1
|
Sobczak JM, Barkovska I, Balke I, Rothen DA, Mohsen MO, Skrastina D, Ogrina A, Martina B, Jansons J, Bogans J, Vogel M, Bachmann MF, Zeltins A. Identifying Key Drivers of Efficient B Cell Responses: On the Role of T Help, Antigen-Organization, and Toll-like Receptor Stimulation for Generating a Neutralizing Anti-Dengue Virus Response. Vaccines (Basel) 2024; 12:661. [PMID: 38932390 PMCID: PMC11209419 DOI: 10.3390/vaccines12060661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
T help (Th), stimulation of toll-like receptors (pathogen-associated molecular patterns, PAMPs), and antigen organization and repetitiveness (pathogen-associated structural patterns, PASPs) were shown numerous times to be important in driving B-cell and antibody responses. In this study, we dissected the individual contributions of these parameters using newly developed "Immune-tag" technology. As model antigens, we used eGFP and the third domain of the dengue virus 1 envelope protein (DV1 EDIII), the major target of virus-neutralizing antibodies. The respective proteins were expressed alone or genetically fused to the N-terminal fragment of the cucumber mosaic virus (CMV) capsid protein-nCMV, rendering the antigens oligomeric. In a step-by-step manner, RNA was attached as a PAMP, and/or a universal Th-cell epitope was genetically added for additional Th. Finally, a PASP was added to the constructs by displaying the antigens highly organized and repetitively on the surface of CMV-derived virus-like particles (CuMV VLPs). Sera from immunized mice demonstrated that each component contributed stepwise to the immunogenicity of both proteins. All components combined in the CuMV VLP platform induced by far the highest antibody responses. In addition, the DV1 EDIII induced high levels of DENV-1-neutralizing antibodies only if displayed on VLPs. Thus, combining multiple cues typically associated with viruses results in optimal antibody responses.
Collapse
Affiliation(s)
- Jan M. Sobczak
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Irena Barkovska
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Ina Balke
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Dominik A. Rothen
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Mona O. Mohsen
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Dace Skrastina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Anete Ogrina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Byron Martina
- Artemis Bioservices, 2629 JD Delft, The Netherlands;
- Protinhi Therapeutics, 6534 AT Nijmegen, The Netherlands
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Monique Vogel
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Martin F. Bachmann
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Andris Zeltins
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| |
Collapse
|
2
|
Pandey KK, Sahoo BR, Pattnaik AK. Protein Nanoparticles as Vaccine Platforms for Human and Zoonotic Viruses. Viruses 2024; 16:936. [PMID: 38932228 PMCID: PMC11209504 DOI: 10.3390/v16060936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Vaccines are one of the most effective medical interventions, playing a pivotal role in treating infectious diseases. Although traditional vaccines comprise killed, inactivated, or live-attenuated pathogens that have resulted in protective immune responses, the negative consequences of their administration have been well appreciated. Modern vaccines have evolved to contain purified antigenic subunits, epitopes, or antigen-encoding mRNAs, rendering them relatively safe. However, reduced humoral and cellular responses pose major challenges to these subunit vaccines. Protein nanoparticle (PNP)-based vaccines have garnered substantial interest in recent years for their ability to present a repetitive array of antigens for improving immunogenicity and enhancing protective responses. Discovery and characterisation of naturally occurring PNPs from various living organisms such as bacteria, archaea, viruses, insects, and eukaryotes, as well as computationally designed structures and approaches to link antigens to the PNPs, have paved the way for unprecedented advances in the field of vaccine technology. In this review, we focus on some of the widely used naturally occurring and optimally designed PNPs for their suitability as promising vaccine platforms for displaying native-like antigens from human viral pathogens for protective immune responses. Such platforms hold great promise in combating emerging and re-emerging infectious viral diseases and enhancing vaccine efficacy and safety.
Collapse
Affiliation(s)
- Kush K. Pandey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.K.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Bikash R. Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.K.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.K.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
3
|
Obozina AS, Komedchikova EN, Kolesnikova OA, Iureva AM, Kovalenko VL, Zavalko FA, Rozhnikova TV, Tereshina ED, Mochalova EN, Shipunova VO. Genetically Encoded Self-Assembling Protein Nanoparticles for the Targeted Delivery In Vitro and In Vivo. Pharmaceutics 2023; 15:231. [PMID: 36678860 PMCID: PMC9861179 DOI: 10.3390/pharmaceutics15010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Targeted nanoparticles of different origins are considered as new-generation diagnostic and therapeutic tools. However, there are no targeted drug formulations within the composition of nanoparticles approved by the FDA for use in the clinic, which is associated with the insufficient effectiveness of the developed candidates, the difficulties of their biotechnological production, and inadequate batch-to-batch reproducibility. Targeted protein self-assembling nanoparticles circumvent this problem since proteins are encoded in DNA and the final protein product is produced in only one possible way. We believe that the combination of the endless biomedical potential of protein carriers as nanoparticles and the standardized protein purification protocols will make significant progress in "magic bullet" creation possible, bringing modern biomedicine to a new level. In this review, we are focused on the currently existing platforms for targeted self-assembling protein nanoparticles based on transferrin, lactoferrin, casein, lumazine synthase, albumin, ferritin, and encapsulin proteins, as well as on proteins from magnetosomes and virus-like particles. The applications of these self-assembling proteins for targeted delivery in vitro and in vivo are thoroughly discussed, including bioimaging applications and different therapeutic approaches, such as chemotherapy, gene delivery, and photodynamic and photothermal therapy. A critical assessment of these protein platforms' efficacy in biomedicine is provided and possible problems associated with their further development are described.
Collapse
Affiliation(s)
| | | | | | - Anna M. Iureva
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Vera L. Kovalenko
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Fedor A. Zavalko
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | | | - Elizaveta N. Mochalova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Victoria O. Shipunova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
4
|
Antimicrobial Potential of the Genera Geobacillus and Parageobacillus, as Well as Endolysins Biosynthesized by Their Bacteriophages. Antibiotics (Basel) 2022; 11:antibiotics11020242. [PMID: 35203843 PMCID: PMC8868475 DOI: 10.3390/antibiotics11020242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 02/05/2023] Open
Abstract
In the recent decades, antibiotic resistance has emerged and spread rapidly among clinically relevant pathogens. The natural ability of bacteria to transmit resistance determinants through horizontal gene transfer poses constant challenges to drug development. Natural molecules produced by soil microorganisms continue to be a key source of new antimicrobial agents. In this context, bacteria from the Geobacillus and Parageobacillus genera deserve special attention. Although there is commercial and industrial interest in these microorganisms, the full range of antibacterial compounds biosynthesized by the Geobacillus and Parageobacillus species remains largely unexplored. The aim of this review is to present the strong antimicrobial potential of these bacteria and endolysins produced by their bacteriophages.
Collapse
|
5
|
Svitek N, Saya R, Zhang H, Nene V, Steinaa L. Systematic Determination of TCR–Antigen and Peptide–MHC Binding Kinetics among Field Variants of a Theileria parva Polymorphic CTL Epitope. THE JOURNAL OF IMMUNOLOGY 2022; 208:549-561. [PMID: 35031580 PMCID: PMC8802549 DOI: 10.4049/jimmunol.2100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022]
Abstract
Positions 1–3 in the Tp9 CTL epitope are required for binding to BoLA-1*023:01. Positions 5–8 in the Tp9 epitope are required for TCR recognition in diverse CTLs. Tp9-specific CTLs from Muguga-immunized animals can cross-react with variants 4 and 7.
CTLs are known to contribute to immunity toward Theileria parva, the causative agent of East Coast fever. The Tp967–75 CTL epitope from the Muguga strain of T. parva is polymorphic in other parasite strains. Identifying the amino acids important for MHC class I binding, as well as TCR recognition of epitopes, can allow the strategic selection of Ags to induce cellular immunity toward T. parva. In this study, we characterized the amino acids important for MHC class I binding and TCR recognition in the Tp967–75 epitope using alanine scanning and a series of variant peptide sequences to probe these interactions. In a peptide–MHC class I binding assay, we found that the amino acids at positions 1, 2, and 3 were critical for binding to its restricting MHC class I molecule BoLA-1*023:01. With IFN-γ ELISPOT and peptide–MHC class I Tet staining assays on two parasite-specific bovine CTL lines, we showed that amino acids at positions 5–8 in the epitope were required for TCR recognition. Only two of eight naturally occurring polymorphic Tp9 epitopes were recognized by both CTLs. Finally, using a TCR avidity assay, we found that a higher TCR avidity was associated with a stronger functional response toward one of two variants recognized by the CTL. These data add to the growing knowledge on the cross-reactivity of epitope-specific CTLs and specificities that may be required in the selection of Ags in the design of a wide-spectrum vaccine for East Coast fever.
Collapse
Affiliation(s)
- Nicholas Svitek
- International Livestock Research Institute, Animal and Human Health Program, Nairobi, Kenya; and
| | - Rosemary Saya
- International Livestock Research Institute, Animal and Human Health Program, Nairobi, Kenya; and
| | - Houshuang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang District, Shanghai, China
| | - Vishvanath Nene
- International Livestock Research Institute, Animal and Human Health Program, Nairobi, Kenya; and
| | - Lucilla Steinaa
- International Livestock Research Institute, Animal and Human Health Program, Nairobi, Kenya; and
| |
Collapse
|
6
|
O'Neill CL, Shrimali PC, Clapacs ZE, Files MA, Rudra JS. Peptide-based supramolecular vaccine systems. Acta Biomater 2021; 133:153-167. [PMID: 34010691 PMCID: PMC8497425 DOI: 10.1016/j.actbio.2021.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Currently approved replication-competent and inactivated vaccines are limited by excessive reactogenicity and poor safety profiles, while subunit vaccines are often insufficiently immunogenic without co-administering exogenous adjuvants. Self-assembling peptide-, peptidomimetic-, and protein-based biomaterials offer a means to overcome these challenges through their inherent modularity, multivalency, and biocompatibility. As these scaffolds are biologically derived and present antigenic arrays reminiscent of natural viruses, they are prone to immune recognition and are uniquely capable of functioning as self-adjuvanting vaccine delivery vehicles that improve humoral and cellular responses. Beyond this intrinsic immunological advantage, the wide range of available amino acids allows for facile de novo design or straightforward modifications to existing sequences. This has permitted the development of vaccines and immunotherapies tailored to specific disease models, as well as generalizable platforms that have been successfully applied to prevent or treat numerous infectious and non-infectious diseases. In this review, we briefly introduce the immune system, discuss the structural determinants of coiled coils, β-sheets, peptide amphiphiles, and protein subunit nanoparticles, and highlight the utility of these materials using notable examples of their innate and adaptive immunomodulatory capacity. STATEMENT OF SIGNIFICANCE: Subunit vaccines have recently gained considerable attention due to their favorable safety profiles relative to traditional whole-cell vaccines; however, their reduced efficacy requires co-administration of reactogenic adjuvants to boost immune responses. This has led to collaborative efforts between engineers and immunologists to develop nanomaterial-based vaccination platforms that can elicit protection without deleterious side effects. Self-assembling peptidic biomaterials are a particularly attractive approach to this problem, as their structure and function can be controlled through primary sequence design and their capacity for multivalent presentation of antigens grants them intrinsic self-adjuvanticity. This review introduces the various architectures adopted by self-assembling peptides and discusses their application as modulators of innate and adaptive immunity.
Collapse
Affiliation(s)
- Conor L O'Neill
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Paresh C Shrimali
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Zoe E Clapacs
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Megan A Files
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States.
| | - Jai S Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| |
Collapse
|
7
|
Felber BK, Lu Z, Hu X, Valentin A, Rosati M, Remmel CAL, Weiner JA, Carpenter MC, Faircloth K, Stanfield-Oakley S, Williams WB, Shen X, Tomaras GD, LaBranche CC, Montefiori D, Trinh HV, Rao M, Alam MS, Vandergrift NA, Saunders KO, Wang Y, Rountree W, Das J, Alter G, Reed SG, Aye PP, Schiro F, Pahar B, Dufour JP, Veazey RS, Marx PA, Venzon DJ, Shaw GM, Ferrari G, Ackerman ME, Haynes BF, Pavlakis GN. Co-immunization of DNA and Protein in the Same Anatomical Sites Induces Superior Protective Immune Responses against SHIV Challenge. Cell Rep 2021; 31:107624. [PMID: 32402293 DOI: 10.1016/j.celrep.2020.107624] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/10/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
We compare immunogenicity and protective efficacy of an HIV vaccine comprised of env and gag DNA and Env (Envelope) proteins by co-administration of the vaccine components in the same muscles or by separate administration of DNA + protein in contralateral sites in female rhesus macaques. The 6-valent vaccine includes gp145 Env DNAs, representing six sequentially isolated Envs from the HIV-infected individual CH505, and matching GLA-SE-adjuvanted gp120 Env proteins. Interestingly, only macaques in the co-administration vaccine group are protected against SHIV CH505 acquisition after repeated low-dose intravaginal challenge and show 67% risk reduction per exposure. Macaques in the co-administration group develop higher Env-specific humoral and cellular immune responses. Non-neutralizing Env antibodies, ADCC, and antibodies binding to FcγRIIIa are associated with decreased transmission risk. These data suggest that simultaneous recognition, processing, and presentation of DNA + Env protein in the same draining lymph nodes play a critical role in the development of protective immunity.
Collapse
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Zhongyan Lu
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Xintao Hu
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | | | - Katelyn Faircloth
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Sherry Stanfield-Oakley
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Wilton B Williams
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Celia C LaBranche
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Hung V Trinh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Munir S Alam
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | | | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Jishnu Das
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Steven G Reed
- Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Pyone P Aye
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Faith Schiro
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Jason P Dufour
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Ronald S Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Preston A Marx
- Tulane National Primate Research Center, and Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - David J Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | | | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
8
|
Butkovich N, Li E, Ramirez A, Burkhardt AM, Wang SW. Advancements in protein nanoparticle vaccine platforms to combat infectious disease. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1681. [PMID: 33164326 PMCID: PMC8052270 DOI: 10.1002/wnan.1681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
Infectious diseases are a major threat to global human health, yet prophylactic treatment options can be limited, as safe and efficacious vaccines exist only for a fraction of all diseases. Notably, devastating diseases such as acquired immunodeficiency syndrome (AIDS) and coronavirus disease of 2019 (COVID-19) currently do not have vaccine therapies. Conventional vaccine platforms, such as live attenuated vaccines and whole inactivated vaccines, can be difficult to manufacture, may cause severe side effects, and can potentially induce severe infection. Subunit vaccines carry far fewer safety concerns due to their inability to cause vaccine-based infections. The applicability of protein nanoparticles (NPs) as vaccine scaffolds is promising to prevent infectious diseases, and they have been explored for a number of viral, bacterial, fungal, and parasitic diseases. Many types of protein NPs exist, including self-assembling NPs, bacteriophage-derived NPs, plant virus-derived NPs, and human virus-based vectors, and these particular categories will be covered in this review. These vaccines can elicit strong humoral and cellular immune responses against specific pathogens, as well as provide protection against infection in a number of animal models. Furthermore, published clinical trials demonstrate the promise of applying these NP vaccine platforms, which include bacteriophage-derived NPs, in addition to multiple viral vectors that are currently used in the clinic. The continued investigations of protein NP vaccine platforms are critical to generate safer alternatives to current vaccines, advance vaccines for diseases that currently lack effective prophylactic therapies, and prepare for the rapid development of new vaccines against emerging infectious diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Nina Butkovich
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697 USA
| | - Enya Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697 USA
| | - Aaron Ramirez
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697 USA
| | - Amanda M. Burkhardt
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089 USA
| | - Szu-Wen Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697 USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92697 USA
| |
Collapse
|
9
|
Effects of persistent modulation of intestinal microbiota on SIV/HIV vaccination in rhesus macaques. NPJ Vaccines 2021; 6:34. [PMID: 33707443 PMCID: PMC7952719 DOI: 10.1038/s41541-021-00298-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
An effective vaccine to prevent HIV transmission has not yet been achieved. Modulation of the microbiome via probiotic therapy has been suggested to result in enhanced mucosal immunity. Here, we evaluated whether probiotic therapy could improve the immunogenicity and protective efficacy of SIV/HIV vaccination. Rhesus macaques were co-immunized with an SIV/HIV DNA vaccine via particle-mediated epidermal delivery and an HIV protein vaccine administered intramuscularly with Adjuplex™ adjuvant, while receiving daily oral Visbiome® probiotics. Probiotic therapy alone led to reduced frequencies of colonic CCR5+ and CCR6+ CD4+ T cells. Probiotics with SIV/HIV vaccination led to similar reductions in colonic CCR5+ CD4+ T cell frequencies. SIV/HIV-specific T cell and antibody responses were readily detected in the periphery of vaccinated animals but were not enhanced with probiotic treatment. Combination probiotics and vaccination did not impact rectal SIV/HIV target populations or reduce the rate of heterologous SHIV acquisition during the intrarectal challenge. Finally, post-infection viral kinetics were similar between all groups. Thus, although probiotics were well-tolerated when administered with SIV/HIV vaccination, vaccine-specific responses were not significantly enhanced. Additional work will be necessary to develop more effective strategies of microbiome modulation in order to enhance mucosal vaccine immunogenicity and improve protective immune responses.
Collapse
|
10
|
Priming with DNA Expressing Trimeric HIV V1V2 Alters the Immune Hierarchy Favoring the Development of V2-Specific Antibodies in Rhesus Macaques. J Virol 2020; 95:JVI.01193-20. [PMID: 33087466 PMCID: PMC7944456 DOI: 10.1128/jvi.01193-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022] Open
Abstract
The RV144 vaccine trial revealed a correlation between reduced risk of HIV infection and the level of nonneutralizing-antibody (Ab) responses targeting specific epitopes in the second variable domain (V2) of the HIV gp120 envelope (Env) protein, suggesting this region as a target for vaccine development. To favor induction of V2-specific Abs, we developed a vaccine regimen that included priming with DNA expressing an HIV V1V2 trimeric scaffold immunogen followed by booster immunizations with a combination of DNA and protein in rhesus macaques. Priming vaccination with DNA expressing the HIV recombinant subtype CRF01_AE V1V2 scaffold induced higher and broader V2-specific Ab responses than vaccination with DNA expressing CRF01_AE gp145 Env. Abs recognizing the V2 peptide that was reported as a critical target in RV144 developed only after the priming immunization with V1V2 DNA. The V2-specific Abs showed several nonneutralizing Fc-mediated functions, including ADCP and C1q binding. Importantly, robust V2-specific Abs were maintained upon boosting with gp145 DNA and gp120 protein coimmunization. In conclusion, priming with DNA expressing the trimeric V1V2 scaffold alters the hierarchy of humoral immune responses to V2 region epitopes, providing a method for more efficient induction and maintenance of V2-specific Env Abs associated with reduced risk of HIV infection.IMPORTANCE The aim of this work was to design and test a vaccine regimen focusing the immune response on targets associated with infection prevention. We demonstrated that priming with a DNA vaccine expressing only the HIV Env V1V2 region induces Ab responses targeting the critical region in V2 associated with protection. This work shows that V1V2 scaffold DNA priming immunization provides a method to focus immune responses to the desired target region, in the absence of immune interference by other epitopes. This induced immune responses with improved recognition of epitopes important for protective immunity, namely, V2-specific humoral immune responses inversely correlating with HIV risk of infection in the RV144 trial.
Collapse
|
11
|
Hessell AJ, Powell R, Jiang X, Luo C, Weiss S, Dussupt V, Itri V, Fox A, Shapiro MB, Pandey S, Cheever T, Fuller DH, Park B, Krebs SJ, Totrov M, Haigwood NL, Kong XP, Zolla-Pazner S. Multimeric Epitope-Scaffold HIV Vaccines Target V1V2 and Differentially Tune Polyfunctional Antibody Responses. Cell Rep 2020; 28:877-895.e6. [PMID: 31340151 DOI: 10.1016/j.celrep.2019.06.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/12/2019] [Accepted: 06/21/2019] [Indexed: 11/24/2022] Open
Abstract
The V1V2 region of the HIV-1 envelope is the target of several broadly neutralizing antibodies (bNAbs). Antibodies to V1V2 elicited in the RV144 clinical trial correlated with a reduced risk of HIV infection, but these antibodies were without broad neutralizing activity. Antibodies targeting V1V2 also correlated with a reduced viral load in immunized macaques challenged with simian immunodeficiency virus (SIV) or simian/human immunodeficiency virus (SHIV). To focus immune responses on V1V2, we engrafted the native, glycosylated V1V2 domain onto five different multimeric scaffold proteins and conducted comparative immunogenicity studies in macaques. Vaccinated macaques developed high titers of plasma and mucosal antibodies that targeted structurally distinct V1V2 epitopes. Plasma antibodies displayed limited neutralizing activity but were functionally active for ADCC and phagocytosis, which was detectable 1-2 years after immunizations ended. This study demonstrates that multivalent, glycosylated V1V2-scaffold protein immunogens focus the antibody response on V1V2 and are differentially effective at inducing polyfunctional antibodies with characteristics associated with protection.
Collapse
Affiliation(s)
- Ann J Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | - Rebecca Powell
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Christina Luo
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Svenja Weiss
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Vincenza Itri
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alisa Fox
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mariya B Shapiro
- Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR 97239
| | - Shilpi Pandey
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Tracy Cheever
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Deborah H Fuller
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Byung Park
- Primate Genetics Program, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | | | - Nancy L Haigwood
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR 97239.
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA.
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
12
|
Neek M, Kim TI, Wang SW. Protein-based nanoparticles in cancer vaccine development. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 15:164-174. [PMID: 30291897 PMCID: PMC6289732 DOI: 10.1016/j.nano.2018.09.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 01/09/2023]
Abstract
Peptide and protein-based cancer vaccines usually fail to elicit efficient immune responses against tumors. However, delivery of these peptides and proteins as components within caged protein nanoparticles has shown promising improvements in vaccine efficacy. Advantages of protein nanoparticles over other vaccine platforms include their highly organized structures and symmetry, biodegradability, ability to be specifically functionalized at three different interfaces (inside and outside the protein cage, and between subunits in macromolecular assembly), and ideal size for vaccine delivery. In this review, we discuss different classes of virus-like particles and caged protein nanoparticles that have been used as vehicles to transport and increase the interaction of cancer vaccine components with the immune system. We review the effectiveness of these protein nanoparticles towards inducing and elevating specific immune responses, which are needed to overcome the low immunogenicity of the tumor microenvironment.
Collapse
Affiliation(s)
- Medea Neek
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA
| | - Tae Il Kim
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Szu-Wen Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA.
| |
Collapse
|
13
|
Diaz D, Care A, Sunna A. Bioengineering Strategies for Protein-Based Nanoparticles. Genes (Basel) 2018; 9:E370. [PMID: 30041491 PMCID: PMC6071185 DOI: 10.3390/genes9070370] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, the practical application of protein-based nanoparticles (PNPs) has expanded rapidly into areas like drug delivery, vaccine development, and biocatalysis. PNPs possess unique features that make them attractive as potential platforms for a variety of nanobiotechnological applications. They self-assemble from multiple protein subunits into hollow monodisperse structures; they are highly stable, biocompatible, and biodegradable; and their external components and encapsulation properties can be readily manipulated by chemical or genetic strategies. Moreover, their complex and perfect symmetry have motivated researchers to mimic their properties in order to create de novo protein assemblies. This review focuses on recent advances in the bioengineering and bioconjugation of PNPs and the implementation of synthetic biology concepts to exploit and enhance PNP's intrinsic properties and to impart them with novel functionalities.
Collapse
Affiliation(s)
- Dennis Diaz
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
14
|
Control of Heterologous Simian Immunodeficiency Virus SIV smE660 Infection by DNA and Protein Coimmunization Regimens Combined with Different Toll-Like-Receptor-4-Based Adjuvants in Macaques. J Virol 2018; 92:JVI.00281-18. [PMID: 29793957 PMCID: PMC6052320 DOI: 10.1128/jvi.00281-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/15/2018] [Indexed: 01/29/2023] Open
Abstract
An effective AIDS vaccine continues to be of paramount importance for the control of the pandemic, and it has been proven to be an elusive target. Vaccine efficacy trials and macaque challenge studies indicate that protection may be the result of combinations of many parameters. We show that a combination of DNA and protein vaccinations applied at the same time provides rapid and robust cellular and humoral immune responses and evidence for a reduced risk of infection. Vaccine-induced neutralizing antibodies and Env V2-specific antibodies at mucosal sites contribute to the delay of SIVsmE660 acquisition, and genetic makeup (TRIM-5α) affects the effectiveness of the vaccine. These data are important for the design of better vaccines and may also affect other vaccine platforms. We developed a method of simultaneous vaccination with DNA and protein resulting in robust and durable cellular and humoral immune responses with efficient dissemination to mucosal sites and protection against simian immunodeficiency virus (SIV) infection. To further optimize the DNA-protein coimmunization regimen, we tested a SIVmac251-based vaccine formulated with either of two Toll-like receptor 4 (TLR4) ligand-based liposomal adjuvant formulations (TLR4 plus TLR7 [TLR4+7] or TLR4 plus QS21 [TLR4+QS21]) in macaques. Although both vaccines induced humoral responses of similar magnitudes, they differed in their functional quality, including broader neutralizing activity and effector functions in the TLR4+7 group. Upon repeated heterologous SIVsmE660 challenge, a trend of delayed viral acquisition was found in vaccinees compared to controls, which reached statistical significance in animals with the TRIM-5α-resistant (TRIM-5α R) allele. Vaccinees were preferentially infected by an SIVsmE660 transmitted/founder virus carrying neutralization-resistant A/K mutations at residues 45 and 47 in Env, demonstrating a strong vaccine-induced sieve effect. In addition, the delay in virus acquisition directly correlated with SIVsmE660-specific neutralizing antibodies. The presence of mucosal V1V2 IgG binding antibodies correlated with a significantly decreased risk of virus acquisition in both TRIM-5α R and TRIM-5α-moderate/sensitive (TRIM-5α M/S) animals, although this vaccine effect was more prominent in animals with the TRIM-5α R allele. These data support the combined contribution of immune responses and genetic background to vaccine efficacy. Humoral responses targeting V2 and SIV-specific T cell responses correlated with viremia control. In conclusion, the combination of DNA and gp120 Env protein vaccine regimens using two different adjuvants induced durable and potent cellular and humoral responses contributing to a lower risk of infection by heterologous SIV challenge. IMPORTANCE An effective AIDS vaccine continues to be of paramount importance for the control of the pandemic, and it has been proven to be an elusive target. Vaccine efficacy trials and macaque challenge studies indicate that protection may be the result of combinations of many parameters. We show that a combination of DNA and protein vaccinations applied at the same time provides rapid and robust cellular and humoral immune responses and evidence for a reduced risk of infection. Vaccine-induced neutralizing antibodies and Env V2-specific antibodies at mucosal sites contribute to the delay of SIVsmE660 acquisition, and genetic makeup (TRIM-5α) affects the effectiveness of the vaccine. These data are important for the design of better vaccines and may also affect other vaccine platforms.
Collapse
|
15
|
Abstract
INTRODUCTION Traditional inactivated and protein vaccines generate strong antibodies, but struggle to generate T cell responses. Attenuated pathogen vaccines generate both, but risk causing the disease they aim to prevent. Newer gene-based vaccines drive both responses and avoid the risk of infection. While these replication-defective (RD) vaccines work well in small animals, they can be weak in humans because they do not replicate antigen genes like more potent replication-competent (RC) vaccines. RC vaccines generate substantially stronger immune responses, but also risk causing their own infections. To circumvent these problems, we developed single-cycle adenovirus (SC-Ad) vectors that amplify vaccine genes, but that avoid the risk of infection. This review will discuss these vectors and their prospects for use as vaccines. AREAS COVERED This review provides a background of different types of vaccines. The benefits of gene-based vaccines and their ability to replicate antigen genes are described. Adenovirus vectors are discussed and compared to other vaccine types. Replication-defective, single-cycle, and replication-competent Ad vaccines are compared. EXPERT COMMENTARY The potential utility of these vaccines are discussed when used against infectious diseases and as cancer vaccines. We propose a move away from replication-defective vaccines towards more robust replication-competent or single-cycle vaccines.
Collapse
Affiliation(s)
- Michael Barry
- a Division of Infectious Diseases, Department of Medicine, Department of Immunology, Department of Molecular Medicine , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
16
|
Costa V, Righelli D, Russo F, De Berardinis P, Angelini C, D'Apice L. Distinct Antigen Delivery Systems Induce Dendritic Cells' Divergent Transcriptional Response: New Insights from a Comparative and Reproducible Computational Analysis. Int J Mol Sci 2017; 18:ijms18030494. [PMID: 28245601 PMCID: PMC5372510 DOI: 10.3390/ijms18030494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/11/2017] [Accepted: 02/21/2017] [Indexed: 12/17/2022] Open
Abstract
Vaccination is the most successful and cost-effective method to prevent infectious diseases. However, many vaccine antigens have poor in vivo immunogenic potential and need adjuvants to enhance immune response. The application of systems biology to immunity and vaccinology has yielded crucial insights about how vaccines and adjuvants work. We have previously characterized two safe and powerful delivery systems derived from non-pathogenic prokaryotic organisms: E2 and fd filamentous bacteriophage systems. They elicit an in vivo immune response inducing CD8+ T-cell responses, even in absence of adjuvants or stimuli for dendritic cells’ maturation. Nonetheless, a systematic and comparative analysis of the complex gene expression network underlying such activation is missing. Therefore, we compared the transcriptomes of ex vivo isolated bone marrow-derived dendritic cells exposed to these antigen delivery systems. Significant differences emerged, especially for genes involved in innate immunity, co-stimulation, and cytokine production. Results indicate that E2 drives polarization toward the Th2 phenotype, mainly mediated by Irf4, Ccl17, and Ccr4 over-expression. Conversely, fd-scαDEC-205 triggers Th1 T cells’ polarization through the induction of Il12b, Il12rb, Il6, and other molecules involved in its signal transduction. The data analysis was performed using RNASeqGUI, hence, addressing the increasing need of transparency and reproducibility of computational analysis.
Collapse
Affiliation(s)
- Valerio Costa
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino 111, 80131 Naples, Italy.
| | - Dario Righelli
- Dipartimento di Scienze Aziendali-Management & Innovation Systems/DISA-MIS, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy.
- Istituto per le Applicazioni del Calcolo, CNR, Via P. Castellino 111, 80131 Naples, Italy.
| | - Francesco Russo
- Istituto per le Applicazioni del Calcolo, CNR, Via P. Castellino 111, 80131 Naples, Italy.
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy.
| | - Piergiuseppe De Berardinis
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy.
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo, CNR, Via P. Castellino 111, 80131 Naples, Italy.
| | - Luciana D'Apice
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
17
|
Banerjee S, Shi H, Banasik M, Moon H, Lees W, Qin Y, Harley A, Shepherd A, Cho MW. Evaluation of a novel multi-immunogen vaccine strategy for targeting 4E10/10E8 neutralizing epitopes on HIV-1 gp41 membrane proximal external region. Virology 2017; 505:113-126. [PMID: 28237764 DOI: 10.1016/j.virol.2017.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 02/01/2023]
Abstract
The membrane proximal external region (MPER) of HIV-1 gp41 is targeted by broadly neutralizing antibodies (bnAbs) 4E10 and 10E8. In this proof-of-concept study, we evaluated a novel multi-immunogen vaccine strategy referred to as Incremental, Phased Antigenic Stimulation for Rapid Antibody Maturation (IPAS-RAM) to induce 4E10/10E8-like bnAbs. Rabbits were immunized sequentially, but in a phased manner, with three immunogens that are progressively more native (gp41-28×3, gp41-54CT, and rVV-gp160DH12). Although nAbs were not induced, epitope-mapping analyses indicated that IPAS-RAM vaccination was better able to target antibodies towards the 4E10/10E8 epitopes than homologous prime-boost immunization using gp41-28×3 alone. MPER-specific rabbit monoclonal antibodies were generated, including 9F6. Although it lacked neutralizing activity, the target epitope profile of 9F6 closely resembled those of 4E10 and 10E8 (671NWFDITNWLWYIK683). B-cell repertoire analyses suggested the importance of co-immunizations for maturation of 9F6, which warrants further evaluation of our IPAS-RAM vaccine strategy using an improved priming immunogen.
Collapse
Affiliation(s)
- Saikat Banerjee
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Heliang Shi
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Marisa Banasik
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Hojin Moon
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - William Lees
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, UK
| | - Yali Qin
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Andrew Harley
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Adrian Shepherd
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, UK
| | - Michael W Cho
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
18
|
Trovato M, Maurano F, D'Apice L, Costa V, Sartorius R, Cuccaro F, McBurney SP, Krebs SJ, Prisco A, Ciccodicola A, Rossi M, Haigwood NL, De Berardinis P. E2 multimeric scaffold for vaccine formulation: immune response by intranasal delivery and transcriptome profile of E2-pulsed dendritic cells. BMC Microbiol 2016; 16:152. [PMID: 27421762 PMCID: PMC4947308 DOI: 10.1186/s12866-016-0772-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The E2 multimeric scaffold represents a powerful delivery system able to elicit robust humoral and cellular immune responses upon systemic administrations. Here recombinant E2 scaffold displaying the third variable loop of HIV-1 Envelope gp120 glycoprotein was administered via mucosa, and the mucosal and systemic immune responses were analysed. To gain further insights into the molecular mechanisms that orchestrate the immune response upon E2 vaccination, we analysed the transcriptome profile of dendritic cells (DCs) exposed to the E2 scaffold with the aim to define a specific gene expression signature for E2-primed immune responses. RESULTS The in vivo immunogenicity and the potential of E2 scaffold as a mucosal vaccine candidate were investigated in BALB/c mice vaccinated via the intranasal route. Fecal and systemic antigen-specific IgA antibodies, cytokine-producing CD4(+) and CD8(+) cells were induced assessing the immunogenicity of E2 particles via intranasal administration. The cytokine analysis identified a mixed T-helper cell response, while the systemic antibody response showed a prevalence of IgG1 isotype indicative of a polarized Th2-type immune response. RNA-Sequencing analysis revealed that E2 scaffold up-regulates in DCs transcriptional regulators of the Th2-polarizing cell response, defining a type 2 DC transcriptomic signature. CONCLUSIONS The current study provides experimental evidence to the possible application of E2 scaffold as antigen delivery system for mucosal immunization and taking advantages of genome-wide approach dissects the type of response induced by E2 particles.
Collapse
Affiliation(s)
- Maria Trovato
- Institute of Protein Biochemistry, C.N.R, Via Pietro Castellino 111, Naples, 80131, Italy
| | - Francesco Maurano
- Institute of Food Sciences, C.N.R, Via Roma 64, Avellino, 83100, Italy
| | - Luciana D'Apice
- Institute of Protein Biochemistry, C.N.R, Via Pietro Castellino 111, Naples, 80131, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics A. Buzzati-Traverso, C.N.R, Via Pietro Castellino 111, Naples, 80131, Italy
| | - Rossella Sartorius
- Institute of Protein Biochemistry, C.N.R, Via Pietro Castellino 111, Naples, 80131, Italy
| | - Fausta Cuccaro
- Institute of Protein Biochemistry, C.N.R, Via Pietro Castellino 111, Naples, 80131, Italy
| | - Sean P McBurney
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Shelly J Krebs
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Antonella Prisco
- Institute of Genetics and Biophysics A. Buzzati-Traverso, C.N.R, Via Pietro Castellino 111, Naples, 80131, Italy
| | - Alfredo Ciccodicola
- Institute of Genetics and Biophysics A. Buzzati-Traverso, C.N.R, Via Pietro Castellino 111, Naples, 80131, Italy.,Department of Science and Technology, University of Naples "Parthenope", Centro Direzionale Site island C4, Naples, 80143, Italy
| | - Mauro Rossi
- Institute of Food Sciences, C.N.R, Via Roma 64, Avellino, 83100, Italy
| | - Nancy L Haigwood
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | | |
Collapse
|
19
|
McBurney SP, Sunshine JE, Gabriel S, Huynh JP, Sutton WF, Fuller DH, Haigwood NL, Messer WB. Evaluation of protection induced by a dengue virus serotype 2 envelope domain III protein scaffold/DNA vaccine in non-human primates. Vaccine 2016; 34:3500-7. [PMID: 27085173 DOI: 10.1016/j.vaccine.2016.03.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/17/2016] [Accepted: 03/20/2016] [Indexed: 11/26/2022]
Abstract
We describe the preclinical development of a dengue virus vaccine targeting the dengue virus serotype 2 (DENV2) envelope domain III (EDIII). This study provides proof-of-principle that a dengue EDIII protein scaffold/DNA vaccine can protect against dengue challenge. The dengue vaccine (EDIII-E2) is composed of both a protein particle and a DNA expression plasmid delivered simultaneously via intramuscular injection (protein) and gene gun (DNA) into rhesus macaques. The protein component can contain a maximum of 60 copies of EDIII presented on a multimeric scaffold of Geobacillus stearothermophilus E2 proteins. The DNA component is composed of the EDIII portion of the envelope gene cloned into an expression plasmid. The EDIII-E2 vaccine elicited robust antibody responses to DENV2, with neutralizing antibody responses detectable following the first boost and reaching titers of greater than 1:100,000 following the second and final boost. Vaccinated and naïve groups of macaques were challenged with DENV2. All vaccinated macaques were protected from detectable viremia by infectious assay, while naïve animals had detectable viremia for 2-7 days post-challenge. All naïve macaques had detectable viral RNA from day 2-10 post-challenge. In the EDIII-E2 group, three macaques were negative for viral RNA and three were found to have detectable viral RNA post challenge. Viremia onset was delayed and the duration was shortened relative to naïve controls. The presence of viral RNA post-challenge corresponded to a 10-30-fold boost in neutralization titers 28 days post challenge, whereas no boost was observed in the fully protected animals. Based on these results, we determine that pre-challenge 50% neutralization titers of >1:6000 correlated with sterilizing protection against DENV2 challenge in EDIII-E2 vaccinated macaques. Identification of the critical correlate of protection for the EDIII-E2 platform in the robust non-human primate model lays the groundwork for further development of a tetravalent EDIII-E2 dengue vaccine.
Collapse
Affiliation(s)
- Sean P McBurney
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA
| | - Justine E Sunshine
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Sarah Gabriel
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Jeremy P Huynh
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | - William F Sutton
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA
| | - Deborah H Fuller
- Department of Microbiology, University of Washington School of Medicine, 1705 NE Pacific St., Seattle, WA 98195, USA
| | - Nancy L Haigwood
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | - William B Messer
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA; Division of Infectious Diseases, Department of Medicine, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA.
| |
Collapse
|
20
|
Trovato M, Berardinis PD. Novel antigen delivery systems. World J Virol 2015; 4:156-168. [PMID: 26279977 PMCID: PMC4534807 DOI: 10.5501/wjv.v4.i3.156] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/23/2015] [Accepted: 08/03/2015] [Indexed: 02/05/2023] Open
Abstract
Vaccines represent the most relevant contribution of immunology to human health. However, despite the remarkable success achieved in the past years, many vaccines are still missing in order to fight important human pathologies and to prevent emerging and re-emerging diseases. For these pathogens the known strategies for making vaccines have been unsuccessful and thus, new avenues should be investigated to overcome the failure of clinical trials and other important issues including safety concerns related to live vaccines or viral vectors, the weak immunogenicity of subunit vaccines and side effects associated with the use of adjuvants. A major hurdle of developing successful and effective vaccines is to design antigen delivery systems in such a way that optimizes antigen presentation and induces broad protective immune responses. Recent advances in vector delivery technologies, immunology, vaccinology and system biology, have led to a deeper understanding of the molecular and cellular mechanisms by which vaccines should stimulate both arms of the adaptive immune responses, offering new strategies of vaccinations. This review is an update of current strategies with respect to live attenuated and inactivated vaccines, DNA vaccines, viral vectors, lipid-based carrier systems such as liposomes and virosomes as well as polymeric nanoparticle vaccines and virus-like particles. In addition, this article will describe our work on a versatile and immunogenic delivery system which we have studied in the past decade and which is derived from a non-pathogenic prokaryotic organism: the “E2 scaffold” of the pyruvate dehydrogenase complex from Geobacillus stearothermophilus.
Collapse
|
21
|
Krebs SJ, McBurney SP, Kovarik DN, Waddell CD, Jaworski JP, Sutton WF, Gomes MM, Trovato M, Waagmeester G, Barnett SJ, DeBerardinis P, Haigwood NL. Multimeric scaffolds displaying the HIV-1 envelope MPER induce MPER-specific antibodies and cross-neutralizing antibodies when co-immunized with gp160 DNA. PLoS One 2014; 9:e113463. [PMID: 25514675 PMCID: PMC4267727 DOI: 10.1371/journal.pone.0113463] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/27/2014] [Indexed: 01/11/2023] Open
Abstract
Developing a vaccine that overcomes the diversity of HIV-1 is likely to require a strategy that directs antibody (Ab) responses toward conserved regions of the viral Envelope (Env). However, the generation of neutralizing Abs (NAbs) targeting these regions through vaccination has proven to be difficult. One conserved region of particular interest is the membrane proximal external region (MPER) of Env located within the gp41 ectodomain. In order to direct the immune response to this region, the MPER and gp41 ectodomain were expressed separately as N-terminal fusions to the E2 protein of Geobacillus stearothermophilus. The E2 protein acts as a scaffold by self-assembling into 60-mer particles, displaying up to 60 copies of the fused target on the surface. Rabbits were immunized with E2 particles displaying MPER and/or the gp41 ectodomain in conjunction with DNA encoding full-length gp160. Only vaccines including E2 particles displaying MPER elicited MPER-specific Ab responses. NAbs were elicited after two immunizations that largely targeted the V3 loop. To overcome V3 immunodominance in the DNA component, E2 particles displaying MPER were used in conjunction with gp160 DNA lacking hypervariable regions V2, V3, or combined V1V2V3. All rabbits had HIV binding Ab responses and NAbs following the second vaccination. Using HIV-2/HIV-1 MPER chimeric viruses as targets, NAbs were detected in 12/16 rabbits after three immunizations. Low levels of NAbs specific for Tier 1 and 2 viruses were observed in all groups. This study provides evidence that co-immunizing E2 particles displaying MPER and gp160 DNA can focus Ab responses toward conserved regions of Env.
Collapse
Affiliation(s)
- Shelly J. Krebs
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - Sean P. McBurney
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - Dina N. Kovarik
- Viral Vaccines Program, Seattle Biomedical Research Institute, Seattle, WA, United States of America
| | - Chelsea D. Waddell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - J. Pablo Jaworski
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - William F. Sutton
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - Michelle M. Gomes
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - Maria Trovato
- Institute of Protein Biochemistry, C.N.R., Naples, Italy
| | - Garret Waagmeester
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - Susan J. Barnett
- Novartis Vaccines & Diagnostics, Emeryville, CA, United States of America
| | | | - Nancy L. Haigwood
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
- Viral Vaccines Program, Seattle Biomedical Research Institute, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
22
|
Envelope variants circulating as initial neutralization breadth developed in two HIV-infected subjects stimulate multiclade neutralizing antibodies in rabbits. J Virol 2014; 88:12949-67. [PMID: 25210191 DOI: 10.1128/jvi.01812-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED Identifying characteristics of the human immunodeficiency virus type 1 (HIV-1) envelope that are effective in generating broad, protective antibodies remains a hurdle to HIV vaccine design. Emerging evidence of the development of broad and potent neutralizing antibodies in HIV-infected subjects suggests that founder and subsequent progeny viruses may express unique antigenic motifs that contribute to this developmental pathway. We hypothesize that over the course of natural infection, B cells are programmed to develop broad antibodies by exposure to select populations of emerging envelope quasispecies variants. To test this hypothesis, we identified two unrelated subjects whose antibodies demonstrated increasing neutralization breadth against a panel of HIV-1 isolates over time. Full-length functional env genes were cloned longitudinally from these subjects from months after infection through 2.6 to 5.8 years of infection. Motifs associated with the development of breadth in published, cross-sectional studies were found in both subjects. We compared the immunogenicity of envelope vaccines derived from time points obtained during and after broadening of neutralization activity within these subjects. Rabbits were coimmunized four times with selected multiple gp160 DNAs and gp140-trimeric envelope proteins. The affinity of the polyclonal response increased as a function of boosting. The most rapid and persistent neutralization of multiclade tier 1 viruses was elicited by envelopes that were circulating in plasma at time points prior to the development of 50% neutralization breadth in both human subjects. The breadth elicited in rabbits was not improved by exposure to later envelope variants. These data have implications for vaccine development in describing a target time point to identify optimal envelope immunogens. IMPORTANCE Vaccine protection against viral infections correlates with the presence of neutralizing antibodies; thus, vaccine components capable of generating potent neutralization are likely to be critical constituents in an effective HIV vaccine. However, vaccines tested thus far have elicited only weak antibody responses and very modest, waning protection. We hypothesized that B cells develop broad antibodies by exposure to the evolving viral envelope population and tested this concept using multiple envelopes from two subjects who developed neutralization breadth within a few years of infection. We compared different combinations of envelopes from each subject to identify the most effective immunogens and regimens. In each subject, use of HIV envelopes circulating during the early development and maturation of breadth generated more-potent antibodies that were modestly cross neutralizing. These data suggest a new approach to identifying envelope immunogens that may be more effective in generating protective antibodies in humans.
Collapse
|
23
|
Palmer CD, Ninković J, Prokopowicz ZM, Mancuso CJ, Marin A, Andrianov AK, Dowling DJ, Levy O. The effect of stable macromolecular complexes of ionic polyphosphazene on HIV Gag antigen and on activation of human dendritic cells and presentation to T-cells. Biomaterials 2014; 35:8876-8886. [PMID: 25023392 DOI: 10.1016/j.biomaterials.2014.06.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/22/2014] [Indexed: 12/19/2022]
Abstract
Neonates and infants are susceptible to infection due to distinct immune responses in early life. Therefore, development of vaccine formulation and delivery systems capable of activating human newborn leukocytes is of global health importance. Poly[di(carboxylatophenoxy)phosphazene] (PCPP) belongs to a family of ionic synthetic polyphosphazene polyelectrolyte compounds that can form non-covalent interactions with protein antigens and demonstrate adjuvant activity in animals and in human clinical trials. However, little is known about their ability to activate human immune cells. In this study, we characterized the effects of PCPP alone or in combination with a model antigen (recombinant HIV-Gag (Gag)), on the maturation, activation and antigen presentation by human adult and newborn dendritic cells (DCs) in vitro. PCPP treatment induced DC activation as assessed by upregulation of co-stimulatory molecules and cytokine production. Studies benchmarking PCPP to Alum, the most commonly used vaccine adjuvant, demonstrated that both triggered cell death and release of danger signals in adult and newborn DCs. When complexed with Gag antigen, PCPP maintained its immunostimulatory characteristics while permitting internalization and presentation of Gag by DCs to HIV-Gag-specific CD4(+) T cell clones. The PCPP vaccine formulation outlined here has intrinsic adjuvant activity, can facilitate effective delivery of antigen to DCs, and may be advantageous for induction of beneficial T cell-mediated immunity. Moreover, polyphosphazenes can further reduce cost of vaccine production and distribution through their dose-sparing and antigen-stabilizing properties, thus potentially eliminating the need for cold chain distribution.
Collapse
Affiliation(s)
- Christine D Palmer
- Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jana Ninković
- Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Zofia M Prokopowicz
- Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | | | | | - David J Dowling
- Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Comprehensive analysis of contributions from protein conformational stability and major histocompatibility complex class II-peptide binding affinity to CD4+ epitope immunogenicity in HIV-1 envelope glycoprotein. J Virol 2014; 88:9605-15. [PMID: 24920818 DOI: 10.1128/jvi.00789-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Helper T-cell epitope dominance in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is not adequately explained by peptide binding to major histocompatibility complex (MHC) proteins. Antigen processing potentially influences epitope dominance, but few, if any, studies have attempted to reconcile the influences of antigen processing and MHC protein binding for all helper T-cell epitopes of an antigen. Epitopes of gp120 identified in both humans and mice occur on the C-terminal flanks of flexible segments that are likely to be proteolytic cleavage sites. In this study, the influence of gp120 conformation on the dominance pattern in gp120 from HIV strain 89.6 was examined in CBA mice, whose MHC class II protein has one of the most well defined peptide-binding preferences. Only one of six dominant epitopes contained the most conserved element of the I-Ak binding motif, an aspartic acid. Destabilization of the gp120 conformation by deletion of single disulfide bonds preferentially enhanced responses to the cryptic I-Ak motif-containing sequences, as reported by T-cell proliferation or cytokine secretion. Conversely, inclusion of CpG in the adjuvant with gp120 enhanced responses to the dominant CD4+ T-cell epitopes. The gp120 destabilization affected secretion of some cytokines more than others, suggesting that antigen conformation could modulate T-cell functions through mechanisms of antigen processing. IMPORTANCE CD4+ helper T cells play an essential role in protection against HIV and other pathogens. Thus, the sites of helper T-cell recognition, the dominant epitopes, are targets for vaccine design; and the corresponding T cells may provide markers for monitoring infection and immunity. However, T-cell epitopes are difficult to identify and predict. It is also unclear whether CD4+ T cells specific for one epitope are more protective than T cells specific for other epitopes. This work shows that the three-dimensional (3D) structure of an HIV protein partially determines which epitopes are dominant, most likely by controlling the breakdown of HIV into peptides. Moreover, some types of signals from CD4+ T cells are affected by the HIV protein 3D structure; and thus the protectiveness of a particular peptide vaccine could be related to its location in the 3D structure.
Collapse
|
25
|
Vargas-Inchaustegui DA, Tuero I, Mohanram V, Musich T, Pegu P, Valentin A, Sui Y, Rosati M, Bear J, Venzon DJ, Kulkarni V, Alicea C, Pilkington GR, Liyanage NPM, Demberg T, Gordon SN, Wang Y, Hogg AE, Frey B, Patterson LJ, DiPasquale J, Montefiori DC, Sardesai NY, Reed SG, Berzofsky JA, Franchini G, Felber BK, Pavlakis GN, Robert-Guroff M. Humoral immunity induced by mucosal and/or systemic SIV-specific vaccine platforms suggests novel combinatorial approaches for enhancing responses. Clin Immunol 2014; 153:308-22. [PMID: 24907411 DOI: 10.1016/j.clim.2014.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 12/22/2022]
Abstract
Combinatorial HIV/SIV vaccine approaches targeting multiple arms of the immune system might improve protective efficacy. We compared SIV-specific humoral immunity induced in rhesus macaques by five vaccine regimens. Systemic regimens included ALVAC-SIVenv priming and Env boosting (ALVAC/Env); DNA immunization; and DNA plus Env co-immunization (DNA&Env). RepAd/Env combined mucosal replication-competent Ad-env priming with systemic Env boosting. A Peptide/Env regimen, given solely intrarectally, included HIV/SIV peptides followed by MVA-env and Env boosts. Serum antibodies mediating neutralizing, phagocytic and ADCC activities were induced by ALVAC/Env, RepAd/Env and DNA&Env vaccines. Memory B cells and plasma cells were maintained in the bone marrow. RepAd/Env vaccination induced early SIV-specific IgA in rectal secretions before Env boosting, although mucosal IgA and IgG responses were readily detected at necropsy in ALVAC/Env, RepAd/Env, DNA&Env and DNA vaccinated animals. Our results suggest that combined RepAd priming with ALVAC/Env or DNA&Env regimen boosting might induce potent, functional, long-lasting systemic and mucosal SIV-specific antibodies.
Collapse
Affiliation(s)
- Diego A Vargas-Inchaustegui
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Iskra Tuero
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Venkatramanan Mohanram
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Thomas Musich
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Poonam Pegu
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - Yongjun Sui
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - David J Venzon
- Biostatistics and Data Management Section, CCR, NCI, NIH, Rockville, MD 20850, United States
| | - Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - Guy R Pilkington
- Human Retrovirus Pathogenesis Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - Namal P M Liyanage
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Thorsten Demberg
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Shari N Gordon
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Yichuan Wang
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Alison E Hogg
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Blake Frey
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - L Jean Patterson
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Janet DiPasquale
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - David C Montefiori
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | | | - Steven G Reed
- Infectious Diseases Research Institute, Seattle, WA 98102, United States
| | - Jay A Berzofsky
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
26
|
Felber BK, Valentin A, Rosati M, Bergamaschi C, Pavlakis GN. HIV DNA Vaccine: Stepwise Improvements Make a Difference. Vaccines (Basel) 2014; 2:354-79. [PMID: 26344623 PMCID: PMC4494255 DOI: 10.3390/vaccines2020354] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/11/2014] [Accepted: 04/18/2014] [Indexed: 12/15/2022] Open
Abstract
Inefficient DNA delivery methods and low expression of plasmid DNA have been major obstacles for the use of plasmid DNA as vaccine for HIV/AIDS. This review describes successful efforts to improve DNA vaccine methodology over the past ~30 years. DNA vaccination, either alone or in combination with other methods, has the potential to be a rapid, safe, and effective vaccine platform against AIDS. Recent clinical trials suggest the feasibility of its translation to the clinic.
Collapse
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| |
Collapse
|
27
|
Ma Y, Tao W, Krebs SJ, Sutton WF, Haigwood NL, Gill HS. Vaccine delivery to the oral cavity using coated microneedles induces systemic and mucosal immunity. Pharm Res 2014; 31:2393-403. [PMID: 24623480 DOI: 10.1007/s11095-014-1335-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/08/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE The objective of this study is to evaluate the feasibility of using coated microneedles to deliver vaccines into the oral cavity to induce systemic and mucosal immune responses. METHOD Microneedles were coated with sulforhodamine, ovalbumin and two HIV antigens. Coated microneedles were inserted into the inner lower lip and dorsal surface of the tongue of rabbits. Histology was used to confirm microneedle insertion, and systemic and mucosal immune responses were characterized by measuring antigen-specific immunoglobulin G (IgG) in serum and immunoglobulin A (IgA) in saliva, respectively. RESULTS Histological evaluation of tissues shows that coated microneedles can penetrate the lip and tongue to deliver coatings. Using ovalbumin as a model antigen it was found that the lip and the tongue are equally immunogenic sites for vaccination. Importantly, both sites also induced a significant (p < 0.05) secretory IgA in saliva compared to pre-immune saliva. Microneedle-based oral cavity vaccination was also compared to the intramuscular route using two HIV antigens, a virus-like particle and a DNA vaccine. Microneedle-based delivery to the oral cavity and the intramuscular route exhibited similar (p > 0.05) yet significant (p < 0.05) levels of antigen-specific IgG in serum. However, only the microneedle-based oral cavity vaccination group stimulated a significantly higher (p < 0.05) antigen-specific IgA response in saliva, but not intramuscular injection. CONCLUSION In conclusion, this study provides a novel method using microneedles to induce systemic IgG and secretory IgA in saliva, and could offer a versatile technique for oral mucosal vaccination.
Collapse
Affiliation(s)
- Yunzhe Ma
- Department of Chemical Engineering, Texas Tech University, 6th and Canton, Mail Stop 3121, Lubbock, Texas, 79409-3121, USA
| | | | | | | | | | | |
Collapse
|
28
|
Jalah R, Kulkarni V, Patel V, Rosati M, Alicea C, Bear J, Yu L, Guan Y, Shen X, Tomaras GD, LaBranche C, Montefiori DC, Prattipati R, Pinter A, Bess J, Lifson JD, Reed SG, Sardesai NY, Venzon DJ, Valentin A, Pavlakis GN, Felber BK. DNA and protein co-immunization improves the magnitude and longevity of humoral immune responses in macaques. PLoS One 2014; 9:e91550. [PMID: 24626482 PMCID: PMC3953433 DOI: 10.1371/journal.pone.0091550] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/11/2014] [Indexed: 11/25/2022] Open
Abstract
We tested the concept of combining DNA with protein to improve anti-HIV Env systemic and mucosal humoral immune responses. Rhesus macaques were vaccinated with DNA, DNA&protein co-immunization or DNA prime followed by protein boost, and the magnitude and mucosal dissemination of the antibody responses were monitored in both plasma and mucosal secretions. We achieved induction of robust humoral responses by optimized DNA vaccination delivered by in vivo electroporation. These responses were greatly increased upon administration of a protein boost. Importantly, a co-immunization regimen of DNA&protein injected in the same muscle at the same time induced the highest systemic binding and neutralizing antibodies to homologous or heterologous Env as well as the highest Env-specific IgG in saliva. Inclusion of protein in the vaccine resulted in more immunized animals with Env-specific IgG in rectal fluids. Inclusion of DNA in the vaccine significantly increased the longevity of systemic humoral immune responses, whereas protein immunization, either as the only vaccine component or as boost after DNA prime, was followed by a great decline of humoral immune responses overtime. We conclude that DNA&protein co-delivery in a simple vaccine regimen combines the strength of each vaccine component, resulting in improved magnitude, extended longevity and increased mucosal dissemination of the induced antibodies in immunized rhesus macaques.
Collapse
Affiliation(s)
- Rashmi Jalah
- Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland, United States of America
| | - Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland, United States of America
| | - Vainav Patel
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland, United States of America
| | - Jenifer Bear
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Lei Yu
- Institute of Human Virology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Yongjun Guan
- Institute of Human Virology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Xiaoying Shen
- Duke Human Vaccine Institute and Departments of Surgery and Immunology, Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute and Departments of Surgery and Immunology, Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Rajasekhar Prattipati
- Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Abraham Pinter
- Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Julian Bess
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Steven G. Reed
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | | | - David J. Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland, United States of America
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The HIV-1 site of binding for the CD4 receptor has long attracted attention as a potential supersite of vulnerability to antibody-mediated neutralization. We review recent findings related to effective CD4-binding site antibodies isolated from HIV-1-infected individuals and discuss implications for immunogen design. RECENT FINDINGS Highly effective CD4-binding site antibodies such as antibody VRC01 have the ability to neutralize over 90% of circulating HIV-1 strains. Sequence and structural analysis of these antibodies from over half a dozen HIV-1-infected donors reveals remarkable similarity in their ontogenies and their modes of recognition, all of which involve mimicry of CD4 receptor by antibody-heavy chain. Meanwhile, other effective CD4-binding site neutralizers such as antibody CH103 have been shown to utilize a different mode of recognition, with next-generation sequencing of both virus and antibody suggesting co-evolution to drive the development of antibody-neutralization breadth. SUMMARY The nexus of information concerning the CD4-binding site and its recognition by human antibodies capable of effective neutralization has expanded remarkably in the last few years. Although barriers are substantial, new insights from donor-serum responses, atomic-level structures of antibody-Env complexes, and next-generation sequencing of B-cell transcripts are invigorating vaccine-design efforts to elicit effective CD4-binding site antibodies.
Collapse
|
30
|
Molino NM, Anderson AKL, Nelson EL, Wang SW. Biomimetic protein nanoparticles facilitate enhanced dendritic cell activation and cross-presentation. ACS NANO 2013; 7:9743-52. [PMID: 24090491 PMCID: PMC3893022 DOI: 10.1021/nn403085w] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Many current cancer vaccine strategies suffer from the inability to mount a CD8 T cell response that is strong enough to overcome the low immunogenicity of tumors. Viruses naturally possess the sizes, geometries, and physical properties for which the immune system has evolved to recognize, and mimicking those properties with nanoparticles can produce robust platforms for vaccine design. Using the nonviral E2 core of pyruvate dehydrogenase, we have engineered a viral-mimicking vaccine platform capable of encapsulating dendritic cell (DC)-activating CpG molecules in an acid-releasable manner and displaying MHC I-restricted SIINFEKL peptide epitopes. Encapsulated CpG activated bone marrow-derived DCs at a 25-fold lower concentration in vitro when delivered with the E2 nanoparticle than with unbound CpG alone. Combining CpG and SIINFEKL within a single multifunctional particle induced ∼3-fold greater SIINFEKL display on MHC I by DCs over unbound peptide. Importantly, combining CpG and SIINFEKL to the E2 nanoparticle for simultaneous temporal and spatial delivery to DCs showed increased and prolonged CD8 T cell activation, relative to free peptide or peptide-bound E2. By codelivering peptide epitopes and CpG activator in a particle of optimal DC-uptake size, we demonstrate the ability of a noninfectious protein nanoparticle to mimic viral properties and facilitate enhanced DC activation and cross-presentation.
Collapse
Affiliation(s)
- Nicholas M. Molino
- Department of Chemical Engineering and Materials Science, University of California, 916 Engineering Tower, Irvine, CA 92697-2575
| | | | | | - Szu-Wen Wang
- Department of Chemical Engineering and Materials Science, University of California, 916 Engineering Tower, Irvine, CA 92697-2575
| |
Collapse
|
31
|
Pissani F, Malherbe DC, Schuman JT, Robins H, Park BS, Krebs SJ, Barnett SW, Haigwood NL. Improvement of antibody responses by HIV envelope DNA and protein co-immunization. Vaccine 2013; 32:507-13. [PMID: 24280279 DOI: 10.1016/j.vaccine.2013.11.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/29/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Developing HIV envelope (Env) vaccine components that elicit durable and protective antibody responses is an urgent priority, given the results from the RV144 trial. Optimization of both the immunogens and vaccination strategies will be needed to generate potent, durable antibodies. Due to the diversity of HIV, an effective Env-based vaccine will most likely require an extensive coverage of antigenic variants. A vaccine co-delivering Env immunogens as DNA and protein components could provide such coverage. Here, we examine a DNA and protein co-immunization strategy by characterizing the antibody responses and evaluating the relative contribution of each vaccine component. METHOD We co-immunized rabbits with representative subtype A or B HIV gp160 plasmid DNA plus Env gp140 trimeric glycoprotein and compared the responses to those obtained with either glycoprotein alone or glycoprotein in combination with empty vector. RESULTS DNA and glycoprotein co-immunization was superior to immunization with glycoprotein alone by enhancing antibody kinetics, magnitude, avidity, and neutralizing potency. Importantly, the empty DNA vector did not contribute to these responses. Humoral responses elicited by mismatched DNA and protein components were comparable or higher than the responses produced by the matched vaccines. CONCLUSION Our data show that co-delivering DNA and protein can augment antibodies to Env. The rate and magnitude of immune responses suggest that this approach has the potential to streamline vaccine regimens by inducing higher antibody responses using fewer vaccinations, an advantage for a successful HIV vaccine design.
Collapse
Affiliation(s)
- Franco Pissani
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97217, United States; The Vaccine and Gene Therapy Institute, Beaverton, OR 97006, United States; Oregon National Primate Research Center, Beaverton, OR 97006, United States
| | | | - Jason T Schuman
- GE Healthcare, Life Sciences, Piscataway, NJ 08854, United States
| | - Harlan Robins
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
| | - Byung S Park
- Oregon National Primate Research Center, Beaverton, OR 97006, United States; Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR 97239, United States
| | - Shelly J Krebs
- The Vaccine and Gene Therapy Institute, Beaverton, OR 97006, United States; Oregon National Primate Research Center, Beaverton, OR 97006, United States
| | - Susan W Barnett
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, United States
| | - Nancy L Haigwood
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97217, United States; The Vaccine and Gene Therapy Institute, Beaverton, OR 97006, United States; Oregon National Primate Research Center, Beaverton, OR 97006, United States.
| |
Collapse
|
32
|
Li J, Valentin A, Kulkarni V, Rosati M, Beach RK, Alicea C, Hannaman D, Reed SG, Felber BK, Pavlakis GN. HIV/SIV DNA vaccine combined with protein in a co-immunization protocol elicits highest humoral responses to envelope in mice and macaques. Vaccine 2013; 31:3747-55. [PMID: 23624057 DOI: 10.1016/j.vaccine.2013.04.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/05/2013] [Accepted: 04/15/2013] [Indexed: 12/27/2022]
Abstract
Vaccination with HIV/SIV DNAs elicits potent T-cell responses. To improve humoral immune responses, we combined DNA and protein in a co-immunization protocol using in vivo electroporation in mice and macaques. DNA&protein co-immunization induced higher antibody responses than DNA or protein alone, or DNA prime/protein boost in mice. DNA&protein co-immunization induced similar levels of cellular responses as those obtained by DNA only vaccination. The inclusion of SIV or HIV Env gp120 protein did not impair the development of cellular immune responses elicited by DNA present in the vaccine regimen. In macaques, the DNA&protein co-immunization regimen also elicited higher levels of humoral responses with broader cross-neutralizing activity. Despite the improved immunogenicity of DNA&protein co-immunization, the protein formulation with the EM-005 (GLA-SE) adjuvant further increased the anti-Env humoral responses. Dissecting the contribution of EM-005, we found that its administration upregulated the expression of co-stimulatory molecules and stimulated cytokine production, especially IL-6, by dendritic cells in vivo. These terminally differentiated, mature, dendritic cells possibly promote higher levels of humoral responses, supporting the inclusion of the EM-005 adjuvant with the vaccine. Thus, DNA&protein co-immunization is a promising strategy to improve the rapidity of development, magnitude and potency of the humoral immune responses.
Collapse
Affiliation(s)
- Jinyao Li
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Design and characterization of a peptide mimotope of the HIV-1 gp120 bridging sheet. Int J Mol Sci 2012; 13:5674-5699. [PMID: 22754323 PMCID: PMC3382813 DOI: 10.3390/ijms13055674] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 04/26/2012] [Accepted: 05/02/2012] [Indexed: 01/02/2023] Open
Abstract
The Bridging Sheet domain of HIV-1 gp120 is highly conserved among the HIV-1 strains and allows HIV-1 binding to host cells via the HIV-1 coreceptors. Further, the bridging sheet domain is a major target to neutralize HIV-1 infection. We rationally designed four linear peptide epitopes that mimic the three-dimensional structure of bridging sheet by using molecular modeling. Chemically synthesized peptides BS3 and BS4 showed a fair degree of antigenicity when tested in ELISA with IgG purified from HIV(+) broadly neutralizing sera while the production of synthetic peptides BS1 and BS2 failed due to their high degree of hydrophobicity. To overcome this limitation, we linked all four BS peptides to the COOH-terminus of GST protein to test both their antigenicity and immunogenicity. Only the BS1 peptide showed good antigenicity; however, no envelope specific antibodies were elicited upon mice immunization. Therefore we performed further analyses by linking BS1 peptide to the NH2-terminus of the E2 scaffold from the Geobacillus Stearothermophylus PDH complex. The E2-BS1 fusion peptide showed good antigenic results, however only one immunized rabbit elicited good antibody titers towards both the monomeric and oligomeric viral envelope glycoprotein (Env). In addition, moderate neutralizing antibodies response was elicited against two HIV-1 clade B and one clade C primary isolates. These preliminary data validate the peptide mimotope approach as a promising tool to obtain an effective HIV-1 vaccine.
Collapse
|
34
|
Trovato M, Krebs SJ, Haigwood NL, De Berardinis P. Delivery strategies for novel vaccine formulations. World J Virol 2012; 1:4-10. [PMID: 24175206 PMCID: PMC3782264 DOI: 10.5501/wjv.v1.i1.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/16/2011] [Accepted: 09/25/2011] [Indexed: 02/05/2023] Open
Abstract
A major challenge in vaccine design is to identify antigen presentation and delivery systems capable of rapidly stimulating both the humoral and cellular components of the immune system to elicit a strong and sustained immunity against different viral isolates. Approaches to achieve this end involve live attenuated and inactivated virions, viral vectors, DNA, and protein subunits. This review reports the state of current antigen delivery, and focuses on two innovative systems recently established at our labs. These systems are the filamentous bacteriophage fd and an icosahedral scaffold formed by the acyltransferase component (E2 protein) of the pyruvate dehydrogenase complex of Bacillus stearothermophilus.
Collapse
Affiliation(s)
- Maria Trovato
- Maria Trovato, Piergiuseppe De Berardinis, Institute of Protein Biochemistry, CNR, Naples 80131, Italy
| | | | | | | |
Collapse
|