1
|
Vinokurov AY, Palalov AA, Kritskaya KA, Demyanenko SV, Garbuz DG, Evgen'ev MB, Esteras N, Abramov AY. Cell-Permeable HSP70 Protects Neurons and Astrocytes Against Cell Death in the Rotenone-Induced and Familial Models of Parkinson's Disease. Mol Neurobiol 2024; 61:7785-7795. [PMID: 38429623 DOI: 10.1007/s12035-024-04077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
Heat shock protein 70 (HSP70) is activated under stress response. Its involvement in cell protection, including energy metabolism and quality control makes it a promising pharmacological target. A strategy to increase HSP70 levels inside the cells is the application of recombinant HSP70. However, cell permeability and functionality of these exogenously applied proteins inside the cells is still disputable. Here, using fluorescence- labeled HSP70, we have studied permeability and distribution of HSP70 inside primary neurons and astrocytes, and how exogenous HSP70 changes mitochondrial metabolism and mitophagy. We have found that exogenous recombinant HSP70 can penetrate the neurons and astrocytes and distributes in mitochondria, lysosomes and in lesser degree in the endoplasmic reticulum. HSP70 increases mitochondrial membrane potential in control neurons and astrocytes, and in fibroblasts of patients with familial Parkinson´s disease (PD) with PINK1 and LRRK2 mutations. Increased mitochondrial membrane potential was associated with higher mitochondrial ROS production and activation of mitophagy. Importantly, preincubation of the cells with HSP70 protected neurons and astrocytes against cell death in a toxic model of PD induced by rotenone, and in the PINK1 and LRRK2 PD human fibroblasts. Thus, exogenous recombinant HSP70 is cell permeable, and acts as endogenous HSP70 protecting cells in the case of toxic model and familial forms of Parkinson's Disease.
Collapse
Affiliation(s)
| | | | - Kristina A Kritskaya
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Svetlana V Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-On-Don, Russia
| | - David G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Michael B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Noemi Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
2
|
Angelova PR, Abramov AY. Interplay of mitochondrial calcium signalling and reactive oxygen species production in the brain. Biochem Soc Trans 2024; 52:1939-1946. [PMID: 39171662 DOI: 10.1042/bst20240261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Intracellular communication and regulation in brain cells is controlled by the ubiquitous Ca2+ and by redox signalling. Both of these independent signalling systems regulate most of the processes in cells including the cell surviving mechanism or cell death. In physiology Ca2+ can regulate and trigger reactive oxygen species (ROS) production by various enzymes and in mitochondria but ROS could also transmit redox signal to calcium levels via modification of calcium channels or phospholipase activity. Changes in calcium or redox signalling could lead to severe pathology resulting in excitotoxicity or oxidative stress. Interaction of the calcium and ROS is essential to trigger opening of mitochondrial permeability transition pore - the initial step of apoptosis, Ca2+ and ROS-induced oxidative stress involved in necrosis and ferroptosis. Here we review the role of redox signalling and Ca2+ in cytosol and mitochondria in the physiology of brain cells - neurons and astrocytes and how this integration can lead to pathology, including ischaemia injury and neurodegeneration.
Collapse
Affiliation(s)
- Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, U.K
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, U.K
| |
Collapse
|
3
|
Baev AY, Vinokurov AY, Potapova EV, Dunaev AV, Angelova PR, Abramov AY. Mitochondrial Permeability Transition, Cell Death and Neurodegeneration. Cells 2024; 13:648. [PMID: 38607087 PMCID: PMC11011324 DOI: 10.3390/cells13070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024] Open
Abstract
Neurodegenerative diseases are chronic conditions occurring when neurons die in specific brain regions that lead to loss of movement or cognitive functions. Despite the progress in understanding the mechanisms of this pathology, currently no cure exists to treat these types of diseases: for some of them the only help is alleviating the associated symptoms. Mitochondrial dysfunction has been shown to be involved in the pathogenesis of most the neurodegenerative disorders. The fast and transient permeability of mitochondria (the mitochondrial permeability transition, mPT) has been shown to be an initial step in the mechanism of apoptotic and necrotic cell death, which acts as a regulator of tissue regeneration for postmitotic neurons as it leads to the irreparable loss of cells and cell function. In this study, we review the role of the mitochondrial permeability transition in neuronal death in major neurodegenerative diseases, covering the inductors of mPTP opening in neurons, including the major ones-free radicals and calcium-and we discuss perspectives and difficulties in the development of a neuroprotective strategy based on the inhibition of mPTP in neurodegenerative disorders.
Collapse
Affiliation(s)
- Artyom Y. Baev
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent 100174, Uzbekistan;
- Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Andrey Y. Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Elena V. Potapova
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Andrey V. Dunaev
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Plamena R. Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK;
| | - Andrey Y. Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK;
| |
Collapse
|
4
|
Ratan Y, Rajput A, Pareek A, Pareek A, Jain V, Sonia S, Farooqui Z, Kaur R, Singh G. Advancements in Genetic and Biochemical Insights: Unraveling the Etiopathogenesis of Neurodegeneration in Parkinson's Disease. Biomolecules 2024; 14:73. [PMID: 38254673 PMCID: PMC10813470 DOI: 10.3390/biom14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative movement disorder worldwide, which is primarily characterized by motor impairments. Even though multiple hypotheses have been proposed over the decades that explain the pathogenesis of PD, presently, there are no cures or promising preventive therapies for PD. This could be attributed to the intricate pathophysiology of PD and the poorly understood molecular mechanism. To address these challenges comprehensively, a thorough disease model is imperative for a nuanced understanding of PD's underlying pathogenic mechanisms. This review offers a detailed analysis of the current state of knowledge regarding the molecular mechanisms underlying the pathogenesis of PD, with a particular emphasis on the roles played by gene-based factors in the disease's development and progression. This study includes an extensive discussion of the proteins and mutations of primary genes that are linked to PD, including α-synuclein, GBA1, LRRK2, VPS35, PINK1, DJ-1, and Parkin. Further, this review explores plausible mechanisms for DAergic neural loss, non-motor and non-dopaminergic pathologies, and the risk factors associated with PD. The present study will encourage the related research fields to understand better and analyze the current status of the biochemical mechanisms of PD, which might contribute to the design and development of efficacious and safe treatment strategies for PD in future endeavors.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Zeba Farooqui
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
5
|
Bryanskaya EO, Vinokurov AY, Dolgikh AI, Dunaev AV, Angelova PR, Abramov AY. High levels of FAD autofluorescence indicate pathology preceding cell death. Biochim Biophys Acta Gen Subj 2024; 1868:130520. [PMID: 37952565 DOI: 10.1016/j.bbagen.2023.130520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Flavin adenine dinucleotide (FAD) autofluorescence from cells reports on the enzymatic activity which involves FAD as a cofactor. Most of the cellular FAD fluorescence comes from complex II of the electron transport chain in mitochondria and can be assessed with inhibitor analysis. The intensity of FAD autofluorescence is not homogeneous and vary between cells in tissue and in cell culture types. Using primary co-culture of neurons and astrocytes, and human skin fibroblasts we have found that very high FAD autofluorescence is a result of an overactivation of the mitochondrial complex II from ETC and from the activity of monoamine oxidases. Cells with high FAD autofluorescence were mostly intact and were not co-labelled with indicators for necrosis or apoptosis. However, cells with high FAD fluorescence showed activation of apoptosis and necrosis within 24 h after initial measurements. Thus, high level of FAD autofluorescence is an indicator of cell pathology and reveals an upcoming apoptosis and necrosis.
Collapse
Affiliation(s)
| | | | | | - Andrey V Dunaev
- Orel State University, 95 Komsomolskaya str, Orel 302026, Russia
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | - Andrey Y Abramov
- Orel State University, 95 Komsomolskaya str, Orel 302026, Russia; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
6
|
Song M, Fan X. Systemic Metabolism and Mitochondria in the Mechanism of Alzheimer's Disease: Finding Potential Therapeutic Targets. Int J Mol Sci 2023; 24:ijms24098398. [PMID: 37176104 PMCID: PMC10179273 DOI: 10.3390/ijms24098398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Elderly people over the age of 65 are those most likely to experience Alzheimer's disease (AD), and aging and AD are associated with apparent metabolic alterations. Currently, there is no curative medication against AD and only several drugs have been approved by the FDA, but these drugs can only improve the symptoms of AD. Many preclinical and clinical trials have explored the impact of adjusting the whole-body and intracellular metabolism on the pathogenesis of AD. The most recent evidence suggests that mitochondria initiate an integrated stress response to environmental stress, which is beneficial for healthy aging and neuroprotection. There is also an increasing awareness of the differential risk and potential targeting strategies related to the metabolic level and microbiome. As the main participants in intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been regarded as potential therapeutic targets for AD. This review summarizes and highlights these advances.
Collapse
Affiliation(s)
- Meiying Song
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
7
|
Chang JC, Chen L, Chang CR. Editorial: Mitochondrial therapy in neurological diseases. Front Mol Neurosci 2022; 15:988792. [PMID: 35979147 PMCID: PMC9376612 DOI: 10.3389/fnmol.2022.988792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jui-Chih Chang
- Center of Regenerative Medicine and Tissue Repair, Institute of ATP, Changhua Christian Hospital, Changhua City, Taiwan
| | - Linyi Chen
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chuang-Rung Chang
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
8
|
Piccirillo S, Magi S, Preziuso A, Serfilippi T, Cerqueni G, Orciani M, Amoroso S, Lariccia V. The Hidden Notes of Redox Balance in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:1456. [PMID: 35892658 PMCID: PMC9331713 DOI: 10.3390/antiox11081456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS) are versatile molecules that, even if produced in the background of many biological processes and responses, possess pleiotropic roles categorized in two interactive yet opposite domains. In particular, ROS can either function as signaling molecules that shape physiological cell functions, or act as deleterious end products of unbalanced redox reactions. Indeed, cellular redox status needs to be tightly regulated to ensure proper cellular functioning, and either excessive ROS accumulation or the dysfunction of antioxidant systems can perturb the redox homeostasis, leading to supraphysiological concentrations of ROS and potentially harmful outcomes. Therefore, whether ROS would act as signaling molecules or as detrimental factors strictly relies on a dynamic equilibrium between free radical production and scavenging resources. Of notice, the mammalian brain is particularly vulnerable to ROS-mediated toxicity, because it possesses relatively poor antioxidant defenses to cope with the redox burden imposed by the elevated oxygen consumption rate and metabolic activity. Many features of neurodegenerative diseases can in fact be traced back to causes of oxidative stress, which may influence both the onset and progression of brain demise. This review focuses on the description of the dual roles of ROS as double-edge sword in both physiological and pathological settings, with reference to Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Tiziano Serfilippi
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Giorgia Cerqueni
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy;
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| |
Collapse
|
9
|
A review: traditional herbs and remedies impacting pathogenesis of Parkinson's disease. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:495-513. [PMID: 35258640 DOI: 10.1007/s00210-022-02223-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/15/2022] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons, leading to misbalance and loss of coordination. Current therapies are claimed only for symptomatic relief, on long-term use, which causes alteration in basal ganglia, and give rise to various adverse effects like dyskinesia and extra pyramidal side effects, which is reversed and proved to be attenuated with the help of various herbal approaches. Therefore, in order to attenuate the dopaminergic complications, focus of current research has been shifted from dopaminergic to non-dopaminergic strategies. Herbs and herbal remedies seems to be a better option to overcome the complications associated with current dopaminergic therapies. In recent years, various herbs and herbal remedies based on Ayurveda, traditional Chinese and Korean remedies, have become the target of various researches. These herbs and their bioactive compound are being extensively used to treat PD in India, China, Japan, and Korea. The major focus of this current review is to analyze preclinical studies with reference to various herbs, bioactive compounds, and traditional remedies for the management of Parkinson disorder, which will give an insight towards clinical trials.
Collapse
|
10
|
Ali MZ, Dholaniya PS. Oxidative phosphorylation mediated pathogenesis of Parkinson's disease and its implication via Akt signaling. Neurochem Int 2022; 157:105344. [PMID: 35483538 DOI: 10.1016/j.neuint.2022.105344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022]
Abstract
Substantia Nigra Pars-compacta (SNpc), in the basal ganglion region, is a primary source of dopamine release. These dopaminergic neurons require more energy than other neurons, as they are highly arborized and redundant. Neurons meet most of their energy demand (∼90%) from mitochondria. Oxidative phosphorylation (OxPhos) is the primary pathway for energy production. Many genes involved in Parkinson's disease (PD) have been associated with OxPhos, especially complex I. Abrogation in complex I leads to reduced ATP formation in these neurons, succumbing to death by inducing apoptosis. This review discusses the interconnection between complex I-associated PD genes and specific mitochondrial metabolic factors (MMFs) of OxPhos. Interestingly, all the complex I-associated PD genes discussed here have been linked to the Akt signaling pathway; thus, neuron survival is promoted and smooth mitochondrial function is ensured. Any changes in these genes disrupt the Akt pathway, which hampers the opening of the permeability transition pore (PTP) via GSK3β dephosphorylation; promotes destabilization of OxPhos; and triggers the release of pro-apoptotic factors.
Collapse
Affiliation(s)
- Md Zainul Ali
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
11
|
Interaction of Mitochondrial Calcium and ROS in Neurodegeneration. Cells 2022; 11:cells11040706. [PMID: 35203354 PMCID: PMC8869783 DOI: 10.3390/cells11040706] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative disorders are currently incurable devastating diseases which are characterized by the slow and progressive loss of neurons in specific brain regions. Progress in the investigation of the mechanisms of these disorders helped to identify a number of genes associated with familial forms of these diseases and a number of toxins and risk factors which trigger sporadic and toxic forms of these diseases. Recently, some similarities in the mechanisms of neurodegenerative diseases were identified, including the involvement of mitochondria, oxidative stress, and the abnormality of Ca2+ signaling in neurons and astrocytes. Thus, mitochondria produce reactive oxygen species during metabolism which play a further role in redox signaling, but this may also act as an additional trigger for abnormal mitochondrial calcium handling, resulting in mitochondrial calcium overload. Combinations of these factors can be the trigger of neuronal cell death in some pathologies. Here, we review the latest literature on the crosstalk of reactive oxygen species and Ca2+ in brain mitochondria in physiology and beyond, considering how changes in mitochondrial metabolism or redox signaling can convert this interaction into a pathological event.
Collapse
|
12
|
Fedotova EI, Dolgacheva LP, Abramov AY, Berezhnov AV. Lactate and Pyruvate Activate Autophagy and Mitophagy that Protect Cells in Toxic Model of Parkinson's Disease. Mol Neurobiol 2021; 59:177-190. [PMID: 34642892 DOI: 10.1007/s12035-021-02583-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022]
Abstract
Intracellular quality control regulated by autophagy process is important for maintenance of cellular homeostasis. Deregulation of autophagy and more specifically mitophagy leads to accumulation of the misfolded proteins and damaged mitochondria that in turn leads to the cell loss. Alteration of autophagy and mitophagy has shown to be involved in the number of disorders including neurodegenerative diseases. Autophagy and mitophagy could be activated by short-time acidification of the cytosol; however, most of the compounds which can induce it are toxic. Here, we tested several organic compounds which are involved in cellular metabolism on their ability to change intracellular pH and induce mitophagy/autophagy. We have found that lactate and pyruvate are able to reduce intracellular pH in non-toxic concentrations. Short-term (2 h) and long-term (24 h) incubation of the cells with lactate and pyruvateinduced mitophagy and autophagy. Incubation of the SH-SY5Y cells or primary neurons and astrocytes with lactate or pyruvate also activated mitophagy and autophagy after MPP + treatment that led to recovery of mitochondrial function and protection of these cells against apoptotic and necrotic death. Thus, pyruvate- or lactate-induced acidification of cytosol activates cell protective mitophagy and autophagy.
Collapse
Affiliation(s)
- Evgeniya I Fedotova
- Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290, Pushchino, Russia.,Cell Physiology and Pathology Laboratory, Orel State University, 29 Naugorskoe Highway, 302020, Orel, Russia
| | - Ludmila P Dolgacheva
- Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290, Pushchino, Russia
| | - Andrey Y Abramov
- Cell Physiology and Pathology Laboratory, Orel State University, 29 Naugorskoe Highway, 302020, Orel, Russia.,Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexey V Berezhnov
- Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290, Pushchino, Russia. .,Cell Physiology and Pathology Laboratory, Orel State University, 29 Naugorskoe Highway, 302020, Orel, Russia.
| |
Collapse
|
13
|
Komilova NR, Angelova PR, Berezhnov AV, Stelmashchuk OA, Mirkhodjaev UZ, Houlden H, Gourine AV, Esteras N, Abramov AY. Metabolically induced intracellular pH changes activate mitophagy, autophagy, and cell protection in familial forms of Parkinson's disease. FEBS J 2021; 289:699-711. [PMID: 34528385 DOI: 10.1111/febs.16198] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/26/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder induced by the loss of dopaminergic neurons in midbrain. The mechanism of neurodegeneration is associated with aggregation of misfolded proteins, oxidative stress, and mitochondrial dysfunction. Considering this, the process of removal of unwanted organelles or proteins by autophagy is vitally important in neurons, and activation of these processes could be protective in PD. Short-time acidification of the cytosol can activate mitophagy and autophagy. Here, we used sodium pyruvate and sodium lactate to induce changes in intracellular pH in human fibroblasts with PD mutations (Pink1, Pink1/Park2, α-synuclein triplication, A53T). We have found that both lactate and pyruvate in millimolar concentrations can induce a short-time acidification of the cytosol in these cells. This induced activation of mitophagy and autophagy in control and PD fibroblasts and protected against cell death. Importantly, application of lactate to acute brain slices of WT and Pink1 KO mice also induced a reduction of pH in neurons and astrocytes that increased the level of mitophagy. Thus, acidification of the cytosol by compounds, which play an important role in cell metabolism, can also activate mitophagy and autophagy and protect cells in the familial form of PD.
Collapse
Affiliation(s)
- Nafisa R Komilova
- Department of Biophysics, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Alexey V Berezhnov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia.,Cell Physiology and Pathology Laboratory, Orel State University, Russia
| | | | | | - Henry Houlden
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Alexander V Gourine
- Department of Neuroscience, Physiology, Pharmacology, University College London, UK
| | - Noemi Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Cell Physiology and Pathology Laboratory, Orel State University, Russia
| |
Collapse
|
14
|
Angelova PR. Sources and triggers of oxidative damage in neurodegeneration. Free Radic Biol Med 2021; 173:52-63. [PMID: 34224816 DOI: 10.1016/j.freeradbiomed.2021.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/19/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Neurodegeneration describes a group of more than 300 neurological diseases, characterised by neuronal loss and intra- or extracellular protein depositions, as key neuropathological features. Multiple factors play role in the pathogenesis of these group of disorders: mitochondrial dysfunction, membrane damage, calcium dyshomeostasis, metallostasis, defect clearance and renewal mechanisms, to name a few. All these factors, without exceptions, have in common the involvement of immensely increased generation of free radicals and occurrence of oxidative stress, and as a result - exhaustion of the scavenging potency of the cellular redox defence mechanisms. Besides genetic predisposition and environmental exposure to toxins, the main risk factor for developing neurodegeneration is age. And although the "Free radical theory of ageing" was declared dead, it is undisputable that accumulation of damage occurs with age, especially in systems that are regulated by free radical messengers and those that oppose oxidative stress, protein oxidation and the accuracy in protein synthesis and degradation machinery has difficulties to be maintained. This brief review provides a comprehensive summary on the main sources of free radical damage, occurring in the setting of neurodegeneration.
Collapse
|
15
|
Calvo-Rodriguez M, Kharitonova EK, Bacskai BJ. In vivo brain imaging of mitochondrial Ca 2+ in neurodegenerative diseases with multiphoton microscopy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118998. [PMID: 33684410 PMCID: PMC8057769 DOI: 10.1016/j.bbamcr.2021.118998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Mitochondria are involved in a large number of essential roles related to neuronal function. Ca2+ handling by mitochondria is critical for many of these functions, including energy production and cellular fate. Conversely, mitochondrial Ca2+ mishandling has been related to a variety of neurodegenerative diseases. Investigating mitochondrial Ca2+ dynamics is essential for advancing our understanding of the role of intracellular mitochondrial Ca2+ signals in physiology and pathology. Improved Ca2+ indicators, and the ability to target them to different cells and compartments, have emerged as useful tools for analysis of Ca2+ signals in living organisms. Combined with state-of-the-art techniques such as multiphoton microscopy, they allow for the study of mitochondrial Ca2+ dynamics in vivo in mouse models of the disease. Here, we provide an overview of the Ca2+ transporters/ion channels in mitochondrial membranes, and the involvement of mitochondrial Ca2+ in neurodegenerative diseases followed by a summary of the main tools available to evaluate mitochondrial Ca2+ dynamics in vivo using the aforementioned technique.
Collapse
Affiliation(s)
- Maria Calvo-Rodriguez
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA.
| | - Elizabeth K Kharitonova
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| |
Collapse
|
16
|
Berezhnov AV, Fedotova EI, Sergeev AI, Teplov IY, Abramov AY. Dopamine controls neuronal spontaneous calcium oscillations via astrocytic signal. Cell Calcium 2021; 94:102359. [PMID: 33550209 DOI: 10.1016/j.ceca.2021.102359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 01/10/2023]
Abstract
Dopamine is a neuromodulator and neurotransmitter responsible for a number of physiological processes. Dysfunctions of the dopamine metabolism and signalling are associated with neurological and psychiatric diseases. Here we report that in primary co-culture of neurons and astrocytes dopamine-induces calcium signal in astrocytes and suppress spontaneous synchronous calcium oscillations (SSCO) in neurons. Effect of dopamine on SSCO in neurons was dependent on calcium signal in astrocytes and could be modified by inhibition of dopamine-induced calcium signal or by stimulation of astrocytic calcium rise with ATP. Ability of dopamine to suppress SSCO in neurons was independent on D1- or D2- like receptors but dependent on GABA and alpha-adrenoreceptors. Inhibitor of monoaminoxidase bifemelane blocked effect of dopamine on astrocytes but also inhibited the effect dopamine on SSCO in neurons. These findings suggest that dopamine-induced calcium signal may stimulate release of neuromodulators such as GABA and adrenaline and thus suppress spontaneous calcium oscillations in neurons.
Collapse
Affiliation(s)
- Alexey V Berezhnov
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia; Cell Physiology and Pathology Laboratory, Orel State University, 302026, Orel, Russia.
| | - Evgeniya I Fedotova
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia; Cell Physiology and Pathology Laboratory, Orel State University, 302026, Orel, Russia
| | - Alexander I Sergeev
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Ilya Y Teplov
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Andrey Y Abramov
- Cell Physiology and Pathology Laboratory, Orel State University, 302026, Orel, Russia; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, WC1N 3BG, London, UK.
| |
Collapse
|
17
|
Novikova IN, Manole A, Zherebtsov EA, Stavtsev DD, Vukolova MN, Dunaev AV, Angelova PR, Abramov AY. Adrenaline induces calcium signal in astrocytes and vasoconstriction via activation of monoamine oxidase. Free Radic Biol Med 2020; 159:15-22. [PMID: 32738397 DOI: 10.1016/j.freeradbiomed.2020.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
Adrenaline or epinephrine is a hormone playing an important role in physiology. It is produced de-novo in the brain in very small amounts compared to other catecholamines, including noradrenaline. Although the effects of adrenaline on neurons have been extensively studied, much less is known about the action of this hormone on astrocytes. Here, we studied the effects of adrenaline on astrocytes in primary co-culture of neurons and astrocytes. Application of adrenaline induced calcium signal in both neurons and astrocytes, but only in neurons this effect was dependent on α- and β-receptor antagonists. The effects of adrenaline on astrocytes were less dependent on adrenoreceptors: the antagonist carvedilol had only moderate effect on the calcium signal and the agonist of adrenoreceptors methoxamine induced a signal only in small proportion of the cells. We found that adrenaline in astrocytes activates phospholipase C and subsequent release of calcium from the endoplasmic reticulum. Calcium signal in astrocytes is initiated by the metabolism of adrenaline by the monoamine oxidase (MAO), which activates reactive oxygen species production and induces lipid peroxidation. Inhibitor of MAO selegiline inhibited both adrenaline-induced calcium signal in astrocytes and the vasoconstriction that indicates an important role for monoamine oxidase in adrenaline-induced signalling and function.
Collapse
Affiliation(s)
- Irina N Novikova
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, 302026, Russia
| | | | - Evgeny A Zherebtsov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, 302026, Russia; Optoelectronics and Measurement Techniques Laboratory, University of Oulu, Oulu, 90014, Finland
| | - Dmitry D Stavtsev
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, 302026, Russia
| | - Marina N Vukolova
- Department of Pathophysiology, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Andrey V Dunaev
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, 302026, Russia
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queens Square, London, WC1N 3BG, UK
| | - Andrey Y Abramov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, 302026, Russia; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queens Square, London, WC1N 3BG, UK.
| |
Collapse
|
18
|
Ademiluyi AO, Oyeniran OH, Oboh G. Dietary monosodium glutamate altered redox status and dopamine metabolism in lobster cockroach (Nauphoeta cinerea). J Food Biochem 2020; 44:e13451. [PMID: 32851688 DOI: 10.1111/jfbc.13451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/08/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022]
Abstract
Monosodium Glutamate (MSG) is the most commonly utilized food additive in the world. However, data on possible biochemical reasons underlying the neurotoxic effects of dietary MSG is limited. Therefore, this study investigated the effects of dietary supplementation of MSG on redox status and neurochemical indices in lobster cockroach nymph. These were evaluated via assessment of enzymatic and nonenzymatic antioxidants, acetylcholinesterase and monoamine oxidase activities, and dopamine content in the cockroach nymph head homogenate. MSG supplemented diet caused dose-dependent significant (p < .05) reduction in % survival, thiol, GSH, dopamine contents, and GST activity, increased ROS, NO, Fe2+ , MDA contents, and MAO activity but no significant (p < .05) difference was obtained in GSH and TBARS contents, and AChE activity. Increased oxidative, cholinergic, and monoaminergic activities coupled with decreased dopamine level might be the plausible biochemical explanation for the neurotoxic effects observed during sub-chronic consumption of large amounts of MSG in diet. PRACTICAL APPLICATIONS: This study suggests that consumption of monosodium glutamate should be reduced to the barest minimum due to its capability to induce oxidative stress and nervous toxicological effects at high dosage.
Collapse
Affiliation(s)
- Adedayo O Ademiluyi
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Olubukola H Oyeniran
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Biochemistry, Federal University Oye - Ekiti, Ekiti, Nigeria
| | - Ganiyu Oboh
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
19
|
Angelova PR, Esteras N, Abramov AY. Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: Finding ways for prevention. Med Res Rev 2020; 41:770-784. [PMID: 32656815 DOI: 10.1002/med.21712] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/23/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Abstract
The world's population aging progression renders age-related neurodegenerative diseases to be one of the biggest unsolved problems of modern society. Despite the progress in studying the development of pathology, finding ways for modifying neurodegenerative disorders remains a high priority. One common feature of neurodegenerative diseases is mitochondrial dysfunction and overproduction of reactive oxygen species, resulting in oxidative stress. Although lipid peroxidation is one of the markers for oxidative stress, it also plays an important role in cell physiology, including activation of phospholipases and stimulation of signaling cascades. Excessive lipid peroxidation is a hallmark for most neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and many other neurological conditions. The products of lipid peroxidation have been shown to be the trigger for necrotic, apoptotic, and more specifically for oxidative stress-related, that is, ferroptosis and neuronal cell death. Here we discuss the involvement of lipid peroxidation in the mechanism of neuronal loss and some novel therapeutic directions to oppose it.
Collapse
Affiliation(s)
- Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Noemi Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
20
|
Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases. Exp Neurol 2020; 329:113309. [PMID: 32289315 DOI: 10.1016/j.expneurol.2020.113309] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 12/27/2022]
Abstract
Central nervous system (CNS) diseases, both traumatic and neurodegenerative, are characterized by impaired mitochondrial bioenergetics and often disturbed mitochondrial dynamics. The dysregulation observed in these pathologies leads to defective respiratory chain function and reduced ATP production, thereby promoting neuronal death. As such, attenuation of mitochondrial dysfunction through induction of mitochondrial biogenesis (MB) is a promising, though still underexplored, therapeutic strategy. MB is a multifaceted process involving the integration of highly regulated transcriptional events, lipid membrane and protein synthesis/assembly and replication of mtDNA. Several nuclear transcription factors promote the expression of genes involved in oxidative phosphorylation, mitochondrial import and export systems, antioxidant defense and mitochondrial gene transcription. Of these, the nuclear-encoded peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is the most commonly studied and is widely accepted as the 'master regulator' of MB. Several recent preclinical studies document that reestablishment of mitochondrial homeostasis through increased MB results in inhibited injury progression and increased functional recovery. This perspective will briefly review the role of mitochondrial dysfunction in the propagation of CNS diseases, while also describing current research strategies that mediate mitochondrial dysfunction and compounds that induce MB for the treatment of acute and chronic neuropathologies.
Collapse
|
21
|
Tau inhibits mitochondrial calcium efflux and makes neurons vulnerable to calcium-induced cell death. Cell Calcium 2019; 86:102150. [PMID: 31918031 DOI: 10.1016/j.ceca.2019.102150] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 11/23/2022]
Abstract
Aggregation or phosphorylation of the microtubule-associated protein tau is the pathological hallmark in a number of diseases termed tauopathies, which include the most common neurodegenerative disorder, Alzheimer's disease; or frontotemporal dementia, linked to mutations in the gene MAPT encoding tau. Although misfolded tau has strong familial and histopathological (as in intracellular tangles) association with neurodegenerative disorders, the cellular mechanism of tau-induced pathology remains to be controversial. Here we studied the effect of tau on the cytosolic and mitochondrial calcium homeostasis using primary cortical cultures treated with the protein and iPSC-derived neurons bearing the 10 + 16 MAPT mutation linked to frontotemporal dementia. We found that incubation of the primary cortical co-cultures of neurons and astrocytes with tau induced spontaneous Ca2+ oscillations in the neurons, which were also observed in iPSC-neurons with the 10 + 16 MAPT mutation. Importantly, tau inhibited mitochondrial calcium efflux via the mitochondrial Na+/Ca2+ exchanger (NCLX) in both neurons and astrocytes. This inhibition led to mitochondrial depolarisation in response to physiological and pathological calcium stimuli and made these cells vulnerable to calcium-induced caspase 3 activation and cell death. Thus, inhibition of the mitochondrial NCLX in neurons with misfolded or mutated tau can be involved in the mechanism of neurodegeneration.
Collapse
|
22
|
Abramov AY, Angelova PR. Mitochondrial dysfunction and energy deprivation in the mechanism of neurodegeneration. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/tjb-2019-0255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Energy-producing organelles mitochondria are involved in a number of cellular functions. Deregulation of mitochondrial function due to mutations or effects of mitochondrial toxins is proven to be a trigger for diverse pathologies, including neurodegenerative disorders. Despite the extensive research done in the last decades, the mechanisms by which mitochondrial dysfunction leads to neuronal deregulation and cell death have not yet been fully elucidated. Brain cells are specifically dependent on mitochondria due to their high energy demands to maintain neuronal ion gradients and signal transduction, and also, to mediate neuronal health through the processes of mitochondrial calcium homeostasis, mitophagy, mitochondrial reactive oxygen species production and mitochondrial dynamics. Some of these processes have been independently implicated in the mechanism of neuronal loss in neurodegeneration. Moreover, it is increasingly recognised that these processes are interdependent and interact within the mitochondria to ensure proper neuronal function and survival.
Collapse
|
23
|
Beaudoin-Chabot C, Wang L, Smarun AV, Vidović D, Shchepinov MS, Thibault G. Deuterated Polyunsaturated Fatty Acids Reduce Oxidative Stress and Extend the Lifespan of C. elegans. Front Physiol 2019; 10:641. [PMID: 31191345 PMCID: PMC6546729 DOI: 10.3389/fphys.2019.00641] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022] Open
Abstract
Chemically reinforced essential fatty acids (FAs) promise to fight numerous age-related diseases including Alzheimer’s, Friedreich’s ataxia and other neurological conditions. The reinforcement is achieved by substituting the atoms of hydrogen at the bis-allylic methylene of these essential FAs with the isotope deuterium. This substitution leads to a significantly slower oxidation due to the kinetic isotope effect, inhibiting membrane damage. The approach has the advantage of preventing the harmful accumulation of reactive oxygen species (ROS) by inhibiting the propagation of lipid peroxidation while antioxidants potentially neutralize beneficial oxidative species. Here, we developed a model system to mimic the human dietary requirement of omega-3 in Caenorhabditis elegans to study the role of deuterated polyunsaturated fatty acids (D-PUFAs). Deuterated trilinolenin [D-TG(54:9)] was sufficient to prevent the accumulation of lipid peroxides and to reduce the accumulation or ROS. Moreover, D-TG(54:9) significantly extended the lifespan of worms under normal and oxidative stress conditions. These findings demonstrate that D-PUFAs can be used as a food supplement to decelerate the aging process, resulting in extended lifespan.
Collapse
Affiliation(s)
| | - Lei Wang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | | | | | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
24
|
Ludtmann MHR, Kostic M, Horne A, Gandhi S, Sekler I, Abramov AY. LRRK2 deficiency induced mitochondrial Ca 2+ efflux inhibition can be rescued by Na +/Ca 2+/Li + exchanger upregulation. Cell Death Dis 2019; 10:265. [PMID: 30890692 PMCID: PMC6424963 DOI: 10.1038/s41419-019-1469-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
Variants of leucine-rich repeat kinase 2 (lrrk2) are associated with an increased risk in developing Parkinson’s disease (PD). Mitochondrial dysfunction and specifically mitochondrial Ca2+ handling has been linked to the pathogenesis of PD. Here we describe for the second time a mitochondrial Ca2+ efflux deficiency in a model displaying alterations in a PD-associated risk protein. LRRK2 deletion, inhibition and mutations led to an impaired mitochondrial Ca2+ extrusion via Na+/Ca2+/Li+ exchanger (NCLX) which in turn lowered mitochondrial permeability transition pore (PTP) opening threshold and increased cell death. The mitochondrial membrane potential was found not to be the underlying cause for the Ca2+ extrusion deficiency. NCLX activity was rescued by a direct (phosphomimetic NCLX mutant) and indirect (protein kinase A) activation which in turn elevated the PTP opening threshold. Therefore, at least two PD-associated risk protein pathways appear to converge on NCLX controlling mitochondrial Ca2+ extrusion and therefore mitochondrial health. Since mitochondrial Ca2+ overload has been described in many neurological disorders this study warrants further studies into NCLX as a potential therapeutic target.
Collapse
Affiliation(s)
- Marthe H R Ludtmann
- Royal Veterinary College, 4 Royal College St, Kings Cross, London, NW1 0TU, UK. .,Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, London, WC1N 3BG, UK.
| | - Marko Kostic
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Amy Horne
- Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Sonia Gandhi
- Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, London, WC1N 3BG, UK.,The Francis Crick Institute, 1 Midland Road, King's Cross, London, NW1 1AT, UK
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Andrey Y Abramov
- Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
25
|
Zhi L, Qin Q, Muqeem T, Seifert EL, Liu W, Zheng S, Li C, Zhang H. Loss of PINK1 causes age-dependent decrease of dopamine release and mitochondrial dysfunction. Neurobiol Aging 2019; 75:1-10. [PMID: 30504091 PMCID: PMC6778692 DOI: 10.1016/j.neurobiolaging.2018.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 09/30/2018] [Accepted: 10/26/2018] [Indexed: 01/01/2023]
Abstract
Mutations and deletions in PTEN-induced kinase 1 (PINK1) cause autosomal recessive Parkinson's disease (PD), the second most common neurodegenerative disorder. PINK1 is a nuclear-genome encoded Ser/Thr kinase in mitochondria. PINK1 deletion was reported to affect dopamine (DA) levels in the striatum and mitochondrial functions but with conflicting results. The role of PINK1 in mitochondrial function and in PD pathogenesis remains to be elucidated thoroughly. In this study, we measured DA release using fast-scan cyclic voltammetry in acute striatal slices from both PINK1 knockout (KO) and wild-type (WT) mice at different ages. We found that single pulse-evoked DA release in the dorsal striatum of PINK1 KO mice was decreased in an age-dependent manner. Furthermore, the decrease was because of less DA release instead of an alteration of DA transporter function or DA terminal degeneration. We also found that PINK1 KO striatal slices had significantly lower basal mitochondria respiration compared with that of WT controls, and this impairment was also age-dependent. These results suggest that the impaired DA release is most likely because of mitochondrial dysfunction and lower ATP production.
Collapse
Affiliation(s)
- Lianteng Zhi
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qi Qin
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Tanziyah Muqeem
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Erin L Seifert
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wencheng Liu
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY, USA
| | - Sushuang Zheng
- School of Life Sciences, Peking University, Beijing, China
| | - Chenjian Li
- School of Life Sciences, Peking University, Beijing, China.
| | - Hui Zhang
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Impairment of spatial working memory and oxidative stress induced by repeated crack cocaine inhalation in rats. Behav Brain Res 2019; 359:910-917. [DOI: 10.1016/j.bbr.2018.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/30/2018] [Accepted: 06/20/2018] [Indexed: 11/17/2022]
|
27
|
Geibl FF, Henrich MT, Oertel WH. Mesencephalic and extramesencephalic dopaminergic systems in Parkinson's disease. J Neural Transm (Vienna) 2019; 126:377-396. [PMID: 30643975 DOI: 10.1007/s00702-019-01970-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
Abstract
Neurodegeneration of the nigrostriatal dopaminergic system and concurrent dopamine (DA) deficiency in the basal ganglia represent core features of Parkinson's disease (PD). Despite the central role of DA in the pathogenesis of PD, dopaminergic systems outside of the midbrain have not been systematically investigated for Lewy body pathology or neurodegeneration. Dopaminergic neurons show a surprisingly rich neurobiological diversity, suggesting that there is not one general type of dopaminergic neuron, but rather a spectrum of different dopaminergic phenotypes. This heterogeneity on the cellular level could account for the observed differences in susceptibility of the dopaminergic systems to the PD disease process. In this review, we will summarize the long history from the first description of PD to the rationally derived DA replacement therapy, describe the basal neuroanatomical and neuropathological features of the different dopaminergic systems in health and PD, explore how neuroimaging techniques broadened our view of the dysfunctional dopaminergic systems in PD and discuss how dopaminergic replacement therapy ameliorates the classical motor symptoms but simultaneously induces a new set of hyperdopaminergic symptoms.
Collapse
Affiliation(s)
- Fanni F Geibl
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany.
| | - Martin T Henrich
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany
| |
Collapse
|
28
|
Basso V, Marchesan E, Peggion C, Chakraborty J, von Stockum S, Giacomello M, Ottolini D, Debattisti V, Caicci F, Tasca E, Pegoraro V, Angelini C, Antonini A, Bertoli A, Brini M, Ziviani E. Regulation of ER-mitochondria contacts by Parkin via Mfn2. Pharmacol Res 2018; 138:43-56. [PMID: 30219582 DOI: 10.1016/j.phrs.2018.09.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/04/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022]
Abstract
Parkin, an E3 ubiquitin ligase and a Parkinson's disease (PD) related gene, translocates to impaired mitochondria and drives their elimination via autophagy, a process known as mitophagy. Mitochondrial pro-fusion protein Mitofusins (Mfn1 and Mfn2) were found to be a target for Parkin mediated ubiquitination. Mfns are transmembrane GTPase embedded in the outer membrane of mitochondria, which are required on adjacent mitochondria to mediate fusion. In mammals, Mfn2 also forms complexes that are capable of tethering mitochondria to endoplasmic reticulum (ER), a structural feature essential for mitochondrial energy metabolism, calcium (Ca2+) transfer between the organelles and Ca2+ dependent cell death. Despite its fundamental physiological role, the molecular mechanisms that control ER-mitochondria cross talk are obscure. Ubiquitination has recently emerged as a powerful tool to modulate protein function, via regulation of protein subcellular localization and protein ability to interact with other proteins. Ubiquitination is also a reversible mechanism, which can be actively controlled by opposing ubiquitination-deubiquitination events. In this work we found that in Parkin deficient cells and parkin mutant human fibroblasts, the tether between ER and mitochondria is decreased. We identified the site of Parkin dependent ubiquitination and showed that the non-ubiquitinatable Mfn2 mutant fails to restore ER-mitochondria physical and functional interaction. Finally, we took advantage of an established in vivo model of PD to demonstrate that manipulation of ER-mitochondria tethering by expressing an ER-mitochondria synthetic linker is sufficient to rescue the locomotor deficit associated to an in vivo Drosophila model of PD.
Collapse
Affiliation(s)
- Valentina Basso
- Department of Biology, University of Padova, Padova, Italy; Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy
| | - Elena Marchesan
- Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy
| | - Caterina Peggion
- Department of Biomedical Science (DSB), University of Padova, Padova, Italy
| | - Joy Chakraborty
- Department of Biology, University of Padova, Padova, Italy; Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy
| | | | | | - Denis Ottolini
- Department of Biology, University of Padova, Padova, Italy
| | - Valentina Debattisti
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Elisabetta Tasca
- Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy
| | | | - Corrado Angelini
- Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy
| | - Angelo Antonini
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Alessandro Bertoli
- Department of Biomedical Science (DSB), University of Padova, Padova, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy
| | - Elena Ziviani
- Department of Biology, University of Padova, Padova, Italy; Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy.
| |
Collapse
|
29
|
α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson's disease. Nat Commun 2018; 9:2293. [PMID: 29895861 PMCID: PMC5997668 DOI: 10.1038/s41467-018-04422-2] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 04/20/2018] [Indexed: 12/18/2022] Open
Abstract
Protein aggregation causes α-synuclein to switch from its physiological role to a pathological toxic gain of function. Under physiological conditions, monomeric α-synuclein improves ATP synthase efficiency. Here, we report that aggregation of monomers generates beta sheet-rich oligomers that localise to the mitochondria in close proximity to several mitochondrial proteins including ATP synthase. Oligomeric α-synuclein impairs complex I-dependent respiration. Oligomers induce selective oxidation of the ATP synthase beta subunit and mitochondrial lipid peroxidation. These oxidation events increase the probability of permeability transition pore (PTP) opening, triggering mitochondrial swelling, and ultimately cell death. Notably, inhibition of oligomer-induced oxidation prevents the pathological induction of PTP. Inducible pluripotent stem cells (iPSC)-derived neurons bearing SNCA triplication, generate α-synuclein aggregates that interact with the ATP synthase and induce PTP opening, leading to neuronal death. This study shows how the transition of α-synuclein from its monomeric to oligomeric structure alters its functional consequences in Parkinson's disease.
Collapse
|
30
|
Kim H, Perentis RJ, Caldwell GA, Caldwell KA. Gene-by-environment interactions that disrupt mitochondrial homeostasis cause neurodegeneration in C. elegans Parkinson's models. Cell Death Dis 2018; 9:555. [PMID: 29748634 PMCID: PMC5945629 DOI: 10.1038/s41419-018-0619-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/23/2018] [Indexed: 11/09/2022]
Abstract
Parkinson's disease (PD) is a complex multifactorial disorder where environmental factors interact with genetic susceptibility. Accumulating evidence suggests that mitochondria have a central role in the progression of neurodegeneration in sporadic and/or genetic forms of PD. We previously reported that exposure to a secondary metabolite from the soil bacterium, Streptomyces venezuelae, results in age- and dose-dependent dopaminergic (DA) neurodegeneration in Caenorhabditis elegans and human SH-SY5Y neurons. Initial characterization of this environmental factor indicated that neurodegeneration occurs through a combination of oxidative stress, mitochondrial complex I impairment, and proteostatic disruption. Here we present extended evidence to elucidate the interaction between this bacterial metabolite and mitochondrial dysfunction in the development of DA neurodegeneration. We demonstrate that it causes a time-dependent increase in mitochondrial fragmentation through concomitant changes in the gene expression of mitochondrial fission and fusion components. In particular, the outer mitochondrial membrane fission and fusion genes, drp-1 (a dynamin-related GTPase) and fzo-1 (a mitofusin homolog), are up- and down-regulated, respectively. Additionally, eat-3, an inner mitochondrial membrane fusion component, an OPA1 homolog, is also down regulated. These changes are associated with a metabolite-induced decline in mitochondrial membrane potential and enhanced DA neurodegeneration that is dependent on PINK-1 function. Genetic analysis also indicates an association between the cell death pathway and drp-1 following S. ven exposure. Metabolite-induced neurotoxicity can be suppressed by DA-neuron-specific RNAi knockdown of eat-3. AMPK activation by 5-amino-4-imidazole carboxamide riboside (AICAR) ameliorated metabolite- or PINK-1-induced neurotoxicity; however, it enhanced neurotoxicity under normal conditions. These studies underscore the critical role of mitochondrial dynamics in DA neurodegeneration. Moreover, given the largely undefined environmental components of PD etiology, these results highlight a response to an environmental factor that defines distinct mechanisms underlying a potential contributor to the progressive DA neurodegeneration observed in PD.
Collapse
Affiliation(s)
- Hanna Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Rylee J Perentis
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
- Departments of Neurobiology, Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA.
- Departments of Neurobiology, Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
31
|
Zeng XS, Geng WS, Jia JJ, Chen L, Zhang PP. Cellular and Molecular Basis of Neurodegeneration in Parkinson Disease. Front Aging Neurosci 2018; 10:109. [PMID: 29719505 PMCID: PMC5913322 DOI: 10.3389/fnagi.2018.00109] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
It has been 200 years since Parkinson disease (PD) was described by Dr. Parkinson in 1817. The disease is the second most common neurodegenerative disease characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the pathogenesis of PD is still unknown, the research findings from scientists are conducive to understand the pathological mechanisms. It is well accepted that both genetic and environmental factors contribute to the onset of PD. In this review, we summarize the mutations of main seven genes (α-synuclein, LRRK2, PINK1, Parkin, DJ-1, VPS35 and GBA1) linked to PD, discuss the potential mechanisms for the loss of dopaminergic neurons (dopamine metabolism, mitochondrial dysfunction, endoplasmic reticulum stress, impaired autophagy, and deregulation of immunity) in PD, and expect the development direction for treatment of PD.
Collapse
Affiliation(s)
- Xian-Si Zeng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Wen-Shuo Geng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Jin-Jing Jia
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Lei Chen
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Peng-Peng Zhang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
32
|
Zeng XS, Geng WS, Jia JJ, Chen L, Zhang PP. Cellular and Molecular Basis of Neurodegeneration in Parkinson Disease. Front Aging Neurosci 2018; 10:109. [PMID: 29719505 DOI: 10.3389/fnagi.2018.00109if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2024] Open
Abstract
It has been 200 years since Parkinson disease (PD) was described by Dr. Parkinson in 1817. The disease is the second most common neurodegenerative disease characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the pathogenesis of PD is still unknown, the research findings from scientists are conducive to understand the pathological mechanisms. It is well accepted that both genetic and environmental factors contribute to the onset of PD. In this review, we summarize the mutations of main seven genes (α-synuclein, LRRK2, PINK1, Parkin, DJ-1, VPS35 and GBA1) linked to PD, discuss the potential mechanisms for the loss of dopaminergic neurons (dopamine metabolism, mitochondrial dysfunction, endoplasmic reticulum stress, impaired autophagy, and deregulation of immunity) in PD, and expect the development direction for treatment of PD.
Collapse
Affiliation(s)
- Xian-Si Zeng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Wen-Shuo Geng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Jin-Jing Jia
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Lei Chen
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Peng-Peng Zhang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
33
|
Kelm-Nelson CA, Brauer AFL, Barth KJ, Lake JM, Sinnen MLK, Stehula FJ, Muslu C, Marongiu R, Kaplitt MG, Ciucci MR. Characterization of early-onset motor deficits in the Pink1-/- mouse model of Parkinson disease. Brain Res 2018; 1680:1-12. [PMID: 29229503 PMCID: PMC5767140 DOI: 10.1016/j.brainres.2017.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/09/2017] [Accepted: 12/04/2017] [Indexed: 01/07/2023]
Abstract
In Parkinson disease (PD), a complex neurodegenerative disorder that affects nearly 10 million people worldwide, motor skills are significantly impaired. However, onset and progression of motor deficits and the neural correlates of these deficits are poorly understood. We used a genetic mouse model of PD (Pink1-/-), with phenotypic similarities to human PD, to investigate the manifestation of early-onset sensorimotor deficits. We hypothesized this mouse model would show early vocalization and gross motor dysfunction that would be progressive in nature. Pink1-/- mice, compared to wild type (WT) controls, were evaluated at 2, 3, 4, 5, and 6 months of age. To quantify deficit progression, ultrasonic vocalizations and spontaneous locomotor activity (cylinder test and pole test) were analyzed. Although somewhat variable, in general, Pink1-/- mice produced significantly more simple calls with reduced intensity as well as a larger percentage of cycle calls compared to WT counterparts. However, there were no significant differences in duration, bandwidth, or peak frequency for any of the ultrasonic call types between genotypes. Pink1-/- mice showed a significant impairment in limb motor skills with fewer hindlimb steps, forelimb steps, and rears and lands in the cylinder test compared to WT. Additionally, Pink1-/- mice took significantly longer to turn and traverse during the pole test. Immunohistochemical staining showed no significant difference in the number of tyrosine hydroxylase (TH) positive cells in the substantia nigra or density of TH staining in the striatum between genotypes. These data suggest the Pink1-/- mouse model may be instrumental in defining early motor biomarkers of PD in the absence of nigrostriatal dopamine loss.
Collapse
Affiliation(s)
- Cynthia A Kelm-Nelson
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Alexander F L Brauer
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA
| | - Kelsey J Barth
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacob M Lake
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mackenzie L K Sinnen
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
| | - Forrest J Stehula
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Cagla Muslu
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
| | - Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery Weill Cornell Medicine, New York, NY, USA
| | - Michael G Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery Weill Cornell Medicine, New York, NY, USA
| | - Michelle R Ciucci
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA; Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
34
|
Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett 2018; 592:692-702. [PMID: 29292494 DOI: 10.1002/1873-3468.12964] [Citation(s) in RCA: 484] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022]
Abstract
Mitochondria are key cell organelles in that they are responsible for energy production and control many processes from signalling to cell death. The function of the mitochondrial electron transport chain is coupled with the production of reactive oxygen species (ROS) in the form of superoxide anion or hydrogen peroxide. As a result of the constant production of ROS, mitochondria are protected by highly efficient antioxidant systems. The rapidly changing levels of ROS in mitochondria, coupled with multiple essential cellular functions, make ROS apt for physiological signalling. Thus, mutations, environmental toxins and chronic ischaemic conditions could affect the mitochondrial redox balance and lead to the development of pathology. In long-living and non-mitotic cells such as neurons, oxidative stress induced by overproduction of mitochondrial ROS or impairment of the antioxidant defence results in a dysfunction of mitochondria and initiation of the cell death cascade. Mitochondrial ROS overproduction and changes in mitochondrial redox homeostasis have been shown to be involved in both a number of neurological conditions and a majority of neurodegenerative diseases. Here, we summarise the involvement of mitochondrial ROS in the mechanism of neuronal loss of major neurodegenerative disorders.
Collapse
Affiliation(s)
- Plamena R Angelova
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
35
|
Mitochondrial calcium imbalance in Parkinson’s disease. Neurosci Lett 2018; 663:86-90. [DOI: 10.1016/j.neulet.2017.08.044] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022]
|
36
|
Lee Y, Kim MS, Lee J. Neuroprotective strategies to prevent and treat Parkinson’s disease based on its pathophysiological mechanism. Arch Pharm Res 2017; 40:1117-1128. [DOI: 10.1007/s12272-017-0960-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023]
|
37
|
Bartolome F, Esteras N, Martin-Requero A, Boutoleau-Bretonniere C, Vercelletto M, Gabelle A, Le Ber I, Honda T, Dinkova-Kostova AT, Hardy J, Carro E, Abramov AY. Pathogenic p62/SQSTM1 mutations impair energy metabolism through limitation of mitochondrial substrates. Sci Rep 2017; 7:1666. [PMID: 28490746 PMCID: PMC5431917 DOI: 10.1038/s41598-017-01678-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/30/2017] [Indexed: 12/21/2022] Open
Abstract
Abnormal mitochondrial function has been found in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Mutations in the p62 gene (also known as SQSTM1) which encodes the p62 protein have been reported in both disorders supporting the idea of an ALS/FTD continuum. In this work the role of p62 in energy metabolism was studied in fibroblasts from FTD patients carrying two independent pathogenic mutations in the p62 gene, and in a p62-knock-down (p62 KD) human dopaminergic neuroblastoma cell line (SH-SY5Y). We found that p62 deficiency is associated with inhibited complex I mitochondrial respiration due to lack of NADH for the electron transport chain. This deficiency was also associated with increased levels of NADPH reflecting a higher activation of pentose phosphate pathway as this is accompanied with higher cytosolic reduced glutathione (GSH) levels. Complex I inhibition resulted in lower mitochondrial membrane potential and higher cytosolic ROS production. Pharmacological activation of transcription factor Nrf2 increased mitochondrial NADH levels and restored mitochondrial membrane potential in p62-deficient cells. Our results suggest that the phenotype is caused by a loss-of-function effect, because similar alterations were found both in the mutant fibroblasts and the p62 KD model. These findings highlight the implication of energy metabolism in pathophysiological events associated with p62 deficiency.
Collapse
Affiliation(s)
- Fernando Bartolome
- Neurodegenerative Disorders group, Instituto de Investigacion Hospital 12 de Octubre (i+12), Av Cordoba, Madrid, 28041, Spain. .,Biomedical Research Networking Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain. .,Department of Molecular Neuroscience, UCL Institute of Neurology Queen Square, London, WC1N 3BG, UK.
| | - Noemi Esteras
- Department of Molecular Neuroscience, UCL Institute of Neurology Queen Square, London, WC1N 3BG, UK
| | - Angeles Martin-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), Madrid, Spain
| | - Claire Boutoleau-Bretonniere
- Laboratoire d'études des mécanismes cognitifs, EA 3082, Université Lyon 2, Bron, F-69500, France.,CHU Nantes, Centre de Mémoire et de Ressource et Recherche (CM2R), Nantes, France.,Inserm, CIC 04, Nantes, France
| | - Martine Vercelletto
- CHU Nantes, Centre de Mémoire et de Ressource et Recherche (CM2R), Nantes, France.,Inserm, CIC 04, Nantes, France
| | - Audrey Gabelle
- Memory Research and Resources Center, Department of Neurology, Montpellier University Hospital, Montpellier, France
| | - Isabelle Le Ber
- CNR-MAJ, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France.,ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC-P6 UMR S 1127 - Hôpital Pitié-Salpêtrière, Paris, France
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery Stony Brook University Stony Brook, New York, 11794, USA
| | | | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology Queen Square, London, WC1N 3BG, UK.,Reta Lilla Weston Laboratories, London, WC1N 3BG, UK
| | - Eva Carro
- Neurodegenerative Disorders group, Instituto de Investigacion Hospital 12 de Octubre (i+12), Av Cordoba, Madrid, 28041, Spain.,Biomedical Research Networking Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
38
|
Jha BK, Joshi H, Dave DD. Portraying the Effect of Calcium-Binding Proteins on Cytosolic Calcium Concentration Distribution Fractionally in Nerve Cells. Interdiscip Sci 2016; 10:674-685. [DOI: 10.1007/s12539-016-0202-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/02/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
|
39
|
Lozano R, Gilmore KJ, Thompson BC, Stewart EM, Waters AM, Romero-Ortega M, Wallace GG. Electrical stimulation enhances the acetylcholine receptors available for neuromuscular junction formation. Acta Biomater 2016; 45:328-339. [PMID: 27554016 DOI: 10.1016/j.actbio.2016.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/18/2016] [Accepted: 08/05/2016] [Indexed: 01/17/2023]
Abstract
Neuromuscular junctions (NMJ) are specialized synapses that link motor neurons with muscle fibers. These sites are fundamental to human muscle activity, controlling swallowing and breathing amongst many other vital functions. Study of this synapse formation is an essential area in neuroscience; the understanding of how neurons interact and control their targets during development and regeneration are fundamental questions. Existing data reveals that during initial stages of development neurons target and form synapses driven by biophysical and biochemical cues, and during later stages they require electrical activity to develop their functional interactions. The aim of this study was to investigate the effect of exogenous electrical stimulation (ES) electrodes directly in contact with cells, on the number and size of acetylcholine receptor (AChR) clusters available for NMJ formation. We used a novel in vitro model that utilizes a flexible electrical stimulation system and allows the systematic testing of several stimulation parameters simultaneously as well as the use of alternative electrode materials such as conductive polymers to deliver the stimulation. Functionality of NMJs under our co-culture conditions was demonstrated by monitoring changes in the responses of primary myoblasts to chemical stimulants that specifically target neuronal signaling. Our results suggest that biphasic electrical stimulation at 250Hz, 100μs pulse width and current density of 1mA/cm2 for 8h, applied via either gold-coated mylar or the conductive polymer PPy, significantly increased the number and size of AChRs clusters available for NMJ formation. This study supports the beneficial use of direct electrical stimulation as a strategic therapy for neuromuscular disorders. STATEMENT OF SIGNIFICANCE The beneficial effects of electrical stimulation (ES) on human cells in vitro and in vivo have long been known. Although the effects of stimulation are clear and the therapeutic benefits are known, no uniform parameters exist with regard to the duration, frequency and amplitude of the ES. To this end, we are answering several important questions on the parameters for ES of nerve and muscle monocultures and co-cultures by probing the effects on the enhancement of acetylcholine receptors (AChR) clustering available for neuromuscular junction formation using a conductive platform. This work opens the possibility to combine electrical stimulus delivered via conductive polymer substrates, from which biomolecules could also be delivered, providing opportunities to further enhance the therapeutic effect.
Collapse
Affiliation(s)
- Rodrigo Lozano
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kerry J Gilmore
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Brianna C Thompson
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Elise M Stewart
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Aaron M Waters
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Mario Romero-Ortega
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
40
|
Hsu KC, Wang FS. Fuzzy Decision Making Approach to Identify Optimum Enzyme Targets and Drug Dosage for Remedying Presynaptic Dopamine Deficiency. PLoS One 2016; 11:e0164589. [PMID: 27736960 PMCID: PMC5063375 DOI: 10.1371/journal.pone.0164589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/27/2016] [Indexed: 11/24/2022] Open
Abstract
Model-based optimization approaches are valuable in developing new drugs for human metabolic disorders. The core objective in most optimal drug designs is positive therapeutic effects. In this study, we considered the effects of therapeutic, adverse, and target variation simultaneously. A fuzzy optimization method was applied to formulate a multiobjective drug design problem for detecting enzyme targets in the presynaptic dopamine metabolic network to remedy two types of enzymopathies caused by deficiencies of vesicular monoamine transporter 2 (VMAT2) and tyrosine hydroxylase (TH). The fuzzy membership approach transforms a two-stage drug discovery problem into a unified decision-making problem. We developed a nested hybrid differential evolution algorithm to efficiently identify a set of potential drug targets. Furthermore, we also simulated the effects of current clinical drugs for Parkinson’s disease (PD) in this model and tried to clarify the possible causes of neurotoxic and neuroprotective effects. The optimal drug design could yield 100% satisfaction grade when both therapeutic effect and the number of targets were considered in the objective. This scenario required regulating one to three and one or two enzyme targets for 50%–95% and 50%–100% VMAT2 and TH deficiencies, respectively. However, their corresponding adverse and target variation effect grades were less satisfactory. For the most severe deficiencies of VMAT2 and TH, a compromise design could be obtained when the effects of therapeutic, adverse, and target variation were simultaneously applied to the optimal drug discovery problem. Such a trade-off design followed the no free lunch theorem for optimization; that is, a more serious dopamine deficiency required more enzyme targets and lower satisfaction grade. In addition, the therapeutic effects of current clinical medications for PD could be enhanced in combination with new enzyme targets. The increase of toxic metabolites after treatment might be the cause of neurotoxic effects of some current PD medications.
Collapse
Affiliation(s)
- Kai-Cheng Hsu
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Feng-Sheng Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan
- * E-mail:
| |
Collapse
|
41
|
Kaczara P, Motterlini R, Kus K, Zakrzewska A, Abramov AY, Chlopicki S. Carbon monoxide shifts energetic metabolism from glycolysis to oxidative phosphorylation in endothelial cells. FEBS Lett 2016; 590:3469-3480. [PMID: 27670394 DOI: 10.1002/1873-3468.12434] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/01/2016] [Accepted: 09/16/2016] [Indexed: 11/10/2022]
Abstract
Carbon monoxide (CO) modulates mitochondrial respiration, but the mechanisms involved are not completely understood. The aim of the present study was to investigate the acute effects of CO on bioenergetics and metabolism in intact EA.hy926 endothelial cells using live cell imaging techniques. Our findings indicate that CORM-401, a compound that liberates CO, reduces ATP production from glycolysis, and induces a mild mitochondrial depolarization. In addition, CO from CORM-401 increases mitochondrial calcium and activates complexes I and II. The subsequent increase in mitochondrial respiration leads to ATP production through oxidative phosphorylation. Thus, our results show that nonactivated endothelial cells rely primarily on glycolysis, but in the presence of CO, mitochondrial Ca2+ increases and activates respiration that shifts the metabolism of endothelial cells from glycolysis- to oxidative phosphorylation-dependent ATP production.
Collapse
Affiliation(s)
- Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Roberto Motterlini
- INSERM Unit 955, Equipe 12, Faculty of Medicine, University Paris-Est, Créteil, France
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK.
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.
| |
Collapse
|
42
|
Role of inorganic polyphosphate in mammalian cells: from signal transduction and mitochondrial metabolism to cell death. Biochem Soc Trans 2016; 44:40-5. [DOI: 10.1042/bst20150223] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inorganic polyphosphate (polyP) is a polymer compromised of linearly arranged orthophosphate units that are linked through high-energy phosphoanhydride bonds. The chain length of this polymer varies from five to several thousand orthophosphates. PolyP is distributed in the most of the living organisms and plays multiple functions in mammalian cells, it is important for blood coagulation, cancer, calcium precipitation, immune response and many others. Essential role of polyP is shown for mitochondria, from implication into energy metabolism and mitochondrial calcium handling to activation of permeability transition pore (PTP) and cell death. PolyP is a gliotransmitter which transmits the signal in astrocytes via activation of P2Y1 receptors and stimulation of phospholipase C. PolyP-induced calcium signal in astrocytes can be stimulated by different lengths of this polymer but only long chain polyP induces mitochondrial depolarization by inhibition of respiration and opening of the PTP. It leads to induction of astrocytic cell death which can be prevented by inhibition of PTP with cyclosporine A. Thus, medium- and short-length polyP plays role in signal transduction and mitochondrial metabolism of astrocytes and long chain of this polymer can be toxic for the cells.
Collapse
|
43
|
PKA Phosphorylation of NCLX Reverses Mitochondrial Calcium Overload and Depolarization, Promoting Survival of PINK1-Deficient Dopaminergic Neurons. Cell Rep 2015; 13:376-86. [PMID: 26440884 PMCID: PMC4709126 DOI: 10.1016/j.celrep.2015.08.079] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/02/2015] [Accepted: 08/28/2015] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial Ca(2+) overload is a critical, preceding event in neuronal damage encountered during neurodegenerative and ischemic insults. We found that loss of PTEN-induced putative kinase 1 (PINK1) function, implicated in Parkinson disease, inhibits the mitochondrial Na(+)/Ca(2+) exchanger (NCLX), leading to impaired mitochondrial Ca(2+) extrusion. NCLX activity was, however, fully rescued by activation of the protein kinase A (PKA) pathway. We further show that PKA rescues NCLX activity by phosphorylating serine 258, a putative regulatory NCLX site. Remarkably, a constitutively active phosphomimetic mutant of NCLX (NCLX(S258D)) prevents mitochondrial Ca(2+) overload and mitochondrial depolarization in PINK1 knockout neurons, thereby enhancing neuronal survival. Our results identify an mitochondrial Ca(2+) transport regulatory pathway that protects against mitochondrial Ca(2+) overload. Because mitochondrial Ca(2+) dyshomeostasis is a prominent feature of multiple disorders, the link between NCLX and PKA may offer a therapeutic target.
Collapse
|
44
|
Abeti R, Abramov AY. Mitochondrial Ca2+ in neurodegenerative disorders. Pharmacol Res 2015; 99:377-81. [DOI: 10.1016/j.phrs.2015.05.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/11/2015] [Accepted: 05/15/2015] [Indexed: 01/08/2023]
|
45
|
Kadigamuwa CC, Le VQ, Wimalasena K. 2, 2'- and 4, 4'-Cyanines are transporter-independent in vitro dopaminergic toxins with the specificity and mechanism of toxicity similar to MPP⁺. J Neurochem 2015; 135:755-67. [PMID: 26094622 DOI: 10.1111/jnc.13201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/12/2015] [Accepted: 06/11/2015] [Indexed: 12/11/2022]
Abstract
Specific uptake through dopamine transporter followed by the inhibition of the mitochondrial complex-I have been accepted as the cause of the specific dopaminergic toxicity of 1-methyl-4-phenylpyridinium (MPP(+) ). However, MPP(+) is taken up into many cell types through other transporters, suggesting that, in addition to the efficient uptake, intrinsic vulnerability of dopaminergic cells may also contribute to their high sensitivity to MPP(+) and similar toxins. To test this possibility, two simple cyanines were employed in a comparative study based on their unique characteristics and structural similarity to MPP(+) . Here, we show that they freely accumulate in dopaminergic (MN9D and SH-SY5Y) as well as in liver (HepG2) cells, but are specifically and highly toxic to dopaminergic cells with IC50s in the range of 50-100 nM, demonstrating that they are about 1000-fold more toxic than MPP(+) under similar experimental conditions. They cause mitochondrial depolarization non-specifically, but increase the reactive oxygen species specifically in dopaminergic cells leading to the apoptotic cell death parallel to MPP(+) . These and other findings suggest that the specific dopaminergic toxicity of these cyanines is due to the inherent vulnerability of dopaminergic cells toward mitochondrial toxins that lead to the excessive production of reactive oxygen species. Therefore, the specific dopaminergic toxicity of MPP(+) must also be, at least partly, due to the specific vulnerability of dopaminergic neurons. Thus, these cyanines could be stronger in vivo dopaminergic toxins than MPP(+) and their in vivo toxicities must be evaluated. Here, we show that cationic lipophilic cyanines with structural similarity to 1-methyl-4-phenylpyridinium (MPP(+) ) freely accumulate non-specifically, but only toxic to dopaminergic cells. They are 1000-fold more toxic than MPP(+) under similar conditions. They cause mitochondrial depolarization non-specifically, but increase the ROS specifically in dopaminergic cells leading to the apoptotic cell death parallel to MPP(+) . Thus, the specific dopaminergic toxicity of MPP(+) and related toxins could be due to the intrinsic vulnerability of dopaminergic cells toward mitochondrial oxidative stress.
Collapse
Affiliation(s)
| | - Viet Q Le
- Department of Chemistry, Wichita State University, Wichita, Kansas, USA
| | | |
Collapse
|
46
|
The spatiotemporal regulation of the Keap1-Nrf2 pathway and its importance in cellular bioenergetics. Biochem Soc Trans 2015; 43:602-10. [PMID: 26551700 PMCID: PMC4613514 DOI: 10.1042/bst20150003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Indexed: 12/30/2022]
Abstract
The Kelch-like ECH associated protein 1 (Keap1)–NF-E2 p45-related factor 2 (Nrf2) pathway regulates networks of proteins that protect against the cumulative damage of oxidants, electrophiles and misfolded proteins. The interaction between transcription factor Nrf2 and its main negative cytoplasmic regulator Keap1 follows a cycle whereby the protein complex sequentially adopts two conformations: ‘open’, in which Nrf2 binds to one monomer of Keap1, followed by ‘closed’, in which Nrf2 interacts with both members of the Keap1 dimer. Electrophiles and oxidants (inducers) are recognized by cysteine sensors within Keap1, disrupting its ability to target Nrf2 for ubiquitination and degradation. Consequently, the protein complex accumulates in the ‘closed’ conformation, free Keap1 is not regenerated and newly synthesized Nrf2 is stabilized to activate target-gene transcription. The prevailing view of the Keap1–Nrf2 pathway, for which there exists a wealth of experimental evidence, is that it lies at the heart of cellular defence, playing crucial roles in adaptation and survival under conditions of stress. More recently, the significance of Nrf2 in intermediary metabolism and mitochondrial physiology has also been recognized, adding another layer of cytoprotection to the repertoire of functions of Nrf2. One way by which Nrf2 influences mitochondrial activity is through increasing the availability of substrates (NADH and FADH2) for respiration. Another way is through accelerating fatty acid oxidation (FAO). These findings reinforce the reciprocal relationship between oxidative phosphorylation and the cellular redox state, and highlight the key role of Nrf2 in regulating this balance.
Collapse
|
47
|
Pereira RB, Andrade PB, Valentão P. A Comprehensive View of the Neurotoxicity Mechanisms of Cocaine and Ethanol. Neurotox Res 2015; 28:253-67. [PMID: 26105693 DOI: 10.1007/s12640-015-9536-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/09/2015] [Accepted: 06/16/2015] [Indexed: 01/17/2023]
Abstract
Substance use disorder is an emerging problem concerning to human health, causing severe side effects, including neurotoxicity. The use of illegal drugs and the misuse of prescription or over-the-counter drugs are growing in this century, being one of the major public health problems. Ethanol and cocaine are one of the most frequently used drugs and, according to the National Institute on Drug Abuse, their concurrent consumption is one of the major causes for emergency hospital room visits. These molecules act in the brain through different mechanisms, altering the nervous system function. Researchers have focused the attention not just in the mechanism of action of these drugs, but also in the mechanism by which they damage the nervous tissue (neurotoxicity). Therefore, the goal of the present review is to provide a global perspective about the mechanisms of the neurotoxicity of cocaine and ethanol.
Collapse
Affiliation(s)
- Renato B Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal
| | | | | |
Collapse
|
48
|
|
49
|
Impaired mitochondrial homeostasis and neurodegeneration: towards new therapeutic targets? J Bioenerg Biomembr 2014; 47:89-99. [PMID: 25216534 PMCID: PMC4323516 DOI: 10.1007/s10863-014-9576-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/25/2014] [Indexed: 12/12/2022]
Abstract
The sustained integrity of the mitochondrial population of a cell is critical for maintained cell health, and disruption of that integrity is linked strongly to human disease, especially to the neurodegenerative diseases. These are appalling diseases causing untold levels of suffering for which treatment is woefully inadequate. Understanding the mechanisms that disturb mitochondrial homeostasis may therefore prove key to identification of potential new therapeutic pathways. Mechanisms causing mitochondrial dysfunction include the acute catastrophic loss of function caused by opening of the mitochondrial permeability transition pore (mPTP), which collapses bioenergetic function and initiates cell death. This is best characterised in ischaemic reperfusion injury, although it may also contribute to a number of other diseases. More insidious disturbances of mitochondrial homeostasis may result from impaired balance in the pathways that promote mitochondrial repair (biogenesis) and pathways that remove dysfunctional mitochondria (mitophagy). Impaired coordination between these processes is emerging as a key feature of a number of neurodegenerative and neuromuscular disorders. Here we review pathways that may prove to be valuable potential therapeutic targets, focussing on the molecular mechanisms that govern the coordination of these processes and their involvement in neurodegenerative diseases.
Collapse
|
50
|
Alberio T, Mammucari C, D'Agostino G, Rizzuto R, Fasano M. Altered dopamine homeostasis differentially affects mitochondrial voltage-dependent anion channels turnover. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1816-22. [PMID: 24998333 DOI: 10.1016/j.bbadis.2014.06.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 06/23/2014] [Accepted: 06/27/2014] [Indexed: 11/26/2022]
Abstract
Altered dopamine homeostasis plays a key role in the pathogenesis of Parkinson's disease. The generation of reactive oxygen species by spontaneous dopamine oxidation impairs mitochondrial function, causing in turn an enhancement of oxidative stress. Recent findings have highlighted the role of mitochondrial outer membrane proteins in the regulation of the correct disposal of damaged mitochondria. Here, we report the effect of altered dopamine homeostasis on the mitochondrial functionality in human neuroblastoma SH-SY5Y cells, a cellular model widely used to reproduce impaired dopamine homeostasis. We observed that dopamine significantly and relevantly reduces VDAC1 and VDAC2 levels without any change in the mRNA levels. Although mitochondria are depolarized by dopamine and mitochondrial calcium influx is reduced, dysfunctional mitochondria are not removed by mitophagy as it would be expected. Thus, alteration of dopamine homeostasis induces a mitochondrial depolarization not counteracted by the mitophagy quality control. As a consequence, the elimination of VDACs may contribute to the altered mitochondrial disposal in PD pathogenesis, thus enhancing the role of oxidative stress.
Collapse
Affiliation(s)
- Tiziana Alberio
- Division of Biomedical Research, Department of Theoretical and Applied Sciences, University of Insubria, Busto Arsizio, Italy; Center of Neuroscience, University of Insubria, Busto Arsizio, Italy
| | | | - Gianluca D'Agostino
- Division of Biomedical Research, Department of Theoretical and Applied Sciences, University of Insubria, Busto Arsizio, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Institute of Neuroscience, National Council of Research, Padova, Italy
| | - Mauro Fasano
- Division of Biomedical Research, Department of Theoretical and Applied Sciences, University of Insubria, Busto Arsizio, Italy; Center of Neuroscience, University of Insubria, Busto Arsizio, Italy.
| |
Collapse
|