1
|
Pizzo F, Mangione MR, Librizzi F, Manno M, Martorana V, Noto R, Vilasi S. The Possible Role of the Type I Chaperonins in Human Insulin Self-Association. Life (Basel) 2022; 12:life12030448. [PMID: 35330199 PMCID: PMC8949404 DOI: 10.3390/life12030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin is a hormone that attends to energy metabolism by regulating glucose levels in the bloodstream. It is synthesised within pancreas beta-cells where, before being released into the serum, it is stored in granules as hexamers coordinated by Zn2+ and further packaged in microcrystalline structures. The group I chaperonin cpn60, known for its assembly-assisting function, is present, together with its cochaperonin cpn10, at each step of the insulin secretory pathway. However, the exact function of the heat shock protein in insulin biosynthesis and processing is still far from being understood. Here we explore the possibility that the molecular machine cpn60/cpn10 could have a role in insulin hexameric assembly and its further crystallization. Moreover, we also evaluate their potential protective effect in pathological insulin aggregation. The experiments performed with the cpn60 bacterial homologue, GroEL, in complex with its cochaperonin GroES, by using spectroscopic methods, microscopy and hydrodynamic techniques, reveal that the chaperonins in vitro favour insulin hexameric organisation and inhibit its aberrant aggregation. These results provide new details in the field of insulin assembly and its related disorders.
Collapse
|
2
|
Paterna A, Rao E, Adamo G, Raccosta S, Picciotto S, Romancino D, Noto R, Touzet N, Bongiovanni A, Manno M. Isolation of Extracellular Vesicles From Microalgae: A Renewable and Scalable Bioprocess. Front Bioeng Biotechnol 2022; 10:836747. [PMID: 35360396 PMCID: PMC8963918 DOI: 10.3389/fbioe.2022.836747] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) play a crucial role as potent signal transducers among cells, with the potential to operate cross-species and cross-kingdom communication. Nanoalgosomes are a subtype of EVs recently identified and isolated from microalgae. Microalgae represent a natural bioresource with the capacity to produce several secondary metabolites with a broad range of biological activities and commercial applications. The present study highlights the upstream and downstream processes required for the scalable production of nanoalgosomes from cultures of the marine microalgae Tetraselmis chuii. Different technical parameters, protocols, and conditions were assessed to improve EVs isolation by tangential flow filtration (TFF), aiming to enhance sample purity and yield. The optimization of the overall bioprocess was enhanced by quality control checks operated through robust biophysical and biochemical characterizations. Further, we showed the possibility of recycling by TFF microalgae cells post-EVs isolation for multiple EV production cycles. The present results highlight the potential of nanoalgosome production as a scalable, cost-effective bioprocess suitable for diverse scientific and industrial exploitations.
Collapse
Affiliation(s)
- Angela Paterna
- Cell-Tech Hub, Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Estella Rao
- Cell-Tech Hub, Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Giorgia Adamo
- Cell-Tech Hub, Institute for Research and Biomedical Innovation, National Research Council of Italy, Palermo, Italy
| | - Samuele Raccosta
- Cell-Tech Hub, Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Sabrina Picciotto
- Cell-Tech Hub, Institute for Research and Biomedical Innovation, National Research Council of Italy, Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Daniele Romancino
- Cell-Tech Hub, Institute for Research and Biomedical Innovation, National Research Council of Italy, Palermo, Italy
| | - Rosina Noto
- Cell-Tech Hub, Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Nicolas Touzet
- Centre for Environmental Research Innovation and Sustainability, Institute of Technology Sligo, Sligo, Ireland
- *Correspondence: Nicolas Touzet, ; Antonella Bongiovanni, ; Mauro Manno,
| | - Antonella Bongiovanni
- Cell-Tech Hub, Institute for Research and Biomedical Innovation, National Research Council of Italy, Palermo, Italy
- *Correspondence: Nicolas Touzet, ; Antonella Bongiovanni, ; Mauro Manno,
| | - Mauro Manno
- Cell-Tech Hub, Institute of Biophysics, National Research Council of Italy, Palermo, Italy
- *Correspondence: Nicolas Touzet, ; Antonella Bongiovanni, ; Mauro Manno,
| |
Collapse
|
3
|
West J, Satapathy S, Whiten DR, Kelly M, Geraghty NJ, Proctor EJ, Sormanni P, Vendruscolo M, Buxbaum JN, Ranson M, Wilson MR. Neuroserpin and transthyretin are extracellular chaperones that preferentially inhibit amyloid formation. SCIENCE ADVANCES 2021; 7:eabf7606. [PMID: 34890220 PMCID: PMC8664251 DOI: 10.1126/sciadv.abf7606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Neuroserpin is a secreted protease inhibitor known to inhibit amyloid formation by the Alzheimer’s beta peptide (Aβ). To test whether this effect was constrained to Aβ, we used a range of in vitro assays to demonstrate that neuroserpin inhibits amyloid formation by several different proteins and protects against the associated cytotoxicity but, unlike other known chaperones, has a poor ability to inhibit amorphous protein aggregation. Collectively, these results suggest that neuroserpin has an unusual chaperone selectivity for intermediates on the amyloid-forming pathway. Bioinformatics analyses identified a highly conserved 14-residue region containing an α helix shared between neuroserpin and the thyroxine-transport protein transthyretin, and we subsequently demonstrated that transthyretin also preferentially inhibits amyloid formation. Last, we used rationally designed neuroserpin mutants to demonstrate a direct involvement of the conserved 14-mer region in its chaperone activity. Identification of this conserved region may prove useful in the future design of anti-amyloid reagents.
Collapse
Affiliation(s)
- Jennifer West
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Sandeep Satapathy
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Daniel R. Whiten
- Kolling Institute of Medical Research, University of Sydney, NSW 2065, Australia
| | - Megan Kelly
- School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Nicholas J. Geraghty
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Emma-Jayne Proctor
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Joel N. Buxbaum
- The Scripps Research Institute, La Jolla, CA, USA
- Protego Biopharma, La Jolla, CA, USA
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Mark R. Wilson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| |
Collapse
|
4
|
D'Acunto E, Fra A, Visentin C, Manno M, Ricagno S, Galliciotti G, Miranda E. Neuroserpin: structure, function, physiology and pathology. Cell Mol Life Sci 2021; 78:6409-6430. [PMID: 34405255 PMCID: PMC8558161 DOI: 10.1007/s00018-021-03907-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022]
Abstract
Neuroserpin is a serine protease inhibitor identified in a search for proteins implicated in neuronal axon growth and synapse formation. Since its discovery over 30 years ago, it has been the focus of active research. Many efforts have concentrated in elucidating its neuroprotective role in brain ischemic lesions, the structural bases of neuroserpin conformational change and the effects of neuroserpin polymers that underlie the neurodegenerative disease FENIB (familial encephalopathy with neuroserpin inclusion bodies), but the investigation of the physiological roles of neuroserpin has increased over the last years. In this review, we present an updated and critical revision of the current literature dealing with neuroserpin, covering all aspects of research including the expression and physiological roles of neuroserpin, both inside and outside the nervous system; its inhibitory and non-inhibitory mechanisms of action; the molecular structure of the monomeric and polymeric conformations of neuroserpin, including a detailed description of the polymerisation mechanism; and the involvement of neuroserpin in human disease, with particular emphasis on FENIB. Finally, we briefly discuss the identification by genome-wide screening of novel neuroserpin variants and their possible pathogenicity.
Collapse
Affiliation(s)
- Emanuela D'Acunto
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Annamaria Fra
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Visentin
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Molecular and Translational Cardiology, I.R.C.C.S. Policlinico San Donato, Milan, Italy
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Stefano Ricagno
- Department of Biosciences, University of Milan, Milan, Italy
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy.
- Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Raccosta S, Librizzi F, Jagger AM, Noto R, Martorana V, Lomas DA, Irving JA, Manno M. Scaling Concepts in Serpin Polymer Physics. MATERIALS 2021; 14:ma14102577. [PMID: 34063488 PMCID: PMC8156723 DOI: 10.3390/ma14102577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 01/29/2023]
Abstract
α1-Antitrypsin is a protease inhibitor belonging to the serpin family. Serpin polymerisation is at the core of a class of genetic conformational diseases called serpinopathies. These polymers are known to be unbranched, flexible, and heterogeneous in size with a beads-on-a-string appearance viewed by negative stain electron microscopy. Here, we use atomic force microscopy and time-lapse dynamic light scattering to measure polymer size and shape for wild-type (M) and Glu342→Lys (Z) α1-antitrypsin, the most common variant that leads to severe pathological deficiency. Our data for small polymers deposited onto mica and in solution reveal a power law relation between the polymer size, namely the end-to-end distance or the hydrodynamic radius, and the polymer mass, proportional to the contour length. We use the scaling concepts of polymer physics to assess that α1-antitrypsin polymers are random linear chains with a low persistence length.
Collapse
Affiliation(s)
- Samuele Raccosta
- Institute of Biophysics, National Research Council of Italy, via Ugo La Malfa 153, 90146 Palermo, Italy; (S.R.); (F.L.); (R.N.); (V.M.)
| | - Fabio Librizzi
- Institute of Biophysics, National Research Council of Italy, via Ugo La Malfa 153, 90146 Palermo, Italy; (S.R.); (F.L.); (R.N.); (V.M.)
| | - Alistair M. Jagger
- UCL Respiratory, University College London, 5 University Street, London WC1E 6JF, UK; (A.M.J.); (D.A.L.); (J.A.I.)
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BN, UK
| | - Rosina Noto
- Institute of Biophysics, National Research Council of Italy, via Ugo La Malfa 153, 90146 Palermo, Italy; (S.R.); (F.L.); (R.N.); (V.M.)
| | - Vincenzo Martorana
- Institute of Biophysics, National Research Council of Italy, via Ugo La Malfa 153, 90146 Palermo, Italy; (S.R.); (F.L.); (R.N.); (V.M.)
| | - David A. Lomas
- UCL Respiratory, University College London, 5 University Street, London WC1E 6JF, UK; (A.M.J.); (D.A.L.); (J.A.I.)
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BN, UK
| | - James A. Irving
- UCL Respiratory, University College London, 5 University Street, London WC1E 6JF, UK; (A.M.J.); (D.A.L.); (J.A.I.)
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BN, UK
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, via Ugo La Malfa 153, 90146 Palermo, Italy; (S.R.); (F.L.); (R.N.); (V.M.)
- Correspondence:
| |
Collapse
|
6
|
Raimondo S, Nikolic D, Conigliaro A, Giavaresi G, Lo Sasso B, Giglio RV, Chianetta R, Manno M, Raccosta S, Corleone V, Ferrante G, Citarrella R, Rizzo M, De Leo G, Ciaccio M, Montalto G, Alessandro R. Preliminary Results of CitraVes™ Effects on Low Density Lipoprotein Cholesterol and Waist Circumference in Healthy Subjects after 12 Weeks: A Pilot Open-Label Study. Metabolites 2021; 11:metabo11050276. [PMID: 33925596 PMCID: PMC8145538 DOI: 10.3390/metabo11050276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Appropriate monitoring and control of modifiable risk factors, such as the level of low-density lipoprotein cholesterol (LDL-C) and other types of dyslipidemia, have an important role in the prevention of cardiovascular diseases (CVD). Recently, various nutraceuticals with lipid-lowering effects have gained attention. In addition to the plant-derived bioactive compounds, recent studies suggested that plant cells are able to release small lipoproteic structures named extracellular vesicles (EVs). The interaction between EVs and mammalian cells could lead to beneficial effects through anti-inflammatory and antioxidant activities. The present study aimed to assess the safety of the new patented plant-based product citraVes™, containing extracellular vesicles (EVs) from Citrus limon (L.) Osbeck juice, and to investigate its ability to modulate different CV risk factors in healthy subjects. A cohort of 20 healthy volunteers was recruited in a prospective open-label study. All participants received the supplement in a spray-dried formulation at a stable dose of 1000 mg/day for 3 months. Anthropometric and hematobiochemical parameters were analyzed at the baseline and after the follow-up period of 1 and 3 months. We observed that the supplement has an effect on two key factors of cardiometabolic risk in healthy subjects. A significant change in waist circumference was found in women after 4 (85.4 [79.9, 91.0] cm, p < 0.005) and 12 (85.0 [80.0, 90.0] cm, p < 0.0005) weeks, when compared to the baseline value (87.6 [81.7, 93.6] cm). No difference was found in men (baseline: 100.3 [95.4, 105.2] cm; 4 weeks: 102.0 [95.7, 108.3] cm; 12 weeks: 100.0 [95.3, 104.7] cm). The level of LDL-C was significantly lower at 12 weeks versus 4 weeks (p = 0.0064). Our study evaluated, for the first time, the effects of a natural product containing plant-derived EVs on modifiable risk factors in healthy volunteers. The results support the use of EV extracts to manage cardiometabolic risk factors successfully.
Collapse
Affiliation(s)
- Stefania Raimondo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (D.N.); (A.C.); (G.D.L.)
- Navhetec s.r.l, Via Elvira ed Enzo Sellerio, 90141 Palermo, Italy;
- Correspondence: (S.R.); (R.A.)
| | - Dragana Nikolic
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (D.N.); (A.C.); (G.D.L.)
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.C.); (R.C.); (M.R.); (G.M.)
| | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (D.N.); (A.C.); (G.D.L.)
- Navhetec s.r.l, Via Elvira ed Enzo Sellerio, 90141 Palermo, Italy;
| | - Gianluca Giavaresi
- IRCSS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche-SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy;
| | - Bruna Lo Sasso
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (B.L.S.); (R.V.G.); (M.C.)
- Department of Laboratory Medicine, University-Hospital “P. Giaccone” of Palermo, 90127 Palermo, Italy
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (B.L.S.); (R.V.G.); (M.C.)
| | - Roberta Chianetta
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.C.); (R.C.); (M.R.); (G.M.)
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy; (M.M.); (S.R.)
| | - Samuele Raccosta
- Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy; (M.M.); (S.R.)
| | - Valeria Corleone
- Navhetec s.r.l, Via Elvira ed Enzo Sellerio, 90141 Palermo, Italy;
- Agrumaria Corleone s.p.a., Via S. Corleone, 12-Zona Ind. Brancaccio, 90124 Palermo, Italy;
| | - Giovanni Ferrante
- Agrumaria Corleone s.p.a., Via S. Corleone, 12-Zona Ind. Brancaccio, 90124 Palermo, Italy;
| | - Roberto Citarrella
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.C.); (R.C.); (M.R.); (G.M.)
| | - Manfredi Rizzo
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.C.); (R.C.); (M.R.); (G.M.)
| | - Giacomo De Leo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (D.N.); (A.C.); (G.D.L.)
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (B.L.S.); (R.V.G.); (M.C.)
- Department of Laboratory Medicine, University-Hospital “P. Giaccone” of Palermo, 90127 Palermo, Italy
| | - Giuseppe Montalto
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.C.); (R.C.); (M.R.); (G.M.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (D.N.); (A.C.); (G.D.L.)
- Navhetec s.r.l, Via Elvira ed Enzo Sellerio, 90141 Palermo, Italy;
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
- Correspondence: (S.R.); (R.A.)
| |
Collapse
|
7
|
Ingwersen T, Linnenberg C, D'Acunto E, Temori S, Paolucci I, Wasilewski D, Mohammadi B, Kirchmair J, Glen RC, Miranda E, Glatzel M, Galliciotti G. G392E neuroserpin causing the dementia FENIB is secreted from cells but is not synaptotoxic. Sci Rep 2021; 11:8766. [PMID: 33888787 PMCID: PMC8062559 DOI: 10.1038/s41598-021-88090-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a progressive neurodegenerative disease caused by point mutations in the gene for neuroserpin, a serine protease inhibitor of the nervous system. Different mutations are known that are responsible for mutant neuroserpin polymerization and accumulation as inclusion bodies in many cortical and subcortical neurons, thereby leading to cell death, dementia and epilepsy. Many efforts have been undertaken to elucidate the molecular pathways responsible for neuronal death. Most investigations have concentrated on analysis of intracellular mechanisms such as endoplasmic reticulum (ER) stress, ER-associated protein degradation (ERAD) and oxidative stress. We have generated a HEK-293 cell model of FENIB by overexpressing G392E-mutant neuroserpin and in this study we examine trafficking and toxicity of this polymerogenic variant. We observed that a small fraction of mutant neuroserpin is secreted via the ER-to-Golgi pathway, and that this release can be pharmacologically regulated. Overexpression of the mutant form of neuroserpin did not stimulate cell death in the HEK-293 cell model. Finally, when treating primary hippocampal neurons with G392E neuroserpin polymers, we did not detect cytotoxicity or synaptotoxicity. Altogether, we report here that a polymerogenic mutant form of neuroserpin is secreted from cells but is not toxic in the extracellular milieu.
Collapse
Affiliation(s)
- Thies Ingwersen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Linnenberg
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Emanuela D'Acunto
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Shabnam Temori
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Irene Paolucci
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - David Wasilewski
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Johannes Kirchmair
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Robert C Glen
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
- Division of Systems Medicine, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
- Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
8
|
Adamo G, Fierli D, Romancino DP, Picciotto S, Barone ME, Aranyos A, Božič D, Morsbach S, Raccosta S, Stanly C, Paganini C, Gai M, Cusimano A, Martorana V, Noto R, Carrotta R, Librizzi F, Randazzo L, Parkes R, Capasso Palmiero U, Rao E, Paterna A, Santonicola P, Iglič A, Corcuera L, Kisslinger A, Di Schiavi E, Liguori GL, Landfester K, Kralj-Iglič V, Arosio P, Pocsfalvi G, Touzet N, Manno M, Bongiovanni A. Nanoalgosomes: Introducing extracellular vesicles produced by microalgae. J Extracell Vesicles 2021; 10:e12081. [PMID: 33936568 PMCID: PMC8077145 DOI: 10.1002/jev2.12081] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022] Open
Abstract
Cellular, inter-organismal and cross kingdom communication via extracellular vesicles (EVs) is intensively studied in basic science with high expectation for a large variety of bio-technological applications. EVs intrinsically possess many attributes of a drug delivery vehicle. Beyond the implications for basic cell biology, academic and industrial interests in EVs have increased in the last few years. Microalgae constitute sustainable and renewable sources of bioactive compounds with a range of sectoral applications, including the formulation of health supplements, cosmetic products and food ingredients. Here we describe a newly discovered subtype of EVs derived from microalgae, which we named nanoalgosomes. We isolated these extracellular nano-objects from cultures of microalgal strains, including the marine photosynthetic chlorophyte Tetraselmis chuii, using differential ultracentrifugation or tangential flow fractionation and focusing on the nanosized small EVs (sEVs). We explore different biochemical and physical properties and we show that nanoalgosomes are efficiently taken up by mammalian cell lines, confirming the cross kingdom communication potential of EVs. This is the first detailed description of such membranous nanovesicles from microalgae. With respect to EVs isolated from other organisms, nanoalgosomes present several advantages in that microalgae are a renewable and sustainable natural source, which could easily be scalable in terms of nanoalgosome production.
Collapse
Affiliation(s)
- Giorgia Adamo
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - David Fierli
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Daniele P Romancino
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - Sabrina Picciotto
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - Maria E Barone
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Anita Aranyos
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Darja Božič
- University of Ljubljana (UL) Ljubljana Slovene
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research (MPIP) Mainz Germany
| | - Samuele Raccosta
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Christopher Stanly
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Carolina Paganini
- Department of Chemistry and Applied Biosciences ETH Zurich Zurich Switzerland
| | - Meiyu Gai
- Max Planck Institute for Polymer Research (MPIP) Mainz Germany
| | - Antonella Cusimano
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - Vincenzo Martorana
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Rosina Noto
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Rita Carrotta
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Fabio Librizzi
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Loredana Randazzo
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Rachel Parkes
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | | | - Estella Rao
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Angela Paterna
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Pamela Santonicola
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Ales Iglič
- University of Ljubljana (UL) Ljubljana Slovene
| | | | - Annamaria Kisslinger
- Institute of Experimental Endocrinology and Oncology (IEOS) - National Research Council of Italy (CNR) Naples Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Giovanna L Liguori
- Institute of Genetics and Biophysics (IGB) - National Research Council of Italy (CNR) Naples Italy
| | | | | | - Paolo Arosio
- Department of Chemistry and Applied Biosciences ETH Zurich Zurich Switzerland
| | - Gabriella Pocsfalvi
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Nicolas Touzet
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Mauro Manno
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Antonella Bongiovanni
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| |
Collapse
|
9
|
N-Glycosylation as a Tool to Study Antithrombin Secretion, Conformation, and Function. Int J Mol Sci 2021; 22:ijms22020516. [PMID: 33419227 PMCID: PMC7825591 DOI: 10.3390/ijms22020516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 11/23/2022] Open
Abstract
N-linked glycosylation is a crucial post-translational modification involved in protein folding, function, and clearance. N-linked glycosylation is also used therapeutically to enhance the half-lives of many proteins. Antithrombin, a serpin with four potential N-glycosylation sites, plays a pivotal role in hemostasis, wherein its deficiency significantly increases thrombotic risk. In this study, we used the introduction of N-glycosylation sites as a tool to explore what effect this glycosylation has on the protein folding, secretion, and function of this key anticoagulant. To accomplish this task, we introduced an additional N-glycosylation sequence in each strand. Interestingly, all regions that likely fold rapidly or were surrounded by lysines were not glycosylated even though an N-glycosylation sequon was present. The new sequon in the strands of the A- and B-sheets reduced secretion, and the B-sheet was more sensitive to these changes. However, the mutations in the strands of the C-sheet allowed correct folding and secretion, which resulted in functional variants. Therefore, our study revealed crucial regions for antithrombin secretion and could potentially apply to all serpins. These results could also help us understand the functional effects of natural variants causing type-I deficiencies.
Collapse
|
10
|
Raimondi L, De Luca A, Gallo A, Costa V, Russelli G, Cuscino N, Manno M, Raccosta S, Carina V, Bellavia D, Conigliaro A, Alessandro R, Fini M, Conaldi PG, Giavaresi G. Osteosarcoma cell-derived exosomes affect tumor microenvironment by specific packaging of microRNAs. Carcinogenesis 2020; 41:666-677. [PMID: 31294446 DOI: 10.1093/carcin/bgz130] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/07/2019] [Accepted: 07/09/2019] [Indexed: 01/03/2023] Open
Abstract
Bone microenvironment provides growth and survival signals essential for osteosarcoma (OS) initiation and progression. OS cells regulate communications inside tumor microenvironment through different ways and, among all, tumor-derived exosomes support cancer progression and metastasis. To define the contribution of OS-derived exosomes inside the microenvironment, we investigated the effects induced in bone remodeling mechanism and tumor angiogenesis. We demonstrated that exosomes promoted osteoclasts differentiation and bone resorption activity. Furthermore, exosomes potentiated tube formation of endothelial cells and increased angiogenic markers expression. We therefore investigated the micro RNA (miRNA) cargo from exosomes and their parental cells by performing small RNA sequencing through NGS Illumina platform. Hierarchical clustering highlighted a unique molecular profile of exosomal miRNA; bioinformatic analysis by DIANA-mirPath revealed that miRNAs identified take part in various biological processes and carcinogenesis. Among these miRNAs, some were already known for their involvement in the tumor microenvironment establishment, as miR-148a and miR-21-5p. Enforced expression of miR-148a and miR-21-5p in Raw264.7 and hTert immortalized umbilical vein endothelial cells recapitulated the effects induced by exosomes. Overall, our study highlighted the importance of OS exosomes in tumor microenvironment also by a specific packaging of miRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mauro Manno
- National Research Council of Italy, Institute of Byophysics, Palermo, Italy
| | - Samuele Raccosta
- National Research Council of Italy, Institute of Byophysics, Palermo, Italy
| | | | | | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | | | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| |
Collapse
|
11
|
Sandonà M, Consalvi S, Tucciarone L, De Bardi M, Scimeca M, Angelini DF, Buffa V, D'Amico A, Bertini ES, Cazzaniga S, Bettica P, Bouché M, Bongiovanni A, Puri PL, Saccone V. HDAC inhibitors tune miRNAs in extracellular vesicles of dystrophic muscle-resident mesenchymal cells. EMBO Rep 2020; 21:e50863. [PMID: 32754983 DOI: 10.15252/embr.202050863] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
We show that extracellular vesicles (EVs) released by mesenchymal cells (i.e., fibro-adipogenic progenitors-FAPs) mediate microRNA (miR) transfer to muscle stem cells (MuSCs) and that exposure of dystrophic FAPs to HDAC inhibitors (HDACis) increases the intra-EV levels of a subset of miRs, which cooperatively target biological processes of therapeutic interest, including regeneration, fibrosis, and inflammation. Increased levels of miR-206 in EVs released by FAPs of muscles from Duchenne muscular dystrophy (DMD) patients or mdx mice exposed to HDACi are associated with enhanced regeneration and decreased fibrosis. Consistently, EVs from HDACi-treated dystrophic FAPs can stimulate MuSC activation and expansion ex vivo, and promote regeneration, while inhibiting fibrosis and inflammation of dystrophic muscles, upon intramuscular transplantation in mdx mice, in vivo. AntagomiR-mediated blockade of individual miRs reveals a specific requirement of miR-206 for EV-induced expansion of MuSCs and regeneration of dystrophic muscles, and indicates that cooperative activity of HDACi-induced miRs accounts for the net biological effect of these EVs. These data point to pharmacological modulation of EV content as novel strategy for therapeutic interventions in muscular dystrophies.
Collapse
Affiliation(s)
- Martina Sandonà
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy.,Division DAHFMO, Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Silvia Consalvi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Luca Tucciarone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy.,Division DAHFMO, Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Marco De Bardi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,IRCCS San Raffaele Pisana, Rome, Italy.,Orchidea Lab S.r.l., Rome, Italy
| | | | - Valentina Buffa
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council (CNR) of Italy, Palermo, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, Rome, Italy
| | - Enrico Silvio Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Paolo Bettica
- Clinical R&D Italfarmaco SpA, Cinisello Balsamo, Italy
| | - Marina Bouché
- Division DAHFMO, Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Antonella Bongiovanni
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council (CNR) of Italy, Palermo, Italy
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Valentina Saccone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy.,Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
12
|
Visentin C, Musso L, Broggini L, Bonato F, Russo R, Moriconi C, Bolognesi M, Miranda E, Dallavalle S, Passarella D, Ricagno S. Embelin as Lead Compound for New Neuroserpin Polymerization Inhibitors. Life (Basel) 2020; 10:life10070111. [PMID: 32664592 PMCID: PMC7400170 DOI: 10.3390/life10070111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a severe and lethal neurodegenerative disease. Upon specific point mutations in the SERPINI1gene-coding for the human protein neuroserpin (NS) the resulting pathologic NS variants polymerize and accumulate within the endoplasmic reticulum of neurons in the central nervous system. To date, embelin (EMB) is the only known inhibitor of NS polymerization in vitro. This molecule is capable of preventing NS polymerization and dissolving preformed polymers. Here, we show that lowering EMB concentration results in increasing size of NS oligomers in vitro. Moreover, we observe that in cells expressing NS, the polymerization of G392E NS is reduced, but this effect is mediated by an increased proteasomal degradation rather than polymerization impairment. For these reasons we designed a systematic chemical evolution of the EMB scaffold aimed to improve its anti-polymerization properties. The effect of EMB analogs against NS polymerization was assessed in vitro. None of the EMB analogs displayed an anti-polymerization activity better than the one reported for EMB, indicating that the EMB–NS interaction surface is very specific and highly optimized. Thus, our results indicate that EMB is, to date, still the best candidate for developing a treatment against NS polymerization.
Collapse
Affiliation(s)
- Cristina Visentin
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (M.B.)
| | - Loana Musso
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, Via Celoria, 2, 20133 Milan, Italy; (L.M.); (S.D.)
| | - Luca Broggini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (M.B.)
| | - Francesca Bonato
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milan, Italy; (F.B.); (D.P.)
| | - Rosaria Russo
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Via Fratelli Cervi, 93, 20090 Segrate, Italy;
| | - Claudia Moriconi
- Dipartimento di Biologia e Biotecnologie ‘Charles Darwin’, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Rome, Italy; (C.M.); (E.M.)
| | - Martino Bolognesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (M.B.)
| | - Elena Miranda
- Dipartimento di Biologia e Biotecnologie ‘Charles Darwin’, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Rome, Italy; (C.M.); (E.M.)
- Istituto Pasteur—Cenci Bolognetti Foundation, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Sabrina Dallavalle
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, Via Celoria, 2, 20133 Milan, Italy; (L.M.); (S.D.)
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milan, Italy; (F.B.); (D.P.)
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (M.B.)
- Correspondence: ; Tel.: +39-02-5031-4914
| |
Collapse
|
13
|
Visentin C, Broggini L, Sala BM, Russo R, Barbiroli A, Santambrogio C, Nonnis S, Dubnovitsky A, Bolognesi M, Miranda E, Achour A, Ricagno S. Glycosylation Tunes Neuroserpin Physiological and Pathological Properties. Int J Mol Sci 2020; 21:E3235. [PMID: 32375228 PMCID: PMC7247563 DOI: 10.3390/ijms21093235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/03/2023] Open
Abstract
Neuroserpin (NS) is a member of the serine protease inhibitors superfamily. Specific point mutations are responsible for its accumulation in the endoplasmic reticulum of neurons that leads to a pathological condition named familial encephalopathy with neuroserpin inclusion bodies (FENIB). Wild-type NS presents two N-glycosylation chains and does not form polymers in vivo, while non-glycosylated NS causes aberrant polymer accumulation in cell models. To date, all in vitro studies have been conducted on bacterially expressed NS, de facto neglecting the role of glycosylation in the biochemical properties of NS. Here, we report the expression and purification of human glycosylated NS (gNS) using a novel eukaryotic expression system, LEXSY. Our results confirm the correct N-glycosylation of wild-type gNS. The fold and stability of gNS are not altered compared to bacterially expressed NS, as demonstrated by the circular dichroism and intrinsic tryptophan fluorescence assays. Intriguingly, gNS displays a remarkably reduced polymerisation propensity compared to non-glycosylated NS, in keeping with what was previously observed for wild-type NS in vivo and in cell models. Thus, our results support the relevance of gNS as a new in vitro tool to study the molecular bases of FENIB.
Collapse
Affiliation(s)
- Cristina Visentin
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (B.M.S.); (M.B.)
| | - Luca Broggini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (B.M.S.); (M.B.)
| | - Benedetta Maria Sala
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (B.M.S.); (M.B.)
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, SE-17176 Stockholm, Sweden;
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Rosaria Russo
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Via Fratelli Cervi, 93, 20090 Segrate, Italy;
| | - Alberto Barbiroli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l′Ambiente, Università degli Studi di Milano, Via Celoria, 2, 20133 Milan, Italy;
| | - Carlo Santambrogio
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza dell’Ateneo Nuovo, 1, 20126 Milan, Italy;
| | - Simona Nonnis
- Departimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell’Università, 6, 26900 Lodi, Italy;
| | - Anatoly Dubnovitsky
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Division of Rheumatology, Karolinska University Hospital, Solna, SE-17176 Stockholm, Sweden;
| | - Martino Bolognesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (B.M.S.); (M.B.)
| | - Elena Miranda
- Dipartimento di Biologia e Biotecnologie ‘Charles Darwin’, and Istituto Pasteur - Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, SE-17176 Stockholm, Sweden;
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (B.M.S.); (M.B.)
| |
Collapse
|
14
|
Multiple myeloma-derived exosomes are enriched of amphiregulin (AREG) and activate the epidermal growth factor pathway in the bone microenvironment leading to osteoclastogenesis. J Hematol Oncol 2019; 12:2. [PMID: 30621731 PMCID: PMC6325886 DOI: 10.1186/s13045-018-0689-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/25/2018] [Indexed: 12/18/2022] Open
Abstract
Background Multiple myeloma (MM) is a clonal plasma cell malignancy associated with osteolytic bone disease. Recently, the role of MM-derived exosomes in the osteoclastogenesis has been demonstrated although the underlying mechanism is still unknown. Since exosomes-derived epidermal growth factor receptor ligands (EGFR) are involved in tumor-associated osteolysis, we hypothesize that the EGFR ligand amphiregulin (AREG) can be delivered by MM-derived exosomes and participate in MM-induced osteoclastogenesis. Methods Exosomes were isolated from the conditioned medium of MM1.S cell line and from bone marrow (BM) plasma samples of MM patients. The murine cell line RAW264.7 and primary human CD14+ cells were used as osteoclast (OC) sources. Results We found that AREG was specifically enriched in exosomes from MM samples and that exosomes-derived AREG led to the activation of EGFR in pre-OC, as showed by the increase of mRNA expression of its downstream SNAIL in both RAW264.7 and CD14+ cells. The presence of neutralizing anti-AREG monoclonal antibody (mAb) reverted this effect. Consequently, we showed that the effect of MM-derived exosomes on osteoclast differentiation was inhibited by the pre-treatment of exosomes with anti-AREG mAb. In addition, we demonstrated the ability of MM-derived AREG-enriched exosomes to be internalized into human mesenchymal stromal cells (MSCs) blocking osteoblast (OB) differentiation, increasing MM cell adhesion and the release of the pro-osteoclastogenic cytokine interleukin-8 (IL8). Accordingly, anti-AREG mAb inhibited the release of IL8 by MSCs suggesting that both direct and indirect effects are responsible for AREG-enriched exosomes involvement on MM-induced osteoclastogenesis. Conclusions In conclusion, our data indicate that AREG is packed into MM-derived exosomes and implicated in OC differentiation through an indirect mechanism mediated by OBs. Electronic supplementary material The online version of this article (10.1186/s13045-018-0689-y) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Bonnet J, Garcia C, Leger T, Couquet MP, Vignoles P, Vatunga G, Ndung'u J, Boudot C, Bisser S, Courtioux B. Proteome characterization in various biological fluids of Trypanosoma brucei gambiense-infected subjects. J Proteomics 2018; 196:150-161. [PMID: 30414516 DOI: 10.1016/j.jprot.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/02/2018] [Accepted: 11/05/2018] [Indexed: 02/04/2023]
Abstract
Human African trypanosomiasis (HAT) is a neglected tropical disease that is endemic in sub-Saharan Africa. Control of the disease has been recently improved by better screening and treatment strategies, and the disease is on the WHO list of possible elimination. However, some physiopathological aspects of the disease transmission and progression remain unclear. We propose a new proteomic approach to identify new targets and thus possible new biomarkers of the disease. We also focused our attention on fluids classically associated with HAT (serum and cerebrospinal fluid (CSF)) and on the more easily accessible biological fluids urine and saliva. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) established the proteomic profile of patients with early and late stage disease. The serum, CSF, urine and saliva of 3 uninfected controls, 3 early stage patients and 4 late stage patients were analyzed. Among proteins identified, in CSF, urine and saliva, respectively, 37, 8 and 24 proteins were differentially expressed and showed particular interest with regards to their function. The most promising proteins (Neogenin, Neuroserpin, secretogranin 2 in CSF; moesin in urine and intelectin 2 in saliva) were quantified by enzyme-linked immunosorbent assay in a confirmatory cohort of 14 uninfected controls, 23 patients with early stage disease and 43 patients with late stage disease. The potential of two proteins, neuroserpin and moesin, with the latter present in urine, were further characterized. Our results showed the potential of proteomic analysis to discover new biomarkers and provide the basis of the establishment of a new proteomic catalogue applied to HAT-infected subjects and controls. SIGNIFICANCE: Sleeping sickness, also called Human African Trypanosomiasis (HAT), is a parasitic infection caused by a parasitic protozoan, Trypanosoma brucei gambiense or T. b. rhodesiense which are transmitted via an infected tsetse fly: Glossina. For both, the haemolymphatic stage (or first stage) signs and symptoms are intermittent fever, lymphadenopathy, hepatosplenomegaly, headaches, pruritus, and for T. b. rhodesiense infection a chancre is often formed at the bite site. Meningoencephalitic stage (or second stage) occurs when parasites invade the CNS, it is characterised by neurological signs and symptoms such as altered gait, tremors, neuropathy, somnolence which can lead to coma and death if untreated. first stage of the disease is characterizing by fevers, headaches, itchiness, and joint pains and progressive lethargy corresponding to the second stage with confusion, poor coordination, numbness and trouble sleeping. Actually, diagnosing HAT requires specialized expertise and significant resources such as well-equipped health centers and qualified staff. Such resources are lacking in many endemic areas that are often in rural locales, so many individuals with HAT die before the diagnosis is established. In this study, we analysed by mass spectrometry the entire proteome of serum, CSF, urine and saliva samples from infected and non-infected Angolan individuals to define new biomarkers of the disease. This work of proteomics analysis is a preliminary stage to the characterization of the whole proteome, of these 4 biological fluids, of HAT patients. We have identified 69 new biomarkers. Five of them have been thoroughly investigated by ELISA quantification. Neuroserpine and Moesin are respectively promising new biomarkers in CSF and urine's patient for a better diagnosis.
Collapse
Affiliation(s)
- Julien Bonnet
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Camille Garcia
- Jacques Monod Institute, Proteomics Facility, University Paris Diderot Sorbonne Paris Cité, Paris, France..
| | - Thibaut Leger
- Jacques Monod Institute, Proteomics Facility, University Paris Diderot Sorbonne Paris Cité, Paris, France..
| | - Marie-Pauline Couquet
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Philippe Vignoles
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Gedeao Vatunga
- Instituto de Combate e controlo das Tripanossomiases (ICCT), Luanda, Angola.
| | - Joseph Ndung'u
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland.
| | - Clotilde Boudot
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Sylvie Bisser
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France; Pasteur Institute in French Guiana, 23 Boulevard Pasteur, 973006, Cayenne Cedex, French Guiana.
| | - Bertrand Courtioux
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| |
Collapse
|
16
|
Giampietro C, Lionetti MC, Costantini G, Mutti F, Zapperi S, La Porta CAM. Cholesterol impairment contributes to neuroserpin aggregation. Sci Rep 2017; 7:43669. [PMID: 28255164 PMCID: PMC5334643 DOI: 10.1038/srep43669] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/27/2017] [Indexed: 01/05/2023] Open
Abstract
Intraneural accumulation of misfolded proteins is a common feature of several neurodegenerative pathologies including Alzheimer's and Parkinson's diseases, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB). FENIB is a rare disease due to a point mutation in neuroserpin which accelerates protein aggregation in the endoplasmic reticulum (ER). Here we show that cholesterol depletion induced either by prolonged exposure to statins or by inhibiting the sterol reg-ulatory binding-element protein (SREBP) pathway also enhances aggregation of neuroserpin proteins. These findings can be explained considering a computational model of protein aggregation under non-equilibrium conditions, where a decrease in the rate of protein clearance improves aggregation. Decreasing cholesterol in cell membranes affects their biophysical properties, including their ability to form the vesicles needed for protein clearance, as we illustrate by a simple mathematical model. Taken together, these results suggest that cholesterol reduction induces neuroserpin aggregation, even in absence of specific neuroserpin mutations. The new mechanism we uncover could be relevant also for other neurodegenerative diseases associated with protein aggregation.
Collapse
Affiliation(s)
| | - Maria Chiara Lionetti
- Center for Complexity and Biosystems, Department of Biosciences, University of Milano, via Celoria 26, 20133 Milano, Italy
| | - Giulio Costantini
- Center for Complexity and Biosystems, Department of Physics, University of Milano, via Celoria 16, 20133 Milano, Italy
| | - Federico Mutti
- Center for Complexity and Biosystems, Department of Biosciences, University of Milano, via Celoria 26, 20133 Milano, Italy
| | - Stefano Zapperi
- Center for Complexity and Biosystems, Department of Physics, University of Milano, via Celoria 16, 20133 Milano, Italy
- CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia, Via R. Cozzi 53, 20125 Milano, Italy
- ISI Foundation, Via Alassio 11C, Torino, Italy
- Department of Applied Physics, Aalto University, P.O. Box 14100, FIN-00076, Aalto, Finland
| | - Caterina A. M. La Porta
- Center for Complexity and Biosystems, Department of Biosciences, University of Milano, via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
17
|
Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death. Oncotarget 2016; 6:19514-27. [PMID: 26098775 PMCID: PMC4637302 DOI: 10.18632/oncotarget.4004] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/08/2015] [Indexed: 12/18/2022] Open
Abstract
Nanosized vesicles are considered key players in cell to cell communication, thus influencing physiological and pathological processes, including cancer. Nanovesicles have also been found in edible-plants and have shown therapeutic activity in inflammatory bowel diseases; however information on their role in affecting cancer progression is missing. Our study identify for the first time a fraction of vesicles from lemon juice (Citrus limon L.), obtained as a result of different ultracentrifugation, with density ranging from 1,15 to 1,19 g/ml and specific proteomic profile. By using an in vitro approach, we show that isolated nanovesicles inhibit cancer cell proliferation in different tumor cell lines, by activating a TRAIL-mediated apoptotic cell death. Furthermore, we demonstrate that lemon nanovesicles suppress CML tumor growth in vivo by specifically reaching tumor site and by activating TRAIL-mediated apoptotic cell processes. Overall, this study suggests the possible use of plant-edible nanovesicles as a feasible approach in cancer treatment.
Collapse
|
18
|
Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, Bellavia D, Naselli F, Fontana S, Schillaci O, Giardino R, Fini M, Tassone P, Santoro A, De Leo G, Giavaresi G, Alessandro R. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget 2016; 6:13772-89. [PMID: 25944696 PMCID: PMC4537049 DOI: 10.18632/oncotarget.3830] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/26/2015] [Indexed: 12/17/2022] Open
Abstract
Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes.
Collapse
Affiliation(s)
- Lavinia Raimondi
- Laboratory of Tissue Engineering - Innovative Technology Platforms for Tissue Engineering (PON01-00829), Rizzoli Orthopedic Institute, Palermo, Italy
| | - Angela De Luca
- Laboratory of Tissue Engineering - Innovative Technology Platforms for Tissue Engineering (PON01-00829), Rizzoli Orthopedic Institute, Palermo, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Samuele Raccosta
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Simona Taverna
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | - Daniele Bellavia
- Laboratory of Tissue Engineering - Innovative Technology Platforms for Tissue Engineering (PON01-00829), Rizzoli Orthopedic Institute, Palermo, Italy
| | - Flores Naselli
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | - Simona Fontana
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | - Odessa Schillaci
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | | | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Alessandra Santoro
- Divisione di Ematologia A.O. Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Giacomo De Leo
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | - Gianluca Giavaresi
- Laboratory of Tissue Engineering - Innovative Technology Platforms for Tissue Engineering (PON01-00829), Rizzoli Orthopedic Institute, Palermo, Italy.,Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Riccardo Alessandro
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy.,Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council of Italy, Palermo, Italy
| |
Collapse
|
19
|
Saga G, Sessa F, Barbiroli A, Santambrogio C, Russo R, Sala M, Raccosta S, Martorana V, Caccia S, Noto R, Moriconi C, Miranda E, Grandori R, Manno M, Bolognesi M, Ricagno S. Embelin binds to human neuroserpin and impairs its polymerisation. Sci Rep 2016; 6:18769. [PMID: 26732982 PMCID: PMC4702122 DOI: 10.1038/srep18769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/26/2015] [Indexed: 01/07/2023] Open
Abstract
Neuroserpin (NS) is a serpin inhibitor of tissue plasminogen activator (tPA) in the brain. The polymerisation of NS pathologic mutants is responsible for a genetic dementia known as familial encephalopathy with neuroserpin inclusion bodies (FENIB). So far, a pharmacological treatment of FENIB, i.e. an inhibitor of NS polymerisation, remains an unmet challenge. Here, we present a biophysical characterisation of the effects caused by embelin (EMB a small natural compound) on NS conformers and NS polymerisation. EMB destabilises all known NS conformers, specifically binding to NS molecules with a 1:1 NS:EMB molar ratio without unfolding the NS fold. In particular, NS polymers disaggregate in the presence of EMB, and their formation is prevented. The NS/EMB complex does not inhibit tPA proteolytic activity. Both effects are pharmacologically relevant: firstly by inhibiting the NS polymerisation associated to FENIB, and secondly by potentially antagonizing metastatic processes facilitated by NS activity in the brain.
Collapse
Affiliation(s)
- Giorgia Saga
- Dipartimento di Bioscienze and CIMAINA, Università degli Studi di Milano, Milan, Italy
| | - Fabio Sessa
- Dipartimento di Bioscienze and CIMAINA, Università degli Studi di Milano, Milan, Italy
| | - Alberto Barbiroli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l′Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Carlo Santambrogio
- Dipartimento di Biotecnologie e Bioscienze, Università Milano-Bicocca, Milan, Italy
| | - Rosaria Russo
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di MilanoItaly
| | - Michela Sala
- Dipartimento di Biotecnologie e Bioscienze, Università Milano-Bicocca, Milan, Italy
| | - Samuele Raccosta
- Istituto di Biofisica, National Research Council of Italy, Palermo, Italy
| | - Vincenzo Martorana
- Istituto di Biofisica, National Research Council of Italy, Palermo, Italy
| | - Sonia Caccia
- Dipartimento di Biotecnologie Mediche e Medicina traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Rosina Noto
- Istituto di Biofisica, National Research Council of Italy, Palermo, Italy
| | - Claudia Moriconi
- Dipartimento di Biologia e Biotecnologie Charles Darwin, and Istituto Pasteur – Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Rome, Italy
| | - Elena Miranda
- Dipartimento di Biologia e Biotecnologie Charles Darwin, and Istituto Pasteur – Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Rome, Italy
| | - Rita Grandori
- Dipartimento di Biotecnologie e Bioscienze, Università Milano-Bicocca, Milan, Italy
| | - Mauro Manno
- Istituto di Biofisica, National Research Council of Italy, Palermo, Italy
| | - Martino Bolognesi
- Dipartimento di Bioscienze and CIMAINA, Università degli Studi di Milano, Milan, Italy
- Istituto di Biofisica, National Research Council of Italy, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Stefano Ricagno
- Dipartimento di Bioscienze and CIMAINA, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
20
|
Noto R, Randazzo L, Raccosta S, Caccia S, Moriconi C, Miranda E, Martorana V, Manno M. The stability and activity of human neuroserpin are modulated by a salt bridge that stabilises the reactive centre loop. Sci Rep 2015; 5:13666. [PMID: 26329378 PMCID: PMC4556959 DOI: 10.1038/srep13666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/03/2015] [Indexed: 11/26/2022] Open
Abstract
Neuroserpin (NS) is an inhibitory protein belonging to the serpin family and involved in several pathologies, including the dementia Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB), a genetic neurodegenerative disease caused by accumulation of NS polymers. Our Molecular Dynamics simulations revealed the formation of a persistent salt bridge between Glu289 on strand s2C and Arg362 on the Reactive Centre Loop (RCL), a region important for the inhibitory activity of NS. Here, we validated this structural feature by simulating the Glu289Ala mutant, where the salt bridge is not present. Further, MD predictions were tested in vitro by purifying recombinant Glu289Ala NS from E. coli. The thermal and chemical stability along with the polymerisation propensity of both Wild Type and Glu289Ala NS were characterised by circular dichroism, emission spectroscopy and non-denaturant gel electrophoresis, respectively. The activity of both variants against the main target protease, tissue-type plasminogen activator (tPA), was assessed by SDS-PAGE and chromogenic kinetic assay. Our results showed that deletion of the salt bridge leads to a moderate but clear reduction of the overall protein stability and activity.
Collapse
Affiliation(s)
- Rosina Noto
- National Research Council of Italy, Institute of Biophysics, Palermo, Italy
| | - Loredana Randazzo
- National Research Council of Italy, Institute of Biophysics, Palermo, Italy
| | - Samuele Raccosta
- National Research Council of Italy, Institute of Biophysics, Palermo, Italy
| | - Sonia Caccia
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Claudia Moriconi
- Department of Biology and Biotechnologies “Charles Darwin” and Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Elena Miranda
- Department of Biology and Biotechnologies “Charles Darwin” and Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Martorana
- National Research Council of Italy, Institute of Biophysics, Palermo, Italy
| | - Mauro Manno
- National Research Council of Italy, Institute of Biophysics, Palermo, Italy
| |
Collapse
|
21
|
Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, Manno M, Raccosta S, Mancone C, Tripodi M, De Leo G, Alessandro R. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer 2015; 14:155. [PMID: 26272696 PMCID: PMC4536801 DOI: 10.1186/s12943-015-0426-x] [Citation(s) in RCA: 368] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/03/2015] [Indexed: 12/15/2022] Open
Abstract
Background CD90+ liver cancer cells have been described as cancer stem-cell-like (CSC), displaying aggressive and metastatic phenotype. Using two different in vitro models, already described as CD90+ liver cancer stem cells, our aim was to study their interaction with endothelial cells mediated by the release of exosomes. Methods Exosomes were isolated and characterized from both liver CD90+ cells and hepatoma cell lines. Endothelial cells were treated with exosomes, as well as transfected with a plasmid containing the full length sequence of the long non-coding RNA (lncRNA) H19. Molecular and functional analyses were done to characterize the endothelial phenotype after treatments. Results Exosomes released by CD90+ cancer cells, but not by parental hepatoma cells, modulated endothelial cells, promoting angiogenic phenotype and cell-to-cell adhesion. LncRNA profiling revealed that CD90+ cells were enriched in lncRNA H19, and released this through exosomes. Experiments of gain and loss of function of H19 showed that this LncRNA plays an important role in the exosome-mediated phenotype of endothelial cells. Conclusions Our data indicate a new exosome-mediated mechanism by which CSC-like CD90+ cells could influence their tumor microenvironment by promoting angiogenesis. Moreover, we suggest the lncRNA H19 as a putative therapeutic target in hepatocellular carcinoma. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0426-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alice Conigliaro
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Sapienza University of Rome, c/o Policlinico Umberto I, V Clinica Medica Viale Regina Elena, Rome, 324-00161, Italy.
| | - Viviana Costa
- Laboratory of Tissue Engineering - Innovative Technology Platforms for Tissue Engineering (PON01-00829), Rizzoli Orthopedic Institute, Palermo, Italy
| | - Alessia Lo Dico
- Dipartimento di Biopatologia e Biotecnologie Mediche, University of Palermo, Via Divisi 83-90133, Palermo, Italy
| | - Laura Saieva
- Dipartimento di Biopatologia e Biotecnologie Mediche, University of Palermo, Via Divisi 83-90133, Palermo, Italy
| | - Simona Buccheri
- Dipartimento di Biopatologia e Biotecnologie Mediche, University of Palermo, Via Divisi 83-90133, Palermo, Italy.,Servizio di Diabetologia, Dipartimento per la cura e lo studio della patologie addominali e dei trapianti addominali, ISMETT IRCCS, Palermo, Italy
| | - Francesco Dieli
- Dipartimento di Biopatologia e Biotecnologie Mediche, University of Palermo, Via Divisi 83-90133, Palermo, Italy
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Samuele Raccosta
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Carmine Mancone
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Sapienza University of Rome, c/o Policlinico Umberto I, V Clinica Medica Viale Regina Elena, Rome, 324-00161, Italy.,National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| | - Marco Tripodi
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sapienza University of Rome, Rome, Italy
| | - Giacomo De Leo
- Dipartimento di Biopatologia e Biotecnologie Mediche, University of Palermo, Via Divisi 83-90133, Palermo, Italy
| | - Riccardo Alessandro
- Dipartimento di Biopatologia e Biotecnologie Mediche, University of Palermo, Via Divisi 83-90133, Palermo, Italy. .,Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council of Italy, Palermo, Italy.
| |
Collapse
|
22
|
Wang L, Zhang Y, Asakawa T, Li W, Han S, Li Q, Xiao B, Namba H, Lu C, Dong Q. Neuroprotective effect of neuroserpin in oxygen-glucose deprivation- and reoxygenation-treated rat astrocytes in vitro. PLoS One 2015; 10:e0123932. [PMID: 25874935 PMCID: PMC4395230 DOI: 10.1371/journal.pone.0123932] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/09/2015] [Indexed: 01/08/2023] Open
Abstract
Neuroserpin (NSP) reportedly exerts neuroprotective effects in cerebral ischemic animal models and patients; however, the mechanism of protection is poorly understood. We thus attempted to confirm neuroprotective effects of NSP on astrocytes in the ischemic state and then explored the relative mechanisms. Astrocytes from neonatal rats were treated with oxygen-glucose deprivation (OGD) followed by reoxygenation (OGD/R). To confirm the neuroprotective effects of NSP, we measured the cell survival rate, relative lactate dehydrogenase (LDH) release; we also performed morphological methods, namely Hoechst 33342 staining and Annexin V assay. To explore the potential mechanisms of NSP, the release of nitric oxide (NO) and TNF-α related to NSP administration were measured by enzyme-linked immunosorbent assay. The proteins related to the NF-κB, ERK1/2, and PI3K/Akt pathways were investigated by Western blotting. To verify the cause-and-effect relationship between neuroprotection and the NF-κB pathway, a NF-κB pathway inhibitor sc3060 was employed to observe the effects of NSP-induced neuroprotection. We found that NSP significantly increased the cell survival rate and reduced LDH release in OGD/R-treated astrocytes. It also reduced NO/TNF-α release. Western blotting showed that the protein levels of p-IKKBα/β and P65 were upregulated by the OGD/R treatment and such effects were significantly inhibited by NSP administration. The NSP-induced inhibition could be significantly reversed by administration of the NF-κB pathway inhibitor sc3060, whereas, expressions of p-ERK1, p-ERK2, and p-AKT were upregulated by the OGD/R treatment; however, their levels were unchanged by NSP administration. Our results thus verified the neuroprotective effects of NSP in ischemic astrocytes. The potential mechanisms include inhibition of the release of NO/TNF-α and repression of the NF-κB signaling pathways. Our data also indicated that NSP has little influence on the MAPK and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Tetsuya Asakawa
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Japan
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Japan
| | - Wei Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sha Han
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qinying Li
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hiroki Namba
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Japan
| | - Chuanzhen Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Noto R, Santangelo MG, Levantino M, Cupane A, Mangione MR, Parisi D, Ricagno S, Bolognesi M, Manno M, Martorana V. Functional and dysfunctional conformers of human neuroserpin characterized by optical spectroscopies and Molecular Dynamics. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1854:110-7. [PMID: 25450507 PMCID: PMC4332418 DOI: 10.1016/j.bbapap.2014.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/04/2014] [Accepted: 10/03/2014] [Indexed: 12/12/2022]
Abstract
Neuroserpin (NS) is a serine protease inhibitor (SERPIN) involved in different neurological pathologies, including the Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB), related to the aberrant polymerization of NS mutants. Here we present an in vitro and in silico characterization of native neuroserpin and its dysfunctional conformation isoforms: the proteolytically cleaved conformer, the inactive latent conformer, and the polymeric species. Based on circular dichroism and fluorescence spectroscopy, we present an experimental validation of the latent model and highlight the main structural features of the different conformers. In particular, emission spectra of aromatic residues yield distinct conformational fingerprints, that provide a novel and simple spectroscopic tool for selecting serpin conformers in vitro. Based on the structural relationship between cleaved and latent serpins, we propose a structural model for latent NS, for which an experimental crystallographic structure is lacking. Molecular Dynamics simulations suggest that NS conformational stability and flexibility arise from a spatial distribution of intramolecular salt-bridges and hydrogen bonds.
Collapse
Affiliation(s)
- Rosina Noto
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | | | - Matteo Levantino
- Department of Physics and Chemistry, University of Palermo, Palermo, Italy
| | - Antonio Cupane
- Department of Physics and Chemistry, University of Palermo, Palermo, Italy
| | | | - Daniele Parisi
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy; Department of Biosciences, Institute of Biophysics CNR, Italy and CIMAINA, University of Milano, Milan, Italy
| | - Stefano Ricagno
- Department of Biosciences, Institute of Biophysics CNR, Italy and CIMAINA, University of Milano, Milan, Italy
| | - Martino Bolognesi
- Department of Biosciences, Institute of Biophysics CNR, Italy and CIMAINA, University of Milano, Milan, Italy
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy.
| | - Vincenzo Martorana
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| |
Collapse
|
24
|
Budrikis Z, Costantini G, La Porta CAM, Zapperi S. Protein accumulation in the endoplasmic reticulum as a non-equilibrium phase transition. Nat Commun 2014; 5:3620. [PMID: 24722051 PMCID: PMC4048836 DOI: 10.1038/ncomms4620] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 03/11/2014] [Indexed: 12/03/2022] Open
Abstract
Several neurological disorders are associated with the aggregation of aberrant proteins, often localized in intracellular organelles such as the endoplasmic reticulum. Here we study protein aggregation kinetics by mean-field reactions and three dimensional Monte carlo simulations of diffusion-limited aggregation of linear polymers in a confined space, representing the endoplasmic reticulum. By tuning the rates of protein production and degradation, we show that the system undergoes a non-equilibrium phase transition from a physiological phase with little or no polymer accumulation to a pathological phase characterized by persistent polymerization. A combination of external factors accumulating during the lifetime of a patient can thus slightly modify the phase transition control parameters, tipping the balance from a long symptomless lag phase to an accelerated pathological development. The model can be successfully used to interpret experimental data on amyloid-β clearance from the central nervous system. Misfolded protein accumulation is a hallmark of many neurodegenerative diseases. Here Budrikis et al. model protein aggregation in the endoplasmic reticulum and show that it is the result of a non-equilibrium phase transition caused by tipping the balance from the rates of protein production to degradation.
Collapse
Affiliation(s)
- Zoe Budrikis
- Institute for Scientific Interchange Foundation, Via Alassio 11/C, Torino 10126, Italy
| | - Giulio Costantini
- Istituto per l'Energetica e le Interfasi, CNR-Consiglio Nazionale delle Ricerche, Via R. Cozzi 53, Milano 20125, Italy
| | - Caterina A M La Porta
- Department of Biosciences, University of Milano, via Celoria 26, Milano 20133, Italy
| | - Stefano Zapperi
- 1] Institute for Scientific Interchange Foundation, Via Alassio 11/C, Torino 10126, Italy [2] Istituto per l'Energetica e le Interfasi, CNR-Consiglio Nazionale delle Ricerche, Via R. Cozzi 53, Milano 20125, Italy
| |
Collapse
|
25
|
Vetri V, Leone M, Morozova-Roche LA, Vestergaard B, Foderà V. Unlocked concanavalin A forms amyloid-like fibrils from coagulation of long-lived "crinkled" intermediates. PLoS One 2013; 8:e68912. [PMID: 23874809 PMCID: PMC3712988 DOI: 10.1371/journal.pone.0068912] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/06/2013] [Indexed: 01/14/2023] Open
Abstract
Understanding the early events during amyloid aggregation processes is crucial to single out the involved molecular mechanisms and for designing ad hoc strategies to prevent and reverse amyloidogenic disorders. Here, we show that, in conditions in which the protein is positively charged and its conformational flexibility is enhanced, Concanavalin A leads to fibril formation via a non-conventional aggregation pathway. Using a combination of light scattering, circular dichroism, small angle X-ray scattering, intrinsic (Tryptophan) and extrinsic (ANS) fluorescence and confocal and 2-photon fluorescence microscopy we characterize the aggregation process as a function of the temperature. We highlight a multi-step pathway with the formation of an on-pathway long-lived intermediate and a subsequent coagulation of such “crinkled” precursors into amyloid-like fibrils. The process results in a temperature-dependent aggregation-coagulation pathway, with the late phase of coagulation determined by the interplay between hydrophobic and electrostatic forces. Our data provide evidence for the complex aggregation pathway for a protein with a highly flexible native conformation. We demonstrate the possibility to generate a long-lived intermediate whose proportion and occurrence are easily tunable by experimental parameters (i.e. temperature). As a consequence, in the case of aggregation processes developing through well-defined energy barriers, our results can open the way to new strategies to induce more stable in vitro on-pathway intermediate species through a minute change in the initial conformational flexibility of the protein. This will allow isolating and experimentally studying such transient species, often indicated as relevant in neurodegenerative diseases, both in terms of structural and cytotoxic properties.
Collapse
Affiliation(s)
- Valeria Vetri
- Dipartimento di Fisica e Chimica, Università di Palermo, Palermo, Italy
- * E-mail: (VV); (VF)
| | - Maurizio Leone
- Dipartimento di Fisica e Chimica, Università di Palermo, Palermo, Italy
| | | | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Vito Foderà
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Sector of Biological and Soft Systems, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (VV); (VF)
| |
Collapse
|