrupt endogenous homeostasis with external circadian cues have increased. This change in lifestyle has been linked to an increased risk of diseases in all aspects of human health, including cancer. Studies in humans and animal models have revealed that cancer development in vivo is closely associated with the loss of circadian homeostasis in energy balance, immune function, and aging, which are supported by cellular functions important for tumor suppression including cell proliferation, senescence, metabolism, and DNA damage response. The clock controls these cellular functions both locally in cells of peripheral tissues and at the organismal level via extracellular signaling. Thus, the hierarchical mammalian circadian clock provides a unique system to study carcinogenesis as a deregulated physiological process in vivo. The asynchrony between host and malignant tissues in cell proliferation and metabolism also provides new and exciting options for novel anticancer therapies.
Collapse
Affiliation(s)
- Loning Fu
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Nicole M. Kettner
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
44
|
Wang S, Hyun J, Youn B, Jung Y. Hedgehog Signaling Regulates the Repair Response in Mouse Liver Damaged by Irradiation. Radiat Res 2013; 179:69-75. [DOI: 10.1667/rr3091.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
45
|
Lagomarsino A. Liver regeneration in nonalcoholic fatty liver disease. Medwave 2012. [DOI: 10.5867/medwave.2012.11.5559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|