1
|
Dellière S, Chauvin C, Wong SSW, Gressler M, Possetti V, Parente R, Fontaine T, Krüger T, Kniemeyer O, Bayry J, Carvalho A, Brakhage AA, Inforzato A, Latgé JP, Aimanianda V. Interplay between host humoral pattern recognition molecules controls undue immune responses against Aspergillus fumigatus. Nat Commun 2024; 15:6966. [PMID: 39138196 PMCID: PMC11322389 DOI: 10.1038/s41467-024-51047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Pentraxin 3 (PTX3), a long pentraxin and a humoral pattern recognition molecule (PRM), has been demonstrated to be protective against Aspergillus fumigatus, an airborne human fungal pathogen. We explored its mode of interaction with A. fumigatus, and the resulting implications in the host immune response. Here, we demonstrate that PTX3 interacts with A. fumigatus in a morphotype-dependent manner: (a) it recognizes germinating conidia through galactosaminogalactan, a surface exposed cell wall polysaccharide of A. fumigatus, (b) in dormant conidia, surface proteins serve as weak PTX3 ligands, and (c) surfactant protein D (SP-D) and the complement proteins C1q and C3b, the other humoral PRMs, enhance the interaction of PTX3 with dormant conidia. SP-D, C3b or C1q opsonized conidia stimulated human primary immune cells to release pro-inflammatory cytokines and chemokines. However, subsequent binding of PTX3 to SP-D, C1q or C3b opsonized conidia significantly decreased the production of pro-inflammatory cytokines/chemokines. PTX3 opsonized germinating conidia also significantly lowered the production of pro-inflammatory cytokines/chemokines while increasing IL-10 (an anti-inflammatory cytokine) released by immune cells when compared to the unopsonized counterpart. Overall, our study demonstrates that PTX3 recognizes A. fumigatus either directly or by interplaying with other humoral PRMs, thereby restraining detrimental inflammation. Moreover, PTX3 levels were significantly higher in the serum of patients with invasive pulmonary aspergillosis (IPA) and COVID-19-associated pulmonary aspergillosis (CAPA), supporting previous observations in IPA patients, and suggesting that it could be a potential panel-biomarker for these pathological conditions caused by A. fumigatus.
Collapse
Affiliation(s)
- Sarah Dellière
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Paris, France
- Laboratoire de Parasitologie-Mycologie, AP-HP, Hôpital Saint-Louis, Paris, France
- Institut Pasteur, Université Paris Cité, Immunobiology of Aspergillus, Paris, France
| | - Camille Chauvin
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris-Cité, Paris, France
| | - Sarah Sze Wah Wong
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Paris, France
- Institut Pasteur, Unité des Aspergillus, Paris, France
| | - Markus Gressler
- Institut Pasteur, Unité des Aspergillus, Paris, France
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany; Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research, and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, Jena, Germany
| | - Valentina Possetti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Thierry Fontaine
- Institut Pasteur, Unité des Aspergillus, Paris, France
- Institut Pasteur, Université Paris Cité, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research, and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research, and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris-Cité, Paris, France
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, India
| | - Agostinho Carvalho
- Life & Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research, and Infection Biology (Leibniz-HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Vishukumar Aimanianda
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Paris, France.
- Institut Pasteur, Université Paris Cité, Immunobiology of Aspergillus, Paris, France.
- Institut Pasteur, Unité des Aspergillus, Paris, France.
| |
Collapse
|
2
|
Shende R, Wong SSW, Meitei HT, Lal G, Madan T, Aimanianda V, Pal JK, Sahu A. Protective role of host complement system in Aspergillus fumigatus infection. Front Immunol 2022; 13:978152. [PMID: 36211424 PMCID: PMC9539816 DOI: 10.3389/fimmu.2022.978152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening fungal infection for immunocompromised hosts. It is, therefore, necessary to understand the immune pathways that control this infection. Although the primary infection site is the lungs, aspergillosis can disseminate to other organs through unknown mechanisms. Herein we have examined the in vivo role of various complement pathways as well as the complement receptors C3aR and C5aR1 during experimental systemic infection by Aspergillus fumigatus, the main species responsible for IA. We show that C3 knockout (C3-/-) mice are highly susceptible to systemic infection of A. fumigatus. Intriguingly, C4-/- and factor B (FB)-/- mice showed susceptibility similar to the wild-type mice, suggesting that either the complement pathways display functional redundancy during infection (i.e., one pathway compensates for the loss of the other), or complement is activated non-canonically by A. fumigatus protease. Our in vitro study substantiates the presence of C3 and C5 cleaving proteases in A. fumigatus. Examination of the importance of the terminal complement pathway employing C5-/- and C5aR1-/- mice reveals that it plays a vital role in the conidial clearance. This, in part, is due to the increased conidial uptake by phagocytes. Together, our data suggest that the complement deficiency enhances the susceptibility to systemic infection by A. fumigatus.
Collapse
Affiliation(s)
- Rajashri Shende
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
- Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Sarah Sze Wah Wong
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Department of Mycology, Paris, France
| | - Heikrujam Thoihen Meitei
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
| | - Taruna Madan
- Department of Innate Immunity, ICMR – National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Vishukumar Aimanianda
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Department of Mycology, Paris, France
- *Correspondence: Arvind Sahu, ; Vishukumar Aimanianda,
| | - Jayanta Kumar Pal
- Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Arvind Sahu
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
- *Correspondence: Arvind Sahu, ; Vishukumar Aimanianda,
| |
Collapse
|
3
|
Huang X, Li X, An H, Wang J, Ding M, Wang L, Li L, Ji Q, Qu F, Wang H, Xu Y, Lu X, He Y, Zhang JR. Capsule type defines the capability of Klebsiella pneumoniae in evading Kupffer cell capture in the liver. PLoS Pathog 2022; 18:e1010693. [PMID: 35914009 PMCID: PMC9342791 DOI: 10.1371/journal.ppat.1010693] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Polysaccharide capsule is the main virulence factor of K. pneumoniae, a major pathogen of bloodstream infections in humans. While more than 80 capsular serotypes have been identified in K. pneumoniae, only several serotypes are frequently identified in invasive infections. It is documented that the capsule enhances bacterial resistance to phagocytosis, antimicrobial peptides and complement deposition under in vitro conditions. However, the precise role of the capsule in the process of K. pneumoniae bloodstream infections remains to be elucidated. Here we show that the capsule promotes K. pneumoniae survival in the bloodstream by protecting bacteria from being captured by liver resident macrophage Kupffer cells (KCs). Our real-time in vivo imaging revealed that blood-borne acapsular K. pneumoniae mutant is rapidly captured and killed by KCs in the liver sinusoids of mice, whereas, to various extents, encapsulated strains bypass the anti-bacterial machinery in a serotype-dependent manner. Using capsule switched strains, we show that certain high-virulence (HV) capsular serotypes completely block KC’s capture, whereas the low-virulence (LV) counterparts confer partial protection against KC’s capture. Moreover, KC’s capture of the LV K. pneumoniae could be in vivo neutralized by free capsular polysaccharides of homologous but not heterologous serotypes, indicating that KCs specifically recognize the LV capsules. Finally, immunization with inactivated K. pneumoniae enables KCs to capture the HV K. pneumoniae. Together, our findings have uncovered that KCs are the major target cells of K. pneumoniae capsule to promote bacterial survival and virulence, which can be reversed by vaccination. Klebsiella pneumoniae is a major human pathogen. While capsule is the main virulence factor of the pathogen, only several of more than 80 capsule serotypes are frequently identified in invasive infections. However, it remains unclear how capsule contributes to K. pneumoniae virulence. Here we show that capsule type defines K. pneumoniae virulence by differential escape of immune surveillance in the liver. While low-virulence (LV) types are captured by Kupffer cells (KCs), high-virulence (HV) types circumvent the anti-bacterial machinery. Further, inactivated K. pneumoniae vaccine enables KCs to capture the HV K. pneumoniae and protects mice from lethal infection. Our findings explain the clinical prevalence of HV capsule types, and provide promising insights for future vaccine development.
Collapse
Affiliation(s)
- Xueting Huang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiuyuan Li
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Haoran An
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Juanjuan Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ming Ding
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Lijun Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Lulu Li
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Quanjiang Ji
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | - Fen Qu
- The Center of Clinical Diagnosis Laboratory, 302 Hospital of PLA, Beijing, China
- China Aviation General Hospital of China Medical University, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinxin Lu
- Department of Clinical Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuan He
- Research Beyond Borders, Boehringer Ingelheim (China), Shanghai, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
4
|
An H, Qian C, Huang Y, Li J, Tian X, Feng J, Hu J, Fang Y, Jiao F, Zeng Y, Huang X, Meng X, Liu X, Lin X, Zeng Z, Guilliams M, Beschin A, Chen Y, Wu Y, Wang J, Oggioni MR, Leong J, Veening JW, Deng H, Zhang R, Wang H, Wu J, Cui Y, Zhang JR. Functional vulnerability of liver macrophages to capsules defines virulence of blood-borne bacteria. J Exp Med 2022; 219:e20212032. [PMID: 35258552 PMCID: PMC8908791 DOI: 10.1084/jem.20212032] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Many encapsulated bacteria use capsules to cause invasive diseases. However, it remains largely unknown how the capsules enhance bacterial virulence under in vivo infection conditions. Here we show that the capsules primarily target the liver to enhance bacterial survival at the onset of blood-borne infections. In a mouse sepsis model, the capsules enabled human pathogens Streptococcus pneumoniae and Escherichia coli to circumvent the recognition of liver-resident macrophage Kupffer cells (KCs) in a capsular serotype-dependent manner. In contrast to effective capture of acapsular bacteria by KCs, the encapsulated bacteria are partially (low-virulence types) or completely (high-virulence types) "untouchable" for KCs. We finally identified the asialoglycoprotein receptor (ASGR) as the first known capsule receptor on KCs to recognize the low-virulence serotype-7F and -14 pneumococcal capsules. Our data identify the molecular interplay between the capsules and KCs as a master controller of the fate and virulence of encapsulated bacteria, and suggest that the interplay is targetable for therapeutic control of septic infections.
Collapse
Affiliation(s)
- Haoran An
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Chenyun Qian
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yijia Huang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Jing Li
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Xianbin Tian
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Jiaying Feng
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Jiao Hu
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Yujie Fang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Fangfang Jiao
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Yuna Zeng
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Xueting Huang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xianbin Meng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xue Liu
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Xin Lin
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhutian Zeng
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Martin Guilliams
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Alain Beschin
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije University Brussel, Brussels, Belgium
| | - Yongwen Chen
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jing Wang
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | - John Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Rong Zhang
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Jiang Wu
- Beijing Center for Disease Control and Prevention, Beijing, China
| | - Yan Cui
- Department of General Surgery, Strategic Support Force Medical Center, Beijing, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Mabrook M, Abd El-Aziz AM, Youssif M A, Hassan R. Inhibition of CL-11 reduces pulmonary inflammation in a mouse model of Klebsiella pneumoniae lung infection. Microb Pathog 2022; 164:105408. [PMID: 35063609 DOI: 10.1016/j.micpath.2022.105408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 11/24/2022]
Abstract
Infection caused by K. pneumoniae is associated with severe inflammation due to stimulation of the innate immune components including the complement system, which is the main player of the innate immune response. Excessive complement-mediated inflammation may cause severe lung injury. Here we clearly show that K. pneumoniae binds to different lectin pathway carbohydrate recognition molecules and activates the complement cascade via the LP. Administration of anti-CL-11 antibodies 6 h before the infection impairs LP functional activity but it shows no effect on the survival time of mice infected with K. pneumoniae. Similarly, no significant difference in bacterial load in blood and lung tissues was observed between mice that received anti-CL-11 and control group treated with an isotype antibody. Interestingly, treatment of mice with anti-CL-11 prior to infection significantly improved histopathological changes and lung injury score induced by K. pneumoniae. Moreover, administration of anti-CL-11 reduced leukocytes infiltration into lung tissues and decreased the levels of the inflammatory mediators TNF-α, IL-6, and IL-1β in the infected mice. These findings indicate that inhibition of the LP could secure a significant level of protection against lung injury during the infection caused by K. pneumoniae.
Collapse
Affiliation(s)
- Maha Mabrook
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Abeer M Abd El-Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ali Youssif M
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom.
| | - Ramadan Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
6
|
Parente R, Doni A, Bottazzi B, Garlanda C, Inforzato A. The complement system in Aspergillus fumigatus infections and its crosstalk with pentraxins. FEBS Lett 2020; 594:2480-2501. [PMID: 31994174 DOI: 10.1002/1873-3468.13744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022]
Abstract
Aspergillosis is a life-threatening infection mostly affecting immunocompromised individuals and primarily caused by the saprophytic fungus Aspergillus fumigatus. At the host-pathogen interface, both cellular and humoral components of the innate immune system are increasingly acknowledged as essential players in the recognition and disposal of this opportunistic mold. Fundamental hereof is the contribution of the complement system, which deploys all three activation pathways in the battle against A. fumigatus, and functionally cooperates with other soluble pattern recognition molecules, including pentraxins. In particular, preclinical and clinical observations point to the long pentraxin PTX3 as a nonredundant and complement-dependent effector with protective functions against A. fumigatus. Based on past and current literature, here we discuss how the complement participates in the immune response to this fungal pathogen, and illustrate its crosstalk with the pentraxins, with a focus on PTX3. Emphasis is placed on the molecular mechanisms underlying such processes, the genetic evidence from human epidemiology, and the translational potential of the currently available knowledge.
Collapse
Affiliation(s)
- Raffaella Parente
- Department of Immunology and Inflammation, Humanitas Clinical and Research Institute - IRCCS, Milan, Italy
| | - Andrea Doni
- Department of Immunology and Inflammation, Humanitas Clinical and Research Institute - IRCCS, Milan, Italy
| | - Barbara Bottazzi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Institute - IRCCS, Milan, Italy
| | - Cecilia Garlanda
- Department of Immunology and Inflammation, Humanitas Clinical and Research Institute - IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Antonio Inforzato
- Department of Immunology and Inflammation, Humanitas Clinical and Research Institute - IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
7
|
Ali YM, Sim RB, Schwaeble W, Shaaban MI. Enterococcus faecalis Escapes Complement-Mediated Killing via Recruitment of Complement Factor H. J Infect Dis 2019; 220:1061-1070. [PMID: 31058287 DOI: 10.1093/infdis/jiz226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/01/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Enterococcus faecalis is considered to be the most important species of enterococci responsible for blood stream infections in critically ill patients. In blood, the complement system is activated via the classical pathway (CP), the lectin pathway (LP), or the alternative pathway (AP), and it plays a critical role in opsonophagocytosis of bacteria including E faecalis. METHODS In a mouse model of enterococcus peritonitis, BALB-C mice were challenged with a high dose of E faecalis 12 hours after intraperitoneal administration of anti-Factor H (FH) antibodies or isotype control. Four hours later, control mice developed higher bacterial burden in blood and organs compared with mice treated with anti-FH antibodies. RESULTS We demonstrate that complement recognition molecules C1q, CL-11, and murine ficolin-A bind the enterococcus and drive the CP and the LP in human and mouse. We further describe that E faecalis evades the AP by recruitment of FH on its surface. Our results show a strong C3b deposition on E faecalis via both the CP and the LP but not through the AP. CONCLUSIONS These findings indicate that E faecalis avoids the complement phagocytosis by the AP via sequestering complement FH from the host blood.
Collapse
Affiliation(s)
- Youssif M Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, United Kingdom
| | - Robert B Sim
- Department of Pharmacology, Oxford University, United Kingdom
| | - Wilhelm Schwaeble
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, United Kingdom
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
8
|
Bidula S, Sexton DW, Schelenz S. Ficolins and the Recognition of Pathogenic Microorganisms: An Overview of the Innate Immune Response and Contribution of Single Nucleotide Polymorphisms. J Immunol Res 2019; 2019:3205072. [PMID: 30868077 PMCID: PMC6379837 DOI: 10.1155/2019/3205072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/29/2018] [Accepted: 12/24/2018] [Indexed: 12/19/2022] Open
Abstract
Ficolins are innate pattern recognition receptors (PRR) and play integral roles within the innate immune response to numerous pathogens throughout the circulation, as well as within organs. Pathogens are primarily removed by direct opsonisation following the recognition of cell surface carbohydrates and other immunostimulatory molecules or via the activation of the lectin complement pathway, which results in the deposition of C3b and the recruitment of phagocytes. In recent years, there have been a number of studies implicating ficolins in the recognition and removal of numerous bacterial, viral, fungal, and parasitic pathogens. Moreover, there has been expanding evidence highlighting that mutations within these key immune proteins, or the possession of particular haplotypes, enhance susceptibility to colonization by pathogens and dysfunctional immune responses. This review will therefore encompass previous knowledge on the role of ficolins in the recognition of bacterial and viral pathogens, while acknowledging the recent advances in the immune response to fungal and parasitic infections. Additionally, we will explore the various genetic susceptibility factors that predispose individuals to infection.
Collapse
Affiliation(s)
- Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Darren W. Sexton
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Silke Schelenz
- Department of Microbiology, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| |
Collapse
|
9
|
Adler Sørensen C, Rosbjerg A, Hebbelstrup Jensen B, Krogfelt KA, Garred P. The Lectin Complement Pathway Is Involved in Protection Against Enteroaggregative Escherichia coli Infection. Front Immunol 2018; 9:1153. [PMID: 29896194 PMCID: PMC5986924 DOI: 10.3389/fimmu.2018.01153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/08/2018] [Indexed: 02/05/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) causes acute and persistent diarrhea worldwide. Still, the involvement of host factors in EAEC infections is unresolved. Binding of recognition molecules from the lectin pathway of complement to EAEC strains have been observed, but the importance is not known. Our aim was to uncover the involvement of these molecules in innate complement dependent immune protection toward EAEC. Binding of mannose-binding lectin, ficolin-1, -2, and -3 to four prototypic EAEC strains, and ficolin-2 binding to 56 clinical EAEC isolates were screened by a consumption-based ELISA method. Flow cytometry was used to determine deposition of C4b, C3b, and the bactericidal C5b-9 membrane attack complex (MAC) on the bacteria in combination with different complement inhibitors. In addition, the direct serum bactericidal effect was assessed. Screening of the prototypic EAEC strains revealed that ficolin-2 was the major binder among the lectin pathway recognition molecules. However, among the clinical EAEC isolates only a restricted number (n = 5) of the isolates bound ficolin-2. Using the ficolin-2 binding isolate C322-17 as a model, we found that incubation with normal human serum led to deposition of C4b, C3b, and to MAC formation. No inhibition of complement deposition was observed when a C1q inhibitor was added, while partial inhibition was observed when ficolin-2 or factor D inhibitors were used separately. Combining the inhibitors against ficolin-2 and factor D led to virtually complete inhibition of complement deposition and protection against direct bacterial killing. These results demonstrate that ficolin-2 may play an important role in innate immune protection against EAEC when an appropriate ligand is exposed, but many EAEC strains evade lectin pathway recognition and may, therefore, circumvent this strategy of innate host immune protection.
Collapse
Affiliation(s)
- Camilla Adler Sørensen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | | | | | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Host Soluble Mediators: Defying the Immunological Inertness of Aspergillus fumigatus Conidia. J Fungi (Basel) 2017; 4:jof4010003. [PMID: 29371495 PMCID: PMC5872306 DOI: 10.3390/jof4010003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/13/2017] [Accepted: 12/22/2017] [Indexed: 12/13/2022] Open
Abstract
Aspergillus fumigatus produce airborne spores (conidia), which are inhaled in abundant quantity. In an immunocompromised population, the host immune system fails to clear the inhaled conidia, which then germinate and invade, leading to pulmonary aspergillosis. In an immunocompetent population, the inhaled conidia are efficiently cleared by the host immune system. Soluble mediators of the innate immunity, that involve the complement system, acute-phase proteins, antimicrobial peptides and cytokines, are often considered to play a complementary role in the defense of the fungal pathogen. In fact, the soluble mediators are essential in achieving an efficient clearance of the dormant conidia, which is the morphotype of the fungus upon inhalation by the host. Importantly, harnessing the host soluble mediators challenges the immunological inertness of the dormant conidia due to the presence of the rodlet and melanin layers. In the review, we summarized the major soluble mediators in the lung that are involved in the recognition of the dormant conidia. This knowledge is essential in the complete understanding of the immune defense against A. fumigatus.
Collapse
|
11
|
Genster N, Østrup O, Schjalm C, Eirik Mollnes T, Cowland JB, Garred P. Ficolins do not alter host immune responses to lipopolysaccharide-induced inflammation in vivo. Sci Rep 2017; 7:3852. [PMID: 28634324 PMCID: PMC5478672 DOI: 10.1038/s41598-017-04121-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/09/2017] [Indexed: 11/17/2022] Open
Abstract
Ficolins are a family of pattern recognition molecules that are capable of activating the lectin pathway of complement. A limited number of reports have demonstrated a protective role of ficolins in animal models of infection. In addition, an immune modulatory role of ficolins has been suggested. Yet, the contribution of ficolins to inflammatory disease processes remains elusive. To address this, we investigated ficolin deficient mice during a lipopolysaccharide (LPS)-induced model of systemic inflammation. Although murine serum ficolin was shown to bind LPS in vitro, there was no difference between wildtype and ficolin deficient mice in morbidity and mortality by LPS-induced inflammation. Moreover, there was no difference between wildtype and ficolin deficient mice in the inflammatory cytokine profiles after LPS challenge. These findings were substantiated by microarray analysis revealing an unaltered spleen transcriptome profile in ficolin deficient mice compared to wildtype mice. Collectively, results from this study demonstrate that ficolins are not involved in host response to LPS-induced systemic inflammation.
Collapse
Affiliation(s)
- Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olga Østrup
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, and K.J. Jebsen TREC, University of Tromsø, Tromsø, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jack B Cowland
- The Granulocyte Research Laboratory, Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Olszowski T, Milona M, Janiszewska-Olszowska J, Safranow K, Skonieczna-Żydecka K, Walczak A, Sikora M, Chlubek D, Madlani A, Adler G. The Lack of Association between FCN2 Gene Promoter Region Polymorphisms and Dental Caries in Polish Children. Caries Res 2017; 51:79-84. [PMID: 28088794 DOI: 10.1159/000455054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/09/2016] [Indexed: 12/16/2023] Open
Abstract
The aim of this study was to examine the association of single-nucleotide polymorphisms (SNPs) in the gene encoding ficolin-2 protein (FCN2 gene) at positions -986 (rs17514136), -602 (rs3124953), and -4 (rs3124952) with dental caries in Polish children. Two hundred and sixty Polish Caucasian children aged 15 years were enrolled in this study: 82 with "higher" caries experience (DMFT >5) and 178 with "lower" caries experience (DMFT ≤5). In addition, subjects with caries experience (DMFT ≥1) and caries-free subjects (DMFT = 0) were compared. FCN2 SNPs were genotyped with PCR-RFLP methods. There were no significant differences in the genotype, allele, or haplotype distributions in 3 analyzed SNPs of the FCN2 gene between children with "higher" and those with "lower" caries experience as well as between children with caries experience and caries-free children. In conclusion, we did not find any association of FCN2 promoter polymorphisms at positions -986, -602, and -4 with dental caries in Polish children.
Collapse
Affiliation(s)
- T Olszowski
- Department of Hygiene and Epidemiology, Pomeranian Medical University, Szczecin, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rosbjerg A, Genster N, Pilely K, Skjoedt MO, Stahl GL, Garred P. Complementary Roles of the Classical and Lectin Complement Pathways in the Defense against Aspergillus fumigatus. Front Immunol 2016; 7:473. [PMID: 27857715 PMCID: PMC5093123 DOI: 10.3389/fimmu.2016.00473] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/19/2016] [Indexed: 11/26/2022] Open
Abstract
Aspergillus fumigatus infections are associated with a high mortality rate for immunocompromised patients. The complement system is considered to be important in protection against this fungus, yet the course of activation is unclear. The aim of this study was to unravel the role of the classical, lectin, and alternative pathways under both immunocompetent and immunocompromised conditions to provide a relevant dual-perspective on the response against A. fumigatus. Conidia (spores) from a clinical isolate of A. fumigatus were combined with various human serum types (including serum deficient of various complement components and serum from umbilical cord blood). We also combined this with inhibitors against C1q, mannose-binding lectin (MBL), and ficolin-2 before complement activation products and phagocytosis were detected by flow cytometry. Our results showed that alternative pathway amplified complement on A. fumigatus, but required classical and/or lectin pathway for initiation. In normal human serum, this initiation came primarily from the classical pathway. However, with a dysfunctional classical pathway (C1q-deficient serum), lectin pathway activated complement and mediated opsonophagocytosis through MBL. To model the antibody-decline in a compromised immune system, we used serum from normal umbilical cords and found MBL to be the key complement initiator. In another set of experiments, serum from patients with different kinds of immunoglobulin insufficiencies showed that the MBL lectin pathway contribution was highest in the samples with the lowest IgG/IgM binding. In conclusion, lectin pathway appears to be the primary route of complement activation in the absence of anti-A. fumigatus antibodies, whereas in a balanced immune state classical pathway is the main activator. This suggests a crucial role for the lectin pathway in innate immune protection against A. fumigatus in immunocompromised patients.
Collapse
Affiliation(s)
- Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Gregory L Stahl
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School , Boston, MA , USA
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
14
|
Genster N, Præstekjær Cramer E, Rosbjerg A, Pilely K, Cowland JB, Garred P. Ficolins Promote Fungal Clearance in vivo and Modulate the Inflammatory Cytokine Response in Host Defense against Aspergillus fumigatus. J Innate Immun 2016; 8:579-588. [PMID: 27467404 PMCID: PMC6738752 DOI: 10.1159/000447714] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 01/24/2023] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen that causes severe invasive infections in immunocompromised patients. Innate immunity plays a major role in protection against A. fumigatus. The ficolins are a family of soluble pattern recognition receptors that are capable of activating the lectin pathway of complement. Previous in vitro studies reported that ficolins bind to A. fumigatus, but their part in host defense against fungal infections in vivo is unknown. In this study, we used ficolin-deficient mice to investigate the role of ficolins during lung infection with A. fumigatus. Ficolin knockout mice showed significantly higher fungal loads in the lungs 24 h postinfection compared to wild-type mice. The delayed clearance of A. fumigatus in ficolin knockout mice could not be attributed to a compromised recruitment of inflammatory cells. However, it was revealed that ficolin knockout mice exhibited a decreased production of proinflammatory cytokines in the lungs compared to wild-type mice following A. fumigatus infection. The impaired clearance and cytokine production in ficolin knockout mice was independent of complement, as shown by equivalent levels of A. fumigatus-mediated complement activation in ficolin knockout mice and wild-type mice. In conclusion, this study demonstrates that ficolins are important in initial innate host defense against A. fumigatus infections in vivo.
Collapse
Affiliation(s)
- Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth Præstekjær Cramer
- The Granulocyte Research Laboratory, Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jack Bernard Cowland
- The Granulocyte Research Laboratory, Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Bidula S, Schelenz S. A Sweet Response to a Sour Situation: The Role of Soluble Pattern Recognition Receptors in the Innate Immune Response to Invasive Aspergillus fumigatus Infections. PLoS Pathog 2016; 12:e1005637. [PMID: 27415780 PMCID: PMC4945084 DOI: 10.1371/journal.ppat.1005637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Stefan Bidula
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Silke Schelenz
- Department of Microbiology, Royal Brompton Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Bjarnadottir H, Arnardottir M, Ludviksson BR. Frequency and distribution of FCN2 and FCN3 functional variants among MBL2 genotypes. Immunogenetics 2016; 68:315-25. [PMID: 26795763 PMCID: PMC4842218 DOI: 10.1007/s00251-016-0903-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/08/2016] [Indexed: 12/14/2022]
Abstract
The six types of pattern recognition molecules (PRMs) that initiate complement via the lectin pathway (LP) comprise collectins and ficolins. The importance of having various PRMs to initiate the LP is currently unclear. Mannan-binding lectin (MBL) is a collectin member of the LP PRMs. MBL deficiency is common with mild clinical consequence. Thus, the lack of MBL may be compensated for by the other PRMs. We hypothesized that variants FCN2 + 6424 and FCN3 + 1637delC that cause gene-dose-dependent reduction in ficolin-2 and ficolin-3 levels, respectively, may be rare in MBL-deficient individuals due to the importance of compensation within the LP. The aim of this study was to investigate the distribution and frequency of these variants among MBL2 genotypes in healthy subjects. The allele frequency of FCN2 + 6424 and FCN3 + 1637delC was 0.099 and 0.015, respectively, in the cohort (n = 498). The frequency of FCN2 + 6424 tended to be lower among MBL-deficient subjects (n = 53) than among MBL-sufficient subjects (n = 445) (0.047 versus 0.106, P = 0.057). In addition, individuals who were homozygous for FCN2 + 6424 were sufficient MBL producers. The frequency of FCN3 + 1637delC did not differ between the groups. The frequency of FCN2 + 6424 was similar in FCN3 + 1637delC carriers (n = 15) versus wild type (n = 498). Furthermore, subjects that were heterozygote carriers of both FCN2 + 6424 and FCN3 + 1637delC were sufficient MBL producers. In conclusion, FCN2 + 6424 carriers with MBL deficiency tend to be rare among healthy individuals. MBL-deficient individuals with additional LP PRM defects may be at risk to morbidity.
Collapse
Affiliation(s)
- Helga Bjarnadottir
- Department of Immunology, Landspitali-The National University Hospital of Iceland, Hringbraut (Building 14 at Eiriksgata), 101, Reykjavik, Iceland.
| | - Margret Arnardottir
- Department of Immunology, Landspitali-The National University Hospital of Iceland, Hringbraut (Building 14 at Eiriksgata), 101, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Bjorn Runar Ludviksson
- Department of Immunology, Landspitali-The National University Hospital of Iceland, Hringbraut (Building 14 at Eiriksgata), 101, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
17
|
Bidula S, Sexton DW, Schelenz S. Serum opsonin ficolin-A enhances host-fungal interactions and modulates cytokine expression from human monocyte-derived macrophages and neutrophils following Aspergillus fumigatus challenge. Med Microbiol Immunol 2016; 205:133-42. [PMID: 26337048 DOI: 10.1007/s00430-015-0435-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Invasive aspergillosis is a devastating invasive fungal disease associated with a high mortality rate in the immunocompromised, such as leukaemia patients, transplant patients and those with HIV/AIDS. The rodent serum orthologue of human L-ficolin, ficolin-A, can bind to and opsonize Aspergillus fumigatus, the pathogen that causes invasive aspergillosis, and may participate in fungal defence. Using human monocyte-derived macrophages and neutrophils isolated from healthy donors, we investigated conidial association and fungal viability by flow cytometry and microscopy. Additionally, cytokine production was measured via cytometric bead arrays. Ficolin-A opsonization was observed to significantly enhance association of conidia, while also inhibiting hyphal growth and contributing to increased fungal killing following incubation with monocyte-derived macrophages and neutrophils. Additionally, ficolin-A opsonization was capable of manifesting a decrease in IL-8, IL-1β, IL-6, IL-10 and TNF-α production from MDM and IL-1β, IL-6 and TNF-α from neutrophils 24 h post-infection. In conclusion, rodent ficolin-A is functionally comparable to human L-ficolin and is capable of modulating the innate immune response to A. fumigatus, down-regulating cytokine production and could play an important role in airway immunity.
Collapse
Affiliation(s)
- Stefan Bidula
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Darren W Sexton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Silke Schelenz
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
- Department of Microbiology, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
| |
Collapse
|
18
|
Bidula S, Sexton DW, Yates M, Abdolrasouli A, Shah A, Wallis R, Reed A, Armstrong-James D, Schelenz S. H-ficolin binds Aspergillus fumigatus leading to activation of the lectin complement pathway and modulation of lung epithelial immune responses. Immunology 2015; 146:281-91. [PMID: 26133042 DOI: 10.1111/imm.12501] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 01/07/2023] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen that typically infects the lungs of immunocompromised patients leading to a high mortality. H-Ficolin, an innate immune opsonin, is produced by type II alveolar epithelial cells and could participate in lung defences against infections. Here, we used the human type II alveolar epithelial cell line, A549, to determine the involvement of H-ficolin in fungal defence. Additionally, we investigated the presence of H-ficolin in bronchoalveolar lavage fluid from transplant patients during pneumonia. H-Ficolin exhibited demonstrable binding to A. fumigatus conidia via l-fucose, d-mannose and N-acetylglucosamine residues in a calcium- and pH-dependent manner. Moreover, recognition led to lectin complement pathway activation and enhanced fungal association with A549 cells. Following recognition, H-ficolin opsonization manifested an increase in interleukin-8 production from A549 cells, which involved activation of the intracellular signalling pathways mitogen-activated protein kinase MAPK kinase 1/2, p38 MAPK and c-Jun N-terminal kinase. Finally, H-ficolin concentrations were significantly higher in bronchoalveolar lavage fluid of patients with lung infections compared with control subjects (n = 16; P = 0·00726). Receiver operating characteristics curve analysis further highlighted the potential of H-ficolin as a diagnostic marker for lung infection (area under the curve = 0·77; P < 0·0001). Hence, H-ficolin participates in A. fumigatus defence through the activation of the lectin complement pathway, enhanced fungus-host interactions and modulated immune responses.
Collapse
Affiliation(s)
- Stefan Bidula
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK.,Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Darren W Sexton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK.,School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, UK
| | - Matthew Yates
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Alireza Abdolrasouli
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Anand Shah
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Russell Wallis
- Departments of Infection, Immunity and Inflammation and Biochemistry, University of Leicester, Leicester, UK
| | - Anna Reed
- Department of Lung Transplantation, Harefield Hospital, Middlesex, UK
| | | | - Silke Schelenz
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK.,Department of Microbiology, Royal Brompton Hospital, London, UK
| |
Collapse
|
19
|
Endo Y, Matsushita M, Fujita T. New insights into the role of ficolins in the lectin pathway of innate immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:49-110. [PMID: 25805122 DOI: 10.1016/bs.ircmb.2015.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the innate immune system, a variety of recognition molecules provide the first-line host defense to prevent infection and maintain endogenous homeostasis. Ficolin is a soluble recognition molecule, which senses pathogen-associated molecular patterns on microbes and aberrant sugar structures on self-cells. It consists of a collagen-like stalk and a globular fibrinogen-like domain, the latter binding to carbohydrates such as N-acetylglucosamine. Ficolins have been widely identified in animals from higher invertebrates to mammals. In mammals, ficolins form complexes with mannose-binding lectin-associated serine proteases (MASPs), and ficolin-MASP complexes trigger complement activation via the lectin pathway. Once activated, complement mediates many immune responses including opsonization, phagocytosis, and cytokine production. Although the precise function of each ficolin is still under investigation, accumulating information suggests that ficolins have a crucial role in host defense by recognizing a variety of microorganisms and interacting with effector proteins.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Kanagawa, Japan
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Fukushima General Hygiene Institute, Fukushima, Japan
| |
Collapse
|
20
|
Grassot V, Da Silva A, Saliba J, Maftah A, Dupuy F, Petit JM. Highlights of glycosylation and adhesion related genes involved in myogenesis. BMC Genomics 2014; 15:621. [PMID: 25051993 PMCID: PMC4223822 DOI: 10.1186/1471-2164-15-621] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Myogenesis is initiated by myoblast differentiation and fusion to form myotubes and muscle fibres. A population of myoblasts, known as satellite cells, is responsible for post-natal growth of muscle and for its regeneration. This differentiation requires many changes in cell behaviour and its surrounding environment. These modifications are tightly regulated over time and can be characterized through the study of changes in gene expression associated with this process. During the initial myogenesis steps, using the myoblast cell line C2C12 as a model, Janot et al. (2009) showed significant variations in expression for genes involved in pathways of glycolipid synthesis. In this study we used murine satellite cells (MSC) and their ability to differentiate into myotubes or early fat storage cells to select glycosylation related genes whose variation of expression is myogenesis specific. RESULTS The comparison of variant genes in both MSC differentiation pathways identified 67 genes associated with myogenesis. Comparison with data obtained for C2C12 revealed that only 14 genes had similar expression profiles in both cell types and that 17 genes were specifically regulated in MSC. Results were validated statistically by without a priori clustering. Classification according to protein function encoded by these 31 genes showed that the main regulated cellular processes during this differentiation were (i) remodeling of the extracellular matrix, particularly, sulfated structures, (ii) down-regulation of O-mannosyl glycan biosynthesis, and (iii) an increase in adhesion protein expression. A functional study was performed on Itga11 and Chst5 encoding two highly up-regulated proteins. The inactivation of Chst5 by specific shRNA delayed the fusion of MSC. By contrast, the inactivation of Itga11 by specific shRNA dramatically decreased the fusion ability of MSC. This result was confirmed by neutralization of Itga11 product by specific antibodies. CONCLUSIONS Our screening method detected 31 genes specific for myogenic differentiation out of the 383 genes studied. According to their function, interaction networks of the products of these selected genes converged to cell fusion. Functional studies on Itga11 and Chst5 demonstrated the robustness of this screening.
Collapse
Affiliation(s)
- Vincent Grassot
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Anne Da Silva
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - James Saliba
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Abderrahman Maftah
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Fabrice Dupuy
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Jean-Michel Petit
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| |
Collapse
|
21
|
Matsushita M, Endo Y, Fujita T. Structural and functional overview of the lectin complement pathway: its molecular basis and physiological implication. Arch Immunol Ther Exp (Warsz) 2013; 61:273-83. [PMID: 23563865 DOI: 10.1007/s00005-013-0229-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 03/25/2013] [Indexed: 01/19/2023]
Abstract
The complement system is an effector mechanism in immunity. It is activated in three ways, the classical, alternative and lectin pathways. The lectin pathway is initiated by the binding of mannose-binding lectin (MBL) or ficolins to carbohydrates on the surfaces of pathogens. In humans, MBL and three types of ficolins (L-ficolin, H-ficolin, and M-ficolin) are present in plasma. Of these lectins, at least, MBL, L-ficolin, and H-ficolin are complexed with three types of MBL-associated serine proteases (MASPs), MASP-1, MASP-2, and MASP-3 and their truncated proteins (MAp44 and sMAP). In the lectin pathway, the lectin-MASP complex (i.e., a complex of lectin, MASPs and their truncated proteins) binds to pathogens, resulting in the activation of C4 and C2 to generate a C3 convertase capable of activating C3. MASP-2 is involved in the activation of C4 and C2. MASP-1 activates C2 and MASP-2. The functions of MASP-3, sMAP, and MAp44 in the lectin pathway remain unknown. MASP-1 and MASP-3 also have a role in the alternative pathway. MBL and ficolins are able to bind to a variety of pathogens depending on their carbohydrate binding specificity, resulting in the activation of the lectin pathway. Deficiencies of the components of the lectin pathway are associated to susceptibility to infection, indicating an important role of the lectin pathway in innate immunity. The lectin-MASP complex is also involved in innate immunity by activating the coagulation system. Recent findings suggest a crucial role of MASP-3 in development.
Collapse
Affiliation(s)
- Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | | | | |
Collapse
|
22
|
Nagata S, Nishiyama S, Ikazaki Y. Bacterial lipopolysaccharides stimulate production of XCL1, a calcium-dependent lipopolysaccharide-binding serum lectin, in Xenopus laevis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:94-102. [PMID: 23454582 DOI: 10.1016/j.dci.2013.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/16/2013] [Accepted: 02/18/2013] [Indexed: 06/01/2023]
Abstract
Xenopus laevis serum lectin XCL1 is a newly identified molecule of the XCGL (or X-lectin) family, a unique group of Ca(2+)-dependent lectins that have a fibrinogen-like domain. The XCL1 protein was purified from lipopolysaccharide (LPS)-stimulated frog sera by sequential affinity chromatography on heparin-acrylic beads and galactose-Sepharose. XCL1 comprises multiple oligomeric proteins consisting of 37-kDa subunit polypeptides, as revealed by sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE) and Western blot analyses using the monoclonal antibody (mAb) produced against the recombinant XCL1 polypeptide. In the presence of Ca(2+), the protein bound to Escherichia coli, Staphylococcus aureus, LPS and galactose and the bound XCL1 was competitively eluted using ribose and xylose, and the elution was as efficient as that using EDTA, whereas elution using hexoses, GalNAc or GlcNAc was less effective. In reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses, XCL1 expression was ubiquitously detected in frog tissues, with relatively high levels in hematopoietic tissues including the spleen, liver and kidney. Intraperitoneal injection of E. coli, S. aureus or 100-300μg S-type LPS from various bacteria induced several-fold increases in serum XCL1 concentrations on day 3, and the elevated levels retained up to day 12. It also caused a remarkable increase of the splenic XCL1 expression on day 3, followed by a rapid decline to nearly nonstimulated control levels by day 7. The R-type LPS with shortened polysaccharide chains was less effective in inducing the serum XCL1 response, indicating that the sugar chains of LPS were important, if not essential, for the stimulation of XCL1 production. These results suggest that XCL1 is a pathogen recognition molecule involved in antimicrobial innate immunity in Xenopus.
Collapse
Affiliation(s)
- Saburo Nagata
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Mejirodai 2-8-1, Bunkyoku, Tokyo 112-8681, Japan.
| | | | | |
Collapse
|
23
|
Bidula S, Kenawy H, Ali YM, Sexton D, Schwaeble WJ, Schelenz S. Role of ficolin-A and lectin complement pathway in the innate defense against pathogenic Aspergillus species. Infect Immun 2013; 81:1730-40. [PMID: 23478320 PMCID: PMC3647983 DOI: 10.1128/iai.00032-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/01/2013] [Indexed: 12/23/2022] Open
Abstract
Aspergillus species are saprophytic molds causing life-threatening invasive fungal infections in the immunocompromised host. Innate immune recognition, in particular, the mechanisms of opsonization and complement activation, has been reported to be an integral part of the defense against fungi. We have shown that the complement component ficolin-A significantly binds to Aspergillus conidia and hyphae in a concentration-dependent manner and was inhibited by N-acetylglucosamine and N-acetylgalactosamine. Calcium-independent binding to Aspergillus fumigatus and A. terreus was observed, but binding to A. flavus and A. niger was calcium dependent. Ficolin-A binding to conidia was increased under low-pH conditions, and opsonization led to enhanced binding of conidia to A549 airway epithelial cells. In investigations of the lectin pathway of complement activation, ficolin-A-opsonized conidia did not lead to lectin pathway-specific C4 deposition. In contrast, the collectin mannose binding lectin C (MBL-C) but not MBL-A led to efficient lectin pathway activation on A. fumigatus in the absence of ficolin-A. In addition, ficolin-A opsonization led to a modulation of the proinflammatory cytokine interleukin-8. We conclude that ficolin-A may play an important role in the innate defense against Aspergillus by opsonizing conidia, immobilizing this fungus through enhanced adherence to epithelial cells and modulation of inflammation. However, it appears that other immune pattern recognition molecules, i.e., those of the collectin MBL-C, are involved in the Aspergillus-lectin complement pathway activation rather than ficolin-A.
Collapse
Affiliation(s)
- Stefan Bidula
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Hany Kenawy
- Department of Infection, Immunity and Inflammation, College of Medicine and Biological Sciences, University of Leicester, Leicester, United Kingdom
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Youssif M. Ali
- Department of Infection, Immunity and Inflammation, College of Medicine and Biological Sciences, University of Leicester, Leicester, United Kingdom
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Darren Sexton
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Wilhelm J. Schwaeble
- Department of Infection, Immunity and Inflammation, College of Medicine and Biological Sciences, University of Leicester, Leicester, United Kingdom
| | - Silke Schelenz
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
24
|
Endo Y, Takahashi M, Iwaki D, Ishida Y, Nakazawa N, Kodama T, Matsuzaka T, Kanno K, Liu Y, Tsuchiya K, Kawamura I, Ikawa M, Waguri S, Wada I, Matsushita M, Schwaeble WJ, Fujita T. Mice deficient in ficolin, a lectin complement pathway recognition molecule, are susceptible to Streptococcus pneumoniae infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:5860-6. [PMID: 23150716 DOI: 10.4049/jimmunol.1200836] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mannose-binding lectin (MBL) and ficolin are complexed with MBL-associated serine proteases, key enzymes of complement activation via the lectin pathway, and act as soluble pattern recognition molecules in the innate immune system. Although numerous reports have revealed the importance of MBL in infectious diseases and autoimmune disorders, the role of ficolin is still unclear. To define the specific role of ficolin in vivo, we generated model mice deficient in ficolins. The ficolin A (FcnA)-deficient (Fcna(-/-)) and FcnA/ficolin B double-deficient (Fcna(-/-)b(-/-)) mice lacked FcnA-mediated complement activation in the sera, because of the absence of complexes comprising FcnA and MBL-associated serine proteases. When the host defense was evaluated by transnasal infection with a Streptococcus pneumoniae strain, which was recognized by ficolins, but not by MBLs, the survival rate was significantly reduced in all three ficolin-deficient (Fcna(-/-), Fcnb(-/-), and Fcna(-/-)b(-/-)) mice compared with wild-type mice. Reconstitution of the FcnA-mediated lectin pathway in vivo improved survival rate in Fcna(-/-) but not in Fcna(-/-)b(-/-) mice, suggesting that both FcnA and ficolin B are essential in defense against S. pneumoniae. These results suggest that ficolins play a crucial role in innate immunity against pneumococcal infection through the lectin complement pathway.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Geiss-Liebisch S, Rooijakkers SHM, Beczala A, Sanchez-Carballo P, Kruszynska K, Repp C, Sakinc T, Vinogradov E, Holst O, Huebner J, Theilacker C. Secondary cell wall polymers of Enterococcus faecalis are critical for resistance to complement activation via mannose-binding lectin. J Biol Chem 2012; 287:37769-77. [PMID: 22908219 DOI: 10.1074/jbc.m112.358283] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complement system is part of our first line of defense against invading pathogens. The strategies used by Enterococcus faecalis to evade recognition by human complement are incompletely understood. In this study, we identified an insertional mutant of the wall teichoic acid (WTA) synthesis gene tagB in E. faecalis V583 that exhibited an increased susceptibility to complement-mediated killing by neutrophils. Further analysis revealed that increased killing of the mutant was due to a higher rate of phagocytosis by neutrophils, which correlated with higher C3b deposition on the bacterial surface. Our studies indicated that complement activation via the lectin pathway was much stronger on the tagB mutant compared with wild type. In concordance, we found an increased binding of the key lectin pathway components mannose-binding lectin and mannose-binding lectin-associated serine protease-2 (MASP-2) on the mutant. To understand the mechanism of lectin pathway inhibition by E. faecalis, we purified and characterized cell wall carbohydrates of E. faecalis wild type and V583ΔtagB. NMR analysis revealed that the mutant strain lacked two WTAs with a repeating unit of →6)[α-l-Rhap-(1→3)]β-D-GalpNAc-(1→5)-Rbo-1-P and →6) β-D-Glcp-(1→3) [α-D-Glcp-(1→4)]-β-D-GalpNAc-(1→5)-Rbo-1-P→, respectively (Rbo, ribitol). In addition, compositional changes in the enterococcal rhamnopolysaccharide were noticed. Our study indicates that in E. faecalis, modification of peptidoglycan by secondary cell wall polymers is critical to evade recognition by the complement system.
Collapse
Affiliation(s)
- Stefan Geiss-Liebisch
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Breisacher Strasse 117, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|