1
|
Liu RX, Wen C, Ye W, Li Y, Chen J, Zhang Q, Li W, Liang W, Wei L, Zhang J, Chan KW, Wang X, Yang X, Liu H. Altered B cell immunoglobulin signature exhibits potential diagnostic values in human colorectal cancer. iScience 2023; 26:106140. [PMID: 36879799 PMCID: PMC9984553 DOI: 10.1016/j.isci.2023.106140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Antibody-secreting B cells have long been considered the central element of gut homeostasis; however, tumor-associated B cells in human colorectal cancer (CRC) have not been well characterized. Here, we show that the clonotype, phenotype, and immunoglobulin subclasses of tumor-infiltrating B cells have changed compared to adjacent normal tissue B cells. Remarkably, the tumor-associated B cell immunoglobulin signature alteration can also be detected in the plasma of patients with CRC, suggesting that a distinct B cell response was also evoked in CRC. We compared the altered plasma immunoglobulin signature with the existing method of CRC diagnosis. Our diagnostic model exhibits improved sensitivity compared to the traditional biomarkers, CEA and CA19-9. These findings disclose the altered B cell immunoglobulin signature in human CRC and highlight the potential of using the plasma immunoglobulin signature as a non-invasive method for the assessment of CRC.
Collapse
Affiliation(s)
- Rui-Xian Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Chuangyu Wen
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
| | - Weibiao Ye
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
| | - Yewei Li
- Department of Statistical Science, School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Junxiong Chen
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Qian Zhang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Weiqian Li
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Wanfei Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lili Wei
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Jingdan Zhang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Ka-Wo Chan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Xueqin Wang
- International Institute of Finance, School of Management, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiangling Yang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| |
Collapse
|
2
|
Kazemi MH, Sadri M, Najafi A, Rahimi A, Baghernejadan Z, Khorramdelazad H, Falak R. Tumor-infiltrating lymphocytes for treatment of solid tumors: It takes two to tango? Front Immunol 2022; 13:1018962. [PMID: 36389779 PMCID: PMC9651159 DOI: 10.3389/fimmu.2022.1018962] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/14/2022] [Indexed: 07/30/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs), frontline soldiers of the adaptive immune system, are recruited into the tumor site to fight against tumors. However, their small number and reduced activity limit their ability to overcome the tumor. Enhancement of TILs number and activity against tumors has been of interest for a long time. A lack of knowledge about the tumor microenvironment (TME) has limited success in primary TIL therapies. Although the advent of engineered T cells has revolutionized the immunotherapy methods of hematologic cancers, the heterogeneity of solid tumors warrants the application of TILs with a wide range of specificity. Recent advances in understanding TME, immune exhaustion, and immune checkpoints have paved the way for TIL therapy regimens. Nowadays, TIL therapy has regained attention as a safe personalized immunotherapy, and currently, several clinical trials are evaluating the efficacy of TIL therapy in patients who have failed conventional immunotherapies. Gaining favorable outcomes following TIL therapy of patients with metastatic melanoma, cervical cancer, ovarian cancer, and breast cancer has raised hope in patients with refractory solid tumors, too. Nevertheless, TIL therapy procedures face several challenges, such as high cost, timely expansion, and technical challenges in selecting and activating the cells. Herein, we reviewed the recent advances in the TIL therapy of solid tumors and discussed the challenges and perspectives.
Collapse
Affiliation(s)
- Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Talaat IM, Elemam NM, Zaher S, Saber-Ayad M. Checkpoint molecules on infiltrating immune cells in colorectal tumor microenvironment. Front Med (Lausanne) 2022; 9:955599. [PMID: 36072957 PMCID: PMC9441912 DOI: 10.3389/fmed.2022.955599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancer types worldwide, with a high mortality rate due to metastasis. The tumor microenvironment (TME) contains multiple interactions between the tumor and the host, thus determining CRC initiation and progression. Various immune cells exist within the TME, such as tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and tumor-associated neutrophils (TANs). The immunotherapy approach provides novel opportunities to treat solid tumors, especially toward immune checkpoints. Despite the advances in the immunotherapy of CRC, there are still obstacles to successful treatment. In this review, we highlighted the role of these immune cells in CRC, with a particular emphasis on immune checkpoint molecules involved in CRC pathogenesis.
Collapse
Affiliation(s)
- Iman M. Talaat
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha M. Elemam
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Noha M. Elemam,
| | - Shroque Zaher
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Maha Saber-Ayad
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Maha Saber-Ayad,
| |
Collapse
|
4
|
Tumor-reactive antibodies evolve from non-binding and autoreactive precursors. Cell 2022; 185:1208-1222.e21. [PMID: 35305314 DOI: 10.1016/j.cell.2022.02.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022]
Abstract
The tumor microenvironment hosts antibody-secreting cells (ASCs) associated with a favorable prognosis in several types of cancer. Patient-derived antibodies have diagnostic and therapeutic potential; yet, it remains unclear how antibodies gain autoreactivity and target tumors. Here, we found that somatic hypermutations (SHMs) promote antibody antitumor reactivity against surface autoantigens in high-grade serous ovarian carcinoma (HGSOC). Patient-derived tumor cells were frequently coated with IgGs. Intratumoral ASCs in HGSOC were both mutated and clonally expanded and produced tumor-reactive antibodies that targeted MMP14, which is abundantly expressed on the tumor cell surface. The reversion of monoclonal antibodies to their germline configuration revealed two types of classes: one dependent on SHMs for tumor binding and a second with germline-encoded autoreactivity. Thus, tumor-reactive autoantibodies are either naturally occurring or evolve through an antigen-driven selection process. These findings highlight the origin and potential applicability of autoantibodies directed at surface antigens for tumor targeting in cancer patients.
Collapse
|
5
|
Delvecchio FR, Goulart MR, Fincham REA, Bombadieri M, Kocher HM. B cells in pancreatic cancer stroma. World J Gastroenterol 2022; 28:1088-1101. [PMID: 35431504 PMCID: PMC8985484 DOI: 10.3748/wjg.v28.i11.1088] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a disease with high unmet clinical need. Pancreatic cancer is also characterised by an intense fibrotic stroma, which harbours many immune cells. Studies in both human and animal models have demonstrated that the immune system plays a crucial role in modulating tumour onset and progression. In human pancreatic ductal adenocarcinoma, high B-cell infiltration correlates with better patient survival. Hence, B cells have received recent interest in pancreatic cancer as potential therapeutic targets. However, the data on the role of B cells in murine models is unclear as it is dependent on the pancreatic cancer model used to study. Nevertheless, it appears that B cells do organise along with other immune cells such as a network of follicular dendritic cells (DCs), surrounded by T cells and DCs to form tertiary lymphoid structures (TLS). TLS are increasingly recognised as sites for antigen presentation, T-cell activation, B-cell maturation and differentiation in plasma cells. In this review we dissect the role of B cells and provide directions for future studies to harness the role of B cells in treatment of human pancreatic cancer.
Collapse
Affiliation(s)
- Francesca Romana Delvecchio
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Michelle R Goulart
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | | | - Michele Bombadieri
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Hemant M Kocher
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Barts and the London HPB Centre, Barts Health NHS Trust, London E1 1BB, United Kingdom
| |
Collapse
|
6
|
Harris RJ, Cheung A, Ng JCF, Laddach R, Chenoweth AM, Crescioli S, Fittall M, Dominguez-Rodriguez D, Roberts J, Levi D, Liu F, Alberts E, Quist J, Santaolalla A, Pinder SE, Gillett C, Hammar N, Irshad S, Van Hemelrijck M, Dunn-Walters DK, Fraternali F, Spicer JF, Lacy KE, Tsoka S, Grigoriadis A, Tutt ANJ, Karagiannis SN. Tumor-Infiltrating B Lymphocyte Profiling Identifies IgG-Biased, Clonally Expanded Prognostic Phenotypes in Triple-Negative Breast Cancer. Cancer Res 2021; 81:4290-4304. [PMID: 34224371 PMCID: PMC7611538 DOI: 10.1158/0008-5472.can-20-3773] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/23/2021] [Accepted: 06/14/2021] [Indexed: 12/29/2022]
Abstract
In breast cancer, humoral immune responses may contribute to clinical outcomes, especially in more immunogenic subtypes. Here, we investigated B lymphocyte subsets, immunoglobulin expression, and clonal features in breast tumors, focusing on aggressive triple-negative breast cancers (TNBC). In samples from patients with TNBC and healthy volunteers, circulating and tumor-infiltrating B lymphocytes (TIL-B) were evaluated. CD20+CD27+IgD- isotype-switched B lymphocytes were increased in tumors, compared with matched blood. TIL-B frequently formed stromal clusters with T lymphocytes and engaged in bidirectional functional cross-talk, consistent with gene signatures associated with lymphoid assembly, costimulation, cytokine-cytokine receptor interactions, cytotoxic T-cell activation, and T-cell-dependent B-cell activation. TIL-B-upregulated B-cell receptor (BCR) pathway molecules FOS and JUN, germinal center chemokine regulator RGS1, activation marker CD69, and TNFα signal transduction via NFκB, suggesting BCR-immune complex formation. Expression of genes associated with B lymphocyte recruitment and lymphoid assembly, including CXCL13, CXCR4, and DC-LAMP, was elevated in TNBC compared with other subtypes and normal breast. TIL-B-rich tumors showed expansion of IgG but not IgA isotypes, and IgG isotype switching positively associated with survival outcomes in TNBC. Clonal expansion was biased toward IgG, showing expansive clonal families with specific variable region gene combinations and narrow repertoires. Stronger positive selection pressure was present in the complementarity determining regions of IgG compared with their clonally related IgA in tumor samples. Overall, class-switched B lymphocyte lineage traits were conspicuous in TNBC, associated with improved clinical outcomes, and conferred IgG-biased, clonally expanded, and likely antigen-driven humoral responses. SIGNIFICANCE: Tumor-infiltrating B lymphocytes assemble in clusters, undergoing B-cell receptor-driven activation, proliferation, and isotype switching. Clonally expanded, IgG isotype-biased humoral immunity associates with favorable prognosis primarily in triple-negative breast cancers.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, CD20/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Base Sequence
- Cell Line, Tumor
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoglobulin D/biosynthesis
- Immunoglobulin G/immunology
- Immunohistochemistry
- Lectins, C-Type/biosynthesis
- Lymphocytes/cytology
- Models, Statistical
- Phenotype
- Prognosis
- RNA-Seq
- Receptors, Antigen, B-Cell/metabolism
- Single-Cell Analysis
- Transcriptome
- Triple Negative Breast Neoplasms/immunology
- Triple Negative Breast Neoplasms/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 7/biosynthesis
- Tumor Necrosis Factor-alpha/biosynthesis
- User-Computer Interface
Collapse
Affiliation(s)
- Robert J Harris
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
- NIHR Biomedical Research Center at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
- King's Health Partners Cancer Research UK Cancer Center, King's College London, London, United Kingdom
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
- NIHR Biomedical Research Center at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Center, London, United Kingdom
| | - Joseph C F Ng
- Randall Center for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Roman Laddach
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
- NIHR Biomedical Research Center at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Alicia M Chenoweth
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
- NIHR Biomedical Research Center at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Center, London, United Kingdom
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
- NIHR Biomedical Research Center at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
| | - Matthew Fittall
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
- NIHR Biomedical Research Center at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Center, London, United Kingdom
| | - Diana Dominguez-Rodriguez
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
- NIHR Biomedical Research Center at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
| | - James Roberts
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
- NIHR Biomedical Research Center at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Dina Levi
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Center, London, United Kingdom
| | - Fangfang Liu
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Center, London, United Kingdom
| | - Elena Alberts
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
- NIHR Biomedical Research Center at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Center, London, United Kingdom
| | - Jelmar Quist
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Center, London, United Kingdom
| | - Aida Santaolalla
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- School of Cancer and Pharmaceutical Studies, Translational Oncology and Urology Research (TOUR), King's College London, London, United Kingdom
| | - Sarah E Pinder
- School of Cancer and Pharmaceutical Sciences, King's College London, Comprehensive Cancer Center, Guy's Hospital, London, United Kingdom
- King's Health Partners Cancer Biobank, King's College London, London, United Kingdom
| | - Cheryl Gillett
- School of Cancer and Pharmaceutical Sciences, King's College London, Comprehensive Cancer Center, Guy's Hospital, London, United Kingdom
- King's Health Partners Cancer Biobank, King's College London, London, United Kingdom
| | - Niklas Hammar
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sheeba Irshad
- School of Cancer and Pharmaceutical Sciences, King's College London, Comprehensive Cancer Center, Guy's Hospital, London, United Kingdom
| | - Mieke Van Hemelrijck
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- School of Cancer and Pharmaceutical Studies, Translational Oncology and Urology Research (TOUR), King's College London, London, United Kingdom
| | | | - Franca Fraternali
- Randall Center for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - James F Spicer
- School of Cancer and Pharmaceutical Sciences, King's College London, Comprehensive Cancer Center, Guy's Hospital, London, United Kingdom
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
- NIHR Biomedical Research Center at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Anita Grigoriadis
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Center, London, United Kingdom
| | - Andrew N J Tutt
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Center, London, United Kingdom
- Breast Cancer Now Toby Robins Research Center, Institute of Cancer Research, London, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom.
- NIHR Biomedical Research Center at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Center, London, United Kingdom
| |
Collapse
|
7
|
Long noncoding RNA: a dazzling dancer in tumor immune microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:231. [PMID: 33148302 PMCID: PMC7641842 DOI: 10.1186/s13046-020-01727-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a class of endogenous, non-protein coding RNAs that are highly linked to various cellular functions and pathological process. Emerging evidence indicates that lncRNAs participate in crosstalk between tumor and stroma, and reprogramming of tumor immune microenvironment (TIME). TIME possesses distinct populations of myeloid cells and lymphocytes to influence the immune escape of cancer, the response to immunotherapy, and the survival of patients. However, hitherto, a comprehensive review aiming at relationship between lncRNAs and TIME is missing. In this review, we focus on the functional roles and molecular mechanisms of lncRNAs within the TIME. Furthermore, we discussed the potential immunotherapeutic strategies based on lncRNAs and their limitations.
Collapse
|
8
|
Immuno-Interface Score to Predict Outcome in Colorectal Cancer Independent of Microsatellite Instability Status. Cancers (Basel) 2020; 12:cancers12102902. [PMID: 33050344 PMCID: PMC7600992 DOI: 10.3390/cancers12102902] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary For pathologists, how to precisely diagnose cancer from microscopy slides of tumor tissue samples so that each patient may receive the optimal treatment for his specific type of disease is a major task. Recent research based on digital pathology image analysis enables new approaches to assess tumor-host interaction at a microscopic level. The current study applies a novel spatial analysis method which computes Immunogradient indicators to estimate the migration of immune cells towards the tumor across the tumor/stroma interface. These indicators, computed for two types of immune cells (CD8 and CD20), proved to be independent prognostic factors in this study of 87 patients with colorectal cancer. The indicators were combined with infiltrative tumor growth pattern, assessed by a pathologist, into a new immuno-interface score which enabled prediction of the patient survival independent of other clinical, pathology and molecular characteristics of the tumor. The study demonstrates the value of computational pathology to advance the precision of clinical decision-making. Abstract Tumor-associated immune cells have been shown to predict patient outcome in colorectal (CRC) and other cancers. Spatial digital image analysis-based cell quantification increases the informative power delivered by tumor microenvironment features and leads to new prognostic scoring systems. In this study we evaluated the intratumoral density of immunohistochemically stained CD8, CD20 and CD68 cells in 87 cases of CRC (48 were microsatellite stable, MSS, and 39 had microsatellite instability, MSI) in both the intratumoral tumor tissue and within the tumor-stroma interface zone (IZ) which was extracted by a previously developed unbiased hexagonal grid analytics method. Indicators of immune-cell gradients across the extracted IZ were computed and explored along with absolute cell densities, clinicopathological and molecular data, including gene mutation (BRAF, KRAS, PIK3CA) and MSI status. Multiple regression modeling identified (p < 0.0001) three independent prognostic factors: CD8+ and CD20+ Immunogradient indicators, that reflect cell migration towards the tumor, were associated with improved patient survival, while the infiltrative tumor growth pattern was linked to worse patient outcome. These features were combined into CD8-CD20 Immunogradient and immuno-interface scores which outperformed both tumor-node-metastasis (TNM) staging and molecular characteristics, and importantly, revealed high prognostic value both in MSS and MSI CRCs.
Collapse
|
9
|
Gock M, Kordt M, Matschos S, Mullins CS, Linnebacher M. Patient-individual cancer cell lines and tissue analysis delivers no evidence of sequences from DNA viruses in colorectal cancer cells. BMC Gastroenterol 2020; 20:260. [PMID: 32762707 PMCID: PMC7409650 DOI: 10.1186/s12876-020-01404-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Background Several DNA viruses are highly suspicious to have oncogenic effects in humans. This study investigates the presence of potentially oncogenic viruses such as SV40, JCV, BKV and EBV in patient-derived colorectal carcinoma (CRC) cells typifying all molecular subtypes of CRC. Methods Sample material (gDNA and cDNA) of a total of 49 patient-individual CRC cell lines and corresponding primary material from 11 patients, including normal, tumor-derived and metastasis-derived tissue were analyzed for sequences of SV40, JVC, BKV and EBV using endpoint PCR. In addition, the susceptibility of CRC cells to JCV and BKV was examined using a long-term cultivation approach of patient-individual cells in the presence of viruses. Results No virus-specific sequences could be detected in all specimens. Likewise, no morphological changes were observed and no evidence for viral infection or integration could be provided after long term CRC cell cultivation in presence of viral particles. Conclusions In summary, the presented data suggest that there is no direct correlation between tumorigenesis and viral load and consequently no evidence for a functional role of the DNA viruses included into this analysis in CRC development.
Collapse
Affiliation(s)
- Michael Gock
- Department of General Surgery, University of Rostock, Rostock, Germany
| | - Marcel Kordt
- Department of General Surgery, Molecular Oncology and Immunotherapy, University of Rostock, Schillingallee 35, D-18057, Rostock, Germany
| | - Stephanie Matschos
- Department of General Surgery, Molecular Oncology and Immunotherapy, University of Rostock, Schillingallee 35, D-18057, Rostock, Germany
| | - Christina S Mullins
- Department of General Surgery, Molecular Oncology and Immunotherapy, University of Rostock, Schillingallee 35, D-18057, Rostock, Germany
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, University of Rostock, Schillingallee 35, D-18057, Rostock, Germany.
| |
Collapse
|
10
|
The Prognostic Importance of CD20 + B lymphocytes in Colorectal Cancer and the Relation to Other Immune Cell subsets. Sci Rep 2019; 9:19997. [PMID: 31882709 PMCID: PMC6934737 DOI: 10.1038/s41598-019-56441-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022] Open
Abstract
The anti-tumour immune response is critical to patient prognosis in colorectal cancer (CRC). The aim of this study was to investigate infiltration of B lymphocytes into CRC tumours, and their clinical relevance, prognostic value and relation to other immune cell subsets. We used multiplexed immunohistochemistry and multispectral imaging to assay the amount of infiltrating CD20+ B lymphocytes along with infiltration of CD8+ cytotoxic T cells, FOXP3+ T regulatory cells, CD68+ macrophages and CD66b+ neutrophils, in 316 archival CRC tissue specimens. A higher density of infiltrating CD20+ B lymphocytes was associated with tumours of the right colon (P = 0.025) and of lower stages (P = 0.009). Furthermore, patients whose tumours were highly infiltrated by CD20+ B lymphocytes had a significantly improved disease-specific survival (HR = 0.45, 95% CI 0.28–0.73, P = 0.001), which remained significant in multivariable analysis. CD20+ B lymphocytes were highly and positively associated with CD8+ T lymphocytes (P < 0.001), and part of the prognostic role was found to be a cooperative effect between these lymphocyte subsets. Our results support a favourable prognostic value of tumour-infiltrating CD20+ B lymphocytes in CRC. Furthermore, a cooperative prognostic effect between CD20+ B lymphocytes and CD8+ T lymphocytes is suggested.
Collapse
|
11
|
Human Colorectal Carcinoma Infiltrating B Lymphocytes Are Active Secretors of the Immunoglobulin Isotypes A, G, and M. Cancers (Basel) 2019; 11:cancers11060776. [PMID: 31167511 PMCID: PMC6627757 DOI: 10.3390/cancers11060776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
Despite the importance of tumor infiltrating B cells (TiBc) in immunological circuits, their functional role is scarcely investigated. Here, we analyzed immunoglobulin (Ig) secretion of the subtypes IgA, IgG, and IgM of TiBc from freshly resected primary and secondary colorectal carcinomas (CRC) by FluoroSpot (n = 30 CRC) directly ex vivo. High, intermediate, and low secretion was observed in 33%, 37%, and 30% of the tumors for IgA; in 10%, 27%, and 63% for IgG; and in 21%, 36%, and 50% for IgM, respectively. These ex vivo data validate our previous findings: Most TiBc present in the CRC microenvironment are functional since they produce and actively secrete Ig (IgA > IgG > IgM). Of note, the presence of major histocompatibility complex (MHC) class II expressing cells in the tumor micromilieu only correlated with IgG secretion (p = 0.0004). Supporting recent findings in several other tumor entities, TiBc in CRC thus likely can contribute to tumor control in a dual role of sole antigen-presentation and additionally anti-tumoral Ig-production.
Collapse
|
12
|
Liu J, Li Y, Lu Z, Gu J, Liang Y, Huang E, Wang Z, Zhang H, Wang L, Zhang D, Yu H, Liu R, Chu Y. Deceleration of glycometabolism impedes IgG-producing B-cell-mediated tumor elimination by targeting SATB1. Immunology 2018; 156:56-68. [PMID: 30171602 DOI: 10.1111/imm.12998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
B lymphocytes, known as antibody producers, mediate tumor cell destruction in the manner of antibody-dependent cell-mediated cytotoxicity; however, their anti-tumor function seems to be weakened during tumorigenesis, while the underlying mechanisms remain unclear. In this study, we found that IgG mediated anti-tumor effects, but IgG-producing B cells decreased in various tumors. Considering the underlying mechanism, glycometabolism was noteworthy. We found that tumor-infiltrating B cells were glucose-starved and accompanied by a deceleration of glycometabolism. Both inhibition of glycometabolism and deprivation of glucose through tumor cells, or glucose-free treatment, reduced the differentiation of B cells into IgG-producing cells. In this process, special AT-rich sequence-binding protein-1 (SATB1) was significantly silenced in B cells. Down-regulating SATB1 by inhibiting glycometabolism or RNA interference reduced the binding of signal transducer and activator of transcription 6 (STAT6) to the promoter of germline Cγ gene, subsequently resulting in fewer B cells producing IgG. Our findings provide the first evidence that glycometabolic inhibition by tumorigenesis suppresses differentiation of B cells into IgG-producing cells, and altering glycometabolism may be promising in improving the anti-tumor effect of B cells.
Collapse
Affiliation(s)
- Jiajing Liu
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yifan Li
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhou Lu
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Gu
- Department of Thoracic Surgery, The Affiliated Zhongshan Hospital of Fudan University, Shanghai, China
| | - Yun Liang
- Department of Orthopedics, The Affiliated Zhongshan Hospital of Fudan University, Shanghai, China
| | - Enyu Huang
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhiming Wang
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hushan Zhang
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dan Zhang
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hongxiu Yu
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ronghua Liu
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Correa I, Ilieva KM, Crescioli S, Lombardi S, Figini M, Cheung A, Spicer JF, Tutt ANJ, Nestle FO, Karagiannis P, Lacy KE, Karagiannis SN. Evaluation of Antigen-Conjugated Fluorescent Beads to Identify Antigen-Specific B Cells. Front Immunol 2018; 9:493. [PMID: 29628923 PMCID: PMC5876289 DOI: 10.3389/fimmu.2018.00493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/26/2018] [Indexed: 11/30/2022] Open
Abstract
Selection of single antigen-specific B cells to identify their expressed antibodies is of considerable interest for evaluating human immune responses. Here, we present a method to identify single antibody-expressing cells using antigen-conjugated fluorescent beads. To establish this, we selected Folate Receptor alpha (FRα) as a model antigen and a mouse B cell line, expressing both the soluble and the membrane-bound forms of a human/mouse chimeric antibody (MOv18 IgG1) specific for FRα, as test antibody-expressing cells. Beads were conjugated to FRα using streptavidin/avidin-biotin bridges and used to select single cells expressing the membrane-bound form of anti-FRα. Bead-bound cells were single cell-sorted and processed for single cell RNA retrotranscription and PCR to isolate antibody heavy and light chain variable regions. Variable regions were then cloned and expressed as human IgG1/k antibodies. Like the original clone, engineered antibodies from single cells recognized native FRα. To evaluate whether antigen-coated beads could identify specific antibody-expressing cells in mixed immune cell populations, human peripheral blood mononuclear cells (PBMCs) were spiked with test antibody-expressing cells. Antigen-specific cells could comprise up to 75% of cells selected with antigen-conjugated beads when the frequency of the antigen-positive cells was 1:100 or higher. In PBMC pools, beads conjugated to recombinant antigens FRα and HER2 bound antigen-specific anti-FRα MOv18 and anti-HER2 Trastuzumab antibody-expressing cells, respectively. From melanoma patient-derived B cells selected with melanoma cell line-derived protein-coated fluorescent beads, we generated a monoclonal antibody that recognized melanoma antigen-coated beads. This approach may be further developed to facilitate analysis of B cells and their antibody profiles at the single cell level and to help unravel humoral immune repertoires.
Collapse
Affiliation(s)
- Isabel Correa
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom
| | - Kristina M Ilieva
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom
| | - Sara Lombardi
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Mariangela Figini
- Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - James F Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Andrew N J Tutt
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom.,Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Frank O Nestle
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom.,Immunology and Inflammation Therapeutic Research Area, Sanofi US, Cambridge, MA, United States
| | - Panagiotis Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom.,Department of Oncology, Haematology and Stem Cell Transplantation, University Hospital of Hamburg Eppendorf, Hamburg, Germany
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| |
Collapse
|
14
|
Colangelo T, Polcaro G, Muccillo L, D'Agostino G, Rosato V, Ziccardi P, Lupo A, Mazzoccoli G, Sabatino L, Colantuoni V. Friend or foe? The tumour microenvironment dilemma in colorectal cancer. Biochim Biophys Acta Rev Cancer 2016; 1867:1-18. [PMID: 27864070 DOI: 10.1016/j.bbcan.2016.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
The network of bidirectional homotypic and heterotypic interactions established among parenchymal tumour cells and surrounding mesenchymal stromal cells generates the tumour microenvironment (TME). These intricate crosstalks elicit both beneficial and adverse effects on tumour initiation and progression unbalancing the signals and responses from the neighbouring cells. Here, we highlight the structure, activities and evolution of TME cells considering a novel colorectal cancer (CRC) classification based on differential stromal composition and gene expression profiles. In this scenario, we scrutinise the molecular pathways that either change or become corrupted during CRC development and their relative prognostic value. Finally, we survey the therapeutic molecules directed against TME components currently available in clinical trials as well as those with stronger potential in preclinical studies. Elucidation of dynamic variations in the CRC TME cell composition and their relative contribution could provide novel diagnostic or prognostic biomarkers and allow more personalised therapeutic strategies.
Collapse
Affiliation(s)
- Tommaso Colangelo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy; present address: Institute for Stem-cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Casa Sollievo della Sofferenza-IRCCS, 71013 San Giovanni Rotondo (FG), Italy
| | - Giovanna Polcaro
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Livio Muccillo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Giovanna D'Agostino
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Valeria Rosato
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Pamela Ziccardi
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Angelo Lupo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo (FG), Italy
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Vittorio Colantuoni
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| |
Collapse
|
15
|
Kuehn F, Mullins CS, Krohn M, Harnack C, Ramer R, Krämer OH, Klar E, Huehns M, Linnebacher M. Establishment and characterization of HROC69 - a Crohn´s related colonic carcinoma cell line and its matched patient-derived xenograft. Sci Rep 2016; 6:24671. [PMID: 27087592 PMCID: PMC4834534 DOI: 10.1038/srep24671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/23/2016] [Indexed: 02/07/2023] Open
Abstract
Colitis-associated colorectal cancer (CAC) seems to be a rather unique entity and differs in its genetic alterations, tumour formation capacities, and clinical features from sporadic colorectal carcinoma. Most descriptions about tumour biology of CAC refer to ulcerative colitis; data about Crohn´s colitis related carcinomas are scarce. The majority of patients with Crohn´s disease are under immunosuppression which generates a different environment for tumour growth. We first describe the clinical case of a fast growing CAC in a long-term immunosuppressed patient with Crohn´s disease and successful establishment and characterization of carcinoma cell lines along with their corresponding patient-derived xenograft. Subsequently, these tumor models were molecularly and functionally analysed. Beside numerous chromosomal alterations, mutations in TP53, APC, PTEN and SMAD3 were identified. The cell lines express numerous cancer testis antigens, surface molecules involved in immune evasion but low levels of HLA class I molecules. They show strong invasive but in comparison weak migratory activity. The present work is the first description of patient-derived in vitro and in vivo models for CAC from a Crohn´s disease patient. They might be valuable tools for analysis of genetic and epigenetic alterations, biomarker identification, functional testing, including response prediction, and the development of specific therapeutical strategies.
Collapse
Affiliation(s)
- Florian Kuehn
- University Medicine Rostock, Department of General-, Thoracic-, Vascular- and Transplantation Surgery, Rostock, Germany
| | - Christina S Mullins
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock, Germany
| | - Mathias Krohn
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock, Germany
| | - Christine Harnack
- University Medicine Rostock, Department of General-, Thoracic-, Vascular- and Transplantation Surgery, Rostock, Germany
| | - Robert Ramer
- University Medicine Rostock, Institute of Toxicology and Pharmacology, Rostock, Germany
| | - Oliver H Krämer
- University Medical Center Mainz, Department of Toxicology, Mainz, Germany
| | - Ernst Klar
- University Medicine Rostock, Department of General-, Thoracic-, Vascular- and Transplantation Surgery, Rostock, Germany
| | - Maja Huehns
- University Medicine Rostock, Institute of Pathology, Rostock, Germany
| | - Michael Linnebacher
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock, Germany
| |
Collapse
|
16
|
Lao XM, Liang YJ, Su YX, Zhang SE, Zhou XI, Liao GQ. Distribution and significance of interstitial fibrosis and stroma-infiltrating B cells in tongue squamous cell carcinoma. Oncol Lett 2016; 11:2027-2034. [PMID: 26998116 PMCID: PMC4774478 DOI: 10.3892/ol.2016.4184] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/10/2015] [Indexed: 11/05/2022] Open
Abstract
Inflammation and desmoplasia are frequently identified in the tumor microenvironment, and have been demonstrated to be effective modulators of malignant biological events. However, the mechanisms by which the inflammatory microenvironment and interstitial fibrosis interact with one another remain to be elucidated. The present study aimed to investigate the degree of inflammation and interstitial fibrosis in tongue squamous cell carcinoma (TSCC), and how this acts to affect the outcome of TSCC. Tissue samples from 93 cases of TSCC and paired tumor-adjacent non-neoplastic tongue epithelium, as well as 14 cases of epithelial dysplasia, were used. Interstitial collagen fibers were assessed using Masson's trichrome stain. Immunohistochemical identification of cancer-associated fibroblasts (CAFs) and stroma-infiltrating B cells was performed via detection of α-smooth muscle actin (SMA), vimentin, desmin and cluster of differentiation 19 (CD19). The clinicopathological significance and overall survival of the TSCC patients were statistically analyzed. Regularly distributed CAFs and CD19+ B cells were identified in the TSCC stroma, whereas no CAFs or CD19+ B cells were observed in epithelial dysplasia samples or paired tumor-adjacent non-neoplastic tongue epithelium samples. The distribution of interstitial collagen fibers and CAFs was closely associated with the tumor stage of the primary cancer, and high levels of CD19+ B cells together with low CAF infiltration were identified to be associated with favorable prognosis in TSCC. In conclusion, the inflammatory and interstitial fibrotic microenvironments coexist in TSCC, and each has specific effects on disease outcome, individually or perhaps collectively. However, it remains to be determined exactly how the microenvironments affect one another in TSCC.
Collapse
Affiliation(s)
- Xiao-Mei Lao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yu-Jie Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yu-Xiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P.R. China
| | - Si-En Zhang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - X I Zhou
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Gui-Qing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
17
|
Shimabukuro-Vornhagen A, Schlößer HA, Gryschok L, Malcher J, Wennhold K, Garcia-Marquez M, Herbold T, Neuhaus LS, Becker HJ, Fiedler A, Scherwitz P, Koslowsky T, Hake R, Stippel DL, Hölscher AH, Eidt S, Hallek M, Theurich S, von Bergwelt-Baildon MS. Characterization of tumor-associated B-cell subsets in patients with colorectal cancer. Oncotarget 2015; 5:4651-64. [PMID: 25026291 PMCID: PMC4148088 DOI: 10.18632/oncotarget.1701] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose: A precise understanding of the mechanisms by which human immune cell subsets affect tumor biology will be critical for successful treatment of cancer using immunotherapeutic approaches. Recent evidence suggests that B cells can both promote and inhibit the development and progression of tumors. The aim of this study was to characterize the composition of the B-cell infiltrates in colorectal cancers (CRC) in order to gain further insight into the role of B cells in CRC. Experimental Design: In this study we characterized B-cell subsets in primary tumors (n=38), metastases (n=6) and blood (n=46) of 51 patients with a diagnosis of CRC and blood of 10 healthy controls. B-cell subsets were analyzed by flow cytometry or immunohistochemistry. Results: Peripheral blood of CRC patients contained a higher percentage of memory B cells than that of age-matched healthy controls. Furthermore, the percentage of B cells within tumors was higher than that in the peripheral blood of CRC patients while metastases were typically devoid of tumor-infiltrating B cells. Tumor-associated B cells were enriched for activated and terminally differentiated B cells. Relevant proportions of regulatory B cells could only be detected in advanced cancer and metastases. Conclusion: B cells constitute a significant proportion of the immune infiltrate in CRC. The B-cell infiltrate of primary CRC is characterized by an accumulation of terminally differentiated memory B cells or plasma cells suggestive of a specific immune response against the tumor. However advanced tumors and metastases are also infiltrated by a considerable number of regulatory B cells.
Collapse
Affiliation(s)
- Alexander Shimabukuro-Vornhagen
- Cologne Interventional Immunology, University of Cologne, Germany. Department I of Internal Medicine, University of Cologne, Cologne, Germany. This authors contributed equally to this work
| | - Hans A Schlößer
- Cologne Interventional Immunology, University of Cologne, Germany. Department of General, Visceral and Cancer Surgery, University of Cologne, Germany. This authors contributed equally to this work
| | - Luise Gryschok
- Cologne Interventional Immunology, University of Cologne, Germany
| | - Joke Malcher
- Cologne Interventional Immunology, University of Cologne, Germany
| | - Kerstin Wennhold
- Cologne Interventional Immunology, University of Cologne, Germany
| | | | - Till Herbold
- Cologne Interventional Immunology, University of Cologne, Germany. Department of General, Visceral and Cancer Surgery, University of Cologne, Germany
| | - Laura S Neuhaus
- Cologne Interventional Immunology, University of Cologne, Germany
| | - Hans J Becker
- Cologne Interventional Immunology, University of Cologne, Germany
| | - Anne Fiedler
- Cologne Interventional Immunology, University of Cologne, Germany
| | | | | | - Roland Hake
- Institute of Pathology, St. Elisabeth Hospital, Cologne, Germany
| | - Dirk L Stippel
- Department of General, Visceral and Cancer Surgery, University of Cologne, Germany
| | - Arnulf H Hölscher
- Department of General, Visceral and Cancer Surgery, University of Cologne, Germany
| | - Sebastian Eidt
- Institute of Pathology, St. Elisabeth Hospital, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Sebastian Theurich
- Cologne Interventional Immunology, University of Cologne, Germany. Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Michael S von Bergwelt-Baildon
- Cologne Interventional Immunology, University of Cologne, Germany. Department I of Internal Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Germain C, Gnjatic S, Dieu-Nosjean MC. Tertiary Lymphoid Structure-Associated B Cells are Key Players in Anti-Tumor Immunity. Front Immunol 2015; 6:67. [PMID: 25755654 PMCID: PMC4337382 DOI: 10.3389/fimmu.2015.00067] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/02/2015] [Indexed: 12/25/2022] Open
Abstract
It is now admitted that the immune system plays a major role in tumor control. Besides the existence of tumor-specific T cells and B cells, many studies have demonstrated that high numbers of tumor-infiltrating lymphocytes are associated with good clinical outcome. In addition, not only the density but also the organization of tumor-infiltrating immune cells has been shown to determine patient survival. Indeed, more and more studies describe the development within the tumor microenvironment of tertiary lymphoid structures (TLS), whose presence has a positive impact on tumor prognosis. TLS are transient ectopic lymphoid aggregates displaying the same organization and functionality as canonical secondary lymphoid organs, with T-cell-rich and B-cell-rich areas that are sites for the differentiation of effector and memory T cells and B cells. However, factors favoring the emergence of such structures within tumors still need to be fully characterized. In this review, we survey the state of the art of what is known about the general organization, induction, and functionality of TLS during chronic inflammation, and more especially in cancer, with a particular focus on the B-cell compartment. We detail the role played by TLS B cells in anti-tumor immunity, both as antigen-presenting cells and tumor antigen-specific antibody-secreting cells, and raise the question of the capacity of chemotherapeutic and immunotherapeutic agents to induce the development of TLS within tumors. Finally, we explore how to take advantage of our knowledge on TLS B cells to develop new therapeutic tools.
Collapse
Affiliation(s)
- Claire Germain
- Laboratory Cancer, Immune Control and Escape, Cordeliers Research Center, INSERM UMRS1138 , Paris , France ; UMRS1138, University Pierre and Marie Curie , Paris , France ; UMRS1138, University Paris Descartes , Paris , France
| | - Sacha Gnjatic
- Division of Hematology, Oncology and Immunology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Marie-Caroline Dieu-Nosjean
- Laboratory Cancer, Immune Control and Escape, Cordeliers Research Center, INSERM UMRS1138 , Paris , France ; UMRS1138, University Pierre and Marie Curie , Paris , France ; UMRS1138, University Paris Descartes , Paris , France
| |
Collapse
|
19
|
Dheer R, Davies JM, Abreu MT. Inflammation and Colorectal Cancer. INTESTINAL TUMORIGENESIS 2015:211-256. [DOI: 10.1007/978-3-319-19986-3_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Linnebacher M, Maletzki C. Tumor-infiltrating B cells: The ignored players in tumor immunology. Oncoimmunology 2014; 1:1186-1188. [PMID: 23170274 PMCID: PMC3494640 DOI: 10.4161/onci.20641] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
B cells infiltrating into solid tumors are poorly investigated despite their described positive prognostic value. Whether this antitumor potential comes from either the antigen presentation or the antibody production capacity of B cells, or both, is unknown. Our recently published method on tumor-infiltrating B lymphocyte cloning may prove helpful in unraveling the actual relevance of these cells for tumor development and response to therapy.
Collapse
Affiliation(s)
- Michael Linnebacher
- Division of Molecular Oncology and Immunotherapy; Department of General Surgery; University of Rostock; Rostock, Germany
| | | |
Collapse
|
21
|
Fremd C, Schuetz F, Sohn C, Beckhove P, Domschke C. B cell-regulated immune responses in tumor models and cancer patients. Oncoimmunology 2014; 2:e25443. [PMID: 24073382 PMCID: PMC3782133 DOI: 10.4161/onci.25443] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 12/20/2022] Open
Abstract
The essential role played by T cells in anticancer immunity is widely accepted. The immunosuppressive functions of regulatory T cells are central for tumor progression and have been endowed with a robust predictive value. Increasing evidence indicates that also B cells have a crucial part in the regulation of T-cell responses against tumors. Although experiments reporting the production of natural antitumor antibodies and the induction of cytotoxic immune responses have revealed a tumor-protective function for B cells, other findings suggest that B cells may also exert tumor-promoting functions, resulting in a controversial picture. Here, we review recent evidence on the interactions between B and T cells in murine models and cancer patients and their implications for cancer immunology.
Collapse
Affiliation(s)
- Carlo Fremd
- Department of Gynecology and Obstetrics; University Hospital of Heidelberg; Heidelberg, Germany
| | | | | | | | | |
Collapse
|
22
|
Bashford-Rogers RJM, Palser AL, Idris SF, Carter L, Epstein M, Callard RE, Douek DC, Vassiliou GS, Follows GA, Hubank M, Kellam P. Capturing needles in haystacks: a comparison of B-cell receptor sequencing methods. BMC Immunol 2014; 15:29. [PMID: 25189176 PMCID: PMC4243823 DOI: 10.1186/s12865-014-0029-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/15/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Deep-sequencing methods are rapidly developing in the field of B-cell receptor (BCR) and T-cell receptor (TCR) diversity. These promise to revolutionise our understanding of adaptive immune dynamics, identify novel antibodies, and allow monitoring of minimal residual disease. However, different methods for BCR and TCR enrichment and amplification have been proposed. Here we perform the first systematic comparison between different methods of enrichment, amplification and sequencing for generating BCR and TCR repertoires using large sample numbers. RESULTS Resampling from the same RNA or cDNA pool results in highly correlated and reproducible repertoires, but resampling low frequency clones leads to stochastic variance. Repertoires generated by different sequencing methods (454 Roche and Illumina MiSeq) and amplification methods (multiplex PCR, 5' Rapid amplification of cDNA ends (5'RACE), and RNA-capture) are highly correlated, and resulting IgHV gene frequencies between the different methods were not significantly different. Read length has an impact on captured repertoire structure, and ultimately full-length BCR sequences are most informative for repertoire analysis as diversity outside of the CDR is very useful for phylogenetic analysis. Additionally, we show RNA-based BCR repertoires are more informative than using DNA. CONCLUSIONS Repertoires generated by different sequencing and amplification methods are consistent, but we show that read lengths, depths and error profiles should be considered in experimental design, and multiple sampling approaches could be employed to minimise stochastic sampling variation. This detailed investigation of immune repertoire sequencing methods is essential for informing basic and clinical research.
Collapse
Affiliation(s)
| | - Anne L Palser
- />Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Saad F Idris
- />Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Lisa Carter
- />Molecular Haematology and Cancer Biology Unit, UCL Institute of Child Health, London, WC1N 1EH UK
| | - Michael Epstein
- />Molecular Haematology and Cancer Biology Unit, UCL Institute of Child Health, London, WC1N 1EH UK
| | - Robin E Callard
- />Molecular Haematology and Cancer Biology Unit, UCL Institute of Child Health, London, WC1N 1EH UK
| | - Daniel C Douek
- />Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - George S Vassiliou
- />Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - George A Follows
- />Department of Hematology, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ UK
| | - Mike Hubank
- />Molecular Haematology and Cancer Biology Unit, UCL Institute of Child Health, London, WC1N 1EH UK
| | - Paul Kellam
- />Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
- />Research Department of Infection, Division of Infection and Immunity, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
23
|
Siliņa K, Rulle U, Kalniņa Z, Linē A. Manipulation of tumour-infiltrating B cells and tertiary lymphoid structures: a novel anti-cancer treatment avenue? Cancer Immunol Immunother 2014; 63:643-62. [PMID: 24695950 PMCID: PMC11029173 DOI: 10.1007/s00262-014-1544-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/19/2014] [Indexed: 12/18/2022]
Abstract
Combining different standard therapies with immunotherapy for the treatment of solid tumours has proven to yield a greater clinical benefit than when each is applied separately; however, the percentage of complete responses is still far from optimal, and there is an urgent need for improved treatment modalities. The latest literature data suggest that tertiary lymphoid structures (TLS), previously shown to correlate with the severity of autoimmune diseases or transplant rejection, are also formed in tumours, have a significant beneficial effect on survival and might reflect the generation of an effective immune response in close proximity to the tumour. Thus, the facilitation of TLS formation in tumour stroma could provide novel means to improve the efficiency of immunotherapy and other standard therapies. However, little is known about the mechanisms regulating the formation of tumour-associated TLS. Studies of chronic inflammatory diseases and transplant rejection have demonstrated that TLS formation and/or function requires the presence of B cells. Additionally, the infiltration of B cells into the tumour stroma has been demonstrated to be a significant prognostic factor for improved survival in different human tumours. This suggests that B cells could play a beneficial role in anti-tumour immune response not only in the context of antibody production, antigen presentation and Th1-promoting cytokine production, but also TLS formation. This review focuses on the latest discoveries in tumour-infiltrating B cell functions, their role in TLS formation and relevance in human tumour control, revealing novel opportunities to improve cancer therapies.
Collapse
Affiliation(s)
- Karīna Siliņa
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, 1067, Latvia,
| | | | | | | |
Collapse
|
24
|
Gazzola A, Mannu C, Rossi M, Laginestra MA, Sapienza MR, Fuligni F, Etebari M, Melle F, Sabattini E, Agostinelli C, Bacci F, Sagramoso Sacchetti CA, Pileri SA, Piccaluga PP. The evolution of clonality testing in the diagnosis and monitoring of hematological malignancies. Ther Adv Hematol 2014; 5:35-47. [PMID: 24688753 PMCID: PMC3949299 DOI: 10.1177/2040620713519729] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Currently, distinguishing between benign and malignant lymphoid proliferations is based on a combination of clinical characteristics, cyto/histomorphology, immunophenotype and the identification of well-defined chromosomal aberrations. However, such diagnoses remain challenging in 10-15% of cases of lymphoproliferative disorders, and clonality assessments are often required to confirm diagnostic suspicions. In recent years, the development of new techniques for clonality detection has allowed researchers to better characterize, classify and monitor hematological neoplasms. In the past, clonality was primarily studied by performing Southern blotting analyses to characterize rearrangements in segments of the IG and TCR genes. Currently, the most commonly used method in the clinical molecular diagnostic laboratory is polymerase chain reaction (PCR), which is an extremely sensitive technique for detecting nucleic acids. This technique is rapid, accurate, specific, and sensitive, and it can be used to analyze small biopsies as well as formalin-fixed paraffin-embedded samples. These advantages make PCR-based approaches the current gold standard for IG/TCR clonality testing. Since the completion of the first human genome sequence, there has been a rapid development of technologies to facilitate high-throughput sequencing of DNA. These techniques have been applied to the deep characterization and classification of various diseases, patient stratification, and the monitoring of minimal residual disease. Furthermore, these novel approaches have the potential to significantly improve the sensitivity and cost of clonality assays and post-treatment monitoring of B- and T-cell malignancies. However, more studies will be required to demonstrate the utility, sensitivity, and benefits of these methods in order to warrant their adoption into clinical practice. In this review, recent developments in clonality testing are examined with an emphasis on highly sensitive systems for improving diagnostic workups and minimal residual disease assessments.
Collapse
Affiliation(s)
- Anna Gazzola
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola Malpighi Hospital, Bologna, Italy
| | - Claudia Mannu
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola Malpighi Hospital, Bologna, Italy
| | - Maura Rossi
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola Malpighi Hospital, Bologna, Italy
| | - Maria Antonella Laginestra
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola Malpighi Hospital, Bologna, Italy
| | - Maria Rosaria Sapienza
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola Malpighi Hospital, Bologna, Italy
| | - Fabio Fuligni
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola Malpighi Hospital, Bologna, Italy
| | - Maryam Etebari
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola Malpighi Hospital, Bologna, Italy
| | - Federica Melle
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola Malpighi Hospital, Bologna, Italy
| | - Elena Sabattini
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola Malpighi Hospital, Bologna, Italy
| | - Claudio Agostinelli
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola Malpighi Hospital, Bologna, Italy
| | - Francesco Bacci
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola Malpighi Hospital, Bologna, Italy
| | - Carlo Alberto Sagramoso Sacchetti
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola Malpighi Hospital, Bologna, Italy
| | - Stefano Aldo Pileri
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola Malpighi Hospital, Bologna, Italy
| | - Pier Paolo Piccaluga
- Molecular Pathology Laboratory, Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
25
|
Meshcheryakova A, Tamandl D, Bajna E, Stift J, Mittlboeck M, Svoboda M, Heiden D, Stremitzer S, Jensen-Jarolim E, Grünberger T, Bergmann M, Mechtcheriakova D. B cells and ectopic follicular structures: novel players in anti-tumor programming with prognostic power for patients with metastatic colorectal cancer. PLoS One 2014; 9:e99008. [PMID: 24905750 PMCID: PMC4048213 DOI: 10.1371/journal.pone.0099008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/09/2014] [Indexed: 01/01/2023] Open
Abstract
Remarkably limited information is available about biological mechanisms that determine the disease entity of metastatic colorectal cancer in the liver (CRCLM) with no good clinical parameters to estimate prognosis. For the last few years, understanding the relationship between tumor characteristics and local immune response has gained increasing attention. Given the multifaceted roles of B-cell-driven responses, we aimed to elucidate the immunological imprint of B lymphocytes at the metastatic site, the interrelation with macrophages, and their prognostic relevance. Here we present novel algorithm allowing to assess a link between the local patient-specific immunological capacity and clinical outcome. The microscopy-based imaging platform was used for automated scanning of large-scale tissue sections and subsequent qualitative and quantitative analyses of immune cell subtypes using lineage markers and single-cell recognition strategy. Results indicate massive infiltration of CD45-positive leukocytes confined to the metastatic border. We report for the first time the accumulation of CD20-positive B lymphocytes at the tumor – liver interface comprising the major population within the large CD45-positive aggregates. Strikingly, functionally active, activation-induced cytidine deaminase (AID)-positive ectopic lymphoid structures were found to be assembled within the metastatic margin. Furthermore, the CD20-based data set revealed a strong prognostic power: patients with high CD20 content and/or ectopic follicles had significantly lower risk for disease recurrence as revealed by univariate analysis (p<0.001 for both) and in models adjusted for clinicopathological variables (p<0.001 and p = 0.01, respectively), and showed prolonged overall survival. In contrast, CD68 staining-derived data set did not show an association with clinical outcome. Taken together, we nominate the magnitude of B lymphocytes, including those organized in ectopic follicles, as novel prognostic marker which is superior to clinicopathological parameters. Findings emphasize anti-tumoral role of B cell-driven mechanism(s) and thus indicate a new way of thinking about potential treatment strategies for CRCLM patients.
Collapse
Affiliation(s)
- Anastasia Meshcheryakova
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Tamandl
- Department of Surgery, Medical University of Vienna, Vienna, Austria
- * E-mail: (DT); (DM)
| | - Erika Bajna
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Stift
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Martina Mittlboeck
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Martin Svoboda
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Denise Heiden
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Stefan Stremitzer
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Comparative Medicine, Messerli Research Institute of the Medical University of Vienna, Veterinary University of Vienna and University of Vienna, Vienna, Austria
| | - Thomas Grünberger
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Bergmann
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Diana Mechtcheriakova
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- * E-mail: (DT); (DM)
| |
Collapse
|
26
|
Maurer M, Müller AC, Parapatics K, Pickl WF, Wagner C, Rudashevskaya EL, Breitwieser FP, Colinge J, Garg K, Griss J, Bennett KL, Wagner SN. Comprehensive comparative and semiquantitative proteome of a very low number of native and matched epstein-barr-virus-transformed B lymphocytes infiltrating human melanoma. J Proteome Res 2014; 13:2830-45. [PMID: 24803318 DOI: 10.1021/pr401270y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Melanoma, the deadliest form of skin cancer, is highly immunogenic and frequently infiltrated with immune cells including B cells. The role of tumor-infiltrating B cells (TIBCs) in melanoma is as yet unresolved, possibly due to technical challenges in obtaining TIBCs in sufficient quantity for extensive studies and due to the limited life span of B cells in vitro. A comprehensive workflow has thus been developed for successful isolation and proteomic analysis of a low number of TIBCs from fresh, human melanoma tissue. In addition, we generated in vitro-proliferating TIBC cultures using simultaneous stimulation with Epstein-Barr virus (EBV) and the TLR9 ligand CpG-oligodesoxynucleotide (CpG ODN). The FASP method and iTRAQ labeling were utilized to obtain a comparative, semiquantitative proteome to assess EBV-induced changes in TIBCs. By using as few as 100 000 B cells (∼5 μg protein)/sample for our proteomic study, a total number of 6507 proteins were identified. EBV-induced changes in TIBCs are similar to those already reported for peripheral B cells and largely involve changes in cell cycle proliferation, apoptosis, and interferon response, while most of the proteins were not significantly altered. This study provides an essential, further step toward detailed characterization of TIBCs including functional in vitro analysis.
Collapse
Affiliation(s)
- Margarita Maurer
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna , Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pimenta EM, Barnes BJ. Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers. Cancers (Basel) 2014; 6:969-97. [PMID: 24762633 PMCID: PMC4074812 DOI: 10.3390/cancers6020969] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/19/2014] [Accepted: 03/31/2014] [Indexed: 12/12/2022] Open
Abstract
Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin®) and rituximab (Rituxan®)) and the first approved cancer vaccine, Provenge® (sipuleucel-T), investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS) within the tumor microenvironment may be used to enhance immunotherapy response.
Collapse
Affiliation(s)
- Erica M Pimenta
- Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103, USA.
| | - Betsy J Barnes
- Department of Biochemistry and Molecular Biology, Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103, USA.
| |
Collapse
|
28
|
Gu-Trantien C, Loi S, Garaud S, Equeter C, Libin M, de Wind A, Ravoet M, Le Buanec H, Sibille C, Manfouo-Foutsop G, Veys I, Haibe-Kains B, Singhal SK, Michiels S, Rothé F, Salgado R, Duvillier H, Ignatiadis M, Desmedt C, Bron D, Larsimont D, Piccart M, Sotiriou C, Willard-Gallo K. CD4⁺ follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 2013; 123:2873-92. [PMID: 23778140 DOI: 10.1172/jci67428] [Citation(s) in RCA: 765] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/25/2013] [Indexed: 12/13/2022] Open
Abstract
CD4⁺ T cells are critical regulators of immune responses, but their functional role in human breast cancer is relatively unknown. The goal of this study was to produce an image of CD4⁺ T cells infiltrating breast tumors using limited ex vivo manipulation to better understand the in vivo differences associated with patient prognosis. We performed comprehensive molecular profiling of infiltrating CD4⁺ T cells isolated from untreated invasive primary tumors and found that the infiltrating T cell subpopulations included follicular helper T (Tfh) cells, which have not previously been found in solid tumors, as well as Th1, Th2, and Th17 effector memory cells and Tregs. T cell signaling pathway alterations included a mixture of activation and suppression characterized by restricted cytokine/chemokine production, which inversely paralleled lymphoid infiltration levels and could be reproduced in activated donor CD4⁺ T cells treated with primary tumor supernatant. A comparison of extensively versus minimally infiltrated tumors showed that CXCL13-producing CD4⁺ Tfh cells distinguish extensive immune infiltrates, principally located in tertiary lymphoid structure germinal centers. An 8-gene Tfh signature, signifying organized antitumor immunity, robustly predicted survival or preoperative response to chemotherapy. Our identification of CD4⁺ Tfh cells in breast cancer suggests that they are an important immune element whose presence in the tumor is a prognostic factor.
Collapse
Affiliation(s)
- Chunyan Gu-Trantien
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Marits P, Zirakzadeh AA, Sherif A, Winqvist O. The many flavors of tumor-associated B cells. Oncoimmunology 2013; 2:e25237. [PMID: 24167763 PMCID: PMC3805648 DOI: 10.4161/onci.25237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 11/19/2022] Open
Abstract
Little is known on the role of distinct B-cell subtypes in human malignancies. We have recently performed a multiplex characterization of B cells in patient-derived tumor-associated tissues, documenting the activation and antigen-driven differentiation of B cells in metastatic lymph nodes and neoplastic lesions. Here we discuss the role of B lymphocytes as antigen-presenting cells and catalysts of T cell-based immunotherapies in view of these findings.
Collapse
Affiliation(s)
- Per Marits
- Department of Medicine; Unit of Translational Immunology; Karolinska Institutet; Stockholm, Sweden
| | | | | | | |
Collapse
|
30
|
Network properties derived from deep sequencing of human B-cell receptor repertoires delineate B-cell populations. Genome Res 2013; 23:1874-84. [PMID: 23742949 PMCID: PMC3814887 DOI: 10.1101/gr.154815.113] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The adaptive immune response selectively expands B- and T-cell clones following antigen recognition by B- and T-cell receptors (BCR and TCR), respectively. Next-generation sequencing is a powerful tool for dissecting the BCR and TCR populations at high resolution, but robust computational analyses are required to interpret such sequencing. Here, we develop a novel computational approach for BCR repertoire analysis using established next-generation sequencing methods coupled with network construction and population analysis. BCR sequences organize into networks based on sequence diversity, with differences in network connectivity clearly distinguishing between diverse repertoires of healthy individuals and clonally expanded repertoires from individuals with chronic lymphocytic leukemia (CLL) and other clonal blood disorders. Network population measures defined by the Gini Index and cluster sizes quantify the BCR clonality status and are robust to sampling and sequencing depths. BCR network analysis therefore allows the direct and quantifiable comparison of BCR repertoires between samples and intra-individual population changes between temporal or spatially separated samples and over the course of therapy.
Collapse
|
31
|
Linnebacher M. Tumor-infiltrating B cells come into vogue. World J Gastroenterol 2013; 19:8-11. [PMID: 23326156 PMCID: PMC3542760 DOI: 10.3748/wjg.v19.i1.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/01/2012] [Accepted: 11/15/2012] [Indexed: 02/06/2023] Open
Abstract
Lymphocyte infiltration into solid tumors has been recognized as a main determinator of positive prognosis. For the most part this is attributed to cytotoxic T cells capable of directly destroying malignant cells. However, when considering the complex composition of the human immune system, recent findings of Nielsen et al on a potentially central role of tumor-infiltrating B cells is not really surprising. In this commentary article, I want to highlight the enormous potential impact of this observation for basic and translational research, prognostic procedures and ultimately for the development of future therapeutic concepts.
Collapse
|