1
|
Woodrow JS, Sheats MK, Cooper B, Bayless R. Asthma: The Use of Animal Models and Their Translational Utility. Cells 2023; 12:cells12071091. [PMID: 37048164 PMCID: PMC10093022 DOI: 10.3390/cells12071091] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Asthma is characterized by chronic lower airway inflammation that results in airway remodeling, which can lead to a permanent decrease in lung function. The pathophysiology driving the development of asthma is complex and heterogenous. Animal models have been and continue to be essential for the discovery of molecular pathways driving the pathophysiology of asthma and novel therapeutic approaches. Animal models of asthma may be induced or naturally occurring. Species used to study asthma include mouse, rat, guinea pig, cat, dog, sheep, horse, and nonhuman primate. Some of the aspects to consider when evaluating any of these asthma models are cost, labor, reagent availability, regulatory burden, relevance to natural disease in humans, type of lower airway inflammation, biological samples available for testing, and ultimately whether the model can answer the research question(s). This review aims to discuss the animal models most available for asthma investigation, with an emphasis on describing the inciting antigen/allergen, inflammatory response induced, and its translation to human asthma.
Collapse
Affiliation(s)
- Jane Seymour Woodrow
- Department of Clinical Studies, New Bolton Center, College of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA
| | - M Katie Sheats
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Bethanie Cooper
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Rosemary Bayless
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
2
|
Grunstein MM. Homeostatic glucocorticoid signaling in airway smooth muscle: A roadmap to asthma pathogenesis. Front Endocrinol (Lausanne) 2023; 13:1077389. [PMID: 36686425 PMCID: PMC9846750 DOI: 10.3389/fendo.2022.1077389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Homeostasis is the self-regulating process by which the body maintains internal stability within a narrow physiological range (i.e., "normality") as it dynamically adjusts to disruptive influences. Thus, whereas homeostasis maintains bodily health, disrupted homeostasis at the tissue or systemic level leads to disease. Airway smooth muscle (ASM) is the pivotal site of disrupted homeostasis in asthma. While extensive research has greatly expanded our understanding of ASM behavior under pro-asthmatic conditions, the cellular signaling mechanisms that underlie ASM homeostasis under these conditions remain elusive. Based on a broad collection of published studies, a homeostasis mechanism intrinsic to ASM and exhibited under inflammatory and non-inflammatory pro-asthmatic conditions is identified herein. Central to this mechanism is the novel unifying concept that the pro-asthmatic-exposed ASM can independently generate its own active glucocorticoid (i.e., cortisol), produce its own newly activated glucocorticoid receptors for the steroid, and, accordingly, use this molecular strategy to homeostatically prevent induction of the asthmatic state. This article addresses the experimental evidence that underlies the proposed homeostatic glucocorticoid signaling mechanism in ASM, followed by a discussion and depiction of the feed-forward and feedback intrinsic ASM signaling circuitry that constitutes the homeostatic state. The proposed mechanism offers a practical roadmap for future basic and translational research aimed at identifying potential key site(s) of disrupted ASM homeostasis leading to asthma.
Collapse
Affiliation(s)
- Michael M. Grunstein
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Liao HR, Kao YY, Leu YL, Liu FC, Tseng CP. Larixol inhibits fMLP-induced superoxide anion production and chemotaxis by targeting the βγ subunit of Gi-protein of fMLP receptor in human neutrophils. Biochem Pharmacol 2022; 201:115091. [DOI: 10.1016/j.bcp.2022.115091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
|
4
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|
5
|
Liao HR, Chen IS, Liu FC, Lin SZ, Tseng CP. 2’,3-dihydroxy-5-methoxybiphenyl suppresses fMLP-induced superoxide anion production and cathepsin G release by targeting the β-subunit of G-protein in human neutrophils. Eur J Pharmacol 2018; 829:26-37. [DOI: 10.1016/j.ejphar.2018.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
|
6
|
Yi MH, Kim HP, Jeong KY, Kim JY, Lee IY, Yong TS. Effects of the Th2-dominant milieu on allergic responses in Der f 1-activated mouse basophils and mast cells. Sci Rep 2018; 8:7706. [PMID: 29769546 PMCID: PMC5955989 DOI: 10.1038/s41598-018-25741-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/23/2018] [Indexed: 12/25/2022] Open
Abstract
Although basophils and mast cells share similar phenotypic and functional properties, little is known about the difference in the initial Th2 immune responses of these cells following exposure to proteolytic allergens. Here, we investigated the mechanisms of Th2-mediated immune responses in mouse bone marrow-derived basophils (BMBs) and mast cells (BMMCs) via stimulation with the cysteine protease allergen Der f 1. Our results showed that Th2 cytokines were induced from BMBs by active recombinant Der f 1 (rDer f 1 independently with Toll-like receptor (TLR) 2 and TLR4. Although both BMBs and BMMCs expressed protease-activated receptors on their surfaces, PAR expression following exposure to rDer f 1 was altered only in basophils. G protein-coupled receptors in basophils were found to be associated with interleukin (IL)-4 and IL-13 production from BMBs upon Der f 1 treatment. Secretion of Th2 cytokines from rDer f 1-treated basophils was mediated by G protein βγ and phosphatidylinositol 3-kinase γ through the extracellular signal-regulated kinase and c-Jun N-terminal kinase pathways. These findings provide insights into the roles of cysteine proteases in Th2 immune responses, such as allergic diseases, and improve our understanding of the mechanisms of Th2 cytokine production.
Collapse
Affiliation(s)
- Myung-Hee Yi
- Department of Environmental Medical Biology, Arthropods of Medical Importance Resource Bank, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Arthropods of Medical Importance Resource Bank, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea.,Graduate Program of Nano Science and Technology, Yonsei University College of Medicine, Seoul, 03722, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kyoung Yong Jeong
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Yeong Kim
- Department of Environmental Medical Biology, Arthropods of Medical Importance Resource Bank, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - In-Yong Lee
- Department of Environmental Medical Biology, Arthropods of Medical Importance Resource Bank, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Tai-Soon Yong
- Department of Environmental Medical Biology, Arthropods of Medical Importance Resource Bank, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
7
|
de F C Lichtenfels AJ, van der Plaat DA, de Jong K, van Diemen CC, Postma DS, Nedeljkovic I, van Duijn CM, Amin N, la Bastide-van Gemert S, de Vries M, Ward-Caviness CK, Wolf K, Waldenberger M, Peters A, Stolk RP, Brunekreef B, Boezen HM, Vonk JM. Long-term Air Pollution Exposure, Genome-wide DNA Methylation and Lung Function in the LifeLines Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:027004. [PMID: 29410382 PMCID: PMC6047358 DOI: 10.1289/ehp2045] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 05/17/2023]
Abstract
BACKGROUND Long-term air pollution exposure is negatively associated with lung function, yet the mechanisms underlying this association are not fully clear. Differential DNA methylation may explain this association. OBJECTIVES Our main aim was to study the association between long-term air pollution exposure and DNA methylation. METHODS We performed a genome-wide methylation study using robust linear regression models in 1,017 subjects from the LifeLines cohort study to analyze the association between exposure to nitrogen dioxide (NO2) and particulate matter (PM2.5, fine particulate matter with aerodynamic diameter ≤2.5 μm; PM10, particulate matter with aerodynamic diameter ≤10 μm) and PM2.5absorbance, indicator of elemental carbon content (estimated with land-use-regression models) with DNA methylation in whole blood (Illumina® HumanMethylation450K BeadChip). Replication of the top hits was attempted in two independent samples from the population-based Cooperative Health Research in the Region of Augsburg studies (KORA). RESULTS Depending on the p-value threshold used, we found significant associations between NO2 exposure and DNA methylation for seven CpG sites (Bonferroni corrected threshold p<1.19×10-7) or for 4,980 CpG sites (False Discovery Rate<0.05). The top associated CpG site was annotated to the PSMB9 gene (i.e., cg04908668). None of the seven Bonferroni significant CpG-sites were significantly replicated in the two KORA-cohorts. No associations were found for PM exposure. CONCLUSIONS Long-term NO2 exposure was genome-wide significantly associated with DNA methylation in the identification cohort but not in the replication cohort. Future studies are needed to further elucidate the potential mechanisms underlying NO2-exposure-related respiratory disease. https://doi.org/10.1289/EHP2045.
Collapse
Affiliation(s)
- Ana Julia de F C Lichtenfels
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| | - Diana A van der Plaat
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| | - Kim de Jong
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| | - Cleo C van Diemen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Dirkje S Postma
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen , Groningen, Netherlands
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen , Netherlands
| | - Ivana Nedeljkovic
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Sacha la Bastide-van Gemert
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maaike de Vries
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| | - Cavin K Ward-Caviness
- Institute of Epidemiology II, Helmholtz Zentrum München , Neuherberg, Germany
- Environmental Public Health Division, U.S. Environmental Protection Agency , Chapel Hill, North Carolina, USA
| | - Kathrin Wolf
- Institute of Epidemiology II, Helmholtz Zentrum München , Neuherberg, Germany
| | | | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München , Neuherberg, Germany
| | - Ronald P Stolk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences , Utrecht University, Utrecht, Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht , Netherlands
| | - H Marike Boezen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| |
Collapse
|
8
|
Worch R, Piecyk K, Kolasa AB, Jankowska-Anyszka M. Translocation of 5' mRNA cap analogue--peptide conjugates across the membranes of giant unilamellar vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:311-7. [PMID: 26654783 DOI: 10.1016/j.bbamem.2015.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/18/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
Cell-penetrating peptides (CPPs) have been extensively studied because of their ability to deliver various cargo molecules, which are often potential therapeutic agents. However, in most cases, the exact entry mechanism of CPPs is still unknown. In this study, we focused our attention on the membrane permeability sequence (MPS) peptide (AAVALLPAVLLALLAK) conjugated to analogues of a 5' mRNA cap. This unique RNA structure plays a pivotal role in eukaryotic gene expression and has a large therapeutic application potential. We validated the translocation abilities of conjugates across the membranes of giant unilamellar vesicles (GUVs) composed of POPC lipids by application of fluorescence microscopy. Translocation of the MPS peptide itself was observed in contrast to peptide conjugates containing mono- and dinucleotide cap analogues, indicating that even for such small cargos, passive translocation does not occur. However, membrane permeability was observed in the case of conjugated mononucleotides. Fluorescence lifetime microscopy (FLIM) of the C6-NBD-phospholipid revealed changes in lipid packing induced by a penetrating peptide. Our results support the usefulness of artificial membrane systems applied to elucidate membrane crossing mechanisms.
Collapse
Affiliation(s)
- Remigiusz Worch
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/45, 02-668 Warsaw, Poland.
| | - Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Anna Brygida Kolasa
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/45, 02-668 Warsaw, Poland
| | - Marzena Jankowska-Anyszka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; Department of Biochemistry, Second Faculty of Medicine, Medical University of Warsaw, Zwirki and Wigury 101, 02-089 Warsaw, Poland.
| |
Collapse
|
9
|
Knight JM, Mak G, Shaw J, Porter P, McDermott C, Roberts L, You R, Yuan X, Millien VO, Qian Y, Song LZ, Frazier V, Kim C, Kim JJ, Bond RA, Milner JD, Zhang Y, Mandal PK, Luong A, Kheradmand F, McMurray JS, Corry DB. Long-Acting Beta Agonists Enhance Allergic Airway Disease. PLoS One 2015; 10:e0142212. [PMID: 26605551 PMCID: PMC4659681 DOI: 10.1371/journal.pone.0142212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/19/2015] [Indexed: 01/11/2023] Open
Abstract
Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6.
Collapse
MESH Headings
- Adrenergic beta-2 Receptor Agonists/adverse effects
- Albuterol/therapeutic use
- Animals
- Anti-Asthmatic Agents/adverse effects
- Arrestins/deficiency
- Arrestins/genetics
- Aspergillosis, Allergic Bronchopulmonary/drug therapy
- Aspergillosis, Allergic Bronchopulmonary/genetics
- Aspergillosis, Allergic Bronchopulmonary/metabolism
- Aspergillosis, Allergic Bronchopulmonary/pathology
- Aspergillus niger/physiology
- Asthma/chemically induced
- Asthma/drug therapy
- Asthma/genetics
- Asthma/metabolism
- Bronchoconstriction/drug effects
- Carbazoles/adverse effects
- Carvedilol
- Disease Models, Animal
- Female
- Formoterol Fumarate/adverse effects
- Gene Expression
- Humans
- Lung/drug effects
- Lung/metabolism
- Lung/pathology
- Mice
- Mice, Knockout
- Peptidomimetics/pharmacology
- Propanolamines/adverse effects
- Receptors, Adrenergic, beta-2/deficiency
- Receptors, Adrenergic, beta-2/genetics
- STAT6 Transcription Factor/agonists
- STAT6 Transcription Factor/antagonists & inhibitors
- STAT6 Transcription Factor/genetics
- STAT6 Transcription Factor/metabolism
- Salmeterol Xinafoate/adverse effects
- beta-Arrestins
Collapse
Affiliation(s)
- John M Knight
- Departments of Pathology & Immunology and Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Garbo Mak
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joanne Shaw
- Department of Otorhinolaryngolgy - Head and Neck Surgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Paul Porter
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Catherine McDermott
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Luz Roberts
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ran You
- Departments of Pathology & Immunology and Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiaoyi Yuan
- Departments of Pathology & Immunology and Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Valentine O Millien
- Department of Medicine and the Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yuping Qian
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Li-Zhen Song
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vincent Frazier
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Choel Kim
- Departments of Pharmacology, and Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jeong Joo Kim
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard A Bond
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, United States of America
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institutes of Allergic and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yuan Zhang
- Laboratory of Allergic Diseases, National Institutes of Allergic and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Pijus K Mandal
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Amber Luong
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center and the Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Farrah Kheradmand
- Departments of Medicine and Pathology & Immunology, Translational Biology and Molecular Medicine Program, and the Biology of Inflammation Center, Baylor College of Medicine and the Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, Texas, United States of America
| | - John S McMurray
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - David B Corry
- Departments of Medicine and Pathology & Immunology, Translational Biology and Molecular Medicine Program, and the Biology of Inflammation Center, Baylor College of Medicine and the Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, Texas, United States of America
| |
Collapse
|
10
|
Gimenez LE, Baameur F, Vayttaden SJ, Clark RB. Salmeterol Efficacy and Bias in the Activation and Kinase-Mediated Desensitization of β2-Adrenergic Receptors. Mol Pharmacol 2015; 87:954-64. [PMID: 25784721 PMCID: PMC4429720 DOI: 10.1124/mol.114.096800] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/17/2015] [Indexed: 11/22/2022] Open
Abstract
Salmeterol is a long-acting β2-adrenergic receptor (β2AR) agonist that is widely used as a bronchodilator for the treatment of persistent asthma and chronic obstructive pulmonary disease in conjunction with steroids. Previous studies demonstrated that salmeterol showed weak efficacy for activation of adenylyl cyclase; however, its efficacy in the complex desensitization of the β2AR remains poorly understood. In this work, we provide insights into the roles played by the G protein-coupled receptor kinase/arrestin and protein kinase A in salmeterol-mediated desensitization through bioluminescence resonance energy transfer (BRET) studies of liganded-β2AR binding to arrestin and through kinetic studies of cAMP turnover. First, BRET demonstrated a much reduced efficacy for salmeterol recruitment of arrestin to β2AR relative to isoproterenol. The ratio of BRETISO/BRETSALM after 5-minute stimulation was 20 and decreased to 5 after 35 minutes, reflecting a progressive decline in BRETISO and a stable BRETSALM. Second, to assess salmeterol efficacy for functional desensitization, we examined the kinetics of salmeterol-induced cAMP accumulation (0-30 minutes) in human airway smooth muscle cells in the presence and absence of phosphodiesterase inhibition. Analysis of shaping of cAMP turnover for both agonists demonstrated significant salmeterol desensitization, although it was reduced relative to isoproterenol. Using an isoproterenol rescue protocol after either short-term (10 minutes) or long-term (2 and 14 hours) salmeterol pretreatments, we found that salmeterol progressively depressed isoproterenol stimulation but did not prevent subsequent rescue by isoproterenol and additional isoproterenol-mediated desensitization. Our findings reveal a complex efficacy for functional desensitization, demonstrating that although salmeterol shows weak efficacy for adenylyl cyclase activation and G protein-coupled receptor kinase/arrestin-mediated desensitization, it acts as a strong agonist in highly amplified protein kinase A-mediated events.
Collapse
Affiliation(s)
- Luis E Gimenez
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (L.E.G.); Division of Internal Medicine, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, Texas (F.B.); and Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas (S.J.V., R.B.C.)
| | - Faiza Baameur
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (L.E.G.); Division of Internal Medicine, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, Texas (F.B.); and Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas (S.J.V., R.B.C.)
| | - Sharat J Vayttaden
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (L.E.G.); Division of Internal Medicine, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, Texas (F.B.); and Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas (S.J.V., R.B.C.)
| | - Richard B Clark
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (L.E.G.); Division of Internal Medicine, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, Texas (F.B.); and Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas (S.J.V., R.B.C.)
| |
Collapse
|
11
|
Hu A, Diener BL, Josephson MB, Grunstein MM. Constitutively active signaling by the G protein βγ-subunit mediates intrinsically increased phosphodiesterase-4 activity in human asthmatic airway smooth muscle cells. PLoS One 2015; 10:e0118712. [PMID: 25742624 PMCID: PMC4351001 DOI: 10.1371/journal.pone.0118712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 01/09/2015] [Indexed: 02/02/2023] Open
Abstract
Signaling by the Gβγ subunit of Gi protein, leading to downstream c-Src-induced activation of the Ras/c-Raf1/MEK-ERK1/2 signaling pathway and its upregulation of phosphodiesterase-4 (PDE4) activity, was recently shown to mediate the heightened contractility in proasthmatic sensitized isolated airway smooth muscle (ASM), as well as allergen-induced airway hyperresponsiveness and inflammation in an in vivo animal model of allergic asthma. This study investigated whether cultured human ASM (HASM) cells derived from asthmatic donor lungs exhibit constitutively increased PDE activity that is attributed to intrinsically upregulated Gβγ signaling coupled to c-Src activation of the Ras/MEK/ERK1/2 cascade. We show that, relative to normal cells, asthmatic HASM cells constitutively exhibit markedly increased intrinsic PDE4 activity coupled to heightened Gβγ-regulated phosphorylation of c-Src and ERK1/2, and direct co-localization of the latter with the PDE4D isoform. These signaling events and their induction of heightened PDE activity are acutely suppressed by treating asthmatic HASM cells with a Gβγ inhibitor. Importantly, along with increased Gβγ activation, asthmatic HASM cells also exhibit constitutively increased direct binding of the small Rap1 GTPase-activating protein, Rap1GAP, to the α-subunit of Gi protein, which serves to cooperatively facilitate Ras activation and, thereby, enable enhanced Gβγ-regulated ERK1/2-stimulated PDE activity. Collectively, these data are the first to identify that intrinsically increased signaling via the Gβγ subunit, facilitated by Rap1GAP recruitment to the α-subunit, mediates the constitutively increased PDE4 activity detected in asthmatic HASM cells. These new findings support the notion that interventions targeted at suppressing Gβγ signaling may lead to novel approaches to treat asthma.
Collapse
Affiliation(s)
- Aihua Hu
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Barry L. Diener
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Maureen B. Josephson
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Michael M. Grunstein
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
12
|
Nino G, Huseni S, Perez GF, Pancham K, Mubeen H, Abbasi A, Wang J, Eng S, Colberg-Poley AM, Pillai DK, Rose MC. Directional secretory response of double stranded RNA-induced thymic stromal lymphopoetin (TSLP) and CCL11/eotaxin-1 in human asthmatic airways. PLoS One 2014; 9:e115398. [PMID: 25546419 PMCID: PMC4278901 DOI: 10.1371/journal.pone.0115398] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/21/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. METHODS Primary human bronchial epithelial cells (HBEC) from control (n = 3) and asthmatic (n = 3) donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI) conditions and treated apically with dsRNA (viral surrogate) or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC) from normal (n = 3) and asthmatic (n = 3) donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20) vs. non-asthmatic uninfected controls (n = 20). Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. RESULTS Our data demonstrate that: 1) Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2) TSLP exposure induces unidirectional (apical) secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3) Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. CONCLUSIONS There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations.
Collapse
Affiliation(s)
- Gustavo Nino
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, United States of America
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology, George Washington University, Washington, DC, United States of America
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, United States of America
- * E-mail:
| | - Shehlanoor Huseni
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, United States of America
| | - Geovanny F. Perez
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, United States of America
| | - Krishna Pancham
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, United States of America
| | - Humaira Mubeen
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, United States of America
| | - Aleeza Abbasi
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Justin Wang
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, United States of America
| | - Stephen Eng
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, United States of America
| | - Anamaris M. Colberg-Poley
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology, George Washington University, Washington, DC, United States of America
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, United States of America
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, United States of America
| | - Dinesh K. Pillai
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology, George Washington University, Washington, DC, United States of America
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, United States of America
| | - Mary C. Rose
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, United States of America
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology, George Washington University, Washington, DC, United States of America
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, United States of America
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, United States of America
| |
Collapse
|
13
|
Huang J, Nalli AD, Mahavadi S, Kumar DP, Murthy KS. Inhibition of Gαi activity by Gβγ is mediated by PI 3-kinase-γ- and cSrc-dependent tyrosine phosphorylation of Gαi and recruitment of RGS12. Am J Physiol Gastrointest Liver Physiol 2014; 306:G802-10. [PMID: 24578342 PMCID: PMC4010651 DOI: 10.1152/ajpgi.00440.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Others and we have characterized several Gβγ-dependent effectors in smooth muscle, including G protein-coupled receptor kinase 2 (GRK2), PLCβ3, and phosphatidylinositol (PI) 3-kinase-γ, and have identified various signaling targets downstream of PI 3-kinase-γ, including cSrc, integrin-linked kinase, and Rac1-Cdc42/p21-activated kinase/p38 MAP kinase. This study identified a novel mechanism whereby Gβγ acting via PI 3-kinase-γ and cSrc exerts an inhibitory influence on Gαi activity. The Gi2-coupled δ-opioid receptor agonist d-penicillamine (2,5)-enkephalin (DPDPE) activated cSrc, stimulated tyrosine phosphorylation of Gαi2, and induced regulator of G protein signaling 12 (RGS12) association; all three events were blocked by PI 3-kinase (LY294002) and cSrc (PP2) inhibitors and by expression of the COOH-terminal sequence of GRK2-(495-689), a Gβγ-scavenging peptide. Inhibition of forskolin-stimulated cAMP and muscle relaxation by DPDPE was augmented by PP2, LY294002, and a selective PI 3-kinase-γ inhibitor, AS-605420. Expression of tyrosine-deficient (Y69F, Y231F, or Y321F) Gαi2 mutant or knockdown of RGS12 blocked Gαi2 phosphorylation and Gαi2-RGS12 association and caused greater inhibition of cAMP. Parallel studies using somatostatin, cyclopentyl adenosine, or ACh to activate, respectively, Gi1-coupled somatostatin (sstr3) receptors, and Gi3-coupled adenosine A1 or muscarinic m2 receptors elicited cSrc activation, Gαi1 or Gαi3 phosphorylation, Gαi1-RGS12 or Gαi3-RGS12 association, and inhibition of cAMP. Inhibition of cAMP and muscle relaxation was greatly increased by AS-605240 and PP2. The results demonstrate that Gβγ-dependent tyrosine phosphorylation of Gαi1/2/3 by cSrc facilitated recruitment of RGS12, a Gαi-specific RGS protein with a unique phosphotyrosine-binding domain, resulting in rapid deactivation of Gαi and facilitation of smooth muscle relaxation.
Collapse
Affiliation(s)
- Jiean Huang
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Ancy D. Nalli
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Sunila Mahavadi
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Divya P. Kumar
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Karnam S. Murthy
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
14
|
Li L, Chen W, Liang Y, Ma H, Li W, Zhou Z, Li J, Ding Y, Ren J, Lin J, Han F, Wu J, Han J. The Gβγ-Src signaling pathway regulates TNF-induced necroptosis via control of necrosome translocation. Cell Res 2014; 24:417-32. [PMID: 24513853 DOI: 10.1038/cr.2014.17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022] Open
Abstract
Formation of multi-component signaling complex necrosomes is essential for tumor necrosis factor α (TNF)-induced programmed necrosis (also called necroptosis). However, the mechanisms of necroptosis are still largely unknown. We isolated a TNF-resistant L929 mutant cell line generated by retrovirus insertion and identified that disruption of the guanine nucleotide-binding protein γ 10 (Gγ10) gene is responsible for this phenotype. We further show that Gγ10 is involved in TNF-induced necroptosis and Gβ2 is the partner of Gγ10. Src is the downstream effector of Gβ2γ10 in TNF-induced necroptosis because TNF-induced Src activation was impaired upon Gγ10 knockdown. Gγ10 does not affect TNF-induced activation of NF-κB and MAPKs and the formation of necrosomes, but is required for trafficking of necrosomes to their potential functioning site, an unidentified subcellular organelle that can be fractionated into heterotypic membrane fractions. The TNF-induced Gβγ-Src signaling pathway is independent of RIP1/RIP3 kinase activity and necrosome formation, but is required for the necrosome to function.
Collapse
Affiliation(s)
- Lisheng Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wanze Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yaoji Liang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huabin Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wenjuan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhenru Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jie Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yan Ding
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Junming Ren
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Juan Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Felicia Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
15
|
Agrawal S, Townley RG. Role of periostin, FENO, IL-13, lebrikzumab, other IL-13 antagonist and dual IL-4/IL-13 antagonist in asthma. Expert Opin Biol Ther 2013; 14:165-81. [PMID: 24283478 DOI: 10.1517/14712598.2014.859673] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Asthma markedly diminishes quality of life due to limited activity, absences from work or school and hospitalizations. Patients with severe asthma which are not controlled despite taking effective therapy are most in need of new treatment approaches. IL-13 was demonstrated as 'central mediator of allergic asthma'. AREAS COVERED IL-13 has been implicated in the pathogenesis of asthma, idiopathic pulmonary fibrosis and COPD. IL-13 levels in the sputum and bronchial biopsy samples remain elevated in severe asthma despite the use of inhaled and systemic corticosteroids. Thus, IL-13 is a mediator involved in corticosteroid resistance. Periostin enhances profibrotic TGF-β signaling in subepithelial fibrosis associated with asthma. IL-13 induces bronchial epithelial cells to secrete periostin. Periostin may be a biomarker for Th2 induced airway inflammation. Lebrikizumab is a monoclonal antibody against IL-13. Lebrikizumab improved lung function in asthmatics who were symptomatic despite treatment with long acting beta agonist and inhaled corticosteroids and provided benefit in the treatment of severe uncontrolled asthma. EXPERT OPINION Lebrikizumab block IL-13 signaling through the IL-13Rα1/IL-4Rα receptor. There was a larger reduction in FENO in the high periostin subgroup than in the low periostin subgroup (34.4 vs 4.3%). Serum CCL17, CCL13 and total IgE levels decreased in the lebrikizumab group.
Collapse
Affiliation(s)
- Swati Agrawal
- Creighton University, Internal Medicine/Allergy , 601 N 30th Street, Omaha, NE 68131 , USA
| | | |
Collapse
|
16
|
A new perspective on muscarinic receptor antagonism in obstructive airways diseases. Curr Opin Pharmacol 2013; 13:316-23. [PMID: 23643733 DOI: 10.1016/j.coph.2013.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 01/25/2023]
Abstract
Acetylcholine has traditionally only been regarded as a neurotransmitter of the parasympathetic nervous system, causing bronchoconstriction and mucus secretion in asthma and COPD by muscarinic receptor activation on airway smooth muscle and mucus-producing cells. Recent studies in experimental models indicate that muscarinic receptor stimulation in the airways also induces pro-inflammatory, pro-proliferative and pro-fibrotic effects, which may involve activation of airway structural and inflammatory cells by neuronal as well as non-neuronal acetylcholine. In addition, mechanical changes caused by muscarinic agonist-induced bronchoconstriction may be involved in airway remodeling. Crosstalk between muscarinic receptors and β2-adrenoceptors on airway smooth muscle causes a reduced bronchodilator response to β2-agonists, and a similar mechanism could possibly apply to the poor inhibition of inflammatory and remodeling processes by these drugs. Collectively, these findings provide novel perspectives for muscarinic receptor antagonists in asthma and COPD, since these drugs may not only acutely affect cholinergic airways obstruction, but also have important beneficial effects on β2-agonist responsiveness, airway inflammation and remodeling. The clinical relevance of these findings is presently under investigation and starting to emerge.
Collapse
|
17
|
Hu A, Josephson MB, Diener BL, Nino G, Xu S, Paranjape C, Orange JS, Grunstein MM. Pro-asthmatic cytokines regulate unliganded and ligand-dependent glucocorticoid receptor signaling in airway smooth muscle. PLoS One 2013; 8:e60452. [PMID: 23593222 PMCID: PMC3617099 DOI: 10.1371/journal.pone.0060452] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/26/2013] [Indexed: 01/13/2023] Open
Abstract
To elucidate the regulation of glucocorticoid receptor (GR) signaling under pro-asthmatic conditions, cultured human airway smooth muscle (HASM) cells were treated with proinflammatory cytokines or GR ligands alone and in combination, and then examined for induced changes in ligand-dependent and -independent GR activation and downstream signaling events. Ligand stimulation with either cortisone or dexamethsone (DEX) acutely elicited GR translocation to the nucleus and, comparably, ligand-independent stimulation either with the Th2 cytokine, IL-13, or the pleiotropic cytokine combination, IL-1β/TNFα, also acutely evoked GR translocation. The latter response was potentiated by combined exposure of cells to GR ligand and cytokine. Similarly, treatment with either DEX or IL-13 alone induced GR phosphorylation at its serine-211 residue (GRSer211), denoting its activated state, and combined treatment with DEX+IL-13 elicited heightened and sustained GRSer211 phosphorylation. Interestingly, the above ligand-independent GR responses to IL-13 alone were not associated with downstream GR binding to its consensus DNA sequence or GR transactivation, whereas both DEX-induced GR:DNA binding and transcriptional activity were significantly heightened in the presence of IL-13, coupled to increased recruitment of the transcriptional co-factor, MED14. The stimulated GR signaling responses to DEX were prevented in IL-13-exposed cells wherein GRSer211 phosphorylation was suppressed either by transfection with specific serine phosphorylation-deficient mutant GRs or treatment with inhibitors of the MAPKs, ERK1/2 and JNK. Collectively, these novel data highlight a heretofore-unidentified homeostatic mechanism in HASM cells that involves pro-asthmatic cytokine-driven, MAPK-mediated, non-ligand-dependent GR activation that confers heightened glucocorticoid ligand-stimulated GR signaling. These findings raise the consideration that perturbations in this homeostatic cytokine-driven GR signaling mechanism may be responsible, at least in part, for the insensirtivity to glucocorticoid therapy that is commonly seen in individuals with severe asthma.
Collapse
Affiliation(s)
- Aihua Hu
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania Perlman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Maureen B. Josephson
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania Perlman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Barry L. Diener
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania Perlman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Gustavo Nino
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania Perlman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Integrative Systems Biology and Division of Pulmonary & Sleep Medicine, Children's National Medical Center, Center for Genetic Medicine Research, George Washington University, Washington, D.C., United States of America
| | - Shuyun Xu
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania Perlman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Chinmay Paranjape
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania Perlman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jordan S. Orange
- Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael M. Grunstein
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania Perlman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
18
|
Zhang CH, Lifshitz LM, Uy KF, Ikebe M, Fogarty KE, ZhuGe R. The cellular and molecular basis of bitter tastant-induced bronchodilation. PLoS Biol 2013; 11:e1001501. [PMID: 23472053 PMCID: PMC3589262 DOI: 10.1371/journal.pbio.1001501] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/24/2013] [Indexed: 01/13/2023] Open
Abstract
Bitter tastants can activate bitter taste receptors on constricted smooth muscle cells to inhibit L-type calcium channels and induce bronchodilation. Bronchodilators are a standard medicine for treating airway obstructive diseases, and β2 adrenergic receptor agonists have been the most commonly used bronchodilators since their discovery. Strikingly, activation of G-protein-coupled bitter taste receptors (TAS2Rs) in airway smooth muscle (ASM) causes a stronger bronchodilation in vitro and in vivo than β2 agonists, implying that new and better bronchodilators could be developed. A critical step towards realizing this potential is to understand the mechanisms underlying this bronchodilation, which remain ill-defined. An influential hypothesis argues that bitter tastants generate localized Ca2+ signals, as revealed in cultured ASM cells, to activate large-conductance Ca2+-activated K+ channels, which in turn hyperpolarize the membrane, leading to relaxation. Here we report that in mouse primary ASM cells bitter tastants neither evoke localized Ca2+ events nor alter spontaneous local Ca2+ transients. Interestingly, they increase global intracellular [Ca2+]i, although to a much lower level than bronchoconstrictors. We show that these Ca2+ changes in cells at rest are mediated via activation of the canonical bitter taste signaling cascade (i.e., TAS2R-gustducin-phospholipase Cβ [PLCβ]- inositol 1,4,5-triphosphate receptor [IP3R]), and are not sufficient to impact airway contractility. But activation of TAS2Rs fully reverses the increase in [Ca2+]i induced by bronchoconstrictors, and this lowering of the [Ca2+]i is necessary for bitter tastant-induced ASM cell relaxation. We further show that bitter tastants inhibit L-type voltage-dependent Ca2+ channels (VDCCs), resulting in reversal in [Ca2+]i, and this inhibition can be prevented by pertussis toxin and G-protein βγ subunit inhibitors, but not by the blockers of PLCβ and IP3R. Together, we suggest that TAS2R stimulation activates two opposing Ca2+ signaling pathways via Gβγ to increase [Ca2+]i at rest while blocking activated L-type VDCCs to induce bronchodilation of contracted ASM. We propose that the large decrease in [Ca2+]i caused by effective tastant bronchodilators provides an efficient cell-based screening method for identifying potent dilators from among the many thousands of available bitter tastants. Bitter taste receptors (TAS2Rs), a G-protein-coupled receptor family long thought to be solely expressed in taste buds on the tongue, have recently been detected in airways. Bitter substances can activate TAS2Rs in airway smooth muscle to cause greater bronchodilation than β2 adrenergic receptor agonists, the most commonly used bronchodilators. However, the mechanisms underlying this bronchodilation remain elusive. Here we show that, in resting primary airway smooth muscle cells, bitter tastants activate a TAS2R-dependent signaling pathway that results in an increase in intracellular calcium levels, albeit to a level much lower than that produced by bronchoconstrictors. In bronchoconstricted cells, however, bitter tastants reverse the bronchoconstrictor-induced increase in calcium levels, which leads to the relaxation of smooth muscle cells. We find that this reversal is due to inhibition of L-type calcium channels. Our results suggest that under normal conditions, bitter tastants can activate TAS2Rs to modestly increase calcium levels, but that when smooth muscle cells are constricted, they can block L-type calcium channels to induce bronchodilation. We postulate that this novel mechanism could operate in other extraoral cells expressing TAS2Rs.
Collapse
Affiliation(s)
- Cheng-Hai Zhang
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Lawrence M. Lifshitz
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Karl F. Uy
- Department of Surgery, Division of Thoracic Surgery, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts, United States of America
| | - Mitsuo Ikebe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kevin E. Fogarty
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Bossé Y. Asthmatic airway hyperresponsiveness: the ants in the tree. Trends Mol Med 2012; 18:627-33. [PMID: 23062358 DOI: 10.1016/j.molmed.2012.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/28/2012] [Accepted: 09/10/2012] [Indexed: 01/27/2023]
Abstract
Airways from asthmatics have a propensity to narrow excessively in response to spasmogens (i.e., contractile agonists), a feature called airway hyperresponsiveness (AHR). AHR is an important contributor to asthma symptoms because the degree of responsiveness dictates the amount of airway narrowing that occurs in response to inflammation-derived spasmogens produced endogenously following exposure to environmental triggers, such as allergens, viruses, or pollutants. The smooth muscle encircling the airways is responsible for responsiveness because it constricts the airway lumen when commanded to contract by spasmogens. However, whether AHR seen in asthmatics is due to stronger muscle is equivocal. In this opinion article, I propose that environmental triggers and other inflammatory molecules released during asthma attacks contribute to AHR by increasing muscle force.
Collapse
Affiliation(s)
- Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, G1V 4G5, Canada.
| |
Collapse
|
20
|
Meurs H, Dekkers BGJ, Maarsingh H, Halayko AJ, Zaagsma J, Gosens R. Muscarinic receptors on airway mesenchymal cells: novel findings for an ancient target. Pulm Pharmacol Ther 2012; 26:145-55. [PMID: 22842340 DOI: 10.1016/j.pupt.2012.07.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/15/2012] [Accepted: 07/17/2012] [Indexed: 01/25/2023]
Abstract
Since ancient times, anticholinergics have been used as a bronchodilator therapy for obstructive lung diseases. Targets of these drugs are G-protein-coupled muscarinic M(1), M(2) and M(3) receptors in the airways, which have long been recognized to regulate vagally-induced airway smooth muscle contraction and mucus secretion. However, recent studies have revealed that acetylcholine also exerts pro-inflammatory, pro-proliferative and pro-fibrotic actions in the airways, which may involve muscarinic receptor stimulation on mesenchymal, epithelial and inflammatory cells. Moreover, acetylcholine in the airways may not only be derived from vagal nerves, but also from non-neuronal cells, including epithelial and inflammatory cells. Airway smooth muscle cells seem to play a major role in the effects of acetylcholine on airway function. It has become apparent that these cells are multipotent cells that may reversibly adopt (hyper)contractile, proliferative and synthetic phenotypes, which are all under control of muscarinic receptors and differentially involved in bronchoconstriction, airway remodeling and inflammation. Cholinergic contractile tone is increased by airway inflammation associated with asthma and COPD, resulting from exaggerated acetylcholine release as well as increased expression of contraction related proteins in airway smooth muscle. Moreover, muscarinic receptor stimulation promotes proliferation of airway smooth muscle cells as well as fibroblasts, and regulates cytokine, chemokine and extracellular matrix production by these cells, which may contribute to airway smooth muscle growth, airway fibrosis and inflammation. In line, animal models of chronic allergic asthma and COPD have recently demonstrated that tiotropium may potently inhibit airway inflammation and remodeling. These observations indicate that muscarinic receptors have a much larger role in the pathophysiology of obstructive airway diseases than previously thought, which may have important therapeutic implications.
Collapse
Affiliation(s)
- Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|