1
|
Tukwasibwe S, Lewis SN, Taremwa Y, van der Ploeg K, Press KD, Ty M, Namirimu Nankya F, Musinguzi K, Nansubuga E, Bach F, Chamai M, Okitwi M, Tumusiime G, Nakimuli A, Colucci F, Kamya MR, Nankabirwa JI, Arinaitwe E, Greenhouse B, Dorsey G, Rosenthal PJ, Ssewanyana I, Jagannathan P. Natural killer cell antibody-dependent cellular cytotoxicity to Plasmodium falciparum is impacted by cellular phenotypes, erythrocyte polymorphisms, parasite diversity and intensity of transmission. Clin Transl Immunology 2024; 13:e70005. [PMID: 39493859 PMCID: PMC11528551 DOI: 10.1002/cti2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 11/05/2024] Open
Abstract
Objectives Natural killer (NK) cells make important contributions to anti-malarial immunity through antibody-dependent cellular cytotoxicity (ADCC), but the role of different components of this pathway in promoting NK cell activation remains unclear. Methods We compared the functions and phenotypes of NK cells from malaria-exposed and malaria-naive donors, and then varied the erythrocyte genetic background, Plasmodium falciparum strain and opsonising plasma used in ADCC to observe their impacts on NK cell degranulation as measured by CD107a mobilisation. Results Natural killer cells from malaria-exposed adult Ugandan donors had enhanced ADCC, but an impaired pro-inflammatory response to cytokine stimulation, compared to NK cells obtained from malaria-naive adult North American donors. Cellular phenotypes from malaria-exposed donors reflected this specialisation for ADCC, with a compartment-wide downregulation of the Fc receptor γ-chain and enrichment of highly differentiated CD56dim and CD56neg populations. NK cell degranulation was enhanced in response to opsonised P. falciparum schizonts cultured in sickle cell heterozygous erythrocytes relative to wild-type erythrocytes, and when using opsonising plasma collected from donors living in a high transmission area compared to a lower transmission area despite similar levels of 3D7 schizont-specific IgG levels. However, degranulation was lowered in response to opsonised field isolate P. falciparum schizonts isolated from clinical malaria infections, compared to the 3D7 laboratory strain typically used in these assays. Conclusion This work highlights important host and parasite factors that contribute to ADCC efficacy that should be considered in the design of ADCC assays.
Collapse
Affiliation(s)
- Stephen Tukwasibwe
- Infectious Diseases Research CollaborationKampalaUganda
- School of Medicine, Uganda Christian UniversityMukonoUganda
| | | | | | | | | | - Maureen Ty
- Department of MedicineStanford UniversityStanfordCAUSA
| | | | | | | | - Florian Bach
- Department of MedicineStanford UniversityStanfordCAUSA
| | - Martin Chamai
- Infectious Diseases Research CollaborationKampalaUganda
| | - Martin Okitwi
- Infectious Diseases Research CollaborationKampalaUganda
| | | | | | - Francesco Colucci
- Department of Obstetrics and GynaecologyUniversity of CambridgeCambridgeUK
| | - Moses R Kamya
- Infectious Diseases Research CollaborationKampalaUganda
- School of Medicine, Makerere UniversityKampalaUganda
| | - Joaniter I Nankabirwa
- Infectious Diseases Research CollaborationKampalaUganda
- School of Medicine, Makerere UniversityKampalaUganda
| | | | - Bryan Greenhouse
- Department of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Grant Dorsey
- Department of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Philip J Rosenthal
- Department of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | | | | |
Collapse
|
2
|
Ramatsui L, Dongola TH, Zininga T, Multhoff G, Shonhai A. Human granzyme B binds Plasmodium falciparum Hsp70-x and mediates antiplasmodial activity in vitro. Cell Stress Chaperones 2023; 28:321-331. [PMID: 37074531 PMCID: PMC10167072 DOI: 10.1007/s12192-023-01339-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/20/2023] Open
Abstract
Cell surface-bound human Hsp70 (hHsp70) sensitises tumour cells to the cytolytic attack of natural killer (NK) cells through the mediation of apoptosis-inducing serine protease, granzyme B (GrB). hHsp70 is thought to recruit NK cells to the immunological synapse via the extracellularly exposed 14 amino acid sequence, TKDNNLLGRFELSG, known as the TKD motif of Hsp70. Plasmodium falciparum-infected red blood cells (RBCs) habour both hHsp70 and an exported parasite Hsp70 termed PfHsp70-x. Both PfHsp70-x and hHsp70 share conserved TKD motifs. The role of PfHsp70-x in facilitating GrB uptake in malaria parasite-infected RBCs remains unknown, but hHsp70 enables a perforin-independent uptake of GrB into tumour cells. In the current study, we comparatively investigated the direct binding of GrB to either PfHsp70-x or hHsp70 in vitro. Using ELISA, slot blot assay and surface plasmon resonance (SPR) analysis, we demonstrated a direct interaction of GrB with hHsp70 and PfHsp70-x. SPR analysis revealed a higher affinity of GrB for PfHsp70-x than hHsp70. In addition, we established that the TKD motif of PfHsp70-x directly interacts with GrB. The data further suggest that the C-terminal EEVN motif of PfHsp70-x augments the affinity of PfHsp70-x for GrB but is not a prerequisite for the binding. A potent antiplasmodial activity (IC50 of 0.5 µM) of GrB could be demonstrated. These findings suggest that the uptake of GrB by parasite-infected RBCs might be mediated by both hHsp70 and PfHsp70-x. The combined activity of both proteins could account for the antiplasmodial activity of GrB at the blood stage.
Collapse
Affiliation(s)
- Lebogang Ramatsui
- Department of Biochemistry and Microbiology, Faculty of Science, University of Venda, Engineering & Agriculture, Thohoyandou, 0950, Limpopo, South Africa
| | - Tendamudzimu Harmfree Dongola
- Department of Biochemistry and Microbiology, Faculty of Science, University of Venda, Engineering & Agriculture, Thohoyandou, 0950, Limpopo, South Africa
| | - Tawanda Zininga
- Department of Biochemistry and Microbiology, Faculty of Science, University of Venda, Engineering & Agriculture, Thohoyandou, 0950, Limpopo, South Africa
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Gabriele Multhoff
- Klinik Und Poliklinik Für Strahlentherapie Und Radiologische Onkologie, Klinikum Rechts Der Isar and Central Institute for Translational Cancer Research TU München, TranslaTUM) Einsteinstr. 25, 81675, Munich, Germany
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, Faculty of Science, University of Venda, Engineering & Agriculture, Thohoyandou, 0950, Limpopo, South Africa.
| |
Collapse
|
3
|
Alizadeh Z, Omidnia P, Altalbawy FMA, Gabr GA, Obaid RF, Rostami N, Aslani S, Heidari A, Mohammadi H. Unraveling the role of natural killer cells in leishmaniasis. Int Immunopharmacol 2023; 114:109596. [PMID: 36700775 DOI: 10.1016/j.intimp.2022.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
NK cells are known as frontline responders that are efficient in combating several maladies as well as leishmaniasis caused by Leishmania spp. As such they are being investigated to be used for adoptive transfer therapy and vaccine. In spite of the lack of antigen-specific receptors at their surface, NK cells can selectively recognize pathogens, accomplished by the activation of the receptors on the NK cell surface and also as the result of their effector functions. Activation of NK cells can occur through interaction between TLR-2 expressed on NK cells and. LPG of Leishmania parasites. In addition, NK cell activation can occur by cytokines (e.g., IFN-γ and IL-12) that also lead to producing cytokines and chemokines and lysis of target cells. This review summarizes several evidences that support NK cells activation for controlling leishmaniasis and the potentially lucrative roles of NK cells during leishmaniasis. Furthermore, we discuss strategies of Leishmania parasites in inhibiting NK cell functions. Leishmania LPG can utilizes TLR2 to evade host-immune responses. Also, Leishmania GP63 can directly binds to NK cells and modulates NK cell phenotype. Finally, this review analyzes the potentialities to harness NK cells effectiveness in therapy regimens and vaccinations.
Collapse
Affiliation(s)
- Zahra Alizadeh
- Department of Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Duba 71911, Saudi Arabia
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Narges Rostami
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliehsan Heidari
- Department of Parasitology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
4
|
Hsp70 Interacts with the TREM-1 Receptor Expressed on Monocytes and Thereby Stimulates Generation of Cytotoxic Lymphocytes Active against MHC-Negative Tumor Cells. Int J Mol Sci 2021; 22:ijms22136889. [PMID: 34206968 PMCID: PMC8267615 DOI: 10.3390/ijms22136889] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
The search for and analysis of new ligands for innate immunity receptors are of special significance for understanding the regulatory mechanisms of immune response. Here we show that the major heat shock protein 70 (Hsp70) can bind to and activate TREM-1, the innate immunity receptor expressed on monocytes. The Hsp70-TREM-1 interaction activates expression of TNFα and IFNγ mRNAs in monocytes and stimulates IL-2 secretion by PBMCs. Moreover, incubation of PBMCs with Hsp70 leads to an appearance of cytotoxic lymphocyte subpopulations active against the MHC-negative tumor cells. In addition, both the CD4+ T-lymphocytes and CD14+ monocytes are necessary for the Hsp70 signal transduction and a consequent activation of the cytotoxic lymphocytes. We believe that data presented in this study will broaden the views on the involvement of Hsp70 in the antitumor immunity.
Collapse
|
5
|
Fraser M, Matuschewski K, Maier AG. Of membranes and malaria: phospholipid asymmetry in Plasmodium falciparum-infected red blood cells. Cell Mol Life Sci 2021; 78:4545-4561. [PMID: 33713154 PMCID: PMC11071739 DOI: 10.1007/s00018-021-03799-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 11/29/2022]
Abstract
Malaria is a vector-borne parasitic disease with a vast impact on human history, and according to the World Health Organisation, Plasmodium parasites still infect over 200 million people per year. Plasmodium falciparum, the deadliest parasite species, has a remarkable ability to undermine the host immune system and cause life-threatening disease during blood infection. The parasite's host cells, red blood cells (RBCs), generally maintain an asymmetric distribution of phospholipids in the two leaflets of the plasma membrane bilayer. Alterations to this asymmetry, particularly the exposure of phosphatidylserine (PS) in the outer leaflet, can be recognised by phagocytes. Because of the importance of innate immune defence numerous studies have investigated PS exposure in RBCs infected with P. falciparum, but have reached different conclusions. Here we review recent advancements in our understanding of the molecular mechanisms which regulate asymmetry in RBCs, and whether infection with the P. falciparum parasite results in changes to PS exposure. On the balance of evidence, it is likely that membrane asymmetry is disrupted in parasitised RBCs, though some methodological issues need addressing. We discuss the potential causes and consequences of altered asymmetry in parasitised RBCs, particularly for in vivo interactions with the immune system, and the role of host-parasite co-evolution. We also examine the potential asymmetric state of parasite membranes and summarise current knowledge on the parasite proteins, which could regulate asymmetry in these membranes. Finally, we highlight unresolved questions at this time and the need for interdisciplinary approaches to uncover the machinery which enables P. falciparum parasites to hide in mature erythrocytes.
Collapse
Affiliation(s)
- Merryn Fraser
- Research School of Biology, The Australian National University, Canberra, Australia
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Alexander G Maier
- Research School of Biology, The Australian National University, Canberra, Australia.
| |
Collapse
|
6
|
Role of Heat Shock Proteins in Immune Modulation in Malaria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:169-186. [PMID: 34569025 DOI: 10.1007/978-3-030-78397-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Malaria is one of the major parasitic killer diseases worldwide. Severe cases of malaria are mostly in children under the age of 5 years due to their naïve immune system and in pregnant women with weakened immune responses. Inflammatory immune responses against the parasite involve complement activation as well as the antibody and effector cell-mediated immune system. However, after an infection with Plasmodium falciparum (P. falciparum), the most dangerous malaria species, the host-derived immunity is often insufficient to completely inhibit the infection cycles of the parasite in red blood cells for yet unknown reasons. In the present chapter we aim to elucidate the role of the host's and the parasite's heat shock proteins (HSPs) in the development of a novel anti-malaria therapeutic approach.
Collapse
|
7
|
Hernández-Castañeda MA, Happ K, Cattalani F, Wallimann A, Blanchard M, Fellay I, Scolari B, Lannes N, Mbagwu S, Fellay B, Filgueira L, Mantel PY, Walch M. γδ T Cells Kill Plasmodium falciparum in a Granzyme- and Granulysin-Dependent Mechanism during the Late Blood Stage. THE JOURNAL OF IMMUNOLOGY 2020; 204:1798-1809. [PMID: 32066596 DOI: 10.4049/jimmunol.1900725] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
Plasmodium spp., the causative agent of malaria, have a complex life cycle. The exponential growth of the parasites during the blood stage is responsible for almost all malaria-associated morbidity and mortality. Therefore, tight immune control of the intraerythrocytic replication of the parasite is essential to prevent clinical malaria. Despite evidence that the particular lymphocyte subset of γδ T cells contributes to protective immunity during the blood stage in naive hosts, their precise inhibitory mechanisms remain unclear. Using human PBMCs, we confirmed in this study that γδ T cells specifically and massively expanded upon activation with Plasmodium falciparum culture supernatant. We also demonstrate that these activated cells gain cytolytic potential by upregulating cytotoxic effector proteins and IFN-γ. The killer cells bound to infected RBCs and killed intracellular P. falciparum via the transfer of the granzymes, which was mediated by granulysin in a stage-specific manner. Several vital plasmodial proteins were efficiently destroyed by granzyme B, suggesting proteolytic degradation of these proteins as essential in the lymphocyte-mediated death pathway. Overall, these data establish a granzyme- and granulysin-mediated innate immune mechanism exerted by γδ T cells to kill late-stage blood-residing P. falciparum.
Collapse
Affiliation(s)
- Maria Andrea Hernández-Castañeda
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; and
| | - Katharina Happ
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; and
| | - Filippo Cattalani
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; and
| | - Alexandra Wallimann
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; and
| | - Marianne Blanchard
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; and
| | - Isabelle Fellay
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; and
| | - Brigitte Scolari
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; and
| | - Nils Lannes
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; and
| | - Smart Mbagwu
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; and
| | - Benoît Fellay
- Cantonal Hospital of Fribourg, 1752 Villars-sur-Glâne, Switzerland
| | - Luis Filgueira
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; and
| | - Pierre-Yves Mantel
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; and
| | - Michael Walch
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; and
| |
Collapse
|
8
|
Kaminski LC, Riehn M, Abel A, Steeg C, Yar DD, Addai-Mensah O, Aminkiah F, Owusu Dabo E, Jacobs T, Mackroth MS. Cytotoxic T Cell-Derived Granzyme B Is Increased in Severe Plasmodium Falciparum Malaria. Front Immunol 2019; 10:2917. [PMID: 31921176 PMCID: PMC6918797 DOI: 10.3389/fimmu.2019.02917] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/27/2019] [Indexed: 11/13/2022] Open
Abstract
In Plasmodium falciparum malaria, CD8+ T cells play a double-edged role. Liver-stage specific CD8+ T cells can confer protection, as has been shown in several vaccine studies. Blood-stage specific CD8+ T cells, on the other hand, contribute to the development of cerebral malaria in murine models of malaria. The role of CD8+ T cells in humans during the blood-stage of P. falciparum remains unclear. As part of a cross-sectional malaria study in Ghana, granzyme B levels and CD8+ T cells phenotypes were compared in the peripheral blood of children with complicated malaria, uncomplicated malaria, afebrile but asymptomatically infected children and non-infected children. Granzyme B levels in the plasma were significantly higher in children with febrile malaria than in afebrile children. CD8+ T cells were the main T cell subset expressing granzyme B. The proportion of granzyme B+ CD8+ T cells was significantly higher in children with complicated malaria than in uncomplicated malaria, whereas the activation marker CD38 on CD8+ T cells showed similar expression levels. This suggests a pathogenic role of cytotoxic CD8+ T cells in the development of malaria complications in humans.
Collapse
Affiliation(s)
| | - Mathias Riehn
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Annemieke Abel
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christiane Steeg
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Denis Dekugmen Yar
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Otchere Addai-Mensah
- Department of Medical Laboratory Technology, Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Francis Aminkiah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Ellis Owusu Dabo
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Maria Sophia Mackroth
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Divisions of Tropical Medicine and Infectious Diseases, I. Medical Department, University Medical Centre Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Roles of Extracellular HSPs as Biomarkers in Immune Surveillance and Immune Evasion. Int J Mol Sci 2019; 20:ijms20184588. [PMID: 31533245 PMCID: PMC6770223 DOI: 10.3390/ijms20184588] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/17/2022] Open
Abstract
Extracellular heat shock proteins (ex-HSPs) have been found in exosomes, oncosomes, membrane surfaces, as well as free HSP in cancer and various pathological conditions, also known as alarmins. Such ex-HSPs include HSP90 (α, β, Gp96, Trap1), HSP70, and large and small HSPs. Production of HSPs is coordinately induced by heat shock factor 1 (HSF1) and hypoxia-inducible factor 1 (HIF-1), while matrix metalloproteinase 3 (MMP-3) and heterochromatin protein 1 are novel inducers of HSPs. Oncosomes released by tumor cells are a major aspect of the resistance-associated secretory phenotype (RASP) by which immune evasion can be established. The concepts of RASP are: (i) releases of ex-HSP and HSP-rich oncosomes are essential in RASP, by which molecular co-transfer of HSPs with oncogenic factors to recipient cells can promote cancer progression and resistance against stresses such as hypoxia, radiation, drugs, and immune systems; (ii) RASP of tumor cells can eject anticancer drugs, targeted therapeutics, and immune checkpoint inhibitors with oncosomes; (iii) cytotoxic lipids can be also released from tumor cells as RASP. ex-HSP and membrane-surface HSP (mHSP) play immunostimulatory roles recognized by CD91+ scavenger receptor expressed by endothelial cells-1 (SREC-1)+ Toll-like receptors (TLRs)+ antigen-presenting cells, leading to antigen cross-presentation and T cell cross-priming, as well as by CD94+ natural killer cells, leading to tumor cytolysis. On the other hand, ex-HSP/CD91 signaling in cancer cells promotes cancer progression. HSPs in body fluids are potential biomarkers detectable by liquid biopsies in cancers and tissue-damaged diseases. HSP-based vaccines, inhibitors, and RNAi therapeutics are also reviewed.
Collapse
|
10
|
Poorly cytotoxic terminally differentiated CD56 negCD16 pos NK cells accumulate in Kenyan children with Burkitt lymphomas. Blood Adv 2019; 2:1101-1114. [PMID: 29764843 DOI: 10.1182/bloodadvances.2017015404] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/21/2018] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are critical for restricting viral infections and mediating tumor immunosurveillance. Epstein-Barr virus (EBV) and Plasmodium falciparum malaria are known risk factors for endemic Burkitt lymphoma (eBL), the most common childhood cancer in equatorial Africa. To date, the composition and function of NK cells have not been evaluated in eBL etiology or pathogenesis. Therefore, using multiparameter flow cytometry and in vitro killing assays, we compared NK cells from healthy children and children diagnosed with eBL in Kenya. We defined 5 subsets based on CD56 and CD16 expression, including CD56negCD16pos We found that licensed and terminally differentiated perforin-expressing CD56negCD16pos NK cells accumulated in eBL children, particularly in those with high EBV loads (45.2%) compared with healthy children without (6.07%) or with (13.5%) malaria exposure (P = .0007 and .002, respectively). This progressive shift in NK cell proportions was concomitant with fewer CD56dimCD16pos cells. Despite high MIP-1β expression, CD56negCD16pos NK cells had diminished cytotoxicity, with lower expression of activation markers NKp46, NKp30, and CD160 and the absence of TNF-α. Of note, the accumulation of poorly cytotoxic CD56negCD16pos NK cells resolved in long-term eBL survivors. Our study demonstrates impaired NK cell-mediated immunosurveillance in eBL patients but with the potential to restore a protective NK cell repertoire after cancer treatment. Characterizing NK cell dysfunction during coinfections with malaria and EBV has important implications for designing immunotherapies to improve outcomes for children diagnosed with eBL.
Collapse
|
11
|
Ivanova DL, Denton SL, Fettel KD, Sondgeroth KS, Munoz Gutierrez J, Bangoura B, Dunay IR, Gigley JP. Innate Lymphoid Cells in Protection, Pathology, and Adaptive Immunity During Apicomplexan Infection. Front Immunol 2019; 10:196. [PMID: 30873151 PMCID: PMC6403415 DOI: 10.3389/fimmu.2019.00196] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 01/23/2019] [Indexed: 12/23/2022] Open
Abstract
Apicomplexans are a diverse and complex group of protozoan pathogens including Toxoplasma gondii, Plasmodium spp., Cryptosporidium spp., Eimeria spp., and Babesia spp. They infect a wide variety of hosts and are a major health threat to humans and other animals. Innate immunity provides early control and also regulates the development of adaptive immune responses important for controlling these pathogens. Innate immune responses also contribute to immunopathology associated with these infections. Natural killer (NK) cells have been for a long time known to be potent first line effector cells in helping control protozoan infection. They provide control by producing IL-12 dependent IFNγ and killing infected cells and parasites via their cytotoxic response. Results from more recent studies indicate that NK cells could provide additional effector functions such as IL-10 and IL-17 and might have diverse roles in immunity to these pathogens. These early studies based their conclusions on the identification of NK cells to be CD3–, CD49b+, NK1.1+, and/or NKp46+ and the common accepted paradigm at that time that NK cells were one of the only lymphoid derived innate immune cells present. New discoveries have lead to major advances in understanding that NK cells are only one of several populations of innate immune cells of lymphoid origin. Common lymphoid progenitor derived innate immune cells are now known as innate lymphoid cells (ILC) and comprise three different groups, group 1, group 2, and group 3 ILC. They are a functionally heterogeneous and plastic cell population and are important effector cells in disease and tissue homeostasis. Very little is known about each of these different types of ILCs in parasitic infection. Therefore, we will review what is known about NK cells in innate immune responses during different protozoan infections. We will discuss what immune responses attributed to NK cells might be reconsidered as ILC1, 2, or 3 population responses. We will then discuss how different ILCs may impact immunopathology and adaptive immune responses to these parasites.
Collapse
Affiliation(s)
- Daria L Ivanova
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Stephen L Denton
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Kevin D Fettel
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | | | - Juan Munoz Gutierrez
- Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Berit Bangoura
- Veterinary Sciences, University of Wyoming, Laramie, WY, United States
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Jason P Gigley
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
12
|
Hsp70 interactions with membrane lipids regulate cellular functions in health and disease. Prog Lipid Res 2019; 74:18-30. [PMID: 30710597 DOI: 10.1016/j.plipres.2019.01.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Beyond guarding the cellular proteome the major stress inducible heat shock protein Hsp70 has been shown to interact with lipids. Non-cytosolic Hsp70 stabilizes membranes during stress challenges and, in pathophysiological states, facilitates endocytosis, counteracts apoptotic mechanisms, sustains survival pathways or represents a signal that can be recognized by the immune system. Disease-coupled lipid-associated functions of Hsp70 may be targeted via distinct subcellular localizations of Hsp70 itself or its specific interacting lipids. With a special focus on interacting lipids, here we discuss localization-dependent roles of the membrane-bound Hsp70 in the context of its therapeutic potential, particularly in cancer and neurodegenerative diseases.
Collapse
|
13
|
Ng SS, Engwerda CR. Innate Lymphocytes and Malaria - Players or Spectators? Trends Parasitol 2018; 35:154-162. [PMID: 30579700 DOI: 10.1016/j.pt.2018.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
Abstract
Malaria remains an important global disease. Despite significant advances over the past decade in reducing disease morbidity and mortality, new measures are needed if malaria is to be eliminated. Significant advances in our understanding about host immune responses during malaria have been made, opening up opportunities to generate long-lasting antiparasitic immunity through vaccination or immune therapy. However, there is still much debate over which immune cell populations contribute to immunity to malaria, including innate lymphocytes that comprise recently identified innate lymphoid cells (ILCs) and better known innate-like T cell subsets. Here, we review research on these immune cell subsets and discuss whether they have any important roles in immunity to malaria or if they are redundant.
Collapse
Affiliation(s)
- Susanna S Ng
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, QLD, Australia; School of Environment and Science, Griffith University, QLD, Australia
| | - Christian R Engwerda
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, QLD, Australia.
| |
Collapse
|
14
|
Al-Quraishy S, Dkhil MA, Al-Shaebi EM, Abdel-Baki AAS, Araúzo-Bravo MJ, Delic D, Wunderlich F. Gene expression of the liver of vaccination-protected mice in response to early patent infections of Plasmodium chabaudi blood-stage malaria. Malar J 2018; 17:215. [PMID: 29843710 PMCID: PMC5975554 DOI: 10.1186/s12936-018-2366-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of the liver for survival of blood-stage malaria is only poorly understood. In experimental blood-stage malaria with Plasmodium chabaudi, protective vaccination induces healing and, thus, survival of otherwise lethal infections. This model is appropriate to study the role of the liver in vaccination-induced survival of blood-stage malaria. METHODS Female Balb/c mice were vaccinated with a non-infectious vaccine consisting of plasma membranes isolated in the form of erythrocyte ghosts from P. chabaudi-infected erythrocytes at week 3 and week 1 before infection with P. chabaudi blood-stage malaria. Gene expression microarrays and quantitative real-time PCR were used to investigate the response of the liver, in terms of expression of mRNA and long intergenic non-coding (linc)RNA, to vaccination-induced healing infections and lethal P. chabaudi malaria at early patency on day 4 post infection, when parasitized erythrocytes begin to appear in peripheral blood. RESULTS In vaccination-induced healing infections, 23 genes were identified to be induced in the liver by > tenfold at p < 0.01. More than one-third were genes known to be involved in erythropoiesis, such as Kel, Rhag, Ahsp, Ermap, Slc4a1, Cldn13 Gata1, and Gfi1b. Another group of > tenfold expressed genes include genes involved in natural cytotoxicity, such as those encoding killer cell lectin-like receptors Klrb1a, Klrc3, Klrd1, the natural cytotoxicity-triggering receptor 1 Ncr1, as well as the granzyme B encoding Gzmb. Additionally, a series of genes involved in the control of cell cycle and mitosis were identified: Ccnb1, Cdc25c, Ckap2l were expressed > tenfold only in vaccination-protected mice, and the expression of 22 genes was at least 100% higher in vaccination-protected mice than in non-vaccinated mice. Furthermore, distinct lincRNA species were changed by > threefold in livers of vaccination-protected mice, whereas lethal malaria induced different lincRNAs. CONCLUSION The present data suggest that protective vaccination accelerates the malaria-induced occurrence of extramedullary erythropoiesis, generation of liver-resident cytotoxic cells, and regeneration from malaria-induced injury in the liver at early patency, which may be critical for final survival of otherwise lethal blood-stage malaria of P. chabaudi.
Collapse
Affiliation(s)
- Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia.
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - E M Al-Shaebi
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Abdel-Azeem S Abdel-Baki
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Denis Delic
- Boehringer-Ingelheim Pharma, Biberach, Germany
| | - Frank Wunderlich
- Department of Biology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
15
|
Recombinant heat shock protein 70 functional peptide and alpha-fetoprotein epitope peptide vaccine elicits specific anti-tumor immunity. Oncotarget 2018; 7:71274-71284. [PMID: 27713135 PMCID: PMC5342077 DOI: 10.18632/oncotarget.12464] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/28/2016] [Indexed: 12/16/2022] Open
Abstract
Alpha-fetoprotein (AFP) is a marker of hepatocellular carcinoma (HCC) and serves as a target for immunotherapy. However, current treatments targeting AFP are not reproducible and do not provide complete protection against cancer. This issue may be solved by developing novel therapeutic vaccines with enhanced immunogenicity that could effectively target AFP-expressing tumors. In this study, we report construction of a therapeutic peptide vaccine by linking heat shock protein 70 (HSP70) functional peptide to the AFP epitope to obtain HSP70-P/AFP-P. This novel peptide was administered into BALB/c mice to observe the effects. Quantification of AFP-specific CD8 + T cells that secrete IFN-γ in these mice via ELISPOT revealed the synergistic effects of HSP70-P/AFP-P with increased numbers of AFP-specific CD8 + T cells. Similarly, ELISA analysis showed increased granzyme B and perforin released by natural killer cells. Moreover, in vitro cytotoxic T-lymphocyte assays and in vivo tumor preventive experiments clearly showed the higher antitumor effects of HSP70-P/AFP-P against AFP-expressing tumors. These results show that treatment of BALB/c mice with HSP70-P/AFP-P induced stronger T-cells responses and improved protective immunity. Our data suggest that HSP70-P/AFP-P may be used as a therapeutic approach in the treatment of AFP-expressing cancers.
Collapse
|
16
|
Beyond genome-wide scan: Association of a cis-regulatory NCR3 variant with mild malaria in a population living in the Republic of Congo. PLoS One 2017; 12:e0187818. [PMID: 29121672 PMCID: PMC5679660 DOI: 10.1371/journal.pone.0187818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/26/2017] [Indexed: 12/15/2022] Open
Abstract
Linkage studies have revealed a linkage of mild malaria to chromosome 6p21 that contains the NCR3 gene encoding a natural killer cell receptor, whereas NCR3-412G>C (rs2736191) located in its promoter region was found to be associated with malaria in Burkina Faso. Here we confirmed the association of rs2736191 with mild malaria in a Congolese cohort and investigated its potential cis-regulatory effect. Luciferase assay results indicated that rs2736191-G allele had a significantly increased promoter activity compared to rs2736191-C allele. Furthermore, EMSAs demonstrated an altered binding of two nuclear protein complexes to the rs2736191-C allele in comparison to rs2736191-G allele. Finally, after in silico identification of transcription factor candidates, pull-down western blot experiments confirmed that both STAT4 and RUNX3 bind the region encompassing rs2736191 with a higher affinity for the G allele. To our knowledge, this is the first report that explored the functional role of rs2736191. These results support the hypothesis that genetic variation within natural killer cell receptors alters malaria resistance in humans.
Collapse
|
17
|
Lima-Junior JDC, Morgado FN, Conceição-Silva F. How Can Elispot Add Information to Improve Knowledge on Tropical Diseases? Cells 2017; 6:cells6040031. [PMID: 28961208 PMCID: PMC5755491 DOI: 10.3390/cells6040031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/04/2023] Open
Abstract
Elispot has been used as an important tool for detecting immune cells' products and functions and has facilitated the understanding of host-pathogen interaction. Despite the incredible diversity of possibilities, two main approaches have been developed: the immunopathogenesis and diagnosis/prognosis of infectious diseases as well as cancer research. Much has been described on the topics of allergy, autoimmune diseases, and HIV-Aids, however, Elispot can also be applied to other infectious diseases, mainly leishmaniasis, malaria, some viruses, helminths and mycosis usually classified as tropical diseases. The comprehension of the function, concentration and diversity of the immune response in the infectious disease is pointed out as crucial to the development of infection or disease in humans and animals. In this review we will describe the knowledge already obtained using Elispot as a method for accessing the profile of immune response as well as the recent advances in information about host-pathogen interaction in order to better understand the clinical outcome of a group of tropical and neglected diseases.
Collapse
Affiliation(s)
- Josué da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz/FIOCRUZ, Pavilhão 26-4° andar, sala 406-C, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil.
| | - Fernanda Nazaré Morgado
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz/FIOCRUZ, Pavilhão 26-5° andar, sala 509, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil.
| | - Fátima Conceição-Silva
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz/FIOCRUZ, Pavilhão 26-4° andar, sala 406-C, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
Macromolecular Conjugate and Biological Carrier Approaches for the Targeted Delivery of Antibiotics. Antibiotics (Basel) 2017; 6:antibiotics6030014. [PMID: 28677631 PMCID: PMC5617978 DOI: 10.3390/antibiotics6030014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 01/21/2023] Open
Abstract
For the past few decades, the rapid rise of antibiotic multidrug-resistance has presented a palpable threat to human health worldwide. Meanwhile, the number of novel antibiotics released to the market has been steadily declining. Therefore, it is imperative that we utilize innovative approaches for the development of antimicrobial therapies. This article will explore alternative strategies, namely drug conjugates and biological carriers for the targeted delivery of antibiotics, which are often eclipsed by their nanomedicine-based counterparts. A variety of macromolecules have been investigated as conjugate carriers, but only those most widely studied in the field of infectious diseases (e.g., proteins, peptides, antibodies) will be discussed in detail. For the latter group, blood cells, especially erythrocytes, have been successfully tested as homing carriers of antimicrobial agents. Bacteriophages have also been studied as a candidate for similar functions. Once these alternative strategies receive the amount of research interest and resources that would more accurately reflect their latent applicability, they will inevitably prove valuable in the perennial fight against antibiotic resistance.
Collapse
|
19
|
Sake CS, Ngu L, Ambada G, Chedjou JP, Nji N, Tchadji JC, Lissom A, Tchouangueu TF, Djukouo L, Njambe G, Garcia R, Gutierrez A, Bopda Waffo A, Park CG, Mbacham W, Etoa FX, Nchinda GW. The Effect of Antiretroviral Naïve HIV-1 Infection on the Ability of Natural Killer Cells to Produce IFN-γ upon Exposure to Plasmodium falciparum-Infected Erythrocytes. Biomed Hub 2017; 2:1-13. [PMID: 31988903 PMCID: PMC6945957 DOI: 10.1159/000467386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background In sub-Saharan Africa, intense perennial Plasmodium species transmission coincides with areas of high prevalence of the human immunodeficiency virus type 1 (HIV) infection. This implies that antiretroviral naïve HIV-infected people living within these regions are repeatedly exposed to Plasmodium species infection and consequently malaria. Natural killer (NK) cells are known to contribute to malaria immunity through the production of IFN-γ after exposure to Plasmodium falciparum-infected erythrocytes (infected red blood cells [iRBC]). However, in antiretroviral naïve HIV-1 infection, these functions could be impaired. In this study we assess the ability of NK cells from antiretroviral naïve HIV-1-infected people to respond to iRBC. Method Magnetically sorted NK cells from antiretroviral naïve HIV-1-infected people were tested for their ability to respond to iRBC following in vitro coculture. NK cell IFN-γ production after coculture was measured through multiparametric flow cytometry analysis. Results Our data show a significant reduction (p = 0.03) in IFN-γ production by NK cells from antiretroviral naïve HIV-1-infected people after coculture with iRBCs. This was in contrast to the NK cell response from healthy controls, which demonstrated elevated IFN-γ production. NK cell IFN-γ production from untreated HIV-1-infected participants correlated inversely with the viral load (r = −0.5, p = 0.02) and positively with total helper CD4+ T-cell count (r = 0.4, p = 0.04). Thus, antiretroviral naïve HIV-1 infection can dampen NK cell-mediated immunity to P. falciparum infection in malaria-intense regions. This could in effect escalate morbidity and mortality in people chronically infected with HIV-1.
Collapse
Affiliation(s)
- Carole Stéphanie Sake
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Microbiology, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Loveline Ngu
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Georgia Ambada
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean Paul Chedjou
- Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaounde I, Yaoundé, Cameroon
| | - Nadesh Nji
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon
| | - Jules Colince Tchadji
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon
| | - Abel Lissom
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon
| | - Thibau Flaurant Tchouangueu
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Biochemistry, University of Dschang, Dschang, Cameroon
| | - Larissa Djukouo
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Ghislain Njambe
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon
| | - Rosario Garcia
- CSCB (Centre de santé catholique de Bikop), Bikop, Cameroon
| | - Anna Gutierrez
- CSCB (Centre de santé catholique de Bikop), Bikop, Cameroon.,Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Alain Bopda Waffo
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Chae Gyu Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Wilfried Mbacham
- Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaounde I, Yaoundé, Cameroon.,The Department of Biochemistry and Physiology, Faculty of Medicine, University of Yaounde I, Yaoundé, Cameroon
| | - François-Xavier Etoa
- Department of Microbiology, University of Yaoundé I, Yaoundé, Cameroon.,University of Douala, Douala, Cameroon
| | - Godwin W Nchinda
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon
| |
Collapse
|
20
|
Wolf AS, Sherratt S, Riley EM. NK Cells: Uncertain Allies against Malaria. Front Immunol 2017; 8:212. [PMID: 28337195 PMCID: PMC5343013 DOI: 10.3389/fimmu.2017.00212] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/15/2017] [Indexed: 12/24/2022] Open
Abstract
Until recently, studies of natural killer (NK) cells in infection have focused almost entirely on their role in viral infections. However, there is an increasing awareness of the potential for NK cells to contribute to the control of a wider range of pathogens, including intracellular parasites such as Plasmodium spp. Given the high prevalence of parasitic diseases in the developing world and the devastating effects these pathogens have on large numbers of vulnerable people, investigating interactions between NK cells and parasitized host cells presents the opportunity to reveal novel immunological mechanisms with the potential to aid efforts to eradicate these diseases. The capacity of NK cells to produce inflammatory cytokines early after malaria infection, as well as a possible role in direct cytotoxic killing of malaria-infected cells, suggests a beneficial impact of NK cells in this disease. However, NK cells may also contribute to overproduction of pro-inflammatory cytokines and the consequent immunopathology. As comparatively little is known about the role of NK cells later in the course of infection, and growing evidence suggests that heterogeneity in NK cell responses to malaria may be influenced by KIR/HLA interactions, a better understanding of the mechanisms by which NK cells might directly interact with parasitized cells may reveal a new role for these cells in the course of malaria infection.
Collapse
Affiliation(s)
- Asia-Sophia Wolf
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| | - Samuel Sherratt
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| |
Collapse
|
21
|
Wagner B, da Silva Nardi F, Schramm S, Kraemer T, Celik AA, Dürig J, Horn PA, Dührsen U, Nückel H, Rebmann V. HLA-E allelic genotype correlates with HLA-E plasma levels and predicts early progression in chronic lymphocytic leukemia. Cancer 2017; 123:814-823. [PMID: 27859015 DOI: 10.1002/cncr.30427] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/05/2016] [Accepted: 10/03/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Human leukocyte antigen-E (HLA-E) is a nonclassical major histocompatibility complex class I molecule that recently came into sharper focus as a putative marker of advanced tumor stages and disease progression. In solid tumors, increased HLA-E expression as well as elevated soluble HLA-E (sHLA-E) plasma levels are associated with a poor prognosis; however, a role for HLA-E in hematologic malignancies remains to be established. METHODS The authors analyzed HLA-E alleles and sHLA-E levels in a cohort of 110 individuals with chronic lymphocytic leukemia (CLL). RESULTS In patients with CLL, levels of sHLA-E increased with advanced disease stage (P = .01) and decreased after therapy (P = .01). Longitudinal follow-up revealed that both HLA-E*01:03 alleles and high levels of sHLA-E were significantly associated with a requirement for early treatment in patients with CLL (P = .027 and P = .023, respectively). In vitro, sHLA-E inhibited degranulation and interferon-γ production by natural killer (NK) cells when cocultivated with tumor cells. Moreover, sHLA-E loaded onto microspheres induced transforming growth factor-β release by NK cells. Multivariate analysis revealed that the presence of at least 1 HLA-E*01:03 allele was an independent predictor of a requirement for early treatment. CONCLUSIONS HLA-E alleles and sHLA-E levels may represent novel biomarkers for early disease progression in patients with CLL. Cancer 2017;123:814-23. © 2016 American Cancer Society.
Collapse
MESH Headings
- Aged
- Alleles
- Biomarkers, Tumor/blood
- Disease Progression
- Female
- Genotype
- Histocompatibility Antigens Class I/blood
- Histocompatibility Antigens Class I/genetics
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukocytes/pathology
- Male
- Middle Aged
- Prognosis
- HLA-E Antigens
Collapse
Affiliation(s)
- Bettina Wagner
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Fabiola da Silva Nardi
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
- Coordinaton for the Improvement of Higher Education Personnel (CAPES) Foundation, Ministry of Education of Brazil, Brasilia, Brazil
| | - Sabine Schramm
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Thomas Kraemer
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Alexander A Celik
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Jan Dürig
- Department of Hematology, University Hospital Essen, Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Ulrich Dührsen
- Department of Hematology, University Hospital Essen, Essen, Germany
| | - Holger Nückel
- Department of Hematology, University Hospital Essen, Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
22
|
Bochicchio A, Jordaan S, Losasso V, Chetty S, Perera RC, Ippoliti E, Barth S, Carloni P. Designing the Sniper: Improving Targeted Human Cytolytic Fusion Proteins for Anti-Cancer Therapy via Molecular Simulation. Biomedicines 2017; 5:E9. [PMID: 28536352 PMCID: PMC5423494 DOI: 10.3390/biomedicines5010009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/27/2017] [Accepted: 02/10/2017] [Indexed: 12/19/2022] Open
Abstract
Targeted human cytolytic fusion proteins (hCFPs) are humanized immunotoxins for selective treatment of different diseases including cancer. They are composed of a ligand specifically binding to target cells genetically linked to a human apoptosis-inducing enzyme. hCFPs target cancer cells via an antibody or derivative (scFv) specifically binding to e.g., tumor associated antigens (TAAs). After internalization and translocation of the enzyme from endocytosed endosomes, the human enzymes introduced into the cytosol are efficiently inducing apoptosis. Under in vivo conditions such enzymes are subject to tight regulation by native inhibitors in order to prevent inappropriate induction of cell death in healthy cells. Tumor cells are known to upregulate these inhibitors as a survival mechanism resulting in escape of malignant cells from elimination by immune effector cells. Cytosolic inhibitors of Granzyme B and Angiogenin (Serpin P9 and RNH1, respectively), reduce the efficacy of hCFPs with these enzymes as effector domains, requiring detrimentally high doses in order to saturate inhibitor binding and rescue cytolytic activity. Variants of Granzyme B and Angiogenin might feature reduced affinity for their respective inhibitors, while retaining or even enhancing their catalytic activity. A powerful tool to design hCFPs mutants with improved potency is given by in silico methods. These include molecular dynamics (MD) simulations and enhanced sampling methods (ESM). MD and ESM allow predicting the enzyme-protein inhibitor binding stability and the associated conformational changes, provided that structural information is available. Such "high-resolution" detailed description enables the elucidation of interaction domains and the identification of sites where particular point mutations may modify those interactions. This review discusses recent advances in the use of MD and ESM for hCFP development from the viewpoints of scientists involved in both fields.
Collapse
Affiliation(s)
- Anna Bochicchio
- German Research School for Simulation Sciences, Forschungszentrum Jülich, Jülich 52425, Germany.
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich 52425, Germany.
- Department of Physics, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen 52062, Germany.
| | - Sandra Jordaan
- Department of Integrative Biomedical Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7701, South Africa.
| | - Valeria Losasso
- Scientific Computing Department, Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD, UK.
| | - Shivan Chetty
- Department of Integrative Biomedical Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7701, South Africa.
| | - Rodrigo Casasnovas Perera
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich 52425, Germany.
| | - Emiliano Ippoliti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich 52425, Germany.
| | - Stefan Barth
- Department of Integrative Biomedical Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7701, South Africa.
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich 52425, Germany.
- Department of Physics, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen 52062, Germany.
- JARA-HPC, Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Jülich 52425, Germany.
| |
Collapse
|
23
|
Abstract
Oncolytic virotherapy is a cancer treatment in which replication-competent viruses are used that specifically infect, replicate in and lyse malignant tumour cells, while minimizing harm to normal cells. Anecdotal evidence of the effectiveness of this strategy has existed since the late nineteenth century, but advances and innovations in biotechnological methods in the 1980s and 1990s led to a renewed interest in this type of therapy. Multiple clinical trials investigating the use of agents constructed from a wide range of viruses have since been performed, and several of these enrolled patients with urological malignancies. Data from these clinical trials and from preclinical studies revealed a number of challenges to the effectiveness of oncolytic virotherapy that have prompted the development of further sophisticated strategies. Urological cancers have a range of distinctive features, such as specific genetic mutations and cell surface markers, which enable improving both effectiveness and safety of oncolytic virus treatments. The strategies employed in creating advanced oncolytic agents include alteration of the virus tropism, regulating transcription and translation of viral genes, combination with chemotherapy, radiotherapy or gene therapy, arming viruses with factors that stimulate the immune response against tumour cells and delivery technologies to ensure that the viral agent reaches its target tissue.
Collapse
Affiliation(s)
- Zahid Delwar
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaixin Zhang
- Department of Urology, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - Paul S Rennie
- Prostate Research Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - William Jia
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
24
|
Hu H, Qiu Y, Guo M, Huang Y, Fang L, Peng Z, Ji W, Xu Y, Shen S, Yan Y, Huang X, Zheng J, Su C. Targeted Hsp70 expression combined with CIK-activated immune reconstruction synergistically exerts antitumor efficacy in patient-derived hepatocellular carcinoma xenograft mouse models. Oncotarget 2015; 6:1079-89. [PMID: 25473902 PMCID: PMC4359218 DOI: 10.18632/oncotarget.2835] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/25/2014] [Indexed: 12/28/2022] Open
Abstract
The patient-derived tumor xenograft (PDTX) models can reproduce a similar natural genetic background and similar biological behaviors to tumor cells in patients, which is conducive to the assessment of personalized cancer treatment. In this study, to verify the targeting and effectiveness of the therapeutic strategy using a Survivin promoter-regulated oncolytic adenovirus expressing Hsp70, the PDTX models of hepatocellular carcinoma (HCC) were established in nude mice and the cytokine-induced killer (CIK) cells were intravenously infused into mice to partially reconstruct the mouse immune function. The results demonstrated that, either the immune anti-tumor effect caused by CIK cell infusion or the oncolytic effect generated by oncolytic adenovirus replication was very limited. However, the synergistic tumor inhibitory effect was significantly enhanced after treatments with oncolytic adenovirus expressing Hsp70 combined with CIK cells. Oncolytic adenovirus mediated the specific expression of Hsp70 in cancer tissues allowed the CIK chemotaxis, and induce the infiltration of CD3+ T cells in tumor stroma, thereby exhibiting anti-tumor activity. The anti-tumor effect was more effective for the highly malignant tumor xenografts with highly Survivin expression. This strategy can synergistically activate multiple anti-tumor mechanisms and exert effective anti-tumor activities that have a significant inhibitory effect against the growth of HCC xenografts.
Collapse
Affiliation(s)
- Huanzhang Hu
- Department of Hepatobiliary Surgery, Fuzhou General Hospital of Nanjing Military Area, Fuzhou, China.,Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Yinghe Qiu
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Minggao Guo
- Department of Surgery, Shanghai Sixth People Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Yao Huang
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Lin Fang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, China
| | - Zhangxiao Peng
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Weidan Ji
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Yang Xu
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Shuwen Shen
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Yan Yan
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Xuandong Huang
- Department of Oncological Surgery, Second People's Hospital of Huai'an, Jiangsu Province, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, China
| | - Changqing Su
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China.Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, China
| |
Collapse
|
25
|
Peter T, Bissinger R, Lang F. Erythrocyte Shrinkage and Cell Membrane Scrambling after Exposure to the Ionophore Nonactin. Basic Clin Pharmacol Toxicol 2015; 118:107-12. [DOI: 10.1111/bcpt.12455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/09/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Thomas Peter
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| | - Rosi Bissinger
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| | - Florian Lang
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| |
Collapse
|
26
|
Lang F, Jilani K, Lang E. Therapeutic potential of manipulating suicidal erythrocyte death. Expert Opin Ther Targets 2015; 19:1219-27. [PMID: 26013571 DOI: 10.1517/14728222.2015.1051306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Eryptosis, the suicidal erythrocyte death, is characterized by erythrocyte shrinkage and phosphatidylserine translocation to the erythrocyte surface. Eryptosis is triggered by cell stress such as energy depletion and oxidative stress, by Ca(2+)-entry, ceramide, caspases, calpain and/or altered activity of several kinases. Phosphatidylserine-exposing erythrocytes adhere to the vascular wall and may thus impede microcirculation. Eryptotic cells are further engulfed by phagocytes and thus rapidly cleared from circulation. AREAS COVERED Stimulation of eryptosis contributes to anemia of several clinical conditions such as metabolic syndrome, diabetes, malignancy, hepatic failure, heart failure, uremia, hemolytic uremic syndrome, sepsis, fever, dehydration, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose-6-phosphate dehydrogenase deficiency and Wilson's disease. On the other hand, eryptosis with subsequent clearance of infected erythrocytes in malaria may counteract parasitemia. EXPERT OPINION In theory, anemia due to excessive eryptosis could be alleviated by treatment with small molecules inhibiting eryptosis. In malaria, stimulators of eryptosis may accelerate death of infected erythrocytes and thus favorably influence the clinical course of the disease. Many small molecules inhibit or stimulate eryptosis. Several stimulators favorably influence murine malaria. Further preclinical and subsequent clinical studies are required to elucidate the therapeutic potential of stimulators or inhibitors of eryptosis.
Collapse
Affiliation(s)
- Florian Lang
- University of Tübingen, Department of Physiology , Gmelinstr. 5, 72076 Tübingen , Germany +49 7071 29 72194 ; +49 7071 29 5618 ;
| | | | | |
Collapse
|
27
|
Induction of suicidal erythrocyte death by nelfinavir. Toxins (Basel) 2015; 7:1616-28. [PMID: 26008229 PMCID: PMC4448164 DOI: 10.3390/toxins7051616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 12/31/2022] Open
Abstract
The HIV protease inhibitor, nelfinavir, primarily used for the treatment of HIV infections, has later been shown to be effective in various infectious diseases including malaria. Nelfinavir may trigger mitochondria-independent cell death. Erythrocytes may undergo eryptosis, a mitochondria-independent suicidal cell death characterized by cell shrinkage and phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress and increase of cytosolic Ca2+-activity ([Ca2+]i). During malaria, accelerated death of infected erythrocytes may decrease parasitemia and thus favorably influence the clinical course of the disease. In the present study, phosphatidylserine abundance at the cell surface was estimated from annexin V binding, cell volume from forward scatter, reactive oxidant species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, and [Ca2+]i from Fluo3-fluorescence. A 48 h treatment of human erythrocytes with nelfinavir significantly increased the percentage of annexin-V-binding cells (≥5µg/mL), significantly decreased forward scatter (≥2.5µg/mL), significantly increased ROS abundance (10 µg/mL), and significantly increased [Ca2+]i (≥5 µg/mL). The up-regulation of annexin-V-binding following nelfinavir treatment was significantly blunted, but not abolished by either addition of the antioxidant N-acetylcysteine (1 mM) or removal of extracellular Ca2+. In conclusion, exposure of erythrocytes to nelfinavir induces oxidative stress and Ca2+ entry, thus leading to suicidal erythrocyte death characterized by erythrocyte shrinkage and erythrocyte membrane scrambling.
Collapse
|
28
|
Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death. BIOMED RESEARCH INTERNATIONAL 2015; 2015:513518. [PMID: 25821808 PMCID: PMC4364016 DOI: 10.1155/2015/513518] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 12/13/2022]
Abstract
Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca(2+) entry, ceramide formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases. Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16). Phosphatidylserine exposing erythrocytes are further engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective erythrocytes thus counteracting parasitemia in malaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis, however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders.
Collapse
|
29
|
Lang E, Lang F. Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin Cell Dev Biol 2015; 39:35-42. [PMID: 25636585 DOI: 10.1016/j.semcdb.2015.01.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022]
Abstract
Eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling, is stimulated by Ca(2+) entry through Ca(2+)-permeable, PGE2-activated cation channels, by ceramide, caspases, calpain, complement, hyperosmotic shock, energy depletion, oxidative stress, and deranged activity of several kinases (e.g. AMPK, GK, PAK2, CK1α, JAK3, PKC, p38-MAPK). Eryptosis is triggered by intoxication, malignancy, hepatic failure, diabetes, chronic renal insufficiency, hemolytic uremic syndrome, dehydration, phosphate depletion, fever, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Eryptosis may precede and protect against hemolysis but by the same token result in anemia and deranged microcirculation.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany.
| |
Collapse
|
30
|
Alzoubi K, Calabrò S, Egler J, Faggio C, Lang F. Triggering of programmed erythrocyte death by alantolactone. Toxins (Basel) 2014; 6:3596-612. [PMID: 25533522 PMCID: PMC4280550 DOI: 10.3390/toxins6123596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/10/2014] [Accepted: 12/17/2014] [Indexed: 01/08/2023] Open
Abstract
The sesquiterpene alantolactone counteracts malignancy, an effect at least in part due to stimulation of suicidal death or apoptosis of tumor cells. Signaling of alantolactone induced apoptosis involves altered gene expression and mitochondrial depolarization. Erythrocytes lack mitochondria and nuclei but may enter suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Cellular mechanisms involved in triggering of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i) and oxidative stress. The present study explored, whether alantolactone stimulates eryptosis. To this end, erythrocyte volume was estimated from forward scatter, phosphatidylserine-exposure at the erythrocyte surface from FITC-annexin-V-binding, [Ca2+]i from Fluo3-fluorescence, ceramide abundance from binding of fluorescent antibodies, and oxidative stress from 2',7'-dichlorodihydrofluorescein-diacetate (DCFDA) fluorescence. As a result, a 48 h exposure of human erythrocytes to alantolactone (≥20 μM) significantly decreased erythrocyte forward scatter and increased the percentage of annexin-V-binding cells. Alantolactone significantly increased Fluo3 fluorescence (60 μM), ceramide abundance (60 μM) and DCFDA fluorescence (≥40 μM). The effect of alantolactone (60 μM) on annexin-V-binding was not significantly modified by removal of extracellular Ca2+. In conclusion, alantolactone stimulates suicidal erythrocyte death or eryptosis, an effect paralleled by increase of [Ca2+]i, ceramide abundance and oxidative stress.
Collapse
Affiliation(s)
- Kousi Alzoubi
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Salvatrice Calabrò
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Jasmin Egler
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Caterina Faggio
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 S. Agata-Messina, Italy.
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
31
|
Calabrò S, Alzoubi K, Bissinger R, Faggio C, Lang F. Stimulation of Suicidal Erythrocyte Death by Ellipticine. Basic Clin Pharmacol Toxicol 2014; 116:485-92. [DOI: 10.1111/bcpt.12350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/07/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Salvatrice Calabrò
- Department of Physiology; University of Tübingen; Tübingen Germany
- Department of Biological and Environmental Sciences; University of Messina; S. Agata-Messina Italy
| | - Kousi Alzoubi
- Department of Physiology; University of Tübingen; Tübingen Germany
| | - Rosi Bissinger
- Department of Physiology; University of Tübingen; Tübingen Germany
| | - Caterina Faggio
- Department of Biological and Environmental Sciences; University of Messina; S. Agata-Messina Italy
| | - Florian Lang
- Department of Physiology; University of Tübingen; Tübingen Germany
| |
Collapse
|
32
|
Wang W, Ji W, Hu H, Ma J, Li X, Mei W, Xu Y, Hu H, Yan Y, Song Q, Li Z, Su C. Survivin promoter-regulated oncolytic adenovirus with Hsp70 gene exerts effective antitumor efficacy in gastric cancer immunotherapy. Oncotarget 2014; 5:150-60. [PMID: 24473833 PMCID: PMC3960197 DOI: 10.18632/oncotarget.1430] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gene therapy is a promising adjuvant therapeutic strategy for cancer treatment. To overcome the limitations of current gene therapy, such as poor transfection efficiency of vectors, low levels of transgene expression and lack of tumor targeting, the Survivin promoter was used to regulate the selective replication of oncolytic adenovirus in tumor cells, and the heat shock protein 70 (Hsp70) gene was loaded as the anticancer transgene to generate an AdSurp-Hsp70 viral therapy system. The efficacy of this targeted immunotherapy was examined in gastric cancer. The experiments showed that the oncolytic adenovirus can selectively replicate in and lyse the Survivin-positive gastric cancer cells, without significant toxicity to normal cells. AdSurp-Hsp70 reduced viability of cancer cells and inhibited tumor growth of gastric cancer xenografts in immuno-deficient and immuno-reconstruction mouse models. AdSurp-Hsp70 produced dual antitumor effects due to viral replication and high Hsp70 expression. This therapeutic system used the Survivin promoter-regulated oncolytic adenovirus vector to mediate targeted expression of the Hsp70 gene and ensure safety and efficacy for subsequent gene therapy programs against a variety of cancers.
Collapse
Affiliation(s)
- Weiguo Wang
- Department of Internal Medicine, No. 117 Hospital of Chinese PLA, Hangzhou 310004, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Calabrò S, Alzoubi K, Bissinger R, Jilani K, Faggio C, Lang F. Enhanced eryptosis following juglone exposure. Basic Clin Pharmacol Toxicol 2014; 116:460-7. [PMID: 25348830 DOI: 10.1111/bcpt.12340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/02/2014] [Indexed: 12/13/2022]
Abstract
Juglone, a quinone isolated from Juglans mandshurica Maxim, has previously been shown to be effective against malignancy. The effect is at least partially due to stimulation of suicidal death or apoptosis of tumour cells. On the other hand, juglone has been shown to counteract apoptosis, for example, of neurons. In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and breakdown of phosphatidylserine asymmetry of the cell membrane with phosphatidylserine exposure at the erythrocyte surface. Stimulators of eryptosis include increase in cytosolic Ca(2+) activity [(Ca(2+) )i]. This study explored whether juglone stimulates eryptosis. To this end, erythrocyte volume was estimated from forward scatter, phosphatidylserine exposure at the erythrocyte surface from FITC annexin V binding, ceramide abundance from binding of fluorescent antibodies in flow cytometry and cytosolic ATP with a luciferin-luciferase-based assay. As a result, a 24-hr exposure of human erythrocytes to juglone (5 μM) significantly decreased erythrocyte forward scatter. Juglone (1-5 μM) significantly increased the percentage of annexin V binding cells. Juglone (5 μM) significantly increased ceramide abundance at the erythrocyte surface and decreased erythrocyte ATP concentration. The effect of juglone (10 μM) on annexin V binding was slightly but significantly blunted by removal of extracellular Ca(2+) and by addition of protein kinase C (PKC) inhibitor staurosporine (1 μM). In conclusion, juglone stimulates suicidal erythrocyte death or eryptosis at least in part by upregulation of ceramide abundance, energy depletion and activation of PKC.
Collapse
Affiliation(s)
- Salvatrice Calabrò
- Department of Physiology, University of Tuebingen, Tuebingen, Germany; Department of Biological and Environmental Sciences, University of Messina, S. Agata-Messina, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Chen N, Wan XL, Huang CX, Wang WM, Liu H, Wang HL. Study on the immune response to recombinant Hsp70 protein from Megalobrama amblycephala. Immunobiology 2014; 219:850-8. [DOI: 10.1016/j.imbio.2014.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/03/2014] [Accepted: 07/15/2014] [Indexed: 11/26/2022]
|
35
|
Malik A, Bissinger R, Calabrò S, Faggio C, Jilani K, Lang F. Aristolochic acid induced suicidal erythrocyte death. Kidney Blood Press Res 2014; 39:408-19. [PMID: 25412628 DOI: 10.1159/000368454] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Aristolochic Acid, a component of Aristolochia plants, has been shown to cause acute kidney injury, renal aristolochic acid nephropathy, Balkan endemic nephropathy, and urothelial carcinoma. Aristolochic acid nephropathy may be associated with severe anemia. The anemia could theoretically be due to stimulation of eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with translocation of phosphatidylserine to the erythrocyte cell membrane surface. Signalling involved in the stimulation of eryptosis include increase of cytosolic Ca(2+)-activity ([Ca(2+)]i) and formation of ceramide. METHODS Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca(2+)]i from Fluo3 fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. RESULTS A 48 hours exposure to Aristolochic Acid (≥ 75 µg/ml) was followed by a significant decrease of forward scatter and increase of annexin-V-binding. The effects were paralleled by a significant increase of [Ca(2+)]i and significantly blunted, but not abrogated by removal of extracellular Ca(2+). Aristolochic Acid further significantly increased ceramide abundance. CONCLUSIONS Aristolochic Acid triggers eryptosis, an effect at least in part due to entry of extracellular Ca(2+) and ceramide formation.
Collapse
Affiliation(s)
- Abaid Malik
- Department of Physiology, University of Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Bissinger R, Malik A, Warsi J, Jilani K, Lang F. Piperlongumine-induced phosphatidylserine translocation in the erythrocyte membrane. Toxins (Basel) 2014; 6:2975-88. [PMID: 25317837 PMCID: PMC4210880 DOI: 10.3390/toxins6102975] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/02/2014] [Accepted: 09/24/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Piperlongumine, a component of Piper longum fruit, is considered as a treatment for malignancy. It is effective by inducing apoptosis. Mechanisms involved in the apoptotic action of piperlongumine include oxidative stress and activation of p38 kinase. In analogy to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in eryptosis include increase of cytosolic Ca²⁺-activity ([Ca²⁺]i), formation of ceramide, oxidative stress and activation of p38 kinase. METHODS Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca²⁺]i from Fluo3 fluorescence, reactive oxygen species from 2',7'-dichlorodihydrofluorescein-diacetate fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. RESULTS A 48 h exposure to piperlongumine (30 µM) was followed by significant decrease of forward scatter and increase of annexin-V-binding. Piperlongumine did not significantly modify [Ca²⁺]i and the effect was not dependent on presence of extracellular Ca²⁺. Piperlongumine significantly increased ROS formation and ceramide abundance. CONCLUSIONS Piperlongumine triggers cell membrane scrambling, an effect independent from entry of extracellular Ca²⁺ but at least partially due to ROS and ceramide formation.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Abaid Malik
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Jamshed Warsi
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Kashif Jilani
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Florian Lang
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
37
|
Antimalarial activity of granzyme B and its targeted delivery by a granzyme B-single-chain Fv fusion protein. Antimicrob Agents Chemother 2014; 59:669-72. [PMID: 25313223 DOI: 10.1128/aac.04190-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We present here the first evidence that granzyme B acts against Plasmodium falciparum (50% inhibitory concentration [IC50], 1,590 nM; 95% confidence interval [95% CI], 1,197 to 2,112 nM). We created a novel antimalarial fusion protein consisting of granzyme B fused to a merozoite surface protein 4 (MSP4)-specific single-chain Fv protein (scFv), which targets the enzyme to infected erythrocytes, with up to an 8-fold reduction in the IC50 (176 nM; 95% CI, 154 to 202 nM). This study confirms the therapeutic efficacies of recombinant antibody-mediated antimalarial immunotherapeutics based on granzyme B.
Collapse
|
38
|
Alzoubi K, Calabrò S, Faggio C, Lang F. Stimulation of Suicidal Erythrocyte Death by Sulforaphane. Basic Clin Pharmacol Toxicol 2014; 116:229-35. [DOI: 10.1111/bcpt.12309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/05/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Kousi Alzoubi
- Department of Physiology; University of Tübingen; Tuebingen Germany
| | - Salvatrice Calabrò
- Department of Physiology; University of Tübingen; Tuebingen Germany
- Department of Biological and Environmental Sciences; University of Messina; S.Agata-Messina Italy
| | - Caterina Faggio
- Department of Biological and Environmental Sciences; University of Messina; S.Agata-Messina Italy
| | - Florian Lang
- Department of Physiology; University of Tübingen; Tuebingen Germany
| |
Collapse
|
39
|
Bissinger R, Malik A, Honisch S, Warsi J, Jilani K, Lang F. In vitro sensitization of erythrocytes to programmed cell death following baicalein treatment. Toxins (Basel) 2014; 6:2771-86. [PMID: 25238045 PMCID: PMC4179159 DOI: 10.3390/toxins6092771] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 11/27/2022] Open
Abstract
The polyphenolic flavonoid Baicalein has been shown to trigger suicidal death or apoptosis of tumor cells and is thus considered for the prevention and treatment of malignancy. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i) and ceramide. The present study explored whether Baicalein stimulates eryptosis. To this end, forward scatter was taken for measurement of cell volume, annexin-V-binding for phosphatidylserine-exposure, Fluo3 fluorescence for [Ca2+]i and fluorescent antibodies for ceramide abundance. As a result, a 48 h exposure of human erythrocytes to Baicalein was followed by significant decrease of forward scatter (≥10 µM), significant increase of the percentage of annexin-V-binding cells (≥25 µM), significant increase of [Ca2+]i (50 µM) and significant increase of ceramide abundance (50 µM). The effect of Baicalein (50 µM) on annexin-V-binding was significantly blunted but not abrogated by removal of extracellular Ca2+. In conclusion, at the concentrations employed, Baicalein stimulates suicidal erythrocyte death or eryptosis, an effect at least in part due to the combined effects of Ca2+ entry and ceramide formation.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Abaid Malik
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Sabina Honisch
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Jamshed Warsi
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Kashif Jilani
- Department of Biochemistry, University of Agriculture, 38040 Faisalabad, Pakistan.
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
40
|
Malik A, Bissinger R, Jilani K, Lang F. Stimulation of erythrocyte cell membrane scrambling by nystatin. Basic Clin Pharmacol Toxicol 2014; 116:47-52. [PMID: 24894380 DOI: 10.1111/bcpt.12279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/26/2014] [Indexed: 12/11/2022]
Abstract
The antifungal ionophore nystatin dissipates the Na(+) and K(+) gradients across the cell membrane, leading to cellular gain of Na(+) and cellular loss of K(+) . The increase of cellular Na(+) concentration may result in Ca(2+) accumulation in exchange for Na(+) . Increase of cytosolic Ca(2+) activity ([Ca(2+) ]i ) and loss of cellular K(+) foster apoptosis-like suicidal erythrocyte death or eryptosis, which is characterised by cell shrinkage and cell membrane scrambling leading to phosphatidylserine exposure at the erythrocyte surface. The present study explored whether nystatin stimulates eryptosis. Cell volume was estimated from forward scatter (FSC), phosphatidylserine exposure from annexin V binding and [Ca(2+) ]i from Fluo3-fluorescence in flow cytometry. A 48-hr exposure to nystatin (15 μg/ml) was followed by a significant increase of [Ca(2+) ]i , a significant increase of annexin V binding and a significant decrease of FSC. The annexin V binding after nystatin treatment was significantly blunted in the nominal absence of extracellular Ca(2+) . Partial replacement of extracellular Na(+) with extracellular K(+) blunted the nystatin-induced erythrocyte shrinkage but increased [Ca(2+) ]i and annexin V binding. Nystatin triggers cell membrane scrambling, an effect at least partially due to entry of extracellular Ca(2+) .
Collapse
Affiliation(s)
- Abaid Malik
- Department of Physiology, University of Tuebingen, Tuebingen, Germany
| | | | | | | |
Collapse
|
41
|
Abstract
SIGNIFICANCE Eryptosis, the suicidal erythrocyte death, is characterized by cell shrinkage, membrane blebbing, and phosphatidylserine translocation to the outer membrane leaflet. Phosphatidylserine at the erythrocyte surface binds endothelial CXCL16/SR-PSOX (CXC-Motiv-Chemokin-16/Scavenger-receptor-for-phosphatidylserine-and-oxidized-low-density-lipoprotein) and fosters engulfment of affected erythrocytes by phagocytosing cells. Eryptosis serves to eliminate infected or defective erythrocytes, but excessive eryptosis may lead to anemia and may interfere with microcirculation. Clinical conditions with excessive eryptosis include diabetes, chronic renal failure, hemolytic uremic syndrome, sepsis, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, glutamate cysteine ligase modulator deficiency, and Wilson's disease. RECENT ADVANCES Eryptosis is triggered by a wide variety of xenobiotics and other injuries such as oxidative stress. Signaling of eryptosis includes prostaglandin E₂ formation with subsequent activation of Ca(2+)-permeable cation channels, Ca(2+) entry, activation of Ca(2+)-sensitive K(+) channels, and cell membrane scrambling, as well as phospholipase A2 stimulation with release of platelet-activating factor, sphingomyelinase activation, and ceramide formation. Eryptosis may involve stimulation of caspases and calpain with subsequent degradation of the cytoskeleton. It is regulated by AMP-activated kinase, cGMP-dependent protein kinase, Janus-activated kinase 3, casein kinase 1α, p38 kinase, and p21-activated kinase 2. It is inhibited by erythropoietin, antioxidants, and further small molecules. CRITICAL ISSUES It remains uncertain for most disorders whether eryptosis is rather beneficial because it precedes and thus prevents hemolysis or whether it is harmful because of induction of anemia and impairment of microcirculation. FUTURE DIRECTIONS This will address the significance of eryptosis, further mechanisms underlying eryptosis, and additional pharmacological tools fostering or inhibiting eryptosis.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen , Tübingen, Germany
| | | | | | | |
Collapse
|
42
|
Immunological enhancement action of endotoxin-free tilapia heat shock protein 70 against Streptococcus iniae. Cell Immunol 2014; 290:1-9. [DOI: 10.1016/j.cellimm.2013.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/04/2013] [Accepted: 12/24/2013] [Indexed: 11/23/2022]
|
43
|
In vitro induction of erythrocyte phosphatidylserine translocation by the natural naphthoquinone shikonin. Toxins (Basel) 2014; 6:1559-74. [PMID: 24828755 PMCID: PMC4052252 DOI: 10.3390/toxins6051559] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 01/10/2023] Open
Abstract
Shikonin, the most important component of Lithospermum erythrorhizon, has previously been shown to exert antioxidant, anti-inflammatory, antithrombotic, antiviral, antimicrobial and anticancer effects. The anticancer effect has been attributed to the stimulation of suicidal cell death or apoptosis. Similar to the apoptosis of nucleated cells, erythrocytes may experience eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and by phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include the increase of cytosolic Ca2+-activity ([Ca2+]i) and ceramide formation. The present study explored whether Shikonin stimulates eryptosis. To this end, Fluo 3 fluorescence was measured to quantify [Ca2+]i, forward scatter to estimate cell volume, annexin V binding to identify phosphatidylserine-exposing erythrocytes, hemoglobin release to determine hemolysis and antibodies to quantify ceramide abundance. As a result, a 48 h exposure of human erythrocytes to Shikonin (1 µM) significantly increased [Ca2+]i, increased ceramide abundance, decreased forward scatter and increased annexin V binding. The effect of Shikonin (1 µM) on annexin V binding was significantly blunted, but not abolished by the removal of extracellular Ca2+. In conclusion, Shikonin stimulates suicidal erythrocyte death or eryptosis, an effect at least partially due to the stimulation of Ca2+ entry and ceramide formation.
Collapse
|
44
|
Stimulation of erythrocyte cell membrane scrambling by mushroom tyrosinase. Toxins (Basel) 2014; 6:1096-108. [PMID: 24647148 PMCID: PMC3968379 DOI: 10.3390/toxins6031096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 02/24/2014] [Accepted: 03/05/2014] [Indexed: 01/23/2023] Open
Abstract
Background: Mushroom tyrosinase, a copper containing enzyme, modifies growth and survival of tumor cells. Mushroom tyrosinase may foster apoptosis, an effect in part due to interference with mitochondrial function. Erythrocytes lack mitochondria but are able to undergo apoptosis-like suicidal cell death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in the triggering of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i) and activation of sphingomyelinase with subsequent formation of ceramide. The present study explored, whether tyrosinase stimulates eryptosis. Methods: Cell volume has been estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. Results: A 24 h exposure to mushroom tyrosinase (7 U/mL) was followed by a significant increase of [Ca2+]i, a significant increase of ceramide abundance, and a significant increase of annexin-V-binding. The annexin-V-binding following tyrosinase treatment was significantly blunted but not abrogated in the nominal absence of extracellular Ca2+. Tyrosinase did not significantly modify forward scatter. Conclusions: Tyrosinase triggers cell membrane scrambling, an effect, at least partially, due to entry of extracellular Ca2+ and ceramide formation.
Collapse
|
45
|
Alzoubi K, Alktifan B, Oswald G, Fezai M, Abed M, Lang F. Breakdown of phosphatidylserine asymmetry following treatment of erythrocytes with lumefantrine. Toxins (Basel) 2014; 6:650-64. [PMID: 24561477 PMCID: PMC3942757 DOI: 10.3390/toxins6020650] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/28/2014] [Accepted: 02/06/2014] [Indexed: 01/26/2023] Open
Abstract
Background: Lumefantrine, a commonly used antimalarial drug, inhibits hemozoin formation in parasites. Several other antimalarial substances counteract parasitemia by triggering suicidal death or eryptosis of infected erythrocytes. Eryptosis is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i), formation of ceramide, oxidative stress and/or activation of p38 kinase, protein kinase C (PKC), or caspases. The present study explored, whether lumefantrine stimulates eryptosis. Methods: Cell volume has been estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species from 2',7'-dichlorodihydrofluorescein-diacetate fluorescence, content of reduced glutathione (GSH) from mercury orange fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. Results: A 48 h exposure to lumefantrine (3 µg/mL) was followed by a significant increase of annexin-V-binding without significantly altering forward scatter, [Ca2+]i, ROS formation, reduced GSH, or ceramide abundance. The annexin-V-binding following lumefantrine treatment was not significantly modified by p38 kinase inhibitors SB203580 (2 μM) and p38 Inh III (1 μM), PKC inhibitor staurosporine (1 µM) or pancaspase inhibitor zVAD (1 or 10 µM). Conclusions: Lumefantrine triggers cell membrane scrambling, an effect independent from entry of extracellular Ca2+, ceramide formation, ROS formation, glutathione content, p38 kinase, PKC or caspases.
Collapse
Affiliation(s)
- Kousi Alzoubi
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | - Bassel Alktifan
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | - Gergely Oswald
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | - Myriam Fezai
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | - Majed Abed
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | - Florian Lang
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| |
Collapse
|
46
|
Voelkl J, Alzoubi K, Mamar AK, Ahmed MSE, Abed M, Lang F. Stimulation of suicidal erythrocyte death by increased extracellular phosphate concentrations. Kidney Blood Press Res 2014; 38:42-51. [PMID: 24556698 DOI: 10.1159/000355752] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM Anemia in renal insufficiency results in part from impaired erythrocyte formation due to erythropoietin and iron deficiency. Beyond that, renal insufficiency enhances eryptosis, the suicidal erythrocyte death characterized by phosphatidylserine-exposure at the erythrocyte surface. Eryptosis may be stimulated by increase of cytosolic Ca(2+)-activity ([Ca(2+)]i). Several uremic toxins have previously been shown to stimulate eryptosis. Renal insufficiency is further paralleled by increase of plasma phosphate concentration. The present study thus explored the effect of phosphate on erythrocyte death. METHODS Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, and [Ca(2+)]i from Fluo3-fluorescence. RESULTS Following a 48 hours incubation, the percentage of phosphatidylserine exposing erythrocytes markedly increased as a function of extracellular phosphate concentration (from 0-5 mM). The exposure to 2 mM or 5 mM phosphate was followed by slight but significant hemolysis. [Ca(2+)]i did not change significantly up to 2 mM phosphate but significantly decreased at 5 mM phosphate. The effect of 2 mM phosphate on phosphatidylserine exposure was significantly augmented by increase of extracellular Ca(2+) to 1.7 mM, and significantly blunted by nominal absence of extracellular Ca(2+), by additional presence of pyrophosphate as well as by presence of p38 inhibitor SB203580. CONCLUSION Increasing phosphate concentration stimulates erythrocyte membrane scrambling, an effect depending on extracellular but not intracellular Ca(2+) concentration. It is hypothesized that suicidal erythrocyte death is triggered by complexed CaHPO4.
Collapse
Affiliation(s)
- Jakob Voelkl
- Departments of Physiology, University of Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Arnold M, Lang E, Modicano P, Bissinger R, Faggio C, Abed M, Lang F. Effect of nitazoxanide on erythrocytes. Basic Clin Pharmacol Toxicol 2013; 114:421-6. [PMID: 24215285 DOI: 10.1111/bcpt.12171] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 10/31/2013] [Indexed: 12/15/2022]
Abstract
Nitazoxanide, a drug effective against a variety of pathogens, triggers apoptosis and is thus considered to be employed against malignancy. Similar to nucleated cells, erythrocytes may undergo an apoptosis-like suicidal cell death or eryptosis. Hallmarks of eryptosis include cell shrinkage and phospholipid scrambling of the cell membrane with translocation of phosphatidylserine to the erythrocyte surface. Stimulators of eryptosis include increase in cytosolic Ca(2+) -activity ([Ca(2+) ]i ). The Ca(2+) -sensitivity of eryptosis is increased by ceramide. This study explored whether nitazoxanide triggers eryptosis. [Ca(2+) ]i was estimated from Fluo3-fluorescence, cell volume from forward scatter, phosphatidylserine exposure from annexin-V-binding, ceramide abundance utilizing fluorescent antibodies and haemolysis from haemoglobin release. A 48-hr exposure to nitazoxanide (1-50 μg/ml) did not significantly modify [Ca(2+) ]i but significantly increased ceramide formation, decreased forward scatter (≥10 μg/ml), increased the percentage of annexin-V-binding erythrocytes (≥10 μg/ml) and, at higher concentrations (≥20 μg/ml), stimulated haemolysis. The stimulation of annexin-V-binding was significantly blunted in the absence of calcium. Nitazoxanide thus stimulates eryptosis, an effect in part due to ceramide formation.
Collapse
Affiliation(s)
- Markus Arnold
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Abed M, Feger M, Alzoubi K, Pakladok T, Frauenfeld L, Geiger C, Towhid ST, Lang F. Sensitization of erythrocytes to suicidal erythrocyte death following water deprivation. Kidney Blood Press Res 2013; 37:567-78. [PMID: 24335488 DOI: 10.1159/000355737] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Klotho deficiency results in excessive formation of 1,25(OH)2D3, accelerated ageing and early death. Moreover, klotho deficiency enhances eryptosis, the suicidal erythrocyte death characterized by phosphatidylserine exposure at the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca(2+)-activity ([Ca(2+)]i), glucose depletion, hyperosmotic shock and oxidative stress. Klotho expression is decreased and 1,25(OH)2D3-formation enhanced by dehydration. The present study thus explored whether dehydration influences eryptosis. METHODS Blood was drawn from hydrated or 36h dehydrated mice. Plasma osmolarity was determined by vapour pressure method, plasma 1,25(OH)2D3 and aldosterone concentrations using ELISA, and plasma Ca(2+)-concentration utilizing photometry. Erythrocytes were exposed to Ca(2+)-ionophore ionomycin (1 µM, 30 min), energy depletion (12 h glucose removal), hyperosmotic shock (500 mM sucrose added, 2 h) and oxidative stress (100 µM tert-butyl-hydroperoxide, 30 min) and phosphatidylserine exposure at the erythrocyte surface estimated from annexin V binding. RESULTS Dehydration increased plasma osmolarity and plasma 1,25(OH)2D3 and aldosterone concentrations. Dehydration did not significantly modify phosphatidylserine-exposure of freshly drawn erythrocytes but significantly enhanced the increase of phosphatidylserine-exposure under control conditions and following treatment with ionomycin, glucose-deprivation, hyperosmolarity or tert-butyl-hydroperoxide. CONCLUSIONS Dehydration sensitizes the erythrocytes to spontaneous eryptosis and to the triggering of eryptosis by excessive Ca(2+)-entry, energy depletion, hyperosmotic shock and oxidative stress.
Collapse
Affiliation(s)
- Majed Abed
- Department of Physiology, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Oswald G, Alzoubi K, Abed M, Lang F. Stimulation of suicidal erythrocyte death by ribavirin. Basic Clin Pharmacol Toxicol 2013; 114:311-7. [PMID: 24164926 DOI: 10.1111/bcpt.12165] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/21/2013] [Indexed: 12/21/2022]
Abstract
Ribavirin is widely used in the treatment for viral disease such as chronic viral hepatitis. Side effects limiting the use of the drug include haemolytic anaemia. If challenged by stimulators of haemolysis, erythrocytes may enter suicidal death or eryptosis, thus preventing the release of haemoglobin into circulating blood. Eryptosis is characterized by cell shrinkage and by cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Eryptosis may be triggered by increase in cytosolic Ca2+ activity ([Ca2+]i). This study explored whether ribavirin modifies [Ca2+]i and elicits eryptosis. Cell volume has been estimated from forward scatter, phosphatidylserine abundance at the erythrocyte surface from annexin V binding, haemolysis from haemoglobin release and [Ca2+]i from Fluo-3 fluorescence. A 48-hr exposure to ribavirin (≥8 μg/ml) was followed by a significant increase in [Ca2+]i, a significant decrease in forward scatter and a significant increase in annexin V binding. The annexin V binding after ribavirin treatment was significantly blunted but not abolished in the nominal absence of extracellular Ca2+. In conclusion, ribaverin stimulates eryptosis, an effect at least in part due to entry of extracellular Ca2+.
Collapse
Affiliation(s)
- Gergely Oswald
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany
| | | | | | | |
Collapse
|
50
|
Ahmed MSE, Abed M, Voelkl J, Lang F. Triggering of suicidal erythrocyte death by uremic toxin indoxyl sulfate. BMC Nephrol 2013; 14:244. [PMID: 24188099 PMCID: PMC4228285 DOI: 10.1186/1471-2369-14-244] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/25/2013] [Indexed: 11/10/2022] Open
Abstract
Background Anemia in end stage renal disease is attributed to impaired erythrocyte formation due to erythropoietin and iron deficiency. On the other hand, end stage renal disease enhances eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and phosphatidylserine-exposure at the erythrocyte surface. Eryptosis may be triggered by increase of cytosolic Ca2+-activity ([Ca2+]i) and by ceramide, which sensitizes erythrocytes to [Ca2+]i. Mechanisms triggering eryptosis in endstage renal disease remained enigmatic. The present study explored the effect of indoxyl sulfate, an uremic toxin accumulated in blood of patients with chronic kidney disease. Methods Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, ceramide abundance by specific antibodies, hemolysis from hemoglobin release, and [Ca2+]i from Fluo3-fluorescence. Results A 48 hours exposure to indoxyl sulfate significantly increased [Ca2+]i (≥ 300 μM), significantly decreased forward scatter (≥ 300 μM) and significantly increased annexin-V-binding (≥ 50 μM). Indoxyl sulfate (150 μM) induced annexin-V-binding was virtually abolished in the nominal absence of extracellular Ca2+. Indoxyl sulfate (150 μM) further enhanced ceramide abundance. Conclusion Indoxyl sulfate stimulates suicidal erythrocyte death or eryptosis, an effect in large part due to stimulation of extracellular Ca2+entry with subsequent stimulation of cell shrinkage and cell membrane scrambling.
Collapse
Affiliation(s)
| | | | | | - Florian Lang
- Department of Physiology, University of Tuebingen, Gmelinstraße 5, 72076 Tuebingen, Germany.
| |
Collapse
|