1
|
Gillard BT, Amor N, Iraizoz FA, Pauža AG, Campbell C, Greenwood MP, Alagaili AN, Murphy D. Mobilisation of jerboa kidney gene networks during dehydration and opportunistic rehydration. iScience 2023; 26:107574. [PMID: 37664605 PMCID: PMC10470305 DOI: 10.1016/j.isci.2023.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Desert animals have evolved systems that enable them to thrive under dry conditions. Focusing on the kidney, we have investigated the transcriptomic adaptations that enable a desert rodent, the Lesser Egyptian Jerboa (Jaculus jaculus), to withstand water deprivation and opportunistic rehydration. Analysis of the whole kidney transcriptome showed many differentially expressed genes in the Jerboa kidney, 6.4% of genes following dehydration and an even greater number (36.2%) following rehydration compared to control. Genes correlated with the rehydration condition included many ribosomal protein coding genes suggesting a concerted effort to accelerate protein synthesis when water is made available. We identify an increase in TGF-beta signaling antagonists in dehydration (e.g., GREM2). We also describe expression of multiple aquaporin and solute carrier transporters mapped to specific nephron segments. The desert adapted renal transcriptome presented here is a valuable resource to expand our understanding of osmoregulation beyond that derived from model organisms.
Collapse
Affiliation(s)
- Benjamin T. Gillard
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | - Nabil Amor
- LR18ES05, Laboratory of Biodiversity, Parasitology and Ecology of Aquatic Ecosystems, Department of Biology - Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Fernando Alvira Iraizoz
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | - Audrys G. Pauža
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | - Colin Campbell
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, Bristol, England
| | - Michael P. Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | | | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| |
Collapse
|
2
|
Camel ( Camelus spp.) Urine Bioactivity and Metabolome: A Systematic Review of Knowledge Gaps, Advances, and Directions for Future Research. Int J Mol Sci 2022; 23:ijms232315024. [PMID: 36499353 PMCID: PMC9740287 DOI: 10.3390/ijms232315024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Up to the present day, studies on the therapeutic properties of camel (Camelus spp.) urine and the detailed characterization of its metabolomic profile are scarce and often unrelated. Information on inter individual variability is noticeably limited, and there is a wide divergence across studies regarding the methods for sample storage, pre-processing, and extract derivatization for metabolomic analysis. Additionally, medium osmolarity is not experimentally adjusted prior to bioactivity assays. In this scenario, the methodological standardization and interdisciplinary approach of such processes will strengthen the interpretation, repeatability, and replicability of the empirical results on the compounds with bioactive properties present in camel urine. Furthermore, sample enlargement would also permit the evaluation of camel urine's intra- and interindividual variability in terms of chemical composition, bioactive effects, and efficacy, while it may also permit researchers to discriminate potential animal-intrinsic and extrinsic conditioning factors. Altogether, the results would help to evaluate the role of camel urine as a natural source for the identification and extraction of specific novel bioactive substances that may deserve isolated chemical and pharmacognostic investigations through preclinical tests to determine their biological activity and the suitability of their safety profile for their potential inclusion in therapeutic formulas for improving human and animal health.
Collapse
|
3
|
Lin P, Gillard BT, Pauža AG, Iraizoz FA, Ali MA, Mecawi AS, Alim FZD, Romanova EV, Burger PA, Greenwood MP, Adem A, Murphy D. Transcriptomic plasticity of the hypothalamic osmoregulatory control centre of the Arabian dromedary camel. Commun Biol 2022; 5:1008. [PMID: 36151304 PMCID: PMC9508118 DOI: 10.1038/s42003-022-03857-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/17/2022] [Indexed: 11/08/2022] Open
Abstract
Water conservation is vital for life in the desert. The dromedary camel (Camelus dromedarius) produces low volumes of highly concentrated urine, more so when water is scarce, to conserve body water. Two hormones, arginine vasopressin and oxytocin, both produced in the supraoptic nucleus, the core hypothalamic osmoregulatory control centre, are vital for this adaptive process, but the mechanisms that enable the camel supraoptic nucleus to cope with osmotic stress are not known. To investigate the central control of water homeostasis in the camel, we first build three dimensional models of the camel supraoptic nucleus based on the expression of the vasopressin and oxytocin mRNAs in order to facilitate sampling. We then compare the transcriptomes of the supraoptic nucleus under control and water deprived conditions and identified genes that change in expression due to hyperosmotic stress. By comparing camel and rat datasets, we have identified common elements of the water deprivation transcriptomic response network, as well as elements, such as extracellular matrix remodelling and upregulation of angiotensinogen expression, that appear to be unique to the dromedary camel and that may be essential adaptations necessary for life in the desert.
Collapse
Affiliation(s)
- Panjiao Lin
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
| | - Benjamin T Gillard
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
| | - Audrys G Pauža
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Fernando A Iraizoz
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
- Gene Therapy and Regulation of Gene Expression Program, Centre for Applied Medical Research-CIMA, University of Navarra, Navarra, Spain
| | - Mahmoud A Ali
- Department of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Andre S Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Fatma Z Djazouli Alim
- University Blida 1, Faculty of Nature and Life Sciences, Department of Biotechnology and Agroecology, Blida, Algeria
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Pamela A Burger
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria
| | - Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
| | - Abdu Adem
- Department of Pharmacology, College of Medicine & Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
- Department of Pharmacology, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK.
| |
Collapse
|
4
|
Kandeel M, Al-Taher A, Venugopala KN, Marzok M, Morsy M, Nagaraja S. Camel Proteins and Enzymes: A Growing Resource for Functional Evolution and Environmental Adaptation. Front Vet Sci 2022; 9:911511. [PMID: 35903143 PMCID: PMC9315206 DOI: 10.3389/fvets.2022.911511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
In less agroecological parts of the Asian, Arabian, and African deserts, Camelus dromedarius play an important role in human survival. For many years, camels have been employed as a source of food, a tool of transportation, and a means of defense. They are becoming increasingly important as viable livestock animals in many desert climates. With the help of camel genetics, genomics and proteomics known so far, this review article will summarize camel enzymes and proteins, which allow them to thrive under varied harsh environmental situations. An in-depth study of the dromedary genome revealed the existence of protein-coding and fast-developing genes that govern a variety of metabolic responses including lipid and protein metabolism, glucoamylase, flavin-containing monooxygenase and guanidinoacetate methyltransferase are other metabolic enzymes found in the small intestine, liver, pancreas, and spleen. In addition, we will discuss the handling of common medications by camel liver cytochrome p 450, which are different from human enzymes. Moreover, camels developed several paths to get optimum levels of trace elements like copper, zinc, selenium, etc., which have key importance in their body for normal regulation of metabolic events. Insulin tolerance, carbohydrate and energy metabolism, xenobiotics metabolizing enzymes, vimentin functions, behavior during the rutting season, resistance to starvation and changes in blood composition and resistance to water loss were among the attractive aspects of camel enzymes and proteins peculiarities in the camels. Resolving the enigma of the method of adaptation and the molecular processes linked with camel life is still a developing repository full of mysteries that need additional exploration.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafr El Sheikh University, Kafr El Sheikh, Egypt
| | - Abdulla Al-Taher
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Mohamed Marzok
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Surgery, Faculty of Veterinary Medicine, Kafr El Sheikh University, Kafr El Sheikh, Egypt
| | - Mohamed Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, Minya, Egypt
| | - Sreeharsha Nagaraja
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bengaluru, India
| |
Collapse
|
5
|
Agbaraolorunpo F, Oloyo AK, Ogunnowo SA, Anigbogu CN, Sofola O. Effect of Angiotensin receptor blockade on Plasma Osmolality and Neurohumoral Responses to High Environmental Temperature in Rats Fed a High Salt Diet. Niger J Physiol Sci 2021; 36:149-157. [PMID: 35947735 DOI: 10.54548/njps.v36i2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 06/15/2023]
Abstract
Plasma osmolality (pOsmol) and neurohumoral signals play important roles in the pathophysiology of cardiovascular diseases. Our study investigated the effect of high environmental temperature (HET) on neurohumoral responses and pOsmol in rats fed a high salt diet (HSD), with and without angiotensin II receptor blockade (ARB), using telmisartan. Fifty-six male 8-week old Sprague-Dawley rats (95-110g) were randomly assigned into seven groups of 8 rats. These included control rats (I) fed with 0.3% NaCl diet (normal diet, ND); salt-loaded rats (II) fed with 8% NaCl (high salt) diet; ND rats (III) exposed to HET (38.5±0.5oC ) 4 hours daily per week; rats (IV) fed with 8% NaCl diet and exposed to HET daily. Others included rats (V) fed with 8% NaCl diet and treated with telmisartan (30mg/kg); ND rats (VI) exposed to HET and treated with telmisartan; rats (VI) fed with 8% NaCl diet, exposed to HET and treated with telmisartan. Plasma angiotensin II, aldosterone, vasopressin and norepinephrine (NE) concentrations were determined by ELISA technique; pOsmol from plasma K+, Na+ and Urea. HSD combined with HET in rats synergistically increased pOsmol (P<0.001) with an associated non-synergistic rise in fluid intake (P<0.001), fluid balance (P<0.001), plasma angiotensin II (P<0.01) and aldosterone (P<0.05), NE (P<0.001) and vasopressin (P<0.05) concentrations compared to control. Telmisartan did not alter pOsmol in all the treated-rats, but normalized fluid intake levels and plasma vasopressin in the rats exposed to either HSD or HEt alone. Prolonged exposure of rats to hot environment exacerbated the effect of excess dietary salt on pOsmol, with no effect on angiotensin II-mediated neurohumoral responses.
Collapse
|
6
|
Genetic Analyses and Genome-Wide Association Studies on Pathogen Resistance of Bos taurus and Bos indicus Cattle Breeds in Cameroon. Genes (Basel) 2021; 12:genes12070976. [PMID: 34206759 PMCID: PMC8307268 DOI: 10.3390/genes12070976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Autochthonous taurine and later introduced zebu cattle from Cameroon differ considerably in their resistance to endemic pathogens with little to no reports of the underlying genetic make-up. Breed history and habitat variations are reported to contribute significantly to this diversity worldwide, presumably in Cameroon as well, where locations diverge in climate, pasture, and prevalence of infectious agents. In order to investigate the genetic background, the genotypes of 685 individuals of different Cameroonian breeds were analysed by using the BovineSNP50v3 BeadChip. The variance components including heritability were estimated and genome-wide association studies (GWAS) were performed. Phenotypes were obtained by parasitological screening and categorised in Tick-borne pathogens (TBP), gastrointestinal nematodes (GIN), and onchocercosis (ONC). Estimated heritabilities were low for GIN and TBP (0.079 (se = 0.084) and 0.109 (se = 0.103) respectively) and moderate for ONC (0.216 (se = 0.094)). Further than revealing the quantitative nature of the traits, GWAS identified putative trait-associated genomic regions on five chromosomes, including the chromosomes 11 and 18 for GIN, 20 and 24 for TBP, and 12 for ONC. The results imply that breeding for resistant animals in the cattle population from Northern Cameroon might be possible for the studied pathogens; however, further research in this field using larger datasets will be required to improve the resistance towards pathogen infections, propose candidate genes or to infer biological pathways, as well as the genetic structures of African multi-breed populations.
Collapse
|
7
|
Impact of travel by walk and road on testicular hormones, oxidants, traces minerals, and acute phase response biomarkers of dromedary camels. Heliyon 2021; 7:e06879. [PMID: 34007918 PMCID: PMC8111580 DOI: 10.1016/j.heliyon.2021.e06879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/03/2020] [Accepted: 04/16/2021] [Indexed: 11/22/2022] Open
Abstract
This study aimed to compare the effect of truck transport and walk travel on testicular hormones, oxidants, antioxidants and acute-phase responses of camels’ walked from Sudan to the Egyptian quarantine and were transported from the quarantine to the slaughterhouses by trucks. Blood samples were collected from walked camels (N ≤ 30) just arrived at the quarantine (Walk), unloaded (N ≤ 12) from the truck (Truck), and control camels (N ≤ 20). Animals were statistically categorized into Walk travel, Truck transport, and Control, then Total travel (Walk + truck transport) was compared to control. Haptoglobin, fibrinogen, superoxide dismutase (SOD), glutathione peroxidase (GPx), nitric oxide (NO), ascorbic acid, glucose, cholesterol, testosterone, estradiol, iron, copper, ALT, AST, alkaline phosphatase (ALP), total proteins, albumin, and creatinine were measured. Results showed that the travel by walk and truck increased haptoglobin (P ≤ 0.0001), fibrinogen (P < 0.05), ALT (P < 0.05), and creatinine (P ≤ 0.0001) but decreased NO (P ≤ 0.0001), albumin (P < 0.05), Ascorbic acid (P < 0.05), testosterone (P ≤ 0.0001), ALP (P < 0.0001), and glucose (P ≤ 0.0001). The declined NO (P ≤ 0.0001), Ascorbic acid (P ≤ 0.0001), iron (P ≤ 0.005), copper (P ≤ 0.023), cholesterol (P > 0.05), total proteins (P ≤ 0.0001), albumin (P ≤ 0.018), globulins (P ≤ 0.001), with increased haptoglobin (P ≤ 0.0001), AST (P ≤ 0.0001), ALP (P ≤ 0.0001), and testosterone (P ≤ 0.0001) was evident in camels transported by truck compared to walk transport. In conclusion, transport enhanced the acute phase proteins, retarded kidney function, antioxidant status, and energy but truck produced a significant acute-phase response and adversely affected the oxidant-antioxidant balance, destructed proteins kidney, and liver functions than the long travel by walk.
Collapse
|
8
|
Rocha JL, Godinho R, Brito JC, Nielsen R. Life in Deserts: The Genetic Basis of Mammalian Desert Adaptation. Trends Ecol Evol 2021; 36:637-650. [PMID: 33863602 DOI: 10.1016/j.tree.2021.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
Deserts are among the harshest environments on Earth. The multiple ages of different deserts and their global distribution provide a unique opportunity to study repeated adaptation at different timescales. Here, we summarize recent genomic research on the genetic mechanisms underlying desert adaptations in mammals. Several studies on different desert mammals show large overlap in functional classes of genes and pathways, consistent with the complexity and variety of phenotypes associated with desert adaptation to water and food scarcity and extreme temperatures. However, studies of desert adaptation are also challenged by a lack of accurate genotype-phenotype-environment maps. We encourage development of systems that facilitate functional analyses, but also acknowledge the need for more studies on a wider variety of desert mammals.
Collapse
Affiliation(s)
- Joana L Rocha
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
| | - Raquel Godinho
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; Department of Zoology, University of Johannesburg, PO Box 534, Auckland Park 2006, South Africa
| | - José C Brito
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Rasmus Nielsen
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA 94820, USA; Globe Institute, University of Copenhagen, DK-1165 Copenhagen, Denmark.
| |
Collapse
|
9
|
Small Ruminants: Farmers' Hope in a World Threatened by Water Scarcity. Animals (Basel) 2019; 9:ani9070456. [PMID: 31323882 PMCID: PMC6680725 DOI: 10.3390/ani9070456] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Water is one of the most important nutrients to livestock. It is so essential that more than half the volume of the animal's body is water. However, its availability is threatened by the irreversible changes in climate, which has culminated into reduced rainfall in most regions of the world. Such an increasing threat to regular water supply, and by extension to food security and livelihood has forced a shift from large to small ruminant production, especially in regions experiencing low rainfall, with farmers taking advantage of their adaptive process and efficiency of water use. Small ruminants, especially desert goats, can adaptively survive in water-limited areas while trekking long distance in search of feed and they will regain any weight loss at the next watering point. Further research is needed on adaptive indigenous breeds of small ruminants since tolerance to water scarcity is breed dependent, so that improvements can be made through effective selection and breeding program. Abstract The availability and sustainability of suitable and good quality drinking water is a global concern. Such uncertainties threaten livestock production with an attendant ripple effect on food security. Small ruminants, including sheep and goats, appear to be promising to smallholder farmers in solving this problem because of their ability to survive in water-limited areas and harsh environment when compared with large ruminants. Their small body size is also seen as an advantage, because less water will be required for proper digestion and feed utilization. Therefore, this review will provide information regarding the adaptive responses of small ruminants on thermoregulation, blood metabolites, immune status, drug pharmacokinetics, reproduction and hormonal indices during the period of water stress. Adaptable and indigenous breeds are known to be more tolerant to water stress than selected breeds. A drop in feed intake and weight reduced respiratory rate and increased concentration of blood metabolites are the general effects and/or observations that are encountered by small ruminants during the period of water stress. The concept of water tolerance either as deprivation and/or restriction of indigenous and adaptable breeds of small ruminants is gaining ground in research studies around the world. However, more research, however, seeking to explore water tolerance capacity of adaptable breeds especially in arid and water limiting areas are still needed.
Collapse
|
10
|
Seasonal adaptations of the hypothalamo-neurohypophyseal system of the dromedary camel. PLoS One 2019; 14:e0216679. [PMID: 31211771 PMCID: PMC6581255 DOI: 10.1371/journal.pone.0216679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
The “ship” of the Arabian and North African deserts, the one-humped dromedary camel (Camelus dromedarius) has a remarkable capacity to survive in conditions of extreme heat without needing to drink water. One of the ways that this is achieved is through the actions of the antidiuretic hormone arginine vasopressin (AVP), which is made in a specialised part of the brain called the hypothalamo-neurohypophyseal system (HNS), but exerts its effects at the level of the kidney to provoke water conservation. Interestingly, our electron microscopy studies have shown that the ultrastructure of the dromedary HNS changes according to season, suggesting that in the arid conditions of summer the HNS is in an activated state, in preparation for the likely prospect of water deprivation. Based on our dromedary genome sequence, we have carried out an RNAseq analysis of the dromedary HNS in summer and winter. Amongst the 171 transcripts found to be significantly differentially regulated (>2 fold change, p value <0.05) there is a significant over-representation of neuropeptide encoding genes, including that encoding AVP, the expression of which appeared to increase in summer. Identification of neuropeptides in the HNS and analysis of neuropeptide profiles in extracts from individual camels using mass spectrometry indicates that overall AVP peptide levels decreased in the HNS during summer compared to winter, perhaps due to increased release during periods of dehydration in the dry season.
Collapse
|
11
|
Ali A, Baby B, Vijayan R. From Desert to Medicine: A Review of Camel Genomics and Therapeutic Products. Front Genet 2019; 10:17. [PMID: 30838017 PMCID: PMC6389616 DOI: 10.3389/fgene.2019.00017] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Camels have an important role in the lives of human beings, especially in arid regions, due to their multipurpose role and unique ability to adapt to harsh conditions. In spite of its enormous economic, cultural, and biological importance, the camel genome has not been widely studied. The size of camel genome is roughly 2.38 GB, containing over 20,000 genes. The unusual genetic makeup of the camel is the main reason behind its ability to survive under extreme environmental conditions. The camel genome harbors several unique variations which are being investigated for the treatment of several disorders. Various natural products from camels have also been tested and prescribed as adjunct therapy to control the progression of ailments. Interestingly, the camel employs unique immunological and molecular mechanisms against pathogenic agents and pathological conditions. Here, we broadly review camel classification, distribution and breed as well as recent progress in the determination of the camel genome, its size, genetic distribution, response to various physiological conditions, immunogenetics and the medicinal potential of camel gene products.
Collapse
Affiliation(s)
| | | | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
12
|
Effects of long-term dehydration on oxidative stress, apoptotic markers and neuropeptides in the gastric mucosa of the dromedary camel. Mol Cell Biochem 2018; 455:109-118. [PMID: 30478677 DOI: 10.1007/s11010-018-3474-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
Abstract
We investigated the effects of 20 days of dehydration and 20 days of dehydration followed by 72 h of rehydration on the gastric mucosa of the one-humped dromedary camel. The parameters addressed include biomarkers of oxidative stress, apoptosis, gastric epithelial histology, gastric neuropeptides, and their receptors. Nineteen clinically healthy, 4-5 year-old male dromedary camels were divided into three groups (five control camels, eight dehydrated for 20 days, six dehydrated for 20 days and then rehydrated for 72 h). Dehydration affected the oxidative stress biomarkers causing a significant increase in malondialdehyde, glutathione, nitric oxide, and catalase values compared with controls. Also the results revealed that dehydration caused different size cellular vacuoles and focal necrosis in the gastric mucosa. Rehydration for 72 h resulted in improvement in some parameters but was not enough to fully abolish the effect of dehydration. Dehydration caused significant increase in apoptotic markers; tumor necrosis factor α, caspases 8 and 3, BcL-x1 and TGFβ whereas caspase 9, p53, Beclin 1, and PARP1 showed no significant change between the three groups indicating that apoptosis was initiated by the extrinsic pathway. Also there were significant increases in prostaglandin E2 receptors and somatostatin in plasma and gastric epithelium homogenate, and a significant decrease in cholecystokinin-8 receptors. A significant decrease of hydrogen potassium ATPase enzyme activity was also observed. Pepsinogen C was not affected by dehydration. It is concluded that long-term dehydration induces oxidative stress and apoptosis in camel gastric mucosa and that camels adjust gastric functions during dehydration towards water economy. More than 72 h are needed before all the effects of dehydration are reversed by rehydration.
Collapse
|
13
|
Makhijani VH, Van Voorhies K, Besheer J. The mineralocorticoid receptor antagonist spironolactone reduces alcohol self-administration in female and male rats. Pharmacol Biochem Behav 2018; 175:10-18. [PMID: 30171933 DOI: 10.1016/j.pbb.2018.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/06/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022]
Abstract
Cortisol/corticosterone and the hypothalamic-pituitary-adrenal (HPA) axis serve an important role in modulating alcohol drinking behaviors. To date most alcohol research has focused on the functional involvement of corticosterone and the glucocorticoid receptor (GR), the primary receptor for corticosterone. Recent studies have indicated that the related mineralocorticoid receptor (MR), which binds both corticosterone and aldosterone, may also play a role in alcohol drinking. Therefore, the purpose of the present study was to test the functional role of MR signaling in alcohol self-administration via pharmacological antagonism of the MR with spironolactone. Male and female Long-Evans rats were trained to self-administer a sweetened alcohol solution (15% (v/v) alcohol +2% (w/v) sucrose). The effects of spironolactone (0, 10, 25, 50 mg/kg; IP) were tested on alcohol self-administration and under "probe extinction" conditions to measure the persistence of responding in the absence of the alcohol reinforcer. Parallel experiments in sucrose self-administration trained rats were used to confirm the specificity of spironolactone effects to an alcohol reinforcer. In female rats spironolactone (50 mg/kg) reduced alcohol self-administration and persistence of alcohol responding. In male rats spironolactone (25 and 50 mg/kg) reduced alcohol self-administration, but not persistence of alcohol responding. Spironolactone reduced sucrose intake in female rats only, and locomotion in male and female rats during sucrose self-administration. There was no effect of spironolactone on persistence of sucrose responding. These studies add to growing evidence that the MR is involved in alcohol drinking, while underscoring the importance of studying both male and female animals.
Collapse
Affiliation(s)
- Viren H Makhijani
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kalynn Van Voorhies
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
14
|
Exploring evidence of positive selection signatures in cattle breeds selected for different traits. Mamm Genome 2017; 28:528-541. [PMID: 28905131 DOI: 10.1007/s00335-017-9715-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023]
Abstract
Since domestication, the genome landscape of cattle has been changing due to natural and artificial selection forces resulting in several general and specialized cattle breeds of the world. Identifying genomic regions affected due to these forces in livestock gives an insight into the history of selection for economically important traits and genetic adaptation to specific environments of the populations under consideration. This study explores the genes/genomic regions under selection in relation to the phenotypes of Holstein, Hanwoo, and N'Dama cattle breeds using Tajima's D, XP-CLR, and XP-EHH population statistical methods. The whole genomes of 10 Holstein (South Korea), 11 Hanwoo (South Korea), and 10 N'Dama (West Africa-Guinea) cattle breeds re-sequenced to ~11x coverage and retained 37 million SNPs were used for the study. Selection signature analysis revealed 441, 512, and 461 genes under selection from Holstein, Hanwoo, and N'Dama cattle breeds, respectively. Among all these, seven genes including ARFGAP3, SNORA70, and other RNA genes were common between the breeds. From each of the gene lists, significant functional annotation cluster terms including milk protein and thyroid hormone signaling pathway (Holstein), histone acetyltransferase activity (Hanwoo), and renin secretion (N'Dama) were enriched. Genes that are related to the phenotypes of the respective breeds were also identified. Moreover, significant breed-specific missense variants were identified in CSN3, PAPPA2 (Holstein), C1orf116 (Hanwoo), and COMMD1 (N'Dama) genes. The genes identified from this study provide an insight into the biological mechanisms and pathways that are important in cattle breeds selected for different traits of economic significance.
Collapse
|
15
|
Ali MA, Kazzam E, Amir N, Nyberg F, Adem A. Effects of dehydration and blockade of angiotensin II AT1 receptor on stress hormones and anti-oxidants in the one-humped camel. BMC Vet Res 2013; 9:232. [PMID: 24252635 PMCID: PMC4225509 DOI: 10.1186/1746-6148-9-232] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/08/2013] [Indexed: 01/18/2023] Open
Abstract
Background The objective of this study was to provide for the first time data on plasma catecholamines, cortisol, glutathione and malondialdehyde after long term dehydration (20 days) in the presence and absence of angiotensin II (Ang II) AT1 receptor blocker (losartan) versus levels in time-matched, non-dehydrated control camels and to record the responses of glutathione and malondialdehyde activity in liver and kidney homogenates in control, dehydrated-losartan treated and dehydrated camels. Eighteen male camels were studied, six hydrated (control group), six dehydrated and treated with losartan (treated group) and six dehydrated not treated (dehydrated). Results Plasma levels of norepinephrine and dopamine were significantly increased (P < 0.01) in both treated and dehydrated groups compared to time matched control, whereas Plasma epinephrine level showed significant decrease (P < 0.05) in both treated and dehydrated groups compared to control. Plasma cortisol also showed significant increase (P < 0.01) in both treated and dehydrated groups compared to control. Glutathione levels in plasma, liver and kidney homogenates for both treated and dehydrated groups reveled significant increase (P < 0.05) Likewise, malondialdehyde levels in plasma, liver and kidney homogenates were substantially and significantly increased in both treated and dehydrated groups. Conclusion In conclusion, the results of this study demonstrated that dehydration substantially increased the circulating levels of norepinephrine, dopamine and cortisol but decreased plasma epinephrine. Similarly, losartan showed similar effects to that of dehydration. In addition, this investigation showed dehydration alone or in combination with losartan induced significant increments in glutathione and malondialdehyde activities in plasma, liver and kidney homogenates, presumably in order to counteract the potentially damaging effects of free radicals. Blockade of angiotensin II AT1 receptors did not alter significantly the response of dehydration in any of these indices.
Collapse
Affiliation(s)
- Mahmoud Alhaj Ali
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, United Arab Emirates University, P,O, Box 17666, Al Ain, United Arab Emirates.
| | | | | | | | | |
Collapse
|
16
|
Bekele T, Olsson K, Olsson U, Dahlborn K. Physiological and behavioral responses to different watering intervals in lactating camels (Camelus dromedarius). Am J Physiol Regul Integr Comp Physiol 2013; 305:R639-46. [PMID: 23842680 DOI: 10.1152/ajpregu.00015.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During drought periods camels are watered at long intervals, but effects on body fluid homeostasis of lactating camels are not known. It was hypothesized that camels store water after drinking and minimize water losses by diurnal variation in body temperature, changes in behavior, and release of vasopressin. The aim was to find a sustainable watering interval for lactating camels. Seven lactating camels were studied in a cross-over trial in which they were watered once daily (W1), every fourth day (W4), every eighth day (W8), or after 16 days (W16) with a 5-day interval between treatments. When offered water every fourth or eighth days, the camels drank sufficient amounts to cover their needs for subsequent days, but after 16 days of dehydration they did not drink enough to compensate the body weight loss. Rectal temperature fell at night and the camels searched shade during daytime minimizing evaporative fluid losses. Plasma osmolality and sodium concentration were elevated after 4 days of water deprivation and plasma protein and vasopressin concentrations after 8 days. Milk production decreased during the last week of W16. Plasma aldosterone concentration was elevated upon rehydration after W16, indicating sodium deficiency. In conclusion, lactating camels stored water after drinking and reduced water losses by staying in shade, keeping body temperature low, and releasing plasma vasopressin. However, serious dehydration was observed during W8, and after 16 days of water deprivation recovery took a long time. A watering interval between 4 and 7 days seems advisable under similar environmental conditions.
Collapse
|
17
|
Adem A, Al Haj M, Benedict S, Yasin J, Nagelkerke N, Nyberg F, Yandle TG, Frampton CM, Lewis LK, Nicholls MG, Kazzam E. ANP and BNP responses to dehydration in the one-humped camel and effects of blocking the renin-angiotensin system. PLoS One 2013; 8:e57806. [PMID: 23516417 PMCID: PMC3596322 DOI: 10.1371/journal.pone.0057806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/26/2013] [Indexed: 11/18/2022] Open
Abstract
The objectives of this study were to investigate and compare the responses of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in the circulation of hydrated, dehydrated, and dehydrated losartan - treated camels; and to document the cardiac storage form of B-type natriuretic peptide in the camel heart. Eighteen male camels were used in the study: control or hydrated camels (n = 6), dehydrated camels (n = 6) and dehydrated losartan-treated camels (n = 6) which were dehydrated and received the angiotensin II (Ang II) AT-1 receptor blocker, losartan, at a dose of 5 mg/kg body weight intravenously for 20 days. Control animals were supplied with feed and water ad-libitum while both dehydrated and dehydrated-losartan treated groups were supplied with feed ad-libitum but no water for 20 days. Compared with time-matched controls, dehydrated camels exhibited a significant decrease in plasma levels of both ANP and BNP. Losartan-treated camels also exhibited a significant decline in ANP and BNP levels across 20 days of dehydration but the changes were not different from those seen with dehydration alone. Size exclusion high performance liquid chromatography of extracts of camel heart indicated that proB-type natriuretic peptide is the storage form of the peptide. We conclude first, that dehydration in the camel induces vigorous decrements in circulating levels of ANP and BNP; second, blockade of the renin-angiotensin system has little or no modulatory effect on the ANP and BNP responses to dehydration; third, proB-type natriuretic peptide is the storage form of this hormone in the heart of the one-humped camel.
Collapse
Affiliation(s)
- Abdu Adem
- Departments of Pharmacology, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Mahmoud Al Haj
- Departments of Pharmacology, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Sheela Benedict
- Internal Medicine, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Javed Yasin
- Internal Medicine, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Nicolas Nagelkerke
- Community Medicine, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Fred Nyberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Tim G. Yandle
- Department of Medicine, University of Otago - Christchurch, Christchurch Hospital, Christchurch, New Zealand
| | - Chris M. Frampton
- Department of Medicine, University of Otago - Christchurch, Christchurch Hospital, Christchurch, New Zealand
| | - Lynley K. Lewis
- Department of Medicine, University of Otago - Christchurch, Christchurch Hospital, Christchurch, New Zealand
| | - M. Gary Nicholls
- Department of Medicine, University of Otago - Christchurch, Christchurch Hospital, Christchurch, New Zealand
| | - Elsadig Kazzam
- Internal Medicine, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
- * E-mail:
| |
Collapse
|