1
|
Zhang X, Liu X, Zhang N, Zhao X, Li Y, Gong D, Yun Y. Development of chemically defined media for Lactococcus lactis subsp. lactis YF11 to eliminate the influence of hyperosmotic stress. 3 Biotech 2023; 13:375. [PMID: 37873496 PMCID: PMC10590357 DOI: 10.1007/s13205-023-03788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/24/2023] [Indexed: 10/25/2023] Open
Abstract
Chemically defined media (CDM) can eliminate or lessen the interference that occurs in complex culture media (CCM) caused by the undefined substrate pools, and various CDM have been designed and employed for investigating microbial physiology and multiomics. Herein, using the measured amount of total amino acids in CCM and combined with the in vivo and in vitro amino acid content of Lactococcus lactis subsp. lactis YF11, new enriched CDM were designed and then optimized using a statistical design-of-experiment method coupling with fed-batch fermentation to eliminate or lessen the influence of hyperosmotic pressure. Cell volume was introduced as a target index to assess the performance of CDM, and average osmotic pressure (AOP) was employed to describe the osmotic pressure of CDM. The AOP was significantly decreased from 610 mOsm/kg·H2O in the initial CDM (I-CDM) to 360 mOsm/kg·H2O in fed-batch CDM (F-CDM), and the cell volume was increased from 0.142 ± 0.004 μm3 in I-CDM to 0.198 ± 0.008 μm3 in F-CDM, which was close to 0.206 ± 0.005 μm3 found in CCM, indicating that the strategy of designing and improving CDM followed by a statistical design-of-experiment coupling with fed-batch cultivation presented a promising pathway for extensive utilization of CDM. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03788-5.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Inner Mongolia Key Laboratory of Biomass-Energy Conversion, School of Life Science and Technology, Inner Mongolia University of Science and Technology, 7 Aerding Street, Baotou, 014010 People’s Republic of China
| | - Xiaodan Liu
- Inner Mongolia Key Laboratory of Biomass-Energy Conversion, School of Life Science and Technology, Inner Mongolia University of Science and Technology, 7 Aerding Street, Baotou, 014010 People’s Republic of China
| | - Nan Zhang
- Inner Mongolia Key Laboratory of Biomass-Energy Conversion, School of Life Science and Technology, Inner Mongolia University of Science and Technology, 7 Aerding Street, Baotou, 014010 People’s Republic of China
| | - Xinru Zhao
- Inner Mongolia Key Laboratory of Biomass-Energy Conversion, School of Life Science and Technology, Inner Mongolia University of Science and Technology, 7 Aerding Street, Baotou, 014010 People’s Republic of China
| | - Yali Li
- Inner Mongolia Key Laboratory of Biomass-Energy Conversion, School of Life Science and Technology, Inner Mongolia University of Science and Technology, 7 Aerding Street, Baotou, 014010 People’s Republic of China
| | - Donghui Gong
- Inner Mongolia Key Laboratory of Biomass-Energy Conversion, School of Life Science and Technology, Inner Mongolia University of Science and Technology, 7 Aerding Street, Baotou, 014010 People’s Republic of China
| | - Yueying Yun
- Inner Mongolia Key Laboratory of Biomass-Energy Conversion, School of Life Science and Technology, Inner Mongolia University of Science and Technology, 7 Aerding Street, Baotou, 014010 People’s Republic of China
| |
Collapse
|
2
|
Wang Y, Li H, Liu Y, Zhou M, Ding M, Yuan Y. Construction of synthetic microbial consortia for 2-keto-L-gulonic acid biosynthesis. Synth Syst Biotechnol 2022; 7:481-489. [PMID: 34977392 PMCID: PMC8671096 DOI: 10.1016/j.synbio.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, the establishment of synthetic microbial consortia with rational strategies has gained extensive attention, becoming one of the important frontiers of synthetic biology. Systems biology can offer insights into the design and construction of synthetic microbial consortia. Taking the high-efficiency production of 2-keto-l-gulonic acid (2-KLG) as an example, we constructed a synthetic microbial consortium “Saccharomyces cerevisiae-Ketogulonigenium vulgare” based on systems biology analysis. In the consortium, K. vulgare was the 2-KLG producing strain, and S. cerevisiae acted as the helper strain. Comparative transcriptomic analysis was performed on an engineered S. cerevisiae (VTC2) and a wild-type S. cerevisiae BY4741. The results showed that the up-regulated genes in VTC2, compared with BY4741, were mainly involved in glycolysis, TCA cycle, purine metabolism, and biosynthesis of amino acids, B vitamins, and antioxidant proteases, all of which play important roles in promoting the growth of K. vulgare. Furthermore, Vitamin C produced by VTC2 could further relieve the oxidative stress in the environment to increase the production of 2-KLG. Therefore, VTC2 would be of great advantage in working with K. vulgare. Thus, the synthetic microbial consortium "VTC2-K. vulgare" was constructed based on transcriptomics analyses, and the accumulation of 2-KLG was increased by 1.49-fold compared with that of mono-cultured K. vulgare, reaching 13.2 ± 0.52 g/L. In addition, the increased production of 2-KLG was accompanied by the up-regulated activities of superoxide dismutase and catalase in the medium and the up-regulated oxidative stress-related genes (sod, cat and gpd) in K. vulgare. The results indicated that the oxidative stress in the synthetic microbial consortium was efficiently reduced. Thus, systems analysis confirmed a favorable symbiotic relationship between microorganisms, providing guidance for further engineering synthetic consortia.
Collapse
Affiliation(s)
- Yan Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Hengchang Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yu Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Mengyu Zhou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
3
|
Zhou M, Bi Y, Ding M, Yuan Y. One-Step Biosynthesis of Vitamin C in Saccharomyces cerevisiae. Front Microbiol 2021; 12:643472. [PMID: 33717042 PMCID: PMC7947327 DOI: 10.3389/fmicb.2021.643472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Vitamin C (VC) is comprehensively applied in foods, cosmetics, pharmaceuticals, and especially clinical medicine. Nowadays, the industrial production of VC mainly relies on the classic two-step fermentation route, and researchers have explored the way for one-step fermentation of VC in recent years. In this study, a VC biosynthesis pathway that directly produced VC from glucose was reconstructed in Saccharomyces cerevisiae, and the protein engineering and metabolic engineering strategies were adopted to improve it. First, five exogenous modules from Arabidopsis were introduced into the chassis cells by synthetic biology approaches to obtain the strain YLAA harboring VC biosynthesis. In addition, L-galactose dehydrogenase (L-GalDH) and L-galactono-1,4-lactone dehydrogenase (L-GLDH) were fused and expressed in S. cerevisiae cells for the first time, which increased the intracellular VC accumulation by 2.78-fold, reaching 9.97 ± 0.09 mg/L. Through copy number engineering, it was further confirmed that the last step catalyzed by L-GLDH is the rate-limiting step. GDP-L-galactose phosphorylase (GPP) encoded by vtc2 is another rate-limiting enzyme confirmed by GAL1p overexpression results. Finally, by balancing gene expression and cell growth, the highest production strain with overexpressing vtc2 by multicopy plasmids was constructed. The VC accumulation reached 24.94 ± 1.16 mg/L, which was currently the highest production from glucose in S. cerevisiae. The production of the recombinant strain reached nearly 44 mg/L with the exogenous addition of L-galactose or glutathione. The results further emphasized the importance of the step catalyzed by GPP. The investigation provided experience for the efficient biosynthesis of VC and the determination of rate-limiting steps.
Collapse
Affiliation(s)
- Mengyu Zhou
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Yanhui Bi
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Mingzhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Ding M, Chen B, Ji X, Zhou J, Wang H, Tian X, Feng X, Yue H, Zhou Y, Wang H, Wu J, Yang P, Jiang Y, Mao X, Xiao G, Zhong C, Xiao W, Li B, Qin L, Cheng J, Yao M, Wang Y, Liu H, Zhang L, Yu L, Chen T, Dong X, Jia X, Zhang S, Liu Y, Chen Y, Chen K, Wu J, Zhu C, Zhuang W, Xu S, Jiao P, Zhang L, Song H, Yang S, Xiong Y, Li Y, Zhang Y, Zhuang Y, Su H, Fu W, Huang Y, Li C, Zhao ZK, Sun Y, Chen GQ, Zhao X, Huang H, Zheng Y, Yang L, Su Z, Ma G, Ying H, Chen J, Tan T, Yuan Y. Biochemical engineering in China. REV CHEM ENG 2019. [DOI: 10.1515/revce-2017-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Chinese biochemical engineering is committed to supporting the chemical and food industries, to advance science and technology frontiers, and to meet major demands of Chinese society and national economic development. This paper reviews the development of biochemical engineering, strategic deployment of these technologies by the government, industrial demand, research progress, and breakthroughs in key technologies in China. Furthermore, the outlook for future developments in biochemical engineering in China is also discussed.
Collapse
Affiliation(s)
- Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Biqiang Chen
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xiaojun Ji
- College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 211816 , China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University , Nanjing 210009 , China
| | - Jingwen Zhou
- School of Biotechnology, Jiangnan University , Wuxi 214122 , China
| | - Huiyuan Wang
- Shanghai Information Center of Life Sciences (SICLS), Shanghai Institute of Biology Sciences (SIBS), Chinese Academy of Sciences , Shanghai 200031 , China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai 200237 , China
| | - Xudong Feng
- School of Life Science, Beijing Institute of Technology , Beijing 100081 , China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yongjin Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Hailong Wang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University , Jinan 250100 , China
| | - Jianping Wu
- Institute of Biology Engineering, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027 , China
| | - Pengpeng Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Yu Jiang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Xuming Mao
- Institute of Pharmaceutical Biotechnology, Zhejiang University , Hangzhou 310058 , China
| | - Gang Xiao
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Bingzhi Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Lei Qin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Jingsheng Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Hong Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Lin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Linling Yu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Xiaoyan Dong
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Xiaoqiang Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yanfeng Liu
- School of Biotechnology, Jiangnan University , Wuxi 214122 , China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Jinglan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Chenjie Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Pengfei Jiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Lei Zhang
- Tianjin Ltd. of BoyaLife Inc. , Tianjin 300457 , China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Sheng Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Yan Xiong
- Shanghai Information Center of Life Sciences (SICLS), Shanghai Institute of Biology Sciences (SIBS), Chinese Academy of Sciences , Shanghai 200031 , China
| | - Yongquan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University , Hangzhou 310058 , China
| | - Youming Zhang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University , Jinan 250100 , China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai 200237 , China
| | - Haijia Su
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Weiping Fu
- China National Center of Biotechnology Development , Beijing , China
| | - Yingming Huang
- China National Center of Biotechnology Development , Beijing , China
| | - Chun Li
- School of Life Science, Beijing Institute of Technology , Beijing 100081 , China
| | - Zongbao K. Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Yan Sun
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Guo-Qiang Chen
- Center of Synthetic and Systems Biology, School of Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Xueming Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - He Huang
- College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 211816 , China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University , Nanjing 210009 , China
| | - Yuguo Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology , Hangzhou 310014 , China
| | - Lirong Yang
- Institute of Biology Engineering, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027 , China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Jian Chen
- School of Biotechnology, Jiangnan University , Wuxi 214122 , China
| | - Tianwei Tan
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| |
Collapse
|
5
|
Ma Q, Bi YH, Wang EX, Zhai BB, Dong XT, Qiao B, Ding MZ, Yuan YJ. Integrated proteomic and metabolomic analysis of a reconstructed three-species microbial consortium for one-step fermentation of 2-keto-l-gulonic acid, the precursor of vitamin C. ACTA ACUST UNITED AC 2019; 46:21-31. [DOI: 10.1007/s10295-018-2096-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/21/2018] [Indexed: 01/04/2023]
Abstract
Abstract
Microbial consortia, with the merits of strong stability, robustness, and multi-function, played critical roles in human health, bioenergy, and food manufacture, etc. On the basis of ‘build a consortium to understand it’, a novel microbial consortium consisted of Gluconobacter oxydans, Ketogulonicigenium vulgare and Bacillus endophyticus was reconstructed to produce 2-keto-l-gulonic acid (2-KGA), the precursor of vitamin C. With this synthetic consortium, 73.7 g/L 2-KGA was obtained within 30 h, which is comparable to the conventional industrial method. A combined time-series proteomic and metabolomic analysis of the fermentation process was conducted to further investigate the cell–cell interaction. The results suggested that the existence of B. endophyticus and G. oxydans together promoted the growth of K. vulgare by supplying additional nutrients, and promoted the 2-KGA production by supplying more substrate. Meanwhile, the growth of B. endophyticus and G. oxydans was compromised from the competition of the nutrients by K. vulgare, enabling the efficient production of 2-KGA. This study provides valuable guidance for further study of synthetic microbial consortia.
Collapse
Affiliation(s)
- Qian Ma
- 0000 0004 1761 2484 grid.33763.32 Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University No. 92, Weijin Road 300072 Tianjin People’s Republic of China
- 0000 0000 9735 6249 grid.413109.e College of Biotechnology Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
- 0000 0004 1761 2484 grid.33763.32 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University 300072 Tianjin People’s Republic of China
| | - Yan-Hui Bi
- 0000 0004 1761 2484 grid.33763.32 Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University No. 92, Weijin Road 300072 Tianjin People’s Republic of China
- 0000 0004 1761 2484 grid.33763.32 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University 300072 Tianjin People’s Republic of China
| | - En-Xu Wang
- 0000 0004 1761 2484 grid.33763.32 Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University No. 92, Weijin Road 300072 Tianjin People’s Republic of China
- 0000 0004 1761 2484 grid.33763.32 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University 300072 Tianjin People’s Republic of China
| | - Bing-Bing Zhai
- 0000 0004 1761 2484 grid.33763.32 Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University No. 92, Weijin Road 300072 Tianjin People’s Republic of China
- 0000 0004 1761 2484 grid.33763.32 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University 300072 Tianjin People’s Republic of China
| | - Xiu-Tao Dong
- 0000 0004 1761 2484 grid.33763.32 Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University No. 92, Weijin Road 300072 Tianjin People’s Republic of China
- 0000 0004 1761 2484 grid.33763.32 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University 300072 Tianjin People’s Republic of China
| | - Bin Qiao
- 0000 0004 1761 2484 grid.33763.32 Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University No. 92, Weijin Road 300072 Tianjin People’s Republic of China
- 0000 0004 1761 2484 grid.33763.32 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University 300072 Tianjin People’s Republic of China
| | - Ming-Zhu Ding
- 0000 0004 1761 2484 grid.33763.32 Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University No. 92, Weijin Road 300072 Tianjin People’s Republic of China
- 0000 0004 1761 2484 grid.33763.32 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University 300072 Tianjin People’s Republic of China
| | - Ying-Jin Yuan
- 0000 0004 1761 2484 grid.33763.32 Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University No. 92, Weijin Road 300072 Tianjin People’s Republic of China
- 0000 0004 1761 2484 grid.33763.32 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University 300072 Tianjin People’s Republic of China
| |
Collapse
|
6
|
Wang CY, Li Y, Gao ZW, Liu LC, Wu YC, Zhang MY, Zhang TY, Zhang YX. Reconstruction and analysis of carbon metabolic pathway of Ketogulonicigenium vulgare SPU B805 by genome and transcriptome. Sci Rep 2018; 8:17838. [PMID: 30546118 PMCID: PMC6293013 DOI: 10.1038/s41598-018-36038-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/09/2018] [Indexed: 11/23/2022] Open
Abstract
Ketogulonicigenium vulgare has been widely used in vitamin C two-step fermentation. Four K. vulgare strains (WSH-001, Y25, Hbe602 and SKV) have been completely genome-sequenced, however, less attention was paid to elucidate the reason for the differences in 2-KGA yield on genetic level. Here, a novel K. vulgare SPU B805 with higher 2-keto-L-gulonic acid (2-KGA) yield, was genome-sequenced to confirm harboring one circular chromosome with plasmid free. Comparative genome analyses showed that the absence of plasmid 2 was an important factor for its high 2-KGA productivity. The amino acid biosynthetic pathways in strain SPU B805 are much more complete than those in other K. vulgare strains. Meanwhile, strain SPU B805 harbored a complete PPP and TCA route, as well as a disabled EMP and ED pathway, same as to strain SKV, whereas strain WSH-001, Y25 and Hbe602 harbored complete PPP, ED, TCA pathway and a nonfunctional EMP pathway. The transcriptome of strain SPU B805 validated the carbon metabolism in cytoplasm mainly through the PPP pathway due to its higher transcriptional levels. This is the first time to elucidate the underlying mechanism for the difference in 2-KGA yield, and it is of great significance for strain improvement in the industrial fermentation.
Collapse
Affiliation(s)
- Cai-Yun Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ye Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.,Northeast Pharmaceutical Group Co., Ltd, Shenyang, 110026, People's Republic of China
| | - Zi-Wei Gao
- Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Li-Cheng Liu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying-Cai Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tian-Yuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
7
|
Pothakos V, Debeer N, Debonne I, Rodriguez A, Starr JN, Anderson T. Fermentation Titer Optimization and Impact on Energy and Water Consumption during Downstream Processing. Chem Eng Technol 2018; 41:2358-2365. [PMID: 31007402 PMCID: PMC6472596 DOI: 10.1002/ceat.201800279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/30/2018] [Accepted: 09/07/2018] [Indexed: 01/02/2023]
Abstract
A common focus of fermentation process optimization is the product titer. Different strategies to boost fermentation titer target whole-cell biocatalyst selection, process control, and medium composition. Working at higher product concentrations reduces the water that needs to be removed in the case of aqueous systems and, therefore, lowers the cost of downstream separation and purification. Different approaches to achieve higher titer in fermentation are examined. Energy and water consumption data collected from different Cargill fermentation plants, i.e., ethanol, lactic acid, and 2-keto-L-gulonic acid, confirm that improvements in fermentation titer play a decisive role in downstream economics and environmental footprint.
Collapse
Affiliation(s)
| | - Nadine Debeer
- Cargill R&D Centre Europe BVBAHavenstraat 841800VilvoordeBelgium
| | - Ignace Debonne
- Cargill R&D Centre Europe BVBAHavenstraat 841800VilvoordeBelgium
| | - Asier Rodriguez
- Cargill R&D Centre Europe BVBAHavenstraat 841800VilvoordeBelgium
| | - John N. Starr
- Engineering R&D, Cargill, IncP.O. Box 9300MN 55440MinneapolisUSA
| | - Todd Anderson
- Cargill R&D Centre Europe BVBAHavenstraat 841800VilvoordeBelgium
| |
Collapse
|
8
|
Current challenges facing one-step production of l-ascorbic acid. Biotechnol Adv 2018; 36:1882-1899. [DOI: 10.1016/j.biotechadv.2018.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
|
9
|
Huang M, Zhang YH, Yao S, Ma D, Yu XD, Zhang Q, Lyu SX. Antioxidant effect of glutathione on promoting 2-keto-l-gulonic acid production in vitamin C fermentation system. J Appl Microbiol 2018; 125:1383-1395. [PMID: 30053331 DOI: 10.1111/jam.14052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/10/2018] [Accepted: 07/23/2018] [Indexed: 11/27/2022]
Abstract
AIMS Oxidative stress limited the growth of cells and 2-keto-l-gulonic acid (2-KGA) production in vitamin C (Vc) fermentation system. The study aims to investigate the antioxidant effect of glutathione on promoting 2-KGA in Vc fermentation system using Ketogulonicigenium vulgare 25B-1 and Bacillus endophyticus ST-1 as the co-culturing microbes. METHODS AND RESULTS The activities of antioxidant-related enzymes and qPCR were used to study the antioxidant effect of glutathione addition in Vc fermentation system. The addition of GSH and GSH/GSSG increased 2-KGA production and decreased fermentation time, and the highest 2-KGA production increased by 40·63% and the lowest fermentation time shortened to 60 h when the addition of optimal concentration ratio of GSH/GSSG was 50 : 1. Moreover, the increased production of 2-KGA was accompanied by up-regulated the activities of total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), catalase (CAT) and over-expressed oxidative stress-related genes sod, gst, gr, zwf, gp, which resulted in scavenging reactive oxygen species to reduce oxidative stress in Vc fermentation system. CONCLUSIONS Glutathione showed a significant effect on increasing 2-KGA production and decreasing fermentation time in Vc fermentation system. GSH/GSSG could maintain a dynamic balance with two forms of glutathione and the optimal concentration ratio of GSH/GSSG was 50 : 1. SIGNIFICANCE AND IMPACT OF THE STUDY Glutathione is proved to be effective to relieve oxidative stress. The promotion effects of GSSG and GSH on 2-KGA production could help to further explore the optimization of co-culture fermentation process for Vc industrial production.
Collapse
Affiliation(s)
- M Huang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Y-H Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - S Yao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - D Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - X-D Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Q Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - S-X Lyu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Zhang YH, Lin JY, Bai L, Huang M, Chen HQ, Yao S, Lyu SX. Antioxidant capacities of Bacillus endophyticus ST-1 and Ketogulonicigenium vulgare 25B-1 in vitamin C fermentation. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1447854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Yun-he Zhang
- Laboratory of Food Microorganisms, College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Jie-ye Lin
- Department of Biochemistry and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Ling Bai
- Department of Biochemistry and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Mao Huang
- Department of Biochemistry and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Hong-quan Chen
- Research and Development Department, Northeast Pharmaceutical General Factory of Vitamin C Company, Shenyang, Liaoning, PR China
| | - Shuo Yao
- Department of Biochemistry and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Shu-xia Lyu
- Department of Biochemistry and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| |
Collapse
|
11
|
Mandlaa, Sun Z, Wang R, Han X, Xu H, Yang W. Enhanced 2-keto-L-gulonic acid production by applying L-sorbose-tolerant helper strain in the co-culture system. AMB Express 2018; 8:30. [PMID: 29492704 PMCID: PMC5833332 DOI: 10.1186/s13568-018-0562-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/22/2018] [Indexed: 11/21/2022] Open
Abstract
2-Keto-L-gulonic acid (the precursor of vitamin C) is bio-converted from L-sorbose by mixed fermentation of Ketogulonicigenium vulgare and a helper strain. The helper strain promotes the conversion of 2-KLG by enhancing the growth of K. vulgare, but its growth is greatly inhibited by high concentration of L-sorbose, which consequently influence the 2-KLG production. The aim of this study is to obtain L-sorbose-tolerant helper strain (LHS) by experimental evolution for reduced L-sorbose-inhibition-effect and enhanced 2-KLG productivity in high concentration of L-sorbose. After three steps screening by using our devised screening strategy, three strains (i.e., Bc 21, Bc 47, Bc 50) with high resistance to high concentration of L-sorbose were obtained. The fermentation tests by co-culturing Bc 21 and K. vulgare 418 showed that the production of 2-KLG was increased by 17.9% in 11% L-sorbose medium than that in 8% after 55 h of fermentation and the conversion rate was 89.5%. The results suggested that Bc 21 could be an ideal helper strain for 2-KLG production under high concentration of L-sorbose and demonstrated the feasibility of using experimental evolution to breed LHS for vitamin C production.
Collapse
Affiliation(s)
- Mandlaa
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 010018 Hohhot, China
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, 110016 Shenyang, China
| | - Ziyu Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 010018 Hohhot, China
| | - Ruigang Wang
- College of Life Science, Inner Mongolia Agricultural University, 010018 Hohhot, China
| | - Xiaodong Han
- College of Life Science, Inner Mongolia Agricultural University, 010018 Hohhot, China
| | - Hui Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, 110016 Shenyang, China
| | - Weichao Yang
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, 110016 Shenyang, China
| |
Collapse
|
12
|
Reconstruction of amino acid biosynthetic pathways increases the productivity of 2-keto-l-gulonic acid in Ketogulonicigenium vulgare-Bacillus endophyticus consortium via genes screening. ACTA ACUST UNITED AC 2017; 44:1031-1040. [DOI: 10.1007/s10295-017-1928-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/22/2017] [Indexed: 01/26/2023]
Abstract
Abstract
Defect in the amino acid biosynthetic pathways of Ketogulonicigenium vulgare, the producing strain for 2-keto-l-gulonic acid (2-KGA), is the key reason for its poor growth and low productivity. In this study, five different strains were firstly reconstructed by expressing absent genes in threonine, proline and histidine biosynthetic pathways for better 2-KGA productivity. When mono-cultured in the shake flasks, the strain SyBE_Kv02080002 expressing hsk from Gluconobacter oxydans in threonine biosynthetic pathway achieved the highest biomass and the titer increased by 25.13%. When co-cultured with Bacillus endophyticus, the fermentation cycle decreased by 28.57% than that of the original consortium in 5-L fermenter. Furthermore, reconstruction of threonine biosynthetic pathway resulted in up-regulation of genes encoding sorbosone dehydrogenase and idonate-dehydrogenase, which increased the 2-KGA productivity in SyBE_Kv02080002. This study shows that reconstruction of absent biosynthetic pathways in bacteria is an effective way to enhance the productivity of target products.
Collapse
|
13
|
Jia N, Ding MZ, Zou Y, Gao F, Yuan YJ. Comparative genomics and metabolomics analyses of the adaptation mechanism in Ketogulonicigenium vulgare-Bacillus thuringiensis consortium. Sci Rep 2017; 7:46759. [PMID: 28440340 PMCID: PMC5404267 DOI: 10.1038/srep46759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/21/2017] [Indexed: 01/03/2023] Open
Abstract
Adaptive evolution by serial subcultivation of co-cultured Bacillus thuringiensis and Ketogulonicigenium vulgare significantly enhanced the productivity of 2-keto-L-gulonic acid in two-step vitamin C production. The adaptation mechanism in K. vulgare-B. thuringiensis consortium was investigated in this study based on comparative genomics and metabolomics studies. It was found that the growth, anti-oxidation, transcription and regulation were significantly enhanced in the adapted consortium. The mutation of the genes, which encode amidohydrolase in adapted K. vulgare (K150) and amino acid permease in adapted B. thuringiensis (B150), resulted in the increase of some amino acids levels in each species, and further enhanced the metabolic exchange and growth ability of the two species. Besides, the mutation of the gene encoding spore germination protein enhanced the metabolic levels of tricarboxylic acid cycle, and decreased the sporulation in B150, which induced its growth. The mutation of the genes, which encode NADPH nitroreductase in K150 and NADPH-dependent FMN reductase in B150, may enhance the ability of anti-oxidation. Overall, the long-term adaptation of K. vulgare and B. thuringiensis influenced the global regulation and made them more inseparable in metabolite exchange. Our work will provide ideas for the molecular design and optimization in microbial consortium.
Collapse
Affiliation(s)
- Nan Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yang Zou
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Feng Gao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- Department of Physics, Tianjin University, Tianjin, 300072, PR China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
14
|
Chen S, Jia N, Ding MZ, Yuan YJ. Comparative analysis of L-sorbose dehydrogenase by docking strategy for 2-keto-L-gulonic acid production in Ketogulonicigenium vulgare and Bacillus endophyticus consortium. J Ind Microbiol Biotechnol 2016; 43:1507-1516. [PMID: 27565673 DOI: 10.1007/s10295-016-1829-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/28/2016] [Indexed: 12/11/2022]
Abstract
Improving the yield of 2-keto-L-gulonic acid (2-KGA), the direct precursor of vitamin C, draws more and more attention in industrial production. In this study, we try to increase the 2-KGA productivity by computer-aided selection of genes encoding L-sorbose dehydrogenases (SDH) of Ketogulonicigenium vulgare. First, six SDHs were modeled by docking strategy to predict the binding mode with co-factor PQQ. The binding energy between SSDA1-H/SSDA1-L and PQQ was the highest, followed by SSDA3/SSDA2. The binding energy between SSDA1-P/SSDB and PQQ was the lowest. Then, these genes were overexpressed, respectively, in an industrial strain K. vulgare HKv604. Overexpression of ssda1-l and ssda1-h enhanced the 2-KGA production by 7.89 and 12.56 % in mono-cultured K. vulgare, and by 13.21 and 16.86 % when K. vulgare was co-cultured with Bacillus endophyticus. When the engineered K. vulgare SyBE_Kv000116013 (overexpression of ssda1-p) or SyBE_Kv000116016 (overexpression of ssdb) was co-cultured with B. endophyticus, the 2-KGA production decreased significantly. The docking results were in accordance with the experimental data, which indicated that computer-aided modeling is an efficient strategy for screening more efficient enzymes.
Collapse
Affiliation(s)
- Si Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Nan Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| |
Collapse
|
15
|
Jia N, Ding MZ, Du J, Pan CH, Tian G, Lang JD, Fang JH, Gao F, Yuan YJ. Insights into mutualism mechanism and versatile metabolism of Ketogulonicigenium vulgare Hbe602 based on comparative genomics and metabolomics studies. Sci Rep 2016; 6:23068. [PMID: 26979567 PMCID: PMC4793288 DOI: 10.1038/srep23068] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/29/2016] [Indexed: 02/02/2023] Open
Abstract
Ketogulonicigenium vulgare has been widely used in vitamin C two steps fermentation and requires companion strain for optimal growth. However, the understanding of K. vulgare as well as its companion strain is still preliminary. Here, the complete genome of K. vulgare Hbe602 was deciphered to provide insight into the symbiosis mechanism and the versatile metabolism. K. vulgare contains the LuxR family proteins, chemokine proteins, flagellar structure proteins, peptides and transporters for symbiosis consortium. Besides, the growth state and metabolite variation of K. vulgare were observed when five carbohydrates (D-sorbitol, L-sorbose, D-glucose, D-fructose and D-mannitol) were used as carbon source. The growth increased by 40.72% and 62.97% respectively when K. vulgare was cultured on D-mannitol/D-sorbitol than on L-sorbose. The insufficient metabolism of carbohydrates, amino acids and vitamins is the main reason for the slow growth of K. vulgare. The combined analysis of genomics and metabolomics indicated that TCA cycle, amino acid and nucleotide metabolism were significantly up-regulated when K. vulgare was cultured on the D-mannitol/D-sorbitol, which facilitated the better growth. The present study would be helpful to further understand its metabolic structure and guide the engineering transformation.
Collapse
Affiliation(s)
- Nan Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Jin Du
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Cai-Hui Pan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Geng Tian
- Sequencing platform of Tsinghua University, Beijing, 100084, PR China
| | - Ji-Dong Lang
- Sequencing platform of Tsinghua University, Beijing, 100084, PR China
| | - Jian-Huo Fang
- Sequencing platform of Tsinghua University, Beijing, 100084, PR China
| | - Feng Gao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- Department of Physics, Tianjin University, Tianjin, 300072, PR China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
16
|
Jia N, Du J, Ding MZ, Gao F, Yuan YJ. Genome Sequence of Bacillus endophyticus and Analysis of Its Companion Mechanism in the Ketogulonigenium vulgare-Bacillus Strain Consortium. PLoS One 2015; 10:e0135104. [PMID: 26248285 PMCID: PMC4527741 DOI: 10.1371/journal.pone.0135104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/16/2015] [Indexed: 11/19/2022] Open
Abstract
Bacillus strains have been widely used as the companion strain of Ketogulonigenium vulgare in the process of vitamin C fermentation. Different Bacillus strains generate different effects on the growth of K. vulgare and ultimately influence the productivity. First, we identified that Bacillus endophyticus Hbe603 was an appropriate strain to cooperate with K. vulgare and the product conversion rate exceeded 90% in industrial vitamin C fermentation. Here, we report the genome sequencing of the B. endophyticus Hbe603 industrial companion strain and speculate its possible advantage in the consortium. The circular chromosome of B. endophyticus Hbe603 has a size of 4.87 Mb with GC content of 36.64% and has the highest similarity with that of Bacillus megaterium among all the bacteria with complete genomes. By comparing the distribution of COGs with that of Bacillus thuringiensis, Bacillus cereus and B. megaterium, B. endophyticus has less genes related to cell envelope biogenesis and signal transduction mechanisms, and more genes related to carbohydrate transport and metabolism, energy production and conversion, as well as lipid transport and metabolism. Genome-based functional studies revealed the specific capability of B. endophyticus in sporulation, transcription regulation, environmental resistance, membrane transportation, extracellular proteins and nutrients synthesis, which would be beneficial for K. vulgare. In particular, B. endophyticus lacks the Rap-Phr signal cascade system and, in part, spore coat related proteins. In addition, it has specific pathways for vitamin B12 synthesis and sorbitol metabolism. The genome analysis of the industrial B. endophyticus will help us understand its cooperative mechanism in the K. vulgare-Bacillus strain consortium to improve the fermentation of vitamin C.
Collapse
Affiliation(s)
- Nan Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Jin Du
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Feng Gao
- Department of Physics, Tianjin University, Tianjin, 300072, PR China
- * E-mail: (FG); (YJY)
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- * E-mail: (FG); (YJY)
| |
Collapse
|
17
|
Mandlaa, Yang W, Liu C, Xu H. l-sorbose is not only a substrate for 2-keto-l-gulonic acid production in the artificial microbial ecosystem of two strains mixed fermentation. ACTA ACUST UNITED AC 2015; 42:897-904. [DOI: 10.1007/s10295-015-1616-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/28/2015] [Indexed: 10/23/2022]
Abstract
Abstract
The co-culture system of the fermentation process of vitamin C can be regarded as an artificial microbial ecosystem (AME). To extend our understanding of this AME, an investigation of the relationship between strains, substrate and product was carried out in this study. The results showed that both Ketogulonicigenium vulgare and 2-keto-l-gulonic acid (2-KLG, the precursor of vitamin C) can inhibit the growth of the helper strain, while the helper strain promoted the growth of K. vulgare and 2-KLG production. Moreover, l-sorbose is not only a substrate for 2-KLG production in the AME, but also a promoter of K. vulgare and an inhibitor of the helper strain. In the earlier stage of fermentation, the inhibition of l-sorbose on the helper strain’s growth is a key factor for ensuring an efficient fermentation. In the condition of adding the extra helper strain (OD: 0.57, ratio of inoculation: 2 %), the yields of 2-KLG is increased by 9 % in the 14 % l-sorbose medium. To the best of our knowledge, this is the first report about the inhibition of substrate in the AME of 2-KLG production.
Collapse
Affiliation(s)
- Mandlaa
- grid.9227.e 0000000119573309 Institute of Applied Ecology Chinese Academy of Sciences 72 Wenhua Road 110016 Shenyang China
| | - Weichao Yang
- grid.9227.e 0000000119573309 Institute of Applied Ecology Chinese Academy of Sciences 72 Wenhua Road 110016 Shenyang China
| | - Chengbin Liu
- grid.9227.e 0000000119573309 Institute of Applied Ecology Chinese Academy of Sciences 72 Wenhua Road 110016 Shenyang China
| | - Hui Xu
- grid.9227.e 0000000119573309 Institute of Applied Ecology Chinese Academy of Sciences 72 Wenhua Road 110016 Shenyang China
| |
Collapse
|
18
|
Zhang G, Qi F, Jia H, Zou C, Li C. Advances in bioprocessing for efficient bio manufacture. RSC Adv 2015. [DOI: 10.1039/c5ra07699d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The strategies involving molecular, cellular and community levels for improving various bioprocesses are reviewed with specific examples presented.
Collapse
Affiliation(s)
- Genlin Zhang
- School of Life Sciences
- Beijing Institute of Technology
- Beijing 100081
- China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
| | - Feng Qi
- School of Life Sciences
- Beijing Institute of Technology
- Beijing 100081
- China
- College of Life Sciences/Engineering Research Center of Industrial Microbiology
| | - Haiyang Jia
- School of Life Sciences
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Changling Zou
- School of Physics
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Chun Li
- School of Life Sciences
- Beijing Institute of Technology
- Beijing 100081
- China
| |
Collapse
|
19
|
Jia H, Fan Y, Feng X, Li C. Enhancing stress-resistance for efficient microbial biotransformations by synthetic biology. Front Bioeng Biotechnol 2014; 2:44. [PMID: 25368869 PMCID: PMC4202804 DOI: 10.3389/fbioe.2014.00044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/04/2014] [Indexed: 12/23/2022] Open
Abstract
Chemical conversions mediated by microorganisms, otherwise known as microbial biotransformations, are playing an increasingly important role within the biotechnology industry. Unfortunately, the growth and production of microorganisms are often hampered by a number of stressful conditions emanating from environment fluctuations and/or metabolic imbalances such as high temperature, high salt condition, strongly acidic solution, and presence of toxic metabolites. Therefore, exploring methods to improve the stress tolerance of host organisms could significantly improve the biotransformation process. With the help of synthetic biology, it is now becoming feasible to implement strategies to improve the stress-resistance of the existing hosts. This review summarizes synthetic biology efforts to enhance the efficiency of biotransformations by improving the robustness of microbes. Particular attention will be given to strategies at the cellular and the microbial community levels.
Collapse
Affiliation(s)
- Haiyang Jia
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| | - Yanshuang Fan
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| | - Xudong Feng
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| | - Chun Li
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| |
Collapse
|
20
|
Song H, Ding MZ, Jia XQ, Ma Q, Yuan YJ. Synthetic microbial consortia: from systematic analysis to construction and applications. Chem Soc Rev 2014; 43:6954-81. [PMID: 25017039 DOI: 10.1039/c4cs00114a] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthetic biology is an emerging research field that focuses on using rational engineering strategies to program biological systems, conferring on them new functions and behaviours. By developing genetic parts and devices based on transcriptional, translational, post-translational modules, many genetic circuits and metabolic pathways had been programmed in single cells. Extending engineering capabilities from single-cell behaviours to multicellular microbial consortia represents a new frontier of synthetic biology. Herein, we first reviewed binary interaction modes of microorganisms in microbial consortia and their underlying molecular mechanisms, which lay the foundation of programming cell-cell interactions in synthetic microbial consortia. Systems biology studies on cellular systems enable systematic understanding of diverse physiological processes of cells and their interactions, which in turn offer insights into the optimal design of synthetic consortia. Based on such fundamental understanding, a comprehensive array of synthetic microbial consortia constructed in the last decade were reviewed, including isogenic microbial communities programmed by quorum sensing-based cell-cell communications, sender-receiver microbial communities with one-way communications, and microbial ecosystems wired by two-way (bi-directional) communications. Furthermore, many applications including using synthetic microbial consortia for distributed bio-computations, chemicals and bioenergy production, medicine and human health, and environments were reviewed. Synergistic development of systems and synthetic biology will provide both a thorough understanding of naturally occurring microbial consortia and rational engineering of these complicated consortia for novel applications.
Collapse
Affiliation(s)
- Hao Song
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, and Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | | | |
Collapse
|
21
|
Metabolic model reconstruction and analysis of an artificial microbial ecosystem for vitamin C production. J Biotechnol 2014; 182-183:61-7. [PMID: 24815194 DOI: 10.1016/j.jbiotec.2014.04.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/17/2014] [Accepted: 04/20/2014] [Indexed: 11/21/2022]
Abstract
An artificial microbial ecosystem (AME) consisting of Ketogulonicigenium vulgare and Bacillus megaterium is currently used in a two-step fermentation process for vitamin C production. In order to obtain a comprehensive understanding of the metabolic interactions between the two bacteria, a two-species stoichiometric metabolic model (iWZ-KV-663-BM-1055) consisting of 1718 genes, 1573 metabolites, and 1891 reactions (excluding exchange reactions) was constructed based on separate genome-scale metabolic models (GSMMs) of K. vulgare and B. megaterium. These two compartments (k and b) of iWZ-KV-663-BM-1055 shared 453 reactions and 548 metabolites. Compartment b was richer in subsystems than compartment k. In minimal media with glucose (MG), metabolite exchange between compartments was assessed by constraint-based analysis. Compartment b secreted essential amino acids, nucleic acids, vitamins and cofactors important for K. vulgare growth and biosynthesis of 2-keto-l-gulonic acid (2-KLG). Further research showed that when co-cultured with B. megaterium in l-sorbose-CSLP medium, the growth rate of K. vulgare and 2-KLG production were increased by 111.9% and 29.42%, respectively, under the constraints employed. Our study demonstrated that GSMMs and constraint-based methods can be used to decode the physiological features and inter-species interactions of AMEs used in industrial biotechnology, which will be of benefit for improving regulation and refinement in future industrial processes.
Collapse
|
22
|
Ding MZ, Zou Y, Song H, Yuan YJ. Metabolomic analysis of cooperative adaptation between co-cultured Bacillus cereus and Ketogulonicigenium vulgare. PLoS One 2014; 9:e94889. [PMID: 24728527 PMCID: PMC3984275 DOI: 10.1371/journal.pone.0094889] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/19/2014] [Indexed: 11/29/2022] Open
Abstract
The cooperative adaptation of subcultivated Bacillus cereus and Ketogulonicigenium vulgare significantly increased the productivity of 2-keto-L-gulonic acid, the precursor of vitamin C. The mechanism of cooperative adaptation of the serial subcultivated B. cereus and K. vulgare was investigated in this study by culturing the two strains orthogonally on agar plates. It was found that the swarming distance of B. cereus along the trace of K. vulgare on the plate decreased after 150 days' subcultivation. Metabolomic analysis on these co-cultured B. cereus and K. vulgare strains showed that their cooperative adaptation was accomplished by three key events: (i) the ability of nutrients (e.g., amino acids and purines) searching and intaking, and proteins biosynthesis is increased in the evolved B. cereus; (ii) the capability of protein degradation and amino acids transportation is enhanced in evolved K. vulgare; (iii) the evolved B. cereus was found to provide more nutrients (mostly amino acids and purines) to K. vulgare, thus strengthening the oxidation and energy generation of K. vulgare. Our results provided novel insights into the systems-level understanding of the cooperative adaptation between strains in synergistic consortium.
Collapse
Affiliation(s)
- Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, PR China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, PR China
| | - Yang Zou
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, PR China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, PR China
| | - Hao Song
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, PR China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, PR China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, PR China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, PR China
- * E-mail:
| |
Collapse
|
23
|
Comparative proteomic analysis of experimental evolution of the Bacillus cereus-Ketogulonicigenium vulgare co-culture. PLoS One 2014; 9:e91789. [PMID: 24619085 PMCID: PMC3950281 DOI: 10.1371/journal.pone.0091789] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/14/2014] [Indexed: 11/19/2022] Open
Abstract
The microbial co-culture system composing of Ketogulonicigenium vulgare and Bacillus cereus was widely adopted in industry for the production of 2-keto-gulonic acid (2-KGA), the precursor of vitamin C. We found serial subcultivation of the co-culture could enhance the yield of 2-KGA by 16% in comparison to that of the ancestral co-culture. To elucidate the evolutionary dynamics and interaction mechanisms of the two microbes, we performed iTRAQ-based quantitative proteomic analyses of the pure cultures of K. vulgare, B. cereus and their co-culture during serial subcultivation. Hierarchy cluster analyses of the proteomic data showed that the expression level of a number of crucial proteins associated with sorbose conversion and oligopeptide transport was significantly enhanced by the experimental evolution. In particular, the expression level of sorbose/sorbosone dehydrogenase was enhanced in the evolved K. vulgare, while the expression level of InhA and the transport efficiency of oligopeptides were increased in the evolved B. cereus. The decreased sporulating protein expression and increased peptide transporter expression observed in evolved B. cereus, together with the increased amino acids synthesis in evolved K. vulgare suggested that serial subcultivation result in enhanced synergistic cooperation between K. vulgare and B. cereus, enabling an increased production of 2-KGA.
Collapse
|
24
|
Lv YJ, Wang X, Ma Q, Bai X, Li BZ, Zhang W, Yuan YJ. Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress. Appl Microbiol Biotechnol 2014; 98:2207-21. [PMID: 24442506 DOI: 10.1007/s00253-014-5519-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 12/20/2013] [Accepted: 12/28/2013] [Indexed: 11/24/2022]
Abstract
Toxic compounds including acids, furans, and phenols (AFP) were generated from the pretreatment of lignocellulose. We cultivated Saccharomyces cerevisiae cells in a batch mode, besides the cell culture of original yeast strain in AFP-free medium which was referred as C0, three independent subcultures were cultivated under multiple inhibitors AFP and were referred as C1, C2, and C3 in time sequence. Comparing to C0, the cell density was lowered while the ethanol yield was maintained stably in the three yeast cultures under AFP stress, and the lag phase of C1 was extended while the lag phases of C2 and C3 were not extended. In proteomic analysis, 194 and 215 unique proteins were identified as differently expressed proteins at lag phase and exponential phase, respectively. Specifically, the yeast cells co-regulated protein folding and protein synthesis process to prevent the generation of misfolded proteins and to save cellular energy, they increased the activity of glycolysis, redirected metabolic flux towards phosphate pentose pathway and the biosynthesis of ethanol instead of the biosynthesis of glycerol and acetic acid, and they upregulated several oxidoreductases especially at lag phase and induced programmed cell death at exponential phase. When the yeast cells were cultivated under AFP stress, the new metabolism homeostasis in favor of cellular energy and redox homeostasis was generated in C1, then it was inherited and optimized in C2 and C3, enabling the yeast cells in C2 and C3 to enter the exponential phase in a short period after inoculation, which thus significantly shortened the fermentation time.
Collapse
Affiliation(s)
- Ya-Jin Lv
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
25
|
Du J, Bai W, Song H, Yuan YJ. Combinational expression of sorbose/sorbosone dehydrogenases and cofactor pyrroloquinoline quinone increases 2-keto-L-gulonic acid production in Ketogulonigenium vulgare-Bacillus cereus consortium. Metab Eng 2013; 19:50-6. [PMID: 23747604 DOI: 10.1016/j.ymben.2013.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 05/26/2013] [Accepted: 05/30/2013] [Indexed: 11/29/2022]
Abstract
The expression levels of sorbose/sorbosone dehydrogenase genes (sdh and sndh) and the synthesis genes (pqqABCDEN) of the adjoint cofactor pyrroloquinoline quinone (PQQ) were genetically manipulated in Ketogulonigenium vulgare to increase the production of 2-keto-l-gulonic acid (2-KLG), the precursor of vitamin C, in the consortium of K. vulgare and Bacillus cereus. We found that overexpression of sdh-sndh alone in K. vulgare could not significantly enhance the production of 2-KLG, revealing the cofactor PQQ was required for the biosynthesis of 2-KLG. Various expression levels of PQQ were achieved by differential expression of pqqA, pqqABCDE and pqqABCDEN, respectively. The combinatorial expression of sdh/sndh and pqqABCDEN in K. vulgare enabled a 20% increase in the production of 2-KLG (79.1±0.6gl(-1)) than that of the parental K. vulgare (65.9±0.4gl(-1)) in shaking flasks. Our results demonstrated the balanced co-expression of both the key enzymes and the related cofactors was an efficient strategy to increase chemicals' biosynthesis.
Collapse
Affiliation(s)
- Jin Du
- Key Laboratory of Systems Bioengineering, Ministry of Education and Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, P.O. Box 6888, Tianjin 300072, PR China
| | | | | | | |
Collapse
|
26
|
Glutathione enhances 2-keto-l-gulonic acid production based on Ketogulonicigenium vulgare model iWZ663. J Biotechnol 2013; 164:454-60. [DOI: 10.1016/j.jbiotec.2013.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 11/19/2022]
|
27
|
Zou W, Zhou M, Liu L, Chen J. Reconstruction and analysis of the industrial strain Bacillus megaterium WSH002 genome-scale in silico metabolic model. J Biotechnol 2013; 164:503-9. [PMID: 23454894 DOI: 10.1016/j.jbiotec.2013.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/24/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
A genome-scale metabolic model of Bacillus megaterium WSH002, an industrial bacterium widely used in the vitamin C industry, was reconstructed on the basis of the genome annotation and data from the literature and biochemical databases. It comprises 1112 reactions, 993 metabolites, and 1055 genes, including 43 new annotated genes. This model was able to predict qualitatively and quantitatively the growth of B. megaterium on a range of carbon and nitrogen sources, and the results agreed well with experimental data. A gene essentiality analysis predicted a core metabolic essential gene set of 57 genes on three different media. Furthermore, constraint-based analysis revealed that B. megaterium WSH002 is capable of producing and exporting several key metabolites, which could promote the growth of Ketogulonicigenium vulgare and 2-keto-l-gulonic acid (2-KLG) production. Here, the model represents a helpful tool for understanding and exploring this important industrial organism.
Collapse
Affiliation(s)
- Wei Zou
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | | | | | | |
Collapse
|
28
|
Industrial Production of l-Ascorbic Acid (Vitamin C) and d-Isoascorbic Acid. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 143:143-88. [DOI: 10.1007/10_2013_243] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Ma Q, Wang J, Lu S, Lv Y, Yuan Y. Quantitative proteomic profiling reveals photosynthesis responsible for inoculum size dependent variation in Chlorella sorokiniana. Biotechnol Bioeng 2012; 110:773-84. [PMID: 23096779 DOI: 10.1002/bit.24762] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/06/2012] [Accepted: 10/10/2012] [Indexed: 11/06/2022]
Abstract
High density cultivation is essential to industrial production of biodiesel from microalgae, which involves in variations of micro-environment around individual cells, including light intensity, nutrition distribution, other abiotic stress and so on. To figure out the main limit factor in high inoculum cultivation, a quantitative proteomic analysis (iTRAQ-on-line 2-D nano-LC/MS) in a non-model green microalga, Chlorella sorokiniana, under different inoculum sizes was conducted. The resulting high-quality proteomic dataset consisted of 695 proteins. Using a cutoff of P < 0.05, 241 unique proteins with differential expression levels were identified between control and different inoculum sizes. Functional analysis showed that proteins participating in photosynthesis (light reaction) and Calvin cycle (carbon reaction pathway) had highest expression levels under inoculum size of 1 × 10(6) cells mL(-1), and lowest levels under 1 × 10(7) cells mL(-1). Canonical correlation analysis of the photosynthesis related proteins and metabolites biomarkers showed that a good correlation existed between them (canonical coefficient was 0.987), suggesting photosynthesis process greatly affected microalgae biodiesel productivity and quality. Proteomic study of C. sorokiniana under different illuminations was also conducted to confirm light intensity as a potential limit factor of high inoculum size. Nearly two thirds of proteins showed up-regulation under the illumination of 70-110 µmol m(-2) s(-1), compared to those of 40 µmol m(-2) s(-1). This result suggested that by elegantly adjusting light conditions, high cell density cultivation and high biodiesel production might be achieved.
Collapse
Affiliation(s)
- Qian Ma
- Key Laboratory of Systems Bioengineering, Ministry of Education and Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | | | | | | | | |
Collapse
|
30
|
Zou W, Liu L, Chen J. Structure, mechanism and regulation of an artificial microbial ecosystem for vitamin C production. Crit Rev Microbiol 2012; 39:247-55. [DOI: 10.3109/1040841x.2012.706250] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|