1
|
Bchetnia M, Powell J, McCuaig C, Boucher-Lafleur AM, Morin C, Dupéré A, Laprise C. Pathological Mechanisms Involved in Epidermolysis Bullosa Simplex: Current Knowledge and Therapeutic Perspectives. Int J Mol Sci 2024; 25:9495. [PMID: 39273442 PMCID: PMC11394917 DOI: 10.3390/ijms25179495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Epidermolysis bullosa (EB) is a clinically and genetically heterogeneous group of mechanobullous diseases characterized by non-scarring blisters and erosions on the skin and mucous membranes upon mechanical trauma. The simplex form (EBS) is characterized by recurrent blister formation within the basal layer of the epidermis. It most often results from dominant mutations in the genes coding for keratin (K) 5 or 14 proteins (KRT5 and KRT14). A disruptive mutation in KRT5 or KRT14 will not only structurally impair the cytoskeleton, but it will also activate a cascade of biochemical mechanisms contributing to EBS. Skin lesions are painful and disfiguring and have a significant impact on life quality. Several gene expression studies were accomplished on mouse model and human keratinocytes to define the gene expression signature of EBS. Several key genes associated with EBS were identified as specific immunological mediators, keratins, and cell junction components. These data deepened the understanding of the EBS pathophysiology and revealed important functional biological processes, particularly inflammation. This review emphasizes the three EBS subtypes caused by dominant mutations on either KRT5 or KRT14 (localized, intermediate, and severe). It aims to summarize current knowledge about the EBS expression profiling pattern and predicted molecular mechanisms involved and to outline progress in therapy.
Collapse
Affiliation(s)
- Mbarka Bchetnia
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada
- Centre Intersectoriel en Santé Durable, Saguenay, QC G7H 2B1, Canada
| | - Julie Powell
- CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | | | - Anne-Marie Boucher-Lafleur
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada
- Centre Intersectoriel en Santé Durable, Saguenay, QC G7H 2B1, Canada
| | - Charles Morin
- Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 7K9, Canada
| | - Audrey Dupéré
- Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 7K9, Canada
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada
- Centre Intersectoriel en Santé Durable, Saguenay, QC G7H 2B1, Canada
| |
Collapse
|
2
|
Koh R, Szeverenyi I, Lunny DP, Eng GH, Lane EB. Loss of keratin 14 expression from immortalized keratinocytes by promoter methylation. Exp Dermatol 2024; 33:e15143. [PMID: 39073059 PMCID: PMC11605495 DOI: 10.1111/exd.15143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 07/30/2024]
Abstract
Immortalized keratinocytes can offer a low-cost experimental platform for human skin research, with increased cell yield compared to primary cultures. However, the usefulness of these surrogate cell models is highly dependent on their ability to retain the phenotypic attributes of the parent cells. Keratins K14 and K5 are the hallmarks of undifferentiated, mitotically active basal keratinocytes. We observed occasional progressive loss of K14 expression in growing keratinocyte cell lines, with persistent retention of K5 and an epithelial phenotype, and investigated possible reasons for this. We show that K14 repression occurs by DNA promoter methylation of KRT14 gene and is compounded by histone deacetylation and by the presence of EGF. In vivo, keratinocytes shut down K14 synthesis as they commit to terminal differentiation and move from the basal to spinous layer, but by laser-capture microdissection of human epidermis we could detect no evidence of increased selective KRT14 methylation in this normal process. Loss of K14 expression suggests that epidermal identity of cultured keratinocytes can be compromised in certain tissue culture situations, possibly due to the immortalization method and persistent EGF supplementation.
Collapse
Affiliation(s)
- Rosita Koh
- Skin Research Institute of SingaporeSingaporeSingapore
| | - Ildiko Szeverenyi
- Institute of Medical BiologySingaporeSingapore
- Hungarian University of Agriculture and Life SciencesGeorgikon CampusKeszthelyHungary
| | | | - Goi Hui Eng
- Institute of Medical BiologySingaporeSingapore
| | | |
Collapse
|
3
|
Windoffer R, Schwarz N, Yoon S, Piskova T, Scholkemper M, Stegmaier J, Bönsch A, Di Russo J, Leube R. Quantitative mapping of keratin networks in 3D. eLife 2022; 11:75894. [PMID: 35179484 PMCID: PMC8979588 DOI: 10.7554/elife.75894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/15/2022] [Indexed: 11/26/2022] Open
Abstract
Mechanobiology requires precise quantitative information on processes taking place in specific 3D microenvironments. Connecting the abundance of microscopical, molecular, biochemical, and cell mechanical data with defined topologies has turned out to be extremely difficult. Establishing such structural and functional 3D maps needed for biophysical modeling is a particular challenge for the cytoskeleton, which consists of long and interwoven filamentous polymers coordinating subcellular processes and interactions of cells with their environment. To date, useful tools are available for the segmentation and modeling of actin filaments and microtubules but comprehensive tools for the mapping of intermediate filament organization are still lacking. In this work, we describe a workflow to model and examine the complete 3D arrangement of the keratin intermediate filament cytoskeleton in canine, murine, and human epithelial cells both, in vitro and in vivo. Numerical models are derived from confocal airyscan high-resolution 3D imaging of fluorescence-tagged keratin filaments. They are interrogated and annotated at different length scales using different modes of visualization including immersive virtual reality. In this way, information is provided on network organization at the subcellular level including mesh arrangement, density and isotropic configuration as well as details on filament morphology such as bundling, curvature, and orientation. We show that the comparison of these parameters helps to identify, in quantitative terms, similarities and differences of keratin network organization in epithelial cell types defining subcellular domains, notably basal, apical, lateral, and perinuclear systems. The described approach and the presented data are pivotal for generating mechanobiological models that can be experimentally tested.
Collapse
Affiliation(s)
- Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Sungjun Yoon
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Teodora Piskova
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | | | - Johannes Stegmaier
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Andrea Bönsch
- Visual Computing Institute, RWTH Aachen University, Aachen, Germany
| | - Jacopo Di Russo
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
| | - Rudolf Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Prechova M, Adamova Z, Schweizer AL, Maninova M, Bauer A, Kah D, Meier-Menches SM, Wiche G, Fabry B, Gregor M. Plectin-mediated cytoskeletal crosstalk controls cell tension and cohesion in epithelial sheets. J Cell Biol 2022; 221:e202105146. [PMID: 35139142 PMCID: PMC8932528 DOI: 10.1083/jcb.202105146] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
The coordinated interplay of cytoskeletal networks critically determines tissue biomechanics and structural integrity. Here, we show that plectin, a major intermediate filament-based cytolinker protein, orchestrates cortical cytoskeletal networks in epithelial sheets to support intercellular junctions. By combining CRISPR/Cas9-based gene editing and pharmacological inhibition, we demonstrate that in an F-actin-dependent context, plectin is essential for the formation of the circumferential keratin rim, organization of radial keratin spokes, and desmosomal patterning. In the absence of plectin-mediated cytoskeletal cross-linking, the aberrant keratin-desmosome (DSM)-network feeds back to the actin cytoskeleton, which results in elevated actomyosin contractility. Also, by complementing a predictive mechanical model with Förster resonance energy transfer-based tension sensors, we provide evidence that in the absence of cytoskeletal cross-linking, major intercellular junctions (adherens junctions and DSMs) are under intrinsically generated tensile stress. Defective cytoarchitecture and tensional disequilibrium result in reduced intercellular cohesion, associated with general destabilization of plectin-deficient sheets upon mechanical stress.
Collapse
Affiliation(s)
- Magdalena Prechova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Adamova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anna-Lena Schweizer
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster, Germany
| | - Miloslava Maninova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andreas Bauer
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Delf Kah
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Evtushenko NA, Beilin AK, Kosykh AV, Vorotelyak EA, Gurskaya NG. Keratins as an Inflammation Trigger Point in Epidermolysis Bullosa Simplex. Int J Mol Sci 2021; 22:ijms222212446. [PMID: 34830328 PMCID: PMC8624175 DOI: 10.3390/ijms222212446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
Epidermolysis bullosa simplex (EBS) is a group of inherited keratinopathies that, in most cases, arise due to mutations in keratins and lead to intraepidermal ruptures. The cellular pathology of most EBS subtypes is associated with the fragility of the intermediate filament network, cytolysis of the basal layer of the epidermis, or attenuation of hemidesmosomal/desmosomal components. Mutations in keratins 5/14 or in other genes that encode associated proteins induce structural disarrangements of different strengths depending on their locations in the genes. Keratin aggregates display impaired dynamics of assembly and diminished solubility and appear to be the trigger for endoplasmic reticulum (ER) stress upon being phosphorylated by MAPKs. Global changes in cellular signaling mainly occur in cases of severe dominant EBS mutations. The spectrum of changes initiated by phosphorylation includes the inhibition of proteasome degradation, TNF-α signaling activation, deregulated proliferation, abnormal cell migration, and impaired adherence of keratinocytes. ER stress also leads to the release of proinflammatory danger-associated molecular pattern (DAMP) molecules, which enhance avalanche-like inflammation. Many instances of positive feedback in the course of cellular stress and the development of sterile inflammation led to systemic chronic inflammation in EBS. This highlights the role of keratin in the maintenance of epidermal and immune homeostasis.
Collapse
Affiliation(s)
- Nadezhda A. Evtushenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
| | - Arkadii K. Beilin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova 26, 119334 Moscow, Russia;
| | - Anastasiya V. Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
| | - Ekaterina A. Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova 26, 119334 Moscow, Russia;
| | - Nadya G. Gurskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Correspondence:
| |
Collapse
|
6
|
Bressman N, Fudge D. From reductionism to synthesis: The case of hagfish slime. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110610. [PMID: 33971350 DOI: 10.1016/j.cbpb.2021.110610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022]
Abstract
Reductionist strategies aim to understand the mechanisms of complex systems by studying individual parts and their interactions. In this review, we discuss how reductionist approaches have shed light on the structure, function, and production of a complex biomaterial - hagfish defensive slime. Hagfish slime is an extremely dilute hydrogel-like material composed of seawater, mucus, and silk-like proteins that can deploy rapidly. Despite being composed almost entirely of water, hagfish slime has remarkable physical properties, including high strength and toughness. While hagfish slime has a promising future in biomimetics, including the development of eco-friendly high-performance fibers, recreating hagfish slime in the lab has been a difficult challenge. Over the past two decades, reductionist experiments have provided a wealth of information about the individual components of hagfish slime. However, a reductionist approach provides a limited understanding because hagfish defensive slime, like most biological phenomena, is more than just the sum of its parts. We end by providing some thoughts about how the knowledge generated in the last few decades might be synthesized into a working model that can explain hagfish slime structure and function.
Collapse
Affiliation(s)
- Noah Bressman
- Schmid College of Science and Technology, Chapman University, 1 University Dr., Orange, CA 92866, USA.
| | - Douglas Fudge
- Schmid College of Science and Technology, Chapman University, 1 University Dr., Orange, CA 92866, USA
| |
Collapse
|
7
|
Zemljič Jokhadar Š, Stojković B, Vidak M, Sorčan T, Liovic M, Gouveia M, Travasso RDM, Derganc J. Cortical stiffness of keratinocytes measured by lateral indentation with optical tweezers. PLoS One 2021; 15:e0231606. [PMID: 33382707 PMCID: PMC7774922 DOI: 10.1371/journal.pone.0231606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/04/2020] [Indexed: 01/20/2023] Open
Abstract
Keratin intermediate filaments are the principal structural element of epithelial cells. Their importance in providing bulk cellular stiffness is well recognized, but their role in the mechanics of cell cortex is less understood. In this study, we therefore compared the cortical stiffness of three keratinocyte lines: primary wild type cells (NHEK2), immortalized wild type cells (NEB1) and immortalized mutant cells (KEB7). The cortical stiffness was measured by lateral indentation of cells with AOD-steered optical tweezers without employing any moving mechanical elements. The method was validated on fixed cells and Cytochalasin-D treated cells to ensure that the observed variations in stiffness within a single cell line were not a consequence of low measurement precision. The measurements of the cortical stiffness showed that primary wild type cells were significantly stiffer than immortalized wild type cells, which was also detected in previous studies of bulk elasticity. In addition, a small difference between the mutant and the wild type cells was detected, showing that mutation of keratin impacts also the cell cortex. Thus, our results indicate that the role of keratins in cortical stiffness is not negligible and call for further investigation of the mechanical interactions between keratins and elements of the cell cortex.
Collapse
Affiliation(s)
- Špela Zemljič Jokhadar
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Biljana Stojković
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Vidak
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Sorčan
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mirjana Liovic
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marcos Gouveia
- Department of Physics, Centro de Física da Universidade de Coimbra (CFisUC), University of Coimbra, Coimbra, Portugal
| | - Rui D. M. Travasso
- Department of Physics, Centro de Física da Universidade de Coimbra (CFisUC), University of Coimbra, Coimbra, Portugal
| | - Jure Derganc
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
8
|
Abstract
Epidermolysis bullosa (EB) is an inherited, heterogeneous group of rare genetic dermatoses characterized by mucocutaneous fragility and blister formation, inducible by often minimal trauma. A broad phenotypic spectrum has been described, with potentially severe extracutaneous manifestations, morbidity and mortality. Over 30 subtypes are recognized, grouped into four major categories, based predominantly on the plane of cleavage within the skin and reflecting the underlying molecular abnormality: EB simplex, junctional EB, dystrophic EB and Kindler EB. The study of EB has led to seminal advances in our understanding of cutaneous biology. To date, pathogenetic mutations in 16 distinct genes have been implicated in EB, encoding proteins influencing cellular integrity and adhesion. Precise diagnosis is reliant on correlating clinical, electron microscopic and immunohistological features with mutational analyses. In the absence of curative treatment, multidisciplinary care is targeted towards minimizing the risk of blister formation, wound care, symptom relief and specific complications, the most feared of which - and also the leading cause of mortality - is squamous cell carcinoma. Preclinical advances in cell-based, protein replacement and gene therapies are paving the way for clinical successes with gene correction, raising hopes amongst patients and clinicians worldwide.
Collapse
|
9
|
Castela E, Tulic MK, Rozières A, Bourrat E, Nicolas JF, Kanitakis J, Vabres P, Bessis D, Mazereeuw J, Morice-Picard F, Baty D, Berard F, Lacour JP, Passeron T, Chiaverini C. Epidermolysis bullosa simplex generalized severe induces a T helper 17 response and is improved by apremilast treatment. Br J Dermatol 2018; 180:357-364. [PMID: 29932457 DOI: 10.1111/bjd.16897] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Epidermolysis bullosa simplex generalized severe (EBS-gen sev) is a genetic disorder caused by mutation in the KRT5 or KRT14 genes. Although it is usually considered a mechanical disease, recent data argue for additional inflammatory mechanisms. OBJECTIVES To assess the inflammation in the skin of patients with EBS-gen sev. METHODS A first immunohistochemical retrospective study was performed on frozen skin samples from 17 patients with EBS-gen sev. A second multicentre prospective study was conducted on 10 patients with severe EBS-gen sev. Blister fluid and epidermis were processed for immunochemical analysis and quantitative real-time polymerase chain reaction. Cytokine expression was analysed in blister fluid and compared with that in controls. RESULTS Histological analysis showed a constant dermal perivascular CD4+ lymphocyte infiltrate in skin biopsies of both blister (n = 17) and rubbed skin (n = 5), an epidermal infiltration of neutrophils and eosinophils in 70% of cases, and increased immunostaining for CXCL9 and CXCL10 in blistering skin. High levels of T helper 17 cytokines were detected in lesional skin. Three adult patients with EBS-gen sev were treated with apremilast, with a dramatic improvement of skin blistering and good tolerance. CONCLUSIONS Our study demonstrates the importance of inflammation in patients with EBS-gen sev and underlines the key role for T helper 17 cells in its pathogenesis. In addition, this study provides promising new therapeutic approaches for this disabling disorder.
Collapse
Affiliation(s)
- E Castela
- Department of Dermatology, CHU de Nice, Hôpital Archet 2, 151 Route de Saint Antoine de Ginestière, 06202 Nice CEDEX 2, France.,INSERM U1111-CIRI851, Université Lyon 1, Lyon, France
| | - M K Tulic
- INSERM U1065, Team 12, C3M, Nice, France
| | - A Rozières
- INSERM U1111-CIRI851, Université Lyon 1, Lyon, France
| | - E Bourrat
- MAGEC, Saint-Louis Hospital, Paris, France
| | - J-F Nicolas
- INSERM U1111-CIRI851, Université Lyon 1, Lyon, France.,Department of Allergology and Clinical Immunology, Hospices Civils de Lyon, Lyon, France
| | - J Kanitakis
- Department of Dermatology , Hospices Civils de Lyon, Lyon, France.,Department of Pathology, Hospices Civils de Lyon, Lyon, France
| | - P Vabres
- Department of Dermatology, CHU de Dijon, Dijon, France
| | - D Bessis
- Department of Dermatology, CHU de Montpellier, Montpellier, France
| | | | | | - D Baty
- Scottish Molecular Genetics Consortium, Ninewells Hospital, Dundee, U.K
| | - F Berard
- Department of Allergology and Clinical Immunology, Hospices Civils de Lyon, Lyon, France
| | - J-P Lacour
- Department of Dermatology, CHU de Nice, Hôpital Archet 2, 151 Route de Saint Antoine de Ginestière, 06202 Nice CEDEX 2, France.,CREBHN, CHU de Nice, Nice, France
| | - T Passeron
- Department of Dermatology, CHU de Nice, Hôpital Archet 2, 151 Route de Saint Antoine de Ginestière, 06202 Nice CEDEX 2, France.,INSERM U1065, Team 12, C3M, Nice, France
| | - C Chiaverini
- Department of Dermatology, CHU de Nice, Hôpital Archet 2, 151 Route de Saint Antoine de Ginestière, 06202 Nice CEDEX 2, France.,CREBHN, CHU de Nice, Nice, France
| |
Collapse
|
10
|
Quinlan RA, Schwarz N, Windoffer R, Richardson C, Hawkins T, Broussard JA, Green KJ, Leube RE. A rim-and-spoke hypothesis to explain the biomechanical roles for cytoplasmic intermediate filament networks. J Cell Sci 2018; 130:3437-3445. [PMID: 29032358 DOI: 10.1242/jcs.202168] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022] Open
Abstract
Textbook images of keratin intermediate filament (IF) networks in epithelial cells and the functional compromization of the epidermis by keratin mutations promulgate a mechanical role for this important cytoskeletal component. In stratified epithelia, keratin filaments form prominent radial spokes that are focused onto cell-cell contact sites, i.e. the desmosomes. In this Hypothesis, we draw attention to a subset of keratin filaments that are apposed to the plasma membrane. They form a rim of filaments interconnecting the desmosomes in a circumferential network. We hypothesize that they are part of a rim-and-spoke arrangement of IFs in epithelia. From our review of the literature, we extend this functional role for the subplasmalemmal rim of IFs to any cell, in which plasma membrane support is required, provided these filaments connect directly or indirectly to the plasma membrane. Furthermore, cytoplasmic IF networks physically link the outer nuclear and plasma membranes, but their participation in mechanotransduction processes remain largely unconsidered. Therefore, we also discuss the potential biomechanical and mechanosensory role(s) of the cytoplasmic IF network in terms of such a rim (i.e. subplasmalemmal)-and-spoke arrangement for cytoplasmic IF networks.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK .,Biophysical Sciences Institute, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Nicole Schwarz
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| | - Reinhard Windoffer
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| | - Christine Richardson
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Tim Hawkins
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Joshua A Broussard
- Dept. of Pathology W127, Tarry Bldg, Room 3-735, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Kathleen J Green
- Dept. of Pathology W127, Tarry Bldg, Room 3-735, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Rudolf E Leube
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| |
Collapse
|
11
|
Sawant M, Schwarz N, Windoffer R, Magin TM, Krieger J, Mücke N, Obara B, Jankowski V, Jankowski J, Wally V, Lettner T, Leube RE. Threonine 150 Phosphorylation of Keratin 5 Is Linked to Epidermolysis Bullosa Simplex and Regulates Filament Assembly and Cell Viability. J Invest Dermatol 2017; 138:627-636. [PMID: 29080682 DOI: 10.1016/j.jid.2017.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/11/2017] [Accepted: 10/08/2017] [Indexed: 10/18/2022]
Abstract
A characteristic feature of the skin blistering disease epidermolysis bullosa simplex is keratin filament (KF) network collapse caused by aggregation of the basal epidermal keratin type II (KtyII) K5 and its type I partner keratin 14 (K14). Here, we examine the role of keratin phosphorylation in KF network rearrangement and cellular functions. We detect phosphorylation of the K5 head domain residue T150 in cytoplasmic epidermolysis bullosa simplex granules containing R125C K14 mutants. Expression of phosphomimetic T150D K5 mutants results in impaired KF formation in keratinocytes. The phenotype is enhanced upon combination with other phosphomimetic K5 head domain mutations. Remarkably, introduction of T150D K5 mutants into KtyII-lacking (KtyII-/-) keratinocytes prevents keratin network formation altogether. In contrast, phosphorylation-deficient T150A K5 leads to KFs with reduced branching and turnover. Assembly of T150D K5 is arrested at the heterotetramer stage coinciding with increased heat shock protein association. Finally, reduced cell viability and elevated response to stressors is noted in T150 mutant cells. Taken together, our findings identify T150 K5 phosphorylation as an important determinant of KF network formation and function with a possible role in epidermolysis bullosa simplex pathogenesis.
Collapse
Affiliation(s)
- Mugdha Sawant
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Thomas M Magin
- Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Jan Krieger
- Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Norbert Mücke
- Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Boguslaw Obara
- School of Engineering and Computing Sciences, Durham University, Durham, UK
| | - Vera Jankowski
- Institut für Molekulare Herz-Kreislaufforschung, RWTH Aachen University, Aachen, Germany
| | - Joachim Jankowski
- Institut für Molekulare Herz-Kreislaufforschung, RWTH Aachen University, Aachen, Germany; School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Thomas Lettner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
12
|
Keratin gene mutations influence the keratinocyte response to DNA damage and cytokine induced apoptosis. Arch Dermatol Res 2017. [DOI: 10.1007/s00403-017-1757-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Consequences of Keratin Phosphorylation for Cytoskeletal Organization and Epithelial Functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 330:171-225. [DOI: 10.1016/bs.ircmb.2016.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Tan TS, Ng YZ, Badowski C, Dang T, Common JEA, Lacina L, Szeverényi I, Lane EB. Assays to Study Consequences of Cytoplasmic Intermediate Filament Mutations: The Case of Epidermal Keratins. Methods Enzymol 2016; 568:219-53. [PMID: 26795473 DOI: 10.1016/bs.mie.2015.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The discovery of the causative link between keratin mutations and a growing number of human diseases opened the way for a better understanding of the function of the whole intermediate filament families of cytoskeleton proteins. This chapter describes analytical approaches to identification and interpretation of the consequences of keratin mutations, from the clinical and diagnostic level to cells in tissue culture. Intermediate filament pathologies can be accurately diagnosed from skin biopsies and DNA samples. The Human Intermediate Filament Database collates reported mutations in intermediate filament genes and their diseases, and can help clinicians to establish accurate diagnoses, leading to disease stratification for genetic counseling, optimal care delivery, and future mutation-aligned new therapies. Looking at the best-studied keratinopathy, epidermolysis bullosa simplex, the generation of cell lines mimicking keratinopathies is described, in which tagged mutant keratins facilitate live-cell imaging to make use of today's powerful enhanced light microscopy modalities. Cell stress assays such as cell spreading and cell migration in scratch wound assays can interrogate the consequences of the compromised cytoskeletal network. Application of extrinsic stresses, such as heat, osmotic, or mechanical stress, can enhance the differentiation of mutant keratin cells from wild-type cells. To bring the experiments to the next level, 3D organotypic human cultures can be generated, and even grafted onto the backs of immunodeficient mice for greater in vivo relevance. While development of these assays has focused on mutant K5/K14 cells, the approaches are often applicable to mutations in other intermediate filaments, reinforcing fundamental commonalities in spite of diverse clinical pathologies.
Collapse
Affiliation(s)
| | | | | | - Tram Dang
- Institute of Medical Biology, Singapore
| | | | | | | | | |
Collapse
|
15
|
Schwarz N, Moch M, Windoffer R, Leube RE. Multidimensional Monitoring of Keratin Intermediate Filaments in Cultured Cells and Tissues. Methods Enzymol 2015; 568:59-83. [PMID: 26795467 DOI: 10.1016/bs.mie.2015.07.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Keratin filaments are a hallmark of epithelial differentiation. Their cell type-specific spatial organization and dynamic properties reflect and support epithelial function. To study this interdependency, imaging of fluorescently tagged keratins is a widely used method by which the temporospatial organization and behavior of the keratin intermediate filament network can be analyzed in living cells. Here, we describe methods that have been adapted and optimized to dissect and quantify keratin intermediate filament network dynamics in vital cultured cells and functional tissues.
Collapse
Affiliation(s)
- Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Marcin Moch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
16
|
Jahnel O, Hoffmann B, Merkel R, Bossinger O, Leube RE. Mechanical Probing of the Intermediate Filament-Rich Caenorhabditis Elegans Intestine. Methods Enzymol 2015; 568:681-706. [PMID: 26795489 DOI: 10.1016/bs.mie.2015.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is commonly accepted that intermediate filaments have an important mechanical function. This function relies not only on intrinsic material properties but is also determined by dynamic interactions with other cytoskeletal filament systems, distinct cell adhesion sites, and cellular organelles which are fine-tuned by multiple signaling pathways. While aspects of these properties and processes can be studied in vitro, their full complexity can only be understood in a viable tissue context. Yet, suitable and easily accessible model systems for monitoring tissue mechanics at high precision are rare. We show that the dissected intestine of the genetic model organism Caenorhabditis elegans fulfills this requirement. The 20 intestinal cells, which are arranged in an invariant fashion, are characterized by a dense subapical mesh of intermediate filaments that are attached to the C. elegans apical junction. We present procedures to visualize details of the characteristic intermediate filament-junctional complex arrangement in living animals. We then report on methods to prepare intestines with a fully intact intermediate filament cytoskeleton and detail procedures to assess their viability. A dual micropipette assay is described to measure mechanical properties of the dissected intestine while monitoring the spatial arrangement of the intermediate filament system. Advantages of this approach are (i) the high reproducibility of measurements because of the uniform architecture of the intestine and (ii) the high degree of accessibility allowing not only mechanical manipulation of an intact tissue but also control of culture medium composition and addition of drugs as well as visualization of cell structures. With this method, examination of worms carrying mutations in the intermediate filament system, its interacting partners and its regulators will become feasible.
Collapse
Affiliation(s)
- Oliver Jahnel
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Bernd Hoffmann
- Institute of Complex Systems, ICS-7: Biomechanics, Jülich, Germany
| | - Rudolf Merkel
- Institute of Complex Systems, ICS-7: Biomechanics, Jülich, Germany
| | - Olaf Bossinger
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
17
|
Homberg M, Ramms L, Schwarz N, Dreissen G, Leube RE, Merkel R, Hoffmann B, Magin TM. Distinct Impact of Two Keratin Mutations Causing Epidermolysis Bullosa Simplex on Keratinocyte Adhesion and Stiffness. J Invest Dermatol 2015; 135:2437-2445. [DOI: 10.1038/jid.2015.184] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/10/2015] [Accepted: 04/25/2015] [Indexed: 12/20/2022]
|
18
|
Abstract
Hagfishes thwart attacks by fish predators by producing liters of defensive slime. The slime is produced when slime gland exudate is released into the predator's mouth, where it deploys in a fraction of a second and clogs the gills. Slime exudate is composed mainly of secretory products from two cell types, gland mucous cells and gland thread cells, which produce the mucous and fibrous components of the slime, respectively. Here, we review what is known about the composition of the slime, morphology of the slime gland, and physiology of the cells that produce the slime. We also discuss several of the mechanisms involved in the deployment of both mucous and thread cells during the transition from thick glandular exudate to ultradilute material. We review biomechanical aspects of the slime, along with recent efforts to produce biomimetic slime thread analogs, and end with a discussion of how hagfish slime may have evolved.
Collapse
Affiliation(s)
- Douglas S. Fudge
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Sarah Schorno
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Shannon Ferraro
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
19
|
Regulation of keratin network organization. Curr Opin Cell Biol 2015; 32:56-64. [PMID: 25594948 DOI: 10.1016/j.ceb.2014.12.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/10/2014] [Accepted: 12/19/2014] [Indexed: 12/31/2022]
Abstract
Keratins form the major intermediate filament cytoskeleton of epithelia and are assembled from heterodimers of 28 type I and 26 type II keratins in cell- and differentiation-dependent patterns. By virtue of their primary sequence composition, interactions with cell adhesion complexes and components of major signaling cascades, keratins act as targets and effectors of mechanical force and chemical signals to determine cell mechanics, epithelial cohesion and modulate signaling in keratin isotype-specific manners. Therefore, cell-specific keratin expression and organization impact on cell growth, migration and invasion. Here, we review the recent literature, focusing on the question how keratin networks are regulated and how the interplay of keratins with adhesion complexes affects these processes and provides a framework to understand keratins contribution to blistering and inflammatory disorders and to tumor metastasis.
Collapse
|
20
|
Shin HY, Frechette DM, Rohner N, Zhang X, Puleo DA, Bjursten LM. Dependence of macrophage superoxide release on the pulse amplitude of an applied pressure regime: a potential factor at the soft tissue-implant interface. J Tissue Eng Regen Med 2013; 10:E227-38. [DOI: 10.1002/term.1789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 12/26/2012] [Accepted: 05/27/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Hainsworth Y. Shin
- Center for Biomedical Engineering; University of Kentucky; Lexington KY USA
| | | | - Nathan Rohner
- Center for Biomedical Engineering; University of Kentucky; Lexington KY USA
| | - Xiaoyan Zhang
- Center for Biomedical Engineering; University of Kentucky; Lexington KY USA
| | - David A. Puleo
- Center for Biomedical Engineering; University of Kentucky; Lexington KY USA
| | | |
Collapse
|
21
|
The Pathogenetic Role of IL-1β in Severe Epidermolysis Bullosa Simplex. J Invest Dermatol 2013; 133:1901-3. [DOI: 10.1038/jid.2013.31] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Affiliation(s)
- Rebecca L Haines
- Epithelial Biology Group, Institute of Medical Biology, Immunos, Singapore
| | | |
Collapse
|
23
|
Pan X, Hobbs RP, Coulombe PA. The expanding significance of keratin intermediate filaments in normal and diseased epithelia. Curr Opin Cell Biol 2013; 25:47-56. [PMID: 23270662 PMCID: PMC3578078 DOI: 10.1016/j.ceb.2012.10.018] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 12/17/2022]
Abstract
Intermediate filaments are assembled from a diverse group of evolutionary conserved proteins and are specified in a tissue-dependent, cell type-dependent, and context-dependent fashion in the body. Genetic mutations in intermediate filament proteins account for a large number of diseases, ranging from skin fragility conditions to cardiomyopathies and premature aging. Keratins, the epithelial-specific intermediate filaments, are now recognized as multi-faceted effectors in their native context. In this review, we emphasize the recent progress made in defining the role of keratins towards the regulation of cytoarchitecture, cell growth and proliferation, apoptosis, and cell motility during embryonic development, in normal adult tissues, and in select diseases such as cancer.
Collapse
Affiliation(s)
- Xiaoou Pan
- Dept. of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ryan P. Hobbs
- Dept. of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Pierre A. Coulombe
- Dept. of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
24
|
Greenberg DA, Fudge DS. Regulation of hard α-keratin mechanics via control of intermediate filament hydration: matrix squeeze revisited. Proc Biol Sci 2012; 280:20122158. [PMID: 23135675 DOI: 10.1098/rspb.2012.2158] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mammalian hard α-keratins are fibre-reinforced biomaterials that consist of 10 nm intermediate filaments (IFs) embedded in an elastomeric protein matrix. Recent work suggests that the mechanical properties of IFs are highly sensitive to hydration, whereas hard α-keratins such as wool, hair and nail are relatively hydration insensitive. This raises the question of how mammalian keratins remain stiff in water. The matrix squeeze hypothesis states that the IFs in hard α-keratins are stiffened during an air-drying step during keratinization, and subsequently locked into a dehydrated state via the oxidation and cross-linking of the keratin matrix around them. The result is that even when hard α-keratins are immersed in water, their constituent IFs remain essentially 'dry' and therefore stiff. This hypothesis makes several predictions about the effects of matrix abundance and function on hard α-keratin mechanics and swelling behaviour. Specifically, it predicts that high matrix keratins in water will swell less, and have a higher tensile modulus, a higher yield stress and a lower dry-to-wet modulus ratio. It also predicts that disruption of the keratin matrix in water should lead to additional swelling, and a drop in modulus and yield stress. Our results are consistent with these predictions and suggest that the keratin matrix plays a critical role in governing the mechanical properties of mammalian keratins via control of IF hydration.
Collapse
Affiliation(s)
- Daniel A Greenberg
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada
| | | |
Collapse
|
25
|
Zupancic T, Ozir M, Törmä H, Komel R, Liovic M. Keratinocyte-based cell assays: their potential pitfalls. Arch Dermatol Res 2012; 304:765-8. [PMID: 22983161 DOI: 10.1007/s00403-012-1285-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 08/23/2012] [Accepted: 08/28/2012] [Indexed: 01/20/2023]
Abstract
As an in vitro model system, patient-derived epidermolysis bullosa simplex keratinocytes have had an immense impact on what we know today about keratin filament function and their role in disease development. In the absence of gene therapy, screening compound libraries for new or better drugs is another approach to improve existing treatments for genodermatoses. However in this study, we report of the potential pitfalls when using this type of cell lines as a "reporter" system. When cell lines with different genetic backgrounds are being used in cell-based assays, the greatest obstacle is to determine the most appropriate culture conditions (i.e., the composition of medium, number of cells plated and number of days in culture). We demonstrate how culture conditions can greatly interfere with the cellular response in cell-based assays (cell proliferation, metabolic activity and migration), potentially also giving rise to misleading data.
Collapse
Affiliation(s)
- Tina Zupancic
- National Institute of Chemistry, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|