1
|
Jain K, Panigrahi M, Nayak SS, Rajawat D, Sharma A, Sahoo SP, Bhushan B, Dutt T. The evolution of contemporary livestock species: Insights from mitochondrial genome. Gene 2024; 927:148728. [PMID: 38944163 DOI: 10.1016/j.gene.2024.148728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
The domestication of animals marks a pivotal moment in human history, profoundly influencing our demographic and cultural progress. This process has led to significant genetic, behavioral, and physical changes in livestock species compared to their wild ancestors. Understanding the evolutionary history and genetic diversity of livestock species is crucial, and mitochondrial DNA (mtDNA) has emerged as a robust marker for investigating molecular diversity in animals. Its highly conserved gene content across animal species, minimal duplications, absence of introns, and short intergenic regions make mtDNA analysis ideal for such studies. Mitochondrial DNA analysis has uncovered distinct cattle domestication events dating back to 8000 years BC in Southwestern Asia. The sequencing of water buffalo mtDNA in 2004 provided important insights into their domestication history. Caprine mtDNA analysis identified three haplogroups, indicating varied maternal origins. Sheep, domesticated 12,000 years ago, exhibit diverse mtDNA lineages, suggesting multiple domestication events. Ovine mtDNA studies revealed clades A, B, C, and a fourth lineage, group D. The origins of domestic pigs were traced to separate European and Asian events followed by interbreeding. In camels, mtDNA elucidated the phylogeographic structure and genetic differentiation between wild and domesticated species. Horses, domesticated around 3500 BC, show significant mtDNA variability, highlighting their diverse origins. Yaks exhibit unique adaptations for high-altitude environments, with mtDNA analysis providing insights into their adaptation. Chicken mtDNA studies supported a monophyletic origin from Southeast Asia's red jungle fowl, with evidence of multiple origins. This review explores livestock evolution and diversity through mtDNA studies, focusing on cattle, water buffalo, goat, sheep, pig, camel, horse, yak and chicken. It highlights mtDNA's significance in unraveling maternal lineages, genetic diversity, and domestication histories, concluding with insights into its potential application in improving livestock production and reproduction dynamics.
Collapse
Affiliation(s)
- Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | | | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
2
|
Hou J, Guan X, Xia X, Lyu Y, Liu X, Mazei Y, Xie P, Chang F, Zhang X, Chen J, Li X, Zhang F, Jin L, Luo X, Sinding MHS, Sun X, Achilli A, Migliore NR, Zhang D, Lenstra JA, Han J, Fu Q, Liu X, Zhang X, Chen N, Lei C, Zhang H. Evolution and legacy of East Asian aurochs. Sci Bull (Beijing) 2024:S2095-9273(24)00650-9. [PMID: 39322456 DOI: 10.1016/j.scib.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Aurochs (Bos primigenius), once widely distributed in Afro-Eurasia, became extinct in the early 1600 s. However, their phylogeography and relative contributions to domestic cattle remain unknown. In this study, we analyzed 16 genomes of ancient aurochs and three mitogenomes of ancient bison (Bison priscus) excavated in East Asia, dating from 43,000 to 3,590 years ago. These newly generated data with previously published genomic information on aurochs as well as ancient/extant domestic cattle worldwide through genome analysis. Our findings revealed significant genetic divergence between East Asian aurochs and their European, Near Eastern, and African counterparts on the basis of both mitochondrial and nuclear genomic data. Furthermore, we identified evidence of gene flow from East Asian aurochs into ancient and present-day taurine cattle, suggesting their potential role in facilitating the environmental adaptation of domestic cattle.
Collapse
Affiliation(s)
- Jiawen Hou
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiwen Guan
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoting Xia
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yang Lyu
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xin Liu
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuri Mazei
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Jialei Chen
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xinyi Li
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Fengwei Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Liangliang Jin
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoyu Luo
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Mikkel-Holger S Sinding
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen DK-1350, Denmark
| | - Xin Sun
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen DK-1350, Denmark
| | - Alessandro Achilli
- Department of Biology and Biotechnology, L. Spallanzani University of Pavia, Pavia 27100, Italy
| | | | - Dongju Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CS, the Netherlands
| | - Jianlin Han
- Yazhouwan National Laboratory, Sanya 572024, China; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xinyi Liu
- Anthropology Department, Washington University in St. Louis, Missouri, MO 63130, USA
| | - Xiaoming Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China.
| | - Ningbo Chen
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650500, China.
| |
Collapse
|
3
|
Kuhnert P, Loosli N, Brodard I, Lindtke D, Jores J. Resistance of zebu cattle (Bos indicus) to colonization by major ruminant hoof pathogens. Vet Microbiol 2024; 296:110184. [PMID: 38996749 DOI: 10.1016/j.vetmic.2024.110184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Zebu cattle (Bos indicus) is reported to be more resistant towards harmful environmental factors than taurine cattle (Bos taurus). A few hundred zebu cattle are kept in Switzerland and in contrast to the Swiss indigenous breeds, infectious hoof disease in zebu is not observed. Therefore, we compared the prevalence of three ruminant hoof pathogens in zebu and taurine cattle. These included Treponema spp., Fusobacterium necrophorum and Dichelobacter nodosus which are associated with bovine digital dermatitis (BDD), different bovine hoof diseases and ovine footrot, respectively. Interdigital swabs and punch biopsies from hind feet of slaughter animals were tested for the three pathogens by PCR. Sixty zebu from eight farms were compared to a convenience sample of 20 taurine cattle from 17 farms. Treponema spp. associated with BDD were not detected in zebu while 23 % of animals and 50 % of farms were positive for benign D. nodosus, with results indicating environmental contamination rather than colonization. Taurine cattle showed 35 % of animals and 41 % of farms positive for T. phagedenis while 90 % of animals and 94 % of farms were colonized by D. nodosus as indicated by a 500-fold higher bacterial load than in zebu. The difference in prevalence of the two pathogens between zebu and taurine cattle was highly significant. F. necrophorum was as well only detected in taurine cattle with values of 15 % of animals and 17.7 % of farms, being significantly different at the animal level. Furthermore, genetic analysis of Swiss zebu indicates high genomic diversity and clear separation from taurine cattle. This is the first evidence that zebu show resistance towards colonization by bacterial hoof pathogens in contrast to taurine cattle.
Collapse
Affiliation(s)
- Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern 3012, Switzerland.
| | - Nadia Loosli
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern 3012, Switzerland
| | - Isabelle Brodard
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern 3012, Switzerland
| | | | - Joerg Jores
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern 3012, Switzerland
| |
Collapse
|
4
|
Rambaldi Migliore N, Bigi D, Milanesi M, Zambonelli P, Negrini R, Morabito S, Verini-Supplizi A, Liotta L, Chegdani F, Agha S, Salim B, Beja-Pereira A, Torroni A, Ajmone‐Marsan P, Achilli A, Colli L. Mitochondrial DNA control-region and coding-region data highlight geographically structured diversity and post-domestication population dynamics in worldwide donkeys. PLoS One 2024; 19:e0307511. [PMID: 39197009 PMCID: PMC11356394 DOI: 10.1371/journal.pone.0307511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/05/2024] [Indexed: 08/30/2024] Open
Abstract
Donkeys (Equus asinus) have been used extensively in agriculture and transportations since their domestication, ca. 5000-7000 years ago, but the increased mechanization of the last century has largely spoiled their role as burden animals, particularly in developed countries. Consequently, donkey breeds and population sizes have been declining for decades, and the diversity contributed by autochthonous gene pools has been eroded. Here, we examined coding-region data extracted from 164 complete mitogenomes and 1392 donkey mitochondrial DNA (mtDNA) control-region sequences to (i) assess worldwide diversity, (ii) evaluate geographical patterns of variation, and (iii) provide a new nomenclature of mtDNA haplogroups. The topology of the Maximum Parsimony tree confirmed the two previously identified major clades, i.e. Clades 1 and 2, but also highlighted the occurrence of a deep-diverging lineage within Clade 2 that left a marginal trace in modern donkeys. Thanks to the identification of stable and highly diagnostic coding-region mutational motifs, the two lineages were renamed as haplogroup A and haplogroup B, respectively, to harmonize clade nomenclature with the standard currently adopted for other livestock species. Control-region diversity and population expansion metrics varied considerably between geographical areas but confirmed North-eastern Africa as the likely domestication center. The patterns of geographical distribution of variation analyzed through phylogenetic networks and AMOVA confirmed the co-occurrence of both haplogroups in all sampled populations, while differences at the regional level point to the joint effects of demography, past human migrations and trade following the spread of donkeys out of the domestication center. Despite the strong decline that donkey populations have undergone for decades in many areas of the world, the sizeable mtDNA variability we scored, and the possible identification of a new early radiating lineage further stress the need for an extensive and large-scale characterization of donkey nuclear genome diversity to identify hotspots of variation and aid the conservation of local breeds worldwide.
Collapse
Affiliation(s)
- Nicola Rambaldi Migliore
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, University of Pavia, Via A. Ferrata, Pavia, Italy
| | - Daniele Bigi
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Alma Mater Studiorum Università di Bologna, Viale Giuseppe Fanin, Bologna, Italy
| | - Marco Milanesi
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, via Emilia Parmense, Piacenza, Italy
| | - Paolo Zambonelli
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Alma Mater Studiorum Università di Bologna, Viale Giuseppe Fanin, Bologna, Italy
| | - Riccardo Negrini
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, via Emilia Parmense, Piacenza, Italy
| | - Simone Morabito
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, via Emilia Parmense, Piacenza, Italy
| | | | - Luigi Liotta
- Department of Veterinary Sciences, University of Messina, V.le Palatucci, Messina, Italy
| | - Fatima Chegdani
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, via Emilia Parmense, Piacenza, Italy
| | - Saif Agha
- Animal Production Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Bashir Salim
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum-North, Sudan
- Camel Research Center, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Albano Beja-Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- DGAOT, Faculty of Sciences, Universidade do Porto, Rua Campo Alegre, Porto, Portugal
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, University of Pavia, Via A. Ferrata, Pavia, Italy
| | - Paolo Ajmone‐Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, via Emilia Parmense, Piacenza, Italy
- CREI Romeo and Enrica Invernizzi Research Center on Sustainable Dairy Production, Università Cattolica del S. Cuore, Piacenza (PC), Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, University of Pavia, Via A. Ferrata, Pavia, Italy
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, via Emilia Parmense, Piacenza, Italy
- BioDNA Centro di Ricerca Sulla Biodiversità e sul DNA Antico, Università Cattolica del S. Cuore, Piacenza (PC), Italy
| |
Collapse
|
5
|
Estrada R, Figueroa D, Romero Y, Alvarez-García WY, Rojas D, Alvarado W, Maicelo JL, Quilcate C, Arbizu CI. Complete Mitogenome of "Pumpo" ( Bos taurus), a Top Bull from a Peruvian Genetic Nucleus, and Its Phylogenetic Analysis. Curr Issues Mol Biol 2024; 46:5352-5363. [PMID: 38920992 PMCID: PMC11201737 DOI: 10.3390/cimb46060320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
The mitochondrial genome of Pumpo (Bos taurus), a prominent breed contributing to livestock farming, was sequenced using the Illumina HiSeq 2500 platform. Assembly and annotation of the mitochondrial genome were achieved through a multifaceted approach employing bioinformatics tools such as Trim Galore, SPAdes, and Geseq, followed by meticulous manual inspection. Additionally, analyses covering tRNA secondary structure and codon usage bias were conducted for comprehensive characterization. The 16,341 base pair mitochondrial genome comprises 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. Phylogenetic analysis places Pumpo within a clade predominantly composed of European cattle, reflecting its prevalence in Europe. This comprehensive study underscores the importance of mitochondrial genome analysis in understanding cattle evolution and highlights the potential of genetic improvement programs in livestock farming, thus contributing to enhanced livestock practices.
Collapse
Affiliation(s)
- Richard Estrada
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (D.F.); (Y.R.); (W.Y.A.-G.); (D.R.); (C.Q.)
| | - Deyanira Figueroa
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (D.F.); (Y.R.); (W.Y.A.-G.); (D.R.); (C.Q.)
| | - Yolanda Romero
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (D.F.); (Y.R.); (W.Y.A.-G.); (D.R.); (C.Q.)
| | - Wuesley Yusmein Alvarez-García
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (D.F.); (Y.R.); (W.Y.A.-G.); (D.R.); (C.Q.)
| | - Diorman Rojas
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (D.F.); (Y.R.); (W.Y.A.-G.); (D.R.); (C.Q.)
| | - Wigoberto Alvarado
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (W.A.); (J.L.M.)
| | - Jorge L. Maicelo
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (W.A.); (J.L.M.)
| | - Carlos Quilcate
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (D.F.); (Y.R.); (W.Y.A.-G.); (D.R.); (C.Q.)
| | - Carlos I. Arbizu
- Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Amazonas 01001, Peru
| |
Collapse
|
6
|
Arya M, Ghosh A, Tyagi K, Tyagi I, Bisht SS, Kumar V. Characterization of Complete Mitochondrial Genome of Badri Breed of Bos indicus (Bovidae: Bovinae): Selection Pressure and Comparative Analysis. Biochem Genet 2024:10.1007/s10528-024-10691-y. [PMID: 38407767 DOI: 10.1007/s10528-024-10691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/05/2024] [Indexed: 02/27/2024]
Abstract
High-altitude mammals are often subject to specific environmental obstacles, which exert selective pressure on their physiological and morphological traits, hence driving their evolutionary processes. It is anticipated that these circumstances will lead to the adaptive evolution of protein-coding genes (PCGs) in the mitochondrial genome, which play a crucial role in the oxidative phosphorylation system. In this study, we have generated the complete mitochondrial genome of the Badri breed of Bos indicus inhabiting a high-altitude environment to test the signatures of adaptive evolution on PCGs and their phylogenetic relationships. The complete mitogenome of the Badri breed is 16,339 bp and most tRNAs showed typical clover-leaf secondary structure with a few exceptions, like trnS1 and trnS2 without DHU arm and trnK without DHU loop. Comparative analysis of PCGs indicated that cox1 is the most conserved, while atp6 is the most variable gene. Moreover, the ratios of non-synonymous to synonymous substitution rates indicated the purifying selection (Ka/Ks < 1) in the protein-coding genes that shape the diversity in mitogenome of Bos indicus. Furthermore, Branch-site model (BSM) suggested that cox1, cox2, nad3, nad4L, and nad6 underwent stronger purifying selection (ω < 1) than other PCGs in 15 breeds of 4 species, including Badri. BSM also detected 10 positive sites in PCGs and one in 13 PCGs concatenated dataset. Additional analyses in Datamonkey indicated 11 positive sites and 23 purifying sites in the concatenated dataset, a relaxation of selection strength in nad3, and no evidence of episodic diversifying selection in any PCGs. Phylogeny revealed the sister relationship of the Badri with other breeds of Bos indicus as well as Bos frontalis (Gayal-2). The mitogenome of the Badri breed is an important genomic resource for conservation genetics of this species and also contributes to the understanding of the adaptive evolution of mitochondrial protein coding genes.
Collapse
Affiliation(s)
- Mansi Arya
- Department of Zoology, Kumaun University, Nainital, Uttarakhand, India
| | - Abhishek Ghosh
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, West Bengal, India
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, West Bengal, India.
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, West Bengal, India
| | - Satpal Singh Bisht
- Department of Zoology, Kumaun University, Nainital, Uttarakhand, India
- Vice Chancellor, Soban Singh Jeena University, Almora, Uttarakahand, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, West Bengal, India.
| |
Collapse
|
7
|
Kim K, Kim D, Hanotte O, Lee C, Kim H, Jeong C. Inference of Admixture Origins in Indigenous African Cattle. Mol Biol Evol 2023; 40:msad257. [PMID: 37995300 PMCID: PMC10701095 DOI: 10.1093/molbev/msad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/12/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Present-day African cattle retain a unique genetic profile composed of a mixture of the Bos taurus and Bos indicus populations introduced into the continent at different time periods. However, details of the admixture history and the exact origins of the source populations remain obscure. Here, we infer the source of admixture in the earliest domestic cattle in Africa, African taurine. We detect a significant contribution (up to ∼20%) from a basal taurine lineage, which might represent the now-extinct African aurochs. In addition, we show that the indicine ancestry of African cattle, although most closely related to so-far sampled North Indian indicine breeds, has a small amount of additional genetic affinity to Southeast Asian indicine breeds. Our findings support the hypothesis of aurochs introgression into African taurine and generate a novel hypothesis that the origin of indicine ancestry in Africa might be different indicine populations than the ones found in North India today.
Collapse
Affiliation(s)
- Kwondo Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Donghee Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Olivier Hanotte
- LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- The Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, The University of Edinburgh, Midlothian, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- eGnome, Inc., Seoul, Republic of Korea
| | - Choongwon Jeong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Brunson K, Witt KE, Monge S, Williams S, Peede D, Odsuren D, Bukhchuluun D, Cameron A, Szpak P, Amartuvshin C, Honeychurch W, Wright J, Pleuger S, Erdene M, Tumen D, Rogers L, Khatanbaatar D, Batdalai B, Galdan G, Janz L. Ancient Mongolian aurochs genomes reveal sustained introgression and management in East Asia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552443. [PMID: 37609302 PMCID: PMC10441390 DOI: 10.1101/2023.08.10.552443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Societies in East Asia have utilized domesticated cattle for over 5000 years, but the genetic history of cattle in East Asia remains understudied. Genome-wide analyses of 23 ancient Mongolian cattle reveal that East Asian aurochs and ancient East Asian taurine cattle are closely related, but neither are closely related to any modern East Asian breeds. We observe binary variation in aurochs diet throughout the early Neolithic, and genomic evidence shows millennia of sustained male-dominated introgression. We identify a unique connection between ancient Mongolian aurochs and the European Hereford breed. These results point to the likelihood of human management of aurochs in Northeast Asia prior to and during the initial adoption of taurine cattle pastoralism.
Collapse
Affiliation(s)
| | - Kelsey E. Witt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University; Clemson, South Carolina 29634, USA
- Center for Computational Molecular Biology, Brown University; Providence 02912, USA
- Department of Ecology, Evolution, and Organismal Biology, Brown University; Providence 02912, USA
| | - Susan Monge
- Department of Anthropology, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Sloan Williams
- Department of Anthropology, University of Illinois Chicago, Chicago, IL 60607, USA
| | - David Peede
- Center for Computational Molecular Biology, Brown University; Providence 02912, USA
- Department of Ecology, Evolution, and Organismal Biology, Brown University; Providence 02912, USA
- Institute at Brown for Environment and Society, Brown University; Providence 02912, USA
| | - Davaakhuu Odsuren
- Department of History, Mongolian National University of Education; Ulaanbaatar, Sukhbaatar district, 210648, Mongolia
- Institute of Archaeology, Mongolian Academy of Sciences, Ulaanbaatar-51, Mongolia
| | - Dashzeveg Bukhchuluun
- Department of Anthropology, Yale University, 10 Sachem St., New Haven, CT 06511, USA
| | - Asa Cameron
- Department of Anthropology, Yale University, 10 Sachem St., New Haven, CT 06511, USA
| | - Paul Szpak
- Department of Anthropology, Trent University; Peterborough K9J 6Y1, Canada
| | - Chunag Amartuvshin
- Department of Anthropology and Archaeology, National University of Mongolia; Ulaanbaatar-51, Mongolia
| | - William Honeychurch
- Department of Anthropology, Yale University, 10 Sachem St., New Haven, CT 06511, USA
| | - Joshua Wright
- Department of Archaeology, University of Aberdeen, King’s College; Aberdeen, AB24 3FX, UK
| | - Sarah Pleuger
- School of History, Classics and Archaeology, University of Edinburgh; Edinburgh EH8 9AG, UK
| | - Myagmar Erdene
- Department of Anthropology and Archaeology, National University of Mongolia; Ulaanbaatar-51, Mongolia
| | - Dashtseveg Tumen
- Department of Anthropology and Archaeology, National University of Mongolia; Ulaanbaatar-51, Mongolia
| | - Leland Rogers
- Department of Anthropology, University of North Carolina Wilmington; Wilmington, NC 28403, USA
| | - Dorjpurev Khatanbaatar
- School of Business Administration and Humanities, The Mongolian University of Science and Technology; Mongolia
| | - Byambatseren Batdalai
- Archaeological Research Center, National University of Mongolia; Ulaanbaatar-51, Mongolia
| | - Ganbaatar Galdan
- Institute of Archaeology, Mongolian Academy of Sciences, Ulaanbaatar-51, Mongolia
| | - Lisa Janz
- Department of Anthropology, University of Toronto Scarborough; Scarborough, ON M1C 1A4, Canada
| |
Collapse
|
9
|
Delsol N, Stucky BJ, Oswald JA, Cobb CR, Emery KF, Guralnick R. Ancient DNA confirms diverse origins of early post-Columbian cattle in the Americas. Sci Rep 2023; 13:12444. [PMID: 37528222 PMCID: PMC10394069 DOI: 10.1038/s41598-023-39518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023] Open
Abstract
Before the arrival of Europeans, domestic cattle (Bos taurus) did not exist in the Americas, and most of our knowledge about how domestic bovines first arrived in the Western Hemisphere is based on historical documents. Sixteenth-century colonial accounts suggest that the first cattle were brought in small numbers from the southern Iberian Peninsula via the Canary archipelago to the Caribbean islands where they were bred locally and imported to other circum-Caribbean regions. Modern American heritage cattle genetics and limited ancient mtDNA data from archaeological colonial cattle suggest a more complex story of mixed ancestries from Europe and Africa. So far little information exists to understand the nature and timing of the arrival of these mixed-ancestry populations. In this study we combine ancient mitochondrial and nuclear DNA from a robust sample of some of the earliest archaeological specimens from Caribbean and Mesoamerican sites to clarify the origins and the dynamics of bovine introduction into the Americas. Our analyses support first arrival of cattle from diverse locales and potentially confirm the early arrival of African-sourced cattle in the Americas, followed by waves of later introductions from various sources over several centuries.
Collapse
Affiliation(s)
- Nicolas Delsol
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
| | - Brian J Stucky
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, USA
| | - Jessica A Oswald
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Biology Department, University of Nevada, Reno, Reno, NV, 89557, USA
- U.S. Fish and Wildlife Service, National Fish and Wildlife Forensic Laboratory, Ashland, OR, 97520, USA
| | - Charles R Cobb
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Kitty F Emery
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Robert Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
10
|
Ginja C, Guimarães S, da Fonseca RR, Rasteiro R, Rodríguez-Varela R, Simões LG, Sarmento C, Belarte MC, Kallala N, Torres JR, Sanmartí J, Arruda AM, Detry C, Davis S, Matos J, Götherström A, Pires AE, Valenzuela-Lamas S. Iron age genomic data from Althiburos - Tunisia renew the debate on the origins of African taurine cattle. iScience 2023; 26:107196. [PMID: 37485357 PMCID: PMC10359934 DOI: 10.1016/j.isci.2023.107196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 12/22/2022] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
The Maghreb is a key region for understanding the dynamics of cattle dispersal and admixture with local aurochs following their earliest domestication in the Fertile Crescent more than 10,000 years ago. Here, we present data on autosomal genomes and mitogenomes obtained for four archaeological specimens of Iron Age (∼2,800 cal BP-2,000 cal BP) domestic cattle from the Eastern Maghreb, i.e. Althiburos (El Kef, Tunisia). D-loop sequences were obtained for an additional eight cattle specimens from this site. Maternal lineages were assigned to the elusive R and ubiquitous African-T1 haplogroups found in two and ten Althiburos specimens, respectively. Our results can be explained by post-domestication hybridization of Althiburos cattle with local aurochs. However, we cannot rule out an independent domestication in North Africa considering the shared ancestry of Althiburos cattle with the pre-domestic Moroccan aurochs and present-day African taurine cattle.
Collapse
Affiliation(s)
- Catarina Ginja
- BIOPOLIS-CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos - ArchGen group, Universidade do Porto, Vairão, Portugal
| | - Silvia Guimarães
- BIOPOLIS-CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos - ArchGen group, Universidade do Porto, Vairão, Portugal
| | - Rute R. da Fonseca
- Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rita Rasteiro
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | | | - Luciana G. Simões
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Cindy Sarmento
- BIOPOLIS-CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos - ArchGen group, Universidade do Porto, Vairão, Portugal
| | - Maria Carme Belarte
- ICREA, Institut Català de Recerca i Estudis Avançats, Barcelona, Spain
- ICAC, Institut Català d'Arqueologia Clàssica, Tarragona, Spain
| | - Nabil Kallala
- INP, Institut National du Patrimoine, Tunis, Tunisia
- Faculté des Sciences Humaines et Sociales, Université de Tunis, Tunis, Tunisia
| | | | - Joan Sanmartí
- In memoriam, Departament de Prehistòria, Història Antiga i Arqueologia, Universitat de Barcelona, Barcelona, Spain
| | - Ana Margarida Arruda
- UNIARQ, Centro de Arqueologia da Universidade de Lisboa, Faculdade de Letras da Universidade de Lisboa, Lisboa, Portugal
| | - Cleia Detry
- UNIARQ, Centro de Arqueologia da Universidade de Lisboa, Faculdade de Letras da Universidade de Lisboa, Lisboa, Portugal
| | - Simon Davis
- BIOPOLIS-CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos - ArchGen group, Universidade do Porto, Vairão, Portugal
- LARC/DGPC, Laboratório de Arqueociências, Direcção Geral do Património Cultural, Lisboa, Portugal
| | - José Matos
- Unidade Estratégica de Investigação e Serviços de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P, Oeiras, Portugal
- CE3C, Centro de Ecologia, Evolução e Alterações Ambientais, Universidade de Lisboa, Lisboa, Portugal
| | | | - Ana Elisabete Pires
- BIOPOLIS-CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos - ArchGen group, Universidade do Porto, Vairão, Portugal
- Faculdade de Medicina Veterinária, Universidade Lusófona, Lisboa, Portugal
| | - Silvia Valenzuela-Lamas
- UNIARQ, Centro de Arqueologia da Universidade de Lisboa, Faculdade de Letras da Universidade de Lisboa, Lisboa, Portugal
- Archaeology of Social Dynamics, Consejo Superior de Investigaciones Científicas-Institució Milà i Fontanals d'Humanitats (CSIC-IMF), Barcelona, Spain
| |
Collapse
|
11
|
Solodneva E, Svishcheva G, Smolnikov R, Bazhenov S, Konorov E, Mukhina V, Stolpovsky Y. Genetic Structure Analysis of 155 Transboundary and Local Populations of Cattle ( Bos taurus, Bos indicus and Bos grunniens) Based on STR Markers. Int J Mol Sci 2023; 24:5061. [PMID: 36902492 PMCID: PMC10003406 DOI: 10.3390/ijms24055061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/09/2023] Open
Abstract
Every week, 1-2 breeds of farm animals, including local cattle, disappear in the world. As the keepers of rare allelic variants, native breeds potentially expand the range of genetic solutions to possible problems of the future, which means that the study of the genetic structure of these breeds is an urgent task. Providing nomadic herders with valuable resources necessary for life, domestic yaks have also become an important object of study. In order to determine the population genetic characteristics, and clarify the phylogenetic relationships of modern representatives of 155 cattle populations from different regions of the world, we collected a large set of STR data (10,250 individuals), including unique native cattle, 12 yak populations from Russia, Mongolia and Kyrgyzstan, as well as zebu breeds. Estimation of main population genetic parameters, phylogenetic analysis, principal component analysis and Bayesian cluster analysis allowed us to refine genetic structure and provided insights in relationships of native populations, transboundary breeds and populations of domestic yak. Our results can find practical application in conservation programs of endangered breeds, as well as become the basis for future fundamental research.
Collapse
Affiliation(s)
- Evgenia Solodneva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Gulnara Svishcheva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Rodion Smolnikov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Sergey Bazhenov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Evgenii Konorov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia
| | - Vera Mukhina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Yurii Stolpovsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| |
Collapse
|
12
|
Delsol N, Stucky BJ, Oswald JA, Reitz EJ, Emery KF, Guralnick R. Analysis of the earliest complete mtDNA genome of a Caribbean colonial horse (Equus caballus) from 16th-century Haiti. PLoS One 2022; 17:e0270600. [PMID: 35895670 PMCID: PMC9328532 DOI: 10.1371/journal.pone.0270600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Unlike other European domesticates introduced in the Americas after the European invasion, equids (Equidae) were previously in the Western Hemisphere but were extinct by the late Holocene era. The return of equids to the Americas through the introduction of the domestic horse (Equus caballus) is documented in the historical literature but is not explored fully either archaeologically or genetically. Historical documents suggest that the first domestic horses were brought from the Iberian Peninsula to the Caribbean in the late 15th century CE, but archaeological remains of these early introductions are rare. This paper presents the mitochondrial genome of a late 16th century horse from the Spanish colonial site of Puerto Real (northern Haiti). It represents the earliest complete mitogenome of a post-Columbian domestic horse in the Western Hemisphere offering a unique opportunity to clarify the phylogeographic history of this species in the Americas. Our data supports the hypothesis of an Iberian origin for this early translocated individual and clarifies its phylogenetic relationship with modern breeds in the Americas.
Collapse
Affiliation(s)
- Nicolas Delsol
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Brian J. Stucky
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America
- Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, United States of America
| | - Jessica A. Oswald
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America
- Biology Department, University of Nevada, Reno, Reno, NV, United States of America
| | - Elizabeth J. Reitz
- Georgia Museum of Natural History, University of Georgia, Athens, Georgia, United States of America
| | - Kitty F. Emery
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America
| | - Robert Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
13
|
The Complete Mitochondrial Genome of a Neglected Breed, the Peruvian Creole Cattle (Bos taurus), and Its Phylogenetic Analysis. DATA 2022. [DOI: 10.3390/data7060076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Cattle spread throughout the American continent during the colonization years, originating creole breeds that adapted to a wide range of climate conditions. The population of creole cattle in Peru is decreasing mainly due to the introduction of more productive breeds in recent years. During the last 15 years, there has been significant progress in cattle genomics. However, little is known about the genetics of the Peruvian creole cattle (PCC) despite its importance to (i) improving productivity in the Andean region, (ii) agricultural labor, and (iii) cultural traditions. In addition, the origin and phylogenetic relationship of the PCC are still unclear. In order to promote the conservation of the PCC, we sequenced the mitochondrial genome of a creole bull, which also possessed exceptional fighting skills and was employed for agricultural tasks, from the highlands of Arequipa for the first time. The total mitochondrial genome sequence is 16,339 bp in length with the base composition of 31.43% A, 28.64% T, 26.81% C, and 13.12% G. It contains 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a control region. Among the 37 genes, 28 were positioned on the H-strand and 9 were positioned on the L-strand. The most frequently used codons were CUA (leucine), AUA (isoleucine), AUU (isoleucine), AUC (isoleucine), and ACA (threonine). Maximum likelihood reconstruction using complete mitochondrial genome sequences showed that the PCC is related to native African breeds. The annotated mitochondrial genome of PCC will serve as an important genetic data set for further breeding work and conservation strategies.
Collapse
|
14
|
Dorji J, Vander Jagt CJ, Chamberlain AJ, Cocks BG, MacLeod IM, Daetwyler HD. Recovery of mitogenomes from whole genome sequences to infer maternal diversity in 1883 modern taurine and indicine cattle. Sci Rep 2022; 12:5582. [PMID: 35379858 PMCID: PMC8980051 DOI: 10.1038/s41598-022-09427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/18/2022] [Indexed: 11/09/2022] Open
Abstract
Maternal diversity based on a sub-region of mitochondrial genome or variants were commonly used to understand past demographic events in livestock. Additionally, there is growing evidence of direct association of mitochondrial genetic variants with a range of phenotypes. Therefore, this study used complete bovine mitogenomes from a large sequence database to explore the full spectrum of maternal diversity. Mitogenome diversity was evaluated among 1883 animals representing 156 globally important cattle breeds. Overall, the mitogenomes were diverse: presenting 11 major haplogroups, expanding to 1309 unique haplotypes, with nucleotide diversity 0.011 and haplotype diversity 0.999. A small proportion of African taurine (3.5%) and indicine (1.3%) haplogroups were found among the European taurine breeds and composites. The haplogrouping was largely consistent with the population structure derived from alternate clustering methods (e.g. PCA and hierarchical clustering). Further, we present evidence confirming a new indicine subgroup (I1a, 64 animals) mainly consisting of breeds originating from China and characterised by two private mutations within the I1 haplogroup. The total genetic variation was attributed mainly to within-breed variance (96.9%). The accuracy of the imputation of missing genotypes was high (99.8%) except for the relatively rare heteroplasmic genotypes, suggesting the potential for trait association studies within a breed.
Collapse
Affiliation(s)
- Jigme Dorji
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
| | - Christy J Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Benjamin G Cocks
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
| | - Hans D Daetwyler
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| |
Collapse
|
15
|
Horsburgh KA, Beckett DB, Gosling AL. Maternal Relationships among Ancient and Modern Southern African Sheep: Newly Discovered Mitochondrial Haplogroups. BIOLOGY 2022; 11:biology11030428. [PMID: 35336803 PMCID: PMC8944976 DOI: 10.3390/biology11030428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The genetic diversity of southern African sheep remains under-studied. We present here the complete mitochondrial genomes of archaeological southern African sheep, as well as the genomes from three indigenous southern African breeds—Damara, Namaqua Afrikaner, and Ronderib Afrikaner. We show that southern African sheep exhibit limited genetic diversity which is consistent with our understanding of their migration south from northernmost Africa. Intriguingly, many of the modern sheep show close relationships with the archaeological sheep, implying an ancestor-descendant relationship. Similarly, the sheep that do not exhibit a close relationship with the archaeological sheep nonetheless cluster closely with each other and do not show a close relationship with European and Asian sheep. This suggests that they too are descendants of indigenous sheep and not the product of historic introductions of exotic breeds. Abstract We investigated the genetic diversity and historic relationships among southern African sheep as well as the relationships between them and sheep outside the continent by sourcing both archaeological and modern sheep samples. Archaeological sheep samples derived from the site Die Kelders 1, near Cape Town, date to approximately 1500 years ago. The modern samples were taken as ear snips from Damara, Namaqua Afrikaner, and Ronderib Afrikaner sheep on a farm in Prieska in the Northern Cape. Illumina sequencing libraries were constructed for both ancient and modern specimens. Ancient specimens were enriched for the mitochondrial genome using an in-solution hybridization protocol and modern specimens were subjected to shotgun sequencing. Sequences were mapped to the Ovis aries reference genome, assigned to haplogroups and subhaplogroups, and used to calculate a phylogenetic tree using previously published, geographically dispersed mitochondrial genome sheep sequences. Genetic diversity statistics show that southern African sheep have lower diversity than sheep in other regions. Phylogenetic analysis reveals that many modern southern African sheep are likely descended from prehistoric indigenous sheep populations and not from sheep imported from Europe during the historic period.
Collapse
Affiliation(s)
- K. Ann Horsburgh
- Department of Anthropology, Southern Methodist University, Dallas, TX 75275, USA
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Wits 2050, South Africa
- Correspondence:
| | - Devri B. Beckett
- Department of Anthropology, University of Colorado, Denver, CO 80217, USA;
| | - Anna L. Gosling
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
16
|
Petretto E, Dettori ML, Pazzola M, Manca F, Amills M, Vacca GM. Mitochondrial DNA diversity of the Sardinian local cattle stock. Sci Rep 2022; 12:2486. [PMID: 35169207 PMCID: PMC8847569 DOI: 10.1038/s41598-022-06420-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this research was to characterize the genetic diversity of the Sarda (Sa, n = 131), Sardo Bruna (SB, n = 44) and Sardo Modicana (SM, n = 26) cattle breeds, reared in the island of Sardinia (Italy). A portion of the mitochondrial DNA hypervariable region was sequenced, in order to identify a potential signature of African introgression. The FST coefficients among populations ranged between 0.056 for Sa vs SB and 0.167 for SB vs SM. AMOVA analysis indicated there was a significant differentiation of the three breeds, although most of diversity was gathered at the within-breed level. The Median Joining Network of the Sardinian sequences showed a potential founder effect signature. A MJ network including Sardinian cattle plus African, Italian, Iberian and Asian sequences, revealed the presence of haplogroup T3, already detected in Sa cattle, and the presence of Hg T1 and Hg T1′2′3, in Sa and SB. The presence of a private haplotype belonging to haplogroup T1, which is characteristic of African taurine breeds, may be due to the introgression of Sardinian breeds with African cattle, either directly (most probable source: North African cattle) or indirectly (through a Mediterranean intermediary already introgressed with African blood).
Collapse
Affiliation(s)
- Elena Petretto
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy.,Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Maria Luisa Dettori
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy.
| | - Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Fabio Manca
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Marcel Amills
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Giuseppe Massimo Vacca
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| |
Collapse
|
17
|
Kwon T, Kim K, Caetano-Anolles K, Sung S, Cho S, Jeong C, Hanotte O, Kim H. Mitonuclear incompatibility as a hidden driver behind the genome ancestry of African admixed cattle. BMC Biol 2022; 20:20. [PMID: 35039029 PMCID: PMC8764764 DOI: 10.1186/s12915-021-01206-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Africa is an important watershed in the genetic history of domestic cattle, as two lineages of modern cattle, Bos taurus and B. indicus, form distinct admixed cattle populations. Despite the predominant B. indicus nuclear ancestry of African admixed cattle, B. indicus mitochondria have not been found on the continent. This discrepancy between the mitochondrial and nuclear genomes has been previously hypothesized to be driven by male-biased introgression of Asian B. indicus into ancestral African B. taurus. Given that this hypothesis mandates extreme demographic assumptions relying on random genetic drift, we propose a novel hypothesis of selection induced by mitonuclear incompatibility and assess these hypotheses with regard to the current genomic status of African admixed cattle. Results By analyzing 494 mitochondrial and 235 nuclear genome sequences, we first confirmed the genotype discrepancy between mitochondrial and nuclear genome in African admixed cattle: the absence of B. indicus mitochondria and the predominant B. indicus autosomal ancestry. We applied approximate Bayesian computation (ABC) to assess the posterior probabilities of two selection hypotheses given this observation. The results of ABC indicated that the model assuming both male-biased B. indicus introgression and selection induced by mitonuclear incompatibility explains the current genomic discrepancy most accurately. Subsequently, we identified selection signatures at autosomal loci interacting with mitochondria that are responsible for integrity of the cellular respiration system. By contrast with B. indicus-enriched genome ancestry of African admixed cattle, local ancestries at these selection signatures were enriched with B. taurus alleles, concurring with the key expectation of selection induced by mitonuclear incompatibility. Conclusions Our findings support the current genome status of African admixed cattle as a potential outcome of male-biased B. indicus introgression, where mitonuclear incompatibility exerted selection pressure against B. indicus mitochondria. This study provides a novel perspective on African cattle demography and supports the role of mitonuclear incompatibility in the hybridization of mammalian species. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01206-x.
Collapse
Affiliation(s)
- Taehyung Kwon
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kwondo Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,eGnome, Inc, Seoul, South Korea
| | | | | | | | - Choongwon Jeong
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Olivier Hanotte
- School of Life Sciences, University of Nottingham, Nottingham, UK. .,LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia. .,The Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, The University of Edinburgh, Edinburgh, UK.
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea. .,eGnome, Inc, Seoul, South Korea. .,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea.
| |
Collapse
|
18
|
Mitochondrial genomes from modern and ancient Turano-Mongolian cattle reveal an ancient diversity of taurine maternal lineages in East Asia. Heredity (Edinb) 2021; 126:1000-1008. [PMID: 33782560 PMCID: PMC8178343 DOI: 10.1038/s41437-021-00428-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
Turano-Mongolian cattle are a group of taurine cattle from Northern and Eastern Asia with distinct morphological traits, which are known for their ability to tolerate harsh environments, such as the Asian steppe and the Tibetan plateau. Through the analysis of 170 mitogenomes from ten modern breeds, two sub-lineages within T3 (T3119 and T3055) were identified as specific of Turano-Mongolian cattle. These two T3 sub-lineages, together with the previously identified T4, were also present in six Neolithic samples, dated to ~3900 years BP, which might represent the earliest domestic taurine stocks from Southwest Asia. The rare haplogroup Q, found in three Tibetan cattle, testifies for the legacy of ancient migrations from Southwest Asia and suggests that the isolated Tibetan Plateau preserved unique prehistoric genetic resources. These findings confirm the geographic substructure of Turano-Mongolian cattle breeds, which have been shaped by ancient migrations and geographic barriers.
Collapse
|
19
|
Mauki DH, Adeola AC, Ng’ang’a SI, Tijjani A, Akanbi IM, Sanke OJ, Abdussamad AM, Olaogun SC, Ibrahim J, Dawuda PM, Mangbon GF, Gwakisa PS, Yin TT, Peng MS, Zhang YP. Genetic variation of Nigerian cattle inferred from maternal and paternal genetic markers. PeerJ 2021; 9:e10607. [PMID: 33717663 PMCID: PMC7938780 DOI: 10.7717/peerj.10607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/29/2020] [Indexed: 01/29/2023] Open
Abstract
The African cattle provide unique genetic resources shaped up by both diverse tropical environmental conditions and human activities, the assessment of their genetic diversity will shade light on the mechanism of their remarkable adaptive capacities. We therefore analyzed the genetic diversity of cattle samples from Nigeria using both maternal and paternal DNA markers. Nigerian cattle can be assigned to 80 haplotypes based on the mitochondrial DNA (mtDNA) D-loop sequences and haplotype diversity was 0.985 + 0.005. The network showed two major matrilineal clustering: the dominant cluster constituting the Nigerian cattle together with other African cattle while the other clustered Eurasian cattle. Paternal analysis indicates only zebu haplogroup in Nigerian cattle with high genetic diversity 1.000 ± 0.016 compared to other cattle. There was no signal of maternal genetic structure in Nigerian cattle population, which may suggest an extensive genetic intermixing within the country. The absence of Bos indicus maternal signal in Nigerian cattle is attributable to vulnerability bottleneck of mtDNA lineages and concordance with the view of male zebu genetic introgression in African cattle. Our study shades light on the current genetic diversity in Nigerian cattle and population history in West Africa.
Collapse
Affiliation(s)
- David H. Mauki
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Chinese Academy of Sciences, Sino-Africa Joint Research Center, Kunming, Yunnan, China
- University of Academy of Sciences, Kunming College of Life Science, Kunming, Yunnan, China
| | - Adeniyi C. Adeola
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Chinese Academy of Sciences, Sino-Africa Joint Research Center, Kunming, Yunnan, China
| | - Said I. Ng’ang’a
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Chinese Academy of Sciences, Sino-Africa Joint Research Center, Kunming, Yunnan, China
- University of Academy of Sciences, Kunming College of Life Science, Kunming, Yunnan, China
| | | | - Ibikunle Mark Akanbi
- Ministry of Agriculture and Rural Development, Secretariat, Ibadan, Oyo, Nigeria
| | - Oscar J. Sanke
- Taraba State Ministry of Agriculture and Natural Resources, Jalingo, Taraba, Nigeria
| | | | - Sunday C. Olaogun
- Department of Veterinary Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Jebi Ibrahim
- College of veterinary medicine, department of theriogenology, University of agriculture, Makurdi, Makurdi, Benue, Nigeria
| | - Philip M. Dawuda
- Department of Veterinary Surgery and Theriogenology, College of Veterinary Medicine, University of Agriculture Makurdi, Makurdi, Benue, Nigeria
| | | | - Paul S. Gwakisa
- Department of Microbiology, Parasitology and Biotechnology/ Genome Science Center, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Chinese Academy of Sciences, Sino-Africa Joint Research Center, Kunming, Yunnan, China
- University of Academy of Sciences, Kunming College of Life Science, Kunming, Yunnan, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Chinese Academy of Sciences, Sino-Africa Joint Research Center, Kunming, Yunnan, China
- University of Academy of Sciences, Kunming College of Life Science, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
20
|
Fit for the Job: Proportion and the Portrayal of Cattle in Egyptian Old and Middle Kingdom Elite Tomb Imagery. ARTS 2021. [DOI: 10.3390/arts10010013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Depictions of the natural world are an intrinsic feature of Egyptian visual culture, with the vast array of imagery documenting animals a testimony to the fundamental role they played. Despite the significance of animals in Egypt, an anthropocentric bias still exists in research on the methods used by practitioners during initial scene composition. To help bridge the divide, the author herein undertook an investigation to determine if proportional guides were in place when rendering animal figures in ancient Egyptian elite tomb imagery of the Old and Middle Kingdoms. A notable outcome of the proportional analysis was the identification of two distinct body-types for domestic cattle (Bos taurus taurus). The aim of the current paper is to further examine these proportional differences to explore if variations in physique (namely the distance between the chest floor and withers) were rendered by Egyptian practitioners to reflect the conditions in which they appeared by considering two overarching factors: (1) biological factors and (2) contextual factors. As such, the study will employ proportional analysis to challenge the prevailing perspective of a deregulated approach when illustrating fauna in elite tomb imagery, highlighting the significance of animals within ancient Egypt.
Collapse
|
21
|
Mannen H, Yonezawa T, Murata K, Noda A, Kawaguchi F, Sasazaki S, Olivieri A, Achilli A, Torroni A. Cattle mitogenome variation reveals a post-glacial expansion of haplogroup P and an early incorporation into northeast Asian domestic herds. Sci Rep 2020; 10:20842. [PMID: 33257722 PMCID: PMC7704668 DOI: 10.1038/s41598-020-78040-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Surveys of mitochondrial DNA (mtDNA) variation have shown that worldwide domestic cattle are characterized by just a few major haplogroups. Two, T and I, are common and characterize Bos taurus and Bos indicus, respectively, while the other three, P, Q and R, are rare and are found only in taurine breeds. Haplogroup P is typical of extinct European aurochs, while intriguingly modern P mtDNAs have only been found in northeast Asian cattle. These Asian P mtDNAs are extremely rare with the exception of the Japanese Shorthorn breed, where they reach a frequency of 45.9%. To shed light on the origin of this haplogroup in northeast Asian cattle, we completely sequenced 14 Japanese Shorthorn mitogenomes belonging to haplogroup P. Phylogenetic and Bayesian analyses revealed: (1) a post-glacial expansion of aurochs carrying haplogroup P from Europe to Asia; (2) that all Asian P mtDNAs belong to a single sub-haplogroup (P1a), so far never detected in either European or Asian aurochs remains, which was incorporated into domestic cattle of continental northeastern Asia possibly ~ 3700 years ago; and (3) that haplogroup P1a mtDNAs found in the Japanese Shorthorn breed probably reached Japan about 650 years ago from Mongolia/Russia, in agreement with historical evidence.
Collapse
Affiliation(s)
- Hideyuki Mannen
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | - Takahiro Yonezawa
- Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Kako Murata
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Aoi Noda
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Fuki Kawaguchi
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Shinji Sasazaki
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| |
Collapse
|
22
|
ElHefnawi M, Hegazy E, Elfiky A, Jeon Y, Jeon S, Bhak J, Mohamed Metwally F, Sugano S, Horiuchi T, Kazumi A, Blazyte A. Complete genome sequence and bioinformatics analysis of nine Egyptian females with clinical information from different geographic regions in Egypt. Gene 2020; 769:145237. [PMID: 33127537 DOI: 10.1016/j.gene.2020.145237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 08/03/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022]
Abstract
Egyptians are at a crossroad between Africa and Eurasia, providing useful genomic resources for analyzing both genetic and environmental factors for future personalized medicine. Two personal Egyptian whole genomes have been published previously by us and here nine female whole genome sequences with clinical information have been added to expand the genomic resource of Egyptian personal genomes. Here we report the analysis of whole genomes of nine Egyptian females from different regions using Illumina short-read sequencers. At 30x sequencing coverage, we identified 12 SNPs that were shared in most of the subjects associated with obesity which are concordant with their clinical diagnosis. Also, we found mtDNA mutation A4282G is common in all the samples and this is associated with chronic progressive external ophthalmoplegia (CPEO). Haplogroup and Admixture analyses revealed that most Egyptian samples are close to the other north Mediterranean, Middle Eastern, and European, respectively, possibly reflecting the into-Africa influx of human migration. In conclusion, we present whole-genome sequences of nine Egyptian females with personal clinical information that cover the diverse regions of Egypt. Although limited in sample size, the whole genomes data provides possible geno-phenotype candidate markers that are relevant to the region's diseases.
Collapse
Affiliation(s)
- Mahmoud ElHefnawi
- School of Information Technology and Computer Science, Nile University, Giza 12588, Egypt; Informatics & Systems Department, the National Research Centre, Cairo, Egypt; Biomedical Informatics and Chemoinformatics Group, Center of Excellence for Medical Research, National Research Centre, Cairo, Egypt.
| | - Elsayed Hegazy
- School of Information Technology and Computer Science, Nile University, Giza 12588, Egypt
| | - Asmaa Elfiky
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Centre, Cairo, Egypt
| | - Yeonsu Jeon
- Korean Genomics Center (KOGIC), UNIST, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sungwon Jeon
- Korean Genomics Center (KOGIC), UNIST, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jong Bhak
- Korean Genomics Center (KOGIC), UNIST, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea; Personal Genomics Institute, Genome Research Foundation, Osong, Republic of Korea
| | - Fateheya Mohamed Metwally
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Centre, Cairo, Egypt
| | - Sumio Sugano
- The Institute of Medical Science, University of Tokyo, Japan
| | - Terumi Horiuchi
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Abe Kazumi
- The Institute of Medical Science, University of Tokyo, Japan
| | - Asta Blazyte
- Korean Genomics Center (KOGIC), UNIST, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
23
|
Zhang K, Lenstra JA, Zhang S, Liu W, Liu J. Evolution and domestication of the Bovini species. Anim Genet 2020; 51:637-657. [PMID: 32716565 DOI: 10.1111/age.12974] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Domestication of the Bovini species (taurine cattle, zebu, yak, river buffalo and swamp buffalo) since the early Holocene (ca. 10 000 BCE) has contributed significantly to the development of human civilization. In this study, we review recent literature on the origin and phylogeny, domestication and dispersal of the three major Bos species - taurine cattle, zebu and yak - and their genetic interactions. The global dispersion of taurine and zebu cattle was accompanied by population bottlenecks, which resulted in a marked phylogeographic differentiation of the mitochondrial and Y-chromosomal DNA. The high diversity of European breeds has been shaped through isolation-by-distance, different production objectives, breed formation and the expansion of popular breeds. The overlapping and broad ranges of taurine and zebu cattle led to hybridization with each other and with other bovine species. For instance, Chinese gayal carries zebu mitochondrial DNA; several Indonesian zebu descend from zebu bull × banteng cow crossings; Tibetan cattle and yak have exchanged gene variants; and about 5% of the American bison contain taurine mtDNA. Analysis at the genomic level indicates that introgression may have played a role in environmental adaptation.
Collapse
Affiliation(s)
- K Zhang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - J A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht Yalelaan 104, Utrecht, 3584 CM, The Netherlands
| | - S Zhang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - W Liu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - J Liu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
24
|
The mosaic genome of indigenous African cattle as a unique genetic resource for African pastoralism. Nat Genet 2020; 52:1099-1110. [PMID: 32989325 DOI: 10.1038/s41588-020-0694-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
Cattle pastoralism plays a central role in human livelihood in Africa. However, the genetic history of its success remains unknown. Here, through whole-genome sequence analysis of 172 indigenous African cattle from 16 breeds representative of the main cattle groups, we identify a major taurine × indicine cattle admixture event dated to circa 750-1,050 yr ago, which has shaped the genome of today's cattle in the Horn of Africa. We identify 16 loci linked to African environmental adaptations across crossbred animals showing an excess of taurine or indicine ancestry. These include immune-, heat-tolerance- and reproduction-related genes. Moreover, we identify one highly divergent locus in African taurine cattle, which is putatively linked to trypanotolerance and present in crossbred cattle living in trypanosomosis-infested areas. Our findings indicate that a combination of past taurine and recent indicine admixture-derived genetic resources is at the root of the present success of African pastoralism.
Collapse
|
25
|
Verdugo MP, Mullin VE, Scheu A, Mattiangeli V, Daly KG, Maisano Delser P, Hare AJ, Burger J, Collins MJ, Kehati R, Hesse P, Fulton D, Sauer EW, Mohaseb FA, Davoudi H, Khazaeli R, Lhuillier J, Rapin C, Ebrahimi S, Khasanov M, Vahidi SMF, MacHugh DE, Ertuğrul O, Koukouli-Chrysanthaki C, Sampson A, Kazantzis G, Kontopoulos I, Bulatovic J, Stojanović I, Mikdad A, Benecke N, Linstädter J, Sablin M, Bendrey R, Gourichon L, Arbuckle BS, Mashkour M, Orton D, Horwitz LK, Teasdale MD, Bradley DG. Ancient cattle genomics, origins, and rapid turnover in the Fertile Crescent. SCIENCE (NEW YORK, N.Y.) 2020; 365:173-176. [PMID: 31296769 DOI: 10.1126/science.aav1002] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 06/14/2019] [Indexed: 11/02/2022]
Abstract
Genome-wide analysis of 67 ancient Near Eastern cattle, Bos taurus, remains reveals regional variation that has since been obscured by admixture in modern populations. Comparisons of genomes of early domestic cattle to their aurochs progenitors identify diverse origins with separate introgressions of wild stock. A later region-wide Bronze Age shift indicates rapid and widespread introgression of zebu, Bos indicus, from the Indus Valley. This process was likely stimulated at the onset of the current geological age, ~4.2 thousand years ago, by a widespread multicentury drought. In contrast to genome-wide admixture, mitochondrial DNA stasis supports that this introgression was male-driven, suggesting that selection of arid-adapted zebu bulls enhanced herd survival. This human-mediated migration of zebu-derived genetics has continued through millennia, altering tropical herding on each continent.
Collapse
Affiliation(s)
| | - Victoria E Mullin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland.,Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
| | - Amelie Scheu
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland.,Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iOME), Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
| | - Valeria Mattiangeli
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Kevin G Daly
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Pierpaolo Maisano Delser
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland.,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Andrew J Hare
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Joachim Burger
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iOME), Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
| | - Matthew J Collins
- BioArCh, University of York, York YO10 5DD, UK.,Museum of Natural History, University of Copenhagen, Copenhagen, Denmark
| | - Ron Kehati
- 448 Shvil Hachalav Street, Nir Banim 7952500, Israel
| | - Paula Hesse
- Jewish Studies Program, Department of Classics and Ancient Mediterranean Studies, The Pennsylvania State University, University Park, PA 16802, USA
| | - Deirdre Fulton
- Department of Religion, Baylor University, Waco, TX 76798, USA
| | - Eberhard W Sauer
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Fatemeh A Mohaseb
- Archéozoologie et Archéobotanique (UMR 7209), CNRS, MNHN, UPMC, Sorbonne Universités, Paris, France.,Bioarchaeology Laboratory, Central Laboratory, University of Tehran, 1417634934 Tehran, Iran
| | - Hossein Davoudi
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, 1417634934 Tehran, Iran.,Osteology Department, National Museum of Iran, 1136918111 Tehran, Iran.,Department of Archaeology, Faculty of Humanities, Tarbiat Modares University, 111-14115 Tehran, Iran
| | - Roya Khazaeli
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, 1417634934 Tehran, Iran
| | - Johanna Lhuillier
- Archéorient Université Lyon 2, CNRS UMR 5133, Maison de l'Orient et de la Méditerranée, 69365 Lyon, France
| | - Claude Rapin
- Archéologie d'Orient et d'Occident (AOROC, UMR 8546, CNRS ENS), Centre d'archéologie, 75005 Paris, France
| | - Saeed Ebrahimi
- Faculty of Literature and Humanities, Islamic Azad University, 1711734353 Tehran, Iran
| | - Mutalib Khasanov
- Uzbekistan Institute of Archaeology of the Academy of Sciences of the Republic of Uzbekistan, 703051 Samarkand, Uzbekistan
| | - S M Farhad Vahidi
- Agricultural Biotechnology Research Institute of Iran-North branch (ABRII), Agricultural Research, Education and Extension Organization, 4188958883 Rasht, Iran
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin D04 V1W8, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland
| | - Okan Ertuğrul
- Veterinary Faculty, Ankara University, 06110 Ankara, Turkey
| | - Chaido Koukouli-Chrysanthaki
- Hellenic Ministry of Culture and Sports, Department of Prehistoric and Classical Antiquities, and Museums, Serres 62 122, Greece
| | - Adamantios Sampson
- Department of Mediterranean Studies, University of the Aegean, 85132 Rhodes, Greece
| | - George Kazantzis
- Archaeological Museum of Aeani, 500 04, Kozani, Western Macedonia, Greece
| | | | - Jelena Bulatovic
- Laboratory for Bioarchaeology, Department of Archaeology, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Abdesalam Mikdad
- Institut National des Sciences de l'Archéologie et du Patrimoine de Maroc (INSAP) Hay Riad, Madinat al Ifrane, Rabat Instituts, 10000 Rabat, Morocco
| | - Norbert Benecke
- Department of Natural Sciences, German Archaeological Institute, 14195 Berlin, Germany
| | - Jörg Linstädter
- Deutsches Archäologisches Institut, Kommission für Archäologie Außereuropäischer Kulturen (KAAK), 53173 Bonn, Germany
| | - Mikhail Sablin
- Zoological Institute of the Russian Academy of Sciences, 199034 St Petersburg, Russia
| | - Robin Bendrey
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh EH8 9AG, UK.,Department of Archaeology, University of Reading, Reading RG6 6AB, UK
| | - Lionel Gourichon
- Université Côte d'Azur, CNRS, CEPAM (UMR 7264), 06357 Nice, France
| | - Benjamin S Arbuckle
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marjan Mashkour
- Archéozoologie et Archéobotanique (UMR 7209), CNRS, MNHN, UPMC, Sorbonne Universités, Paris, France.,Bioarchaeology Laboratory, Central Laboratory, University of Tehran, 1417634934 Tehran, Iran.,Osteology Department, National Museum of Iran, 1136918111 Tehran, Iran
| | - David Orton
- BioArCh, University of York, York YO10 5DD, UK
| | - Liora Kolska Horwitz
- National Natural History Collections, Faculty of Life Sciences, The Hebrew University, 9190401 Jerusalem, Israel
| | - Matthew D Teasdale
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland.,BioArCh, University of York, York YO10 5DD, UK
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland.
| |
Collapse
|
26
|
Mekonnen YA, Gültas M, Effa K, Hanotte O, Schmitt AO. Identification of Candidate Signature Genes and Key Regulators Associated With Trypanotolerance in the Sheko Breed. Front Genet 2019; 10:1095. [PMID: 31803229 PMCID: PMC6872528 DOI: 10.3389/fgene.2019.01095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/11/2019] [Indexed: 12/23/2022] Open
Abstract
African animal trypanosomiasis (AAT) is caused by a protozoan parasite that affects the health of livestock. Livestock production in Ethiopia is severely hampered by AAT and various controlling measures were not successful to eradicate the disease. AAT affects the indigenous breeds in varying degrees. However, the Sheko breed shows better trypanotolerance than other breeds. The tolerance attributes of Sheko are believed to be associated with its taurine genetic background but the genetic controls of these tolerance attributes of Sheko are not well understood. In order to investigate the level of taurine background in the genome, we compare the genome of Sheko with that of 11 other African breeds. We find that Sheko has an admixed genome composed of taurine and indicine ancestries. We apply three methods: (i) The integrated haplotype score (iHS), (ii) the standardized log ratio of integrated site specific extended haplotype homozygosity between populations (Rsb), and (iii) the composite likelihood ratio (CLR) method to discover selective sweeps in the Sheko genome. We identify 99 genomic regions harboring 364 signature genes in Sheko. Out of the signature genes, 15 genes are selected based on their biological importance described in the literature. We also identify 13 overrepresented pathways and 10 master regulators in Sheko using the TRANSPATH database in the geneXplain platform. Most of the pathways are related with oxidative stress responses indicating a possible selection response against the induction of oxidative stress following trypanosomiasis infection in Sheko. Furthermore, we present for the first time the importance of master regulators involved in trypanotolerance not only for the Sheko breed but also in the context of cattle genomics. Our finding shows that the master regulator Caspase is a key protease which plays a major role for the emergence of adaptive immunity in harmony with the other master regulators. These results suggest that designing and implementing genetic intervention strategies is necessary to improve the performance of susceptible animals. Moreover, the master regulatory analysis suggests potential candidate therapeutic targets for the development of new drugs for trypanosomiasis treatment.
Collapse
Affiliation(s)
- Yonatan Ayalew Mekonnen
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany
| | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), University of Göttingen, Göttingen, Germany
| | - Kefena Effa
- Animal Biosciences, National Program Coordinator for African Dairy Genetic Gain, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- Cells, Organisms amd Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Armin O Schmitt
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), University of Göttingen, Göttingen, Germany
| |
Collapse
|
27
|
Abundant Genetic Diversity of Yunling Cattle Based on Mitochondrial Genome. Animals (Basel) 2019; 9:ani9090641. [PMID: 31480663 PMCID: PMC6769864 DOI: 10.3390/ani9090641] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Mitochondrial DNA (mtDNA) analysis is a critical tool in assessing the maternal origin, phylogeny and population structure of domestic animals. Yunling cattle are a composite breed that was created by local Yunnan cattle breeds (as a maternal line) 30 years ago. It can be said that Yunling cattle represent important reservoirs of genetic diversity of local Yunnan cattle. Yunling cattle are characterized as a tropical/subtropical breed with fast growth, heat tolerance and parasite resistance, and can survive in a harsh environment and on low-quality roughage. Assessing the genetic characteristics of Yunling cattle is of particular importance for reasonable breeding strategies for Yunling cattle and the design of a local Yunnan cattle conservation program. Abstract Yunling cattle are a composite beef cattle breed, combining Brahman (1/2), Murray Grey (1/4) and Local Yunnan cattle (1/4), that was developed in Yunnan, China in the 1980s. Understanding the genetic information of Yunling cattle is of great significance to the development of reasonable breeding strategies for this breed. In the present study, we assessed the current genetic status of Yunling cattle in Yunnan Province (China) by analyzing the variability of the whole mitochondrial genome of 129 individuals. Altogether, 129 sequences displayed 47 different haplotypes. The haplotype diversity and the average number of nucleotide differences were 0.964 and 128.074, respectively. Phylogenetic analyses classified Yunling cattle into seven haplogroups: T1, T2, T3, T4, T6, I1 and I2. Haplogroup I1 was found to be predominant (41.86%), followed by T3 (28.68%). Furthermore, we also identified a novel haplogroup, T6, and defined the sub-haplogroup I1a in Yunling cattle. According to the formation process of Yunling cattle (local Yunnan cattle as the maternal line), the high genetic diversities in the mitochondria of Yunling cattle could be due to the complex maternal origin of local Yunnan cattle. Further studies about local Yunnan breeds are necessary to determine the exact source of haplogroup T6 in Yunling cattle. Our results will be useful for the evaluation and effective management of Yunling cattle.
Collapse
|
28
|
Ginja C, Gama LT, Cortés O, Burriel IM, Vega-Pla JL, Penedo C, Sponenberg P, Cañón J, Sanz A, do Egito AA, Alvarez LA, Giovambattista G, Agha S, Rogberg-Muñoz A, Lara MAC, Delgado JV, Martinez A. The genetic ancestry of American Creole cattle inferred from uniparental and autosomal genetic markers. Sci Rep 2019; 9:11486. [PMID: 31391486 PMCID: PMC6685949 DOI: 10.1038/s41598-019-47636-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/16/2019] [Indexed: 12/31/2022] Open
Abstract
Cattle imported from the Iberian Peninsula spread throughout America in the early years of discovery and colonization to originate Creole breeds, which adapted to a wide diversity of environments and later received influences from other origins, including zebu cattle in more recent years. We analyzed uniparental genetic markers and autosomal microsatellites in DNA samples from 114 cattle breeds distributed worldwide, including 40 Creole breeds representing the whole American continent, and samples from the Iberian Peninsula, British islands, Continental Europe, Africa and American zebu. We show that Creole breeds differ considerably from each other, and most have their own identity or group with others from neighboring regions. Results with mtDNA indicate that T1c-lineages are rare in Iberia but common in Africa and are well represented in Creoles from Brazil and Colombia, lending support to a direct African influence on Creoles. This is reinforced by the sharing of a unique Y-haplotype between cattle from Mozambique and Creoles from Argentina. Autosomal microsatellites indicate that Creoles occupy an intermediate position between African and European breeds, and some Creoles show a clear Iberian signature. Our results confirm the mixed ancestry of American Creole cattle and the role that African cattle have played in their development.
Collapse
Affiliation(s)
- Catarina Ginja
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Porto, Portugal
| | - Luis Telo Gama
- CIISA.Faculdade de Medicina Veterinaria, Universidade de Lisboa, Lisbon, Portugal
| | - Oscar Cortés
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.
| | - Inmaculada Martin Burriel
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Jose Luis Vega-Pla
- Laboratorio de Investigación Aplicada, Servicio de Cría Caballar de las Fuerzas Armadas, Córdoba, Spain
| | - Cecilia Penedo
- Veterinary Genetics Laboratory, University of California, Davis, California, USA
| | - Phil Sponenberg
- Virginia-Maryland Regional College of Veterinary Medicine. Virginia Tech, Virginia, USA
| | - Javier Cañón
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Arianne Sanz
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | - Saif Agha
- Animal Production Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | | | | | | | - Juan Vicente Delgado
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Amparo Martinez
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.,Animal Beeding Consulting S.L. Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
29
|
da Fonseca RR, Ureña I, Afonso S, Pires AE, Jørsboe E, Chikhi L, Ginja C. Consequences of breed formation on patterns of genomic diversity and differentiation: the case of highly diverse peripheral Iberian cattle. BMC Genomics 2019; 20:334. [PMID: 31053061 PMCID: PMC6500009 DOI: 10.1186/s12864-019-5685-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Iberian primitive breeds exhibit a remarkable phenotypic diversity over a very limited geographical space. While genomic data are accumulating for most commercial cattle, it is still lacking for these primitive breeds. Whole genome data is key to understand the consequences of historic breed formation and the putative role of earlier admixture events in the observed diversity patterns. RESULTS We sequenced 48 genomes belonging to eight Iberian native breeds and found that the individual breeds are genetically very distinct with FST values ranging from 4 to 16% and have levels of nucleotide diversity similar or larger than those of their European counterparts, namely Jersey and Holstein. All eight breeds display significant gene flow or admixture from African taurine cattle and include mtDNA and Y-chromosome haplotypes from multiple origins. Furthermore, we detected a very low differentiation of chromosome X relative to autosomes within all analyzed taurine breeds, potentially reflecting male-biased gene flow. CONCLUSIONS Our results show that an overall complex history of admixture resulted in unexpectedly high levels of genomic diversity for breeds with seemingly limited geographic ranges that are distantly located from the main domestication center for taurine cattle in the Near East. This is likely to result from a combination of trading traditions and breeding practices in Mediterranean countries. We also found that the levels of differentiation of autosomes vs sex chromosomes across all studied taurine and indicine breeds are likely to have been affected by widespread breeding practices associated with male-biased gene flow.
Collapse
Affiliation(s)
- Rute R. da Fonseca
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Irene Ureña
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Sandra Afonso
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Ana Elisabete Pires
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
- LARC, Laboratório de Arqueociências, Direcção Geral do Património Cultural, Lisbon, Portugal
| | - Emil Jørsboe
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lounès Chikhi
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, 31062 Toulouse cedex 9, France
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande n°6, P-2780-156 Oeiras, Portugal
| | - Catarina Ginja
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
30
|
Iwaszczuk U, Niderla-Bielińska J, Ścieżyńska A. Kings and peasants from El-Zuma/El-Detti microregion in the Early Makurian period. Economic aspects of animal bones from funerary contexts. PLoS One 2019; 14:e0212423. [PMID: 30768626 PMCID: PMC6377145 DOI: 10.1371/journal.pone.0212423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 02/01/2019] [Indexed: 11/19/2022] Open
Abstract
Tumuli fields at El-Zuma and El-Detti were dated to the 2nd phase of the Early Makurian period, c. AD 450–550. They represented three types of tombs of different sizes and structures. The animal remains from these graves were analyzed in the context of animal economy practiced by the people who lived in the vicinity of the burial sites. aDNA analysis was conducted for cattle remains to explain its origin and significance for the inhabitants of the region. The research showed agricultural nature of the settlement located to the north of the Nile Valley with a great importance of cattle and sheep breeding. It also indicated the northern direction of trade and cultural contacts of the society based in the El-Zuma/El-Detti microregion and the deep social stratification within this group.
Collapse
Affiliation(s)
- Urszula Iwaszczuk
- Polish Centre of Mediterranean Archaeology, University of Warsaw, Warsaw, Poland
| | | | - Aneta Ścieżyńska
- Histology and Embryology Department, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
31
|
Pitt D, Sevane N, Nicolazzi EL, MacHugh DE, Park SDE, Colli L, Martinez R, Bruford MW, Orozco‐terWengel P. Domestication of cattle: Two or three events? Evol Appl 2019; 12:123-136. [PMID: 30622640 PMCID: PMC6304694 DOI: 10.1111/eva.12674] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/19/2018] [Accepted: 06/10/2018] [Indexed: 02/06/2023] Open
Abstract
Cattle have been invaluable for the transition of human society from nomadic hunter-gatherers to sedentary farming communities throughout much of Europe, Asia and Africa since the earliest domestication of cattle more than 10,000 years ago. Although current understanding of relationships among ancestral populations remains limited, domestication of cattle is thought to have occurred on two or three occasions, giving rise to the taurine (Bos taurus) and indicine (Bos indicus) species that share the aurochs (Bos primigenius) as common ancestor ~250,000 years ago. Indicine and taurine cattle were domesticated in the Indus Valley and Fertile Crescent, respectively; however, an additional domestication event for taurine in the Western Desert of Egypt has also been proposed. We analysed medium density Illumina Bovine SNP array (~54,000 loci) data across 3,196 individuals, representing 180 taurine and indicine populations to investigate population structure within and between populations, and domestication and demographic dynamics using approximate Bayesian computation (ABC). Comparative analyses between scenarios modelling two and three domestication events consistently favour a model with only two episodes and suggest that the additional genetic variation component usually detected in African taurine cattle may be explained by hybridization with local aurochs in Africa after the domestication of taurine cattle in the Fertile Crescent. African indicine cattle exhibit high levels of shared genetic variation with Asian indicine cattle due to their recent divergence and with African taurine cattle through relatively recent gene flow. Scenarios with unidirectional or bidirectional migratory events between European taurine and Asian indicine cattle are also plausible, although further studies are needed to disentangle the complex human-mediated dispersion patterns of domestic cattle. This study therefore helps to clarify the effect of past demographic history on the genetic variation of modern cattle, providing a basis for further analyses exploring alternative migratory routes for early domestic populations.
Collapse
Affiliation(s)
- Daniel Pitt
- School of BiosciencesCardiff UniversityCardiffUK
| | | | | | - David E. MacHugh
- Animal Genomics LaboratoryUCD School of Agriculture and Food Science, UCD College of Health and Agricultural SciencesUniversity College DublinDublinIreland
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
| | | | - Licia Colli
- Istituto di Zootecnica e BioDNA Centro di Ricerca sulla Biodiversità e sul DNA AnticoUniversità Cattolica del S. Cuore di PiacenzaPiacenzaItaly
| | - Rodrigo Martinez
- Corporación Colombiana De Investigación Agropecuaria (Corpoica)Centro de investigaciones TibaitatáBogotáColombia
| | | | | |
Collapse
|
32
|
Bahbahani H, Afana A, Wragg D. Genomic signatures of adaptive introgression and environmental adaptation in the Sheko cattle of southwest Ethiopia. PLoS One 2018; 13:e0202479. [PMID: 30114214 PMCID: PMC6095569 DOI: 10.1371/journal.pone.0202479] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/04/2018] [Indexed: 11/23/2022] Open
Abstract
Although classified as an African taurine breed, the genomes of Sheko cattle are an admixture of Asian zebu and African taurine ancestries. They populate the humid Bench Maji zone in Sheko and Bench districts in the south-western part of Ethiopia and are considered as a trypanotolerant breed with high potential for dairy production. Here, we investigate the genome of Sheko cattle for candidate signatures of adaptive introgression and positive selection using medium density genome-wide SNP data. Following locus-ancestry deviation analysis, 15 and 72 genome regions show substantial excess and deficiency in Asian zebu ancestry, respectively. Nine and 23 regions show candidate signatures of positive selection following extended haplotype homozygosity (EHH)-based analyses (iHS and Rsb), respectively. The results support natural selection before admixture for one iHS, one Rsb and three zebu ancestry-deficient regions. Genes and/or QTL associated with bovine immunity, fertility, heat tolerance, trypanotolerance and lactation are present within candidate selected regions. The identification of candidate regions under selection in Sheko cattle warrants further investigation of a larger sample size using full genome sequence data to better characterise the underlying haplotypes. The results can then support informative genomic breeding programmes to sustainably enhance livestock productivity in East African trypanosomosis infested areas.
Collapse
Affiliation(s)
- Hussain Bahbahani
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
- * E-mail: ,
| | - Arwa Afana
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - David Wragg
- Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Edinburgh, United Kingdom
| |
Collapse
|
33
|
Di Lorenzo P, Lancioni H, Ceccobelli S, Colli L, Cardinali I, Karsli T, Capodiferro MR, Sahin E, Ferretti L, Ajmone Marsan P, Sarti FM, Lasagna E, Panella F, Achilli A. Mitochondrial DNA variants of Podolian cattle breeds testify for a dual maternal origin. PLoS One 2018; 13:e0192567. [PMID: 29462170 PMCID: PMC5819780 DOI: 10.1371/journal.pone.0192567] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Over the past 15 years, 300 out of 6000 breeds of all farm animal species identified by the Food and Agriculture Organization of the United Nations (FAO) have gone extinct. Among cattle, many Podolian breeds are seriously endangered in various European areas. Podolian cattle include a group of very ancient European breeds, phenotypically close to the aurochs ancestors (Bos primigenius). The aim of the present study was to assess the genetic diversity of Podolian breeds and to reconstruct their origin. METHODOLOGY The mitochondrial DNA (mtDNA) control-regions of 18 Podolian breeds have been phylogenetically assessed. Nine non-Podolian breeds have been also included for comparison. CONCLUSION The overall analysis clearly highlights some peculiarities in the mtDNA gene pool of some Podolian breeds. In particular, a principal component analysis point to a genetic proximity between five breeds (Chianina, Marchigiana, Maremmana, Podolica Italiana and Romagnola) reared in Central Italy and the Turkish Grey. We here propose the suggestive hypothesis of a dual ancestral contribution to the present gene pool of Podolian breeds, one deriving from Eastern European cattle; the other arising from the arrival of Middle Eastern cattle into Central Italy through a different route, perhaps by sea, ferried by Etruscan boats. The historical migration of Podolian cattle from North Eastern Europe towards Italy has not cancelled the mtDNA footprints of this previous ancient migration.
Collapse
Affiliation(s)
- Piera Di Lorenzo
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Hovirag Lancioni
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy
- * E-mail: (HL); (AA)
| | - Simone Ceccobelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Licia Colli
- Institute of Zootechnics, Università Cattolica del S. Cuore, Piacenza, Italy
- Biodiversity and Ancient DNA Research Center–BioDNA, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Irene Cardinali
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy
| | - Taki Karsli
- Department of Animal Science, Faculty of Agriculture, University of Akdeniz, Antalya, Turkey
| | | | - Emine Sahin
- Korkuteli Vocational School, University of Akdeniz, Antalya, Turkey
| | - Luca Ferretti
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, Pavia, Italy
| | - Paolo Ajmone Marsan
- Institute of Zootechnics, Università Cattolica del S. Cuore, Piacenza, Italy
- Biodiversity and Ancient DNA Research Center–BioDNA, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Francesca Maria Sarti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Emiliano Lasagna
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Francesco Panella
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, Pavia, Italy
- * E-mail: (HL); (AA)
| |
Collapse
|
34
|
The mtDNA haplogroup P of modern Asian cattle: A genetic legacy of Asian aurochs? PLoS One 2018; 13:e0190937. [PMID: 29304129 PMCID: PMC5755918 DOI: 10.1371/journal.pone.0190937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/22/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Aurochs (Bos primigenius) were distributed throughout large parts of Eurasia and Northern Africa during the late Pleistocene and the early Holocene, and all modern cattle are derived from the aurochs. Although the mtDNA haplogroups of most modern cattle belong to haplogroups T and I, several additional haplogroups (P, Q, R, C and E) have been identified in modern cattle and aurochs. Haplogroup P was the most common haplogroup in European aurochs, but so far, it has been identified in only three of >3,000 submitted haplotypes of modern Asian cattle. METHODOLOGY We sequenced the complete mtDNA D-loop region of 181 Japanese Shorthorn cattle and analyzed these together with representative bovine mtDNA sequences. The haplotype P of Japanese Shorthorn cattle was analyzed along with that of 36 previously published European aurochs and three modern Asian cattle sequences using the hypervariable 410 bp of the D-loop region. CONCLUSIONS We detected the mtDNA haplogroup P in Japanese Shorthorn cattle with an extremely high frequency (83/181). Phylogenetic networks revealed two main clusters, designated as Pa for haplogroup P in European aurochs and Pc in modern Asian cattle. We also report the genetic diversity of haplogroup P compared with the sequences of extinct aurochs. No shared haplotypes are observed between the European aurochs and the modern Asian cattle. This finding suggests the possibility of local and secondary introgression events of haplogroup P in northeast Asian cattle, and will contribute to a better understanding of its origin and genetic diversity.
Collapse
|
35
|
Bahbahani H, Salim B, Almathen F, Al Enezi F, Mwacharo JM, Hanotte O. Signatures of positive selection in African Butana and Kenana dairy zebu cattle. PLoS One 2018; 13:e0190446. [PMID: 29300786 PMCID: PMC5754058 DOI: 10.1371/journal.pone.0190446] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/14/2017] [Indexed: 02/02/2023] Open
Abstract
Butana and Kenana are two types of zebu cattle found in Sudan. They are unique amongst African indigenous zebu cattle because of their high milk production. Aiming to understand their genome structure, we genotyped 25 individuals from each breed using the Illumina BovineHD Genotyping BeadChip. Genetic structure analysis shows that both breeds have an admixed genome composed of an even proportion of indicine (0.75 ± 0.03 in Butana, 0.76 ± 0.006 in Kenana) and taurine (0.23 ± 0.009 in Butana, 0.24 ± 0.006 in Kenana) ancestries. We also observe a proportion of 0.02 to 0.12 of European taurine ancestry in ten individuals of Butana that were sampled from cattle herds in Tamboul area suggesting local crossbreeding with exotic breeds. Signatures of selection analyses (iHS and Rsb) reveal 87 and 61 candidate positive selection regions in Butana and Kenana, respectively. These regions span genes and quantitative trait loci (QTL) associated with biological pathways that are important for adaptation to marginal environments (e.g., immunity, reproduction and heat tolerance). Trypanotolerance QTL are intersecting candidate regions in Kenana cattle indicating selection pressure acting on them, which might be associated with an unexplored level of trypanotolerance in this cattle breed. Several dairy traits QTL are overlapping the identified candidate regions in these two zebu cattle breeds. Our findings underline the potential to improve dairy production in the semi-arid pastoral areas of Africa through breeding improvement strategy of indigenous local breeds.
Collapse
Affiliation(s)
- Hussain Bahbahani
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait city, Kuwait
- * E-mail: ,
| | - Bashir Salim
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum Khartoum North, Sudan
| | - Faisal Almathen
- Department of Veterinary Public Health and Animal Husbandry, College of Veterinary Medicine, King Faisal University, Al-Hasa, Kingdom of Saudi Arabia
| | - Fahad Al Enezi
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait city, Kuwait
| | - Joram M. Mwacharo
- Small Ruminant Genomics Group, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| |
Collapse
|
36
|
Álvarez I, Pérez-Pardal L, Traoré A, Koudandé DO, Fernández I, Soudré A, Diarra S, Sanou M, Boussini H, Goyache F. Differences in genetic structure assessed using Y-chromosome and mitochondrial DNA markers do not shape the contributions to diversity in African sires. J Anim Breed Genet 2017; 134:393-404. [PMID: 28464302 DOI: 10.1111/jbg.12278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/25/2017] [Indexed: 11/30/2022]
Abstract
Up to 173 African sires belonging to 11 different subpopulations representative of four cattle groups were analysed for six Y-specific microsatellite loci and a mitochondrial DNA fragment. Differences in Y-chromosome and mtDNA haplotype structuring were assessed. In addition, the effect of such structuring on contributions to total genetic diversity was assessed. Thirty-five Y-chromosome and 71 mtDNA haplotypes were identified. Most Y-chromosomes analysed (73.4%) were of zebu origin (11 haplotypes). Twenty-two Y-haplotypes (44 samples) belonged to the African taurine subfamily Y2a. All mtDNA haplotypes belonged to the "African" taurine T1 haplogroup with 16 samples and nine haplotypes belonging to a recently identified subhaplogroup (T1e). Median-joining networks showed that Y-chromosome phylogenies were highly reticulated with clear separation between zebu and taurine clusters. Mitochondrial haplotypes showed a clear star-like shape with small number of mutations separating haplotypes. Mitochondrial-based FST -statistics computed between cattle groups tended to be statistically non-significant (p > .05). Most FST values computed among groups and subpopulations using Y-chromosome markers were statistically significant. AMOVA confirmed that divergence between cattle groups was only significant for Y-chromosome markers (ΦCT = 0.209). At the mitochondrial level, African sires resembled an undifferentiated population with individuals explaining 94.3% of the total variance. Whatever the markers considered, the highest contributions to total Nei's gene diversity and allelic richness were found in West African cattle. Genetic structuring had no effect on patterns of contributions to diversity.
Collapse
Affiliation(s)
- I Álvarez
- Área de Genética y Reproducción Animal, SERIDA, Camino de Rioseco, Gijón, Spain
| | - L Pérez-Pardal
- Área de Genética y Reproducción Animal, SERIDA, Camino de Rioseco, Gijón, Spain.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - A Traoré
- INERA, Ouagadougou, Burkina Faso
| | | | - I Fernández
- Área de Genética y Reproducción Animal, SERIDA, Camino de Rioseco, Gijón, Spain
| | - A Soudré
- Université de Koudougou, Koudougou, Burkina Faso
| | - S Diarra
- IPR-IFRA Bamako (Mali), Koulikoro, Bamako
| | - M Sanou
- INERA, Ouagadougou, Burkina Faso
| | - H Boussini
- African Union Interafrican Bureau for Animal Resources, Nairobi, Kenya
| | - F Goyache
- Área de Genética y Reproducción Animal, SERIDA, Camino de Rioseco, Gijón, Spain
| |
Collapse
|
37
|
Meiri M, Stockhammer PW, Marom N, Bar-Oz G, Sapir-Hen L, Morgenstern P, Macheridis S, Rosen B, Huchon D, Maran J, Finkelstein I. Eastern Mediterranean Mobility in the Bronze and Early Iron Ages: Inferences from Ancient DNA of Pigs and Cattle. Sci Rep 2017; 7:701. [PMID: 28386123 PMCID: PMC5429671 DOI: 10.1038/s41598-017-00701-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/08/2017] [Indexed: 11/14/2022] Open
Abstract
The Late Bronze of the Eastern Mediterranean (1550–1150 BCE) was a period of strong commercial relations and great prosperity, which ended in collapse and migration of groups to the Levant. Here we aim at studying the translocation of cattle and pigs during this period. We sequenced the first ancient mitochondrial and Y chromosome DNA of cattle from Greece and Israel and compared the results with morphometric analysis of the metacarpal in cattle. We also increased previous ancient pig DNA datasets from Israel and extracted the first mitochondrial DNA for samples from Greece. We found that pigs underwent a complex translocation history, with links between Anatolia with southeastern Europe in the Bronze Age, and movement from southeastern Europe to the Levant in the Iron I (ca. 1150–950 BCE). Our genetic data did not indicate movement of cattle between the Aegean region and the southern Levant. We detected the earliest evidence for crossbreeding between taurine and zebu cattle in the Iron IIA (ca. 900 BCE). In light of archaeological and historical evidence on Egyptian imperial domination in the region in the Late Bronze Age, we suggest that Egypt attempted to expand dry farming in the region in a period of severe droughts.
Collapse
Affiliation(s)
- Meirav Meiri
- Institute of Archaeology, Tel Aviv University, Tel Aviv, 69978, Israel. .,The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Philipp W Stockhammer
- Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig-Maximilians-University Munich, Schellingstraße 12, 80799, München, Germany
| | - Nimrod Marom
- Zinman Institute of Archaeology, University of Haifa, Mount Carmel, Haifa, 31905, Israel
| | - Guy Bar-Oz
- Zinman Institute of Archaeology, University of Haifa, Mount Carmel, Haifa, 31905, Israel
| | - Lidar Sapir-Hen
- Institute of Archaeology, Tel Aviv University, Tel Aviv, 69978, Israel.,The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Peggy Morgenstern
- Institute for Prehistory, Protohistory and Near Eastern Archaeology, University of Heidelberg, Marstallhof 4, 69117, Heidelberg, Germany
| | - Stella Macheridis
- Department of Archaeology and Ancient History, Lund University, Helgonvägen 3, 223 63, Lund, Sweden
| | - Baruch Rosen
- Israel Antiquities Authority, POB 180, Atlit, 30300, Israel
| | - Dorothée Huchon
- Department of Zoology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Joseph Maran
- Institute for Prehistory, Protohistory and Near Eastern Archaeology, University of Heidelberg, Marstallhof 4, 69117, Heidelberg, Germany
| | | |
Collapse
|
38
|
Kim J, Hanotte O, Mwai OA, Dessie T, Bashir S, Diallo B, Agaba M, Kim K, Kwak W, Sung S, Seo M, Jeong H, Kwon T, Taye M, Song KD, Lim D, Cho S, Lee HJ, Yoon D, Oh SJ, Kemp S, Lee HK, Kim H. The genome landscape of indigenous African cattle. Genome Biol 2017; 18:34. [PMID: 28219390 PMCID: PMC5319050 DOI: 10.1186/s13059-017-1153-y] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/11/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The history of African indigenous cattle and their adaptation to environmental and human selection pressure is at the root of their remarkable diversity. Characterization of this diversity is an essential step towards understanding the genomic basis of productivity and adaptation to survival under African farming systems. RESULTS We analyze patterns of African cattle genetic variation by sequencing 48 genomes from five indigenous populations and comparing them to the genomes of 53 commercial taurine breeds. We find the highest genetic diversity among African zebu and sanga cattle. Our search for genomic regions under selection reveals signatures of selection for environmental adaptive traits. In particular, we identify signatures of selection including genes and/or pathways controlling anemia and feeding behavior in the trypanotolerant N'Dama, coat color and horn development in Ankole, and heat tolerance and tick resistance across African cattle especially in zebu breeds. CONCLUSIONS Our findings unravel at the genome-wide level, the unique adaptive diversity of African cattle while emphasizing the opportunities for sustainable improvement of livestock productivity on the continent.
Collapse
Affiliation(s)
- Jaemin Kim
- C&K genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea
| | - Olivier Hanotte
- The University of Nottingham, School of Life Sciences, Nottingham, NG7 2RD, UK
- International Livestock Research institute (ILRI), P. O. Box 5689, Addis Ababa, Ethiopia
| | - Okeyo Ally Mwai
- International Livestock Research Institute (ILRI), Box 30709 -00100, Nairobi, Kenya
| | - Tadelle Dessie
- International Livestock Research institute (ILRI), P. O. Box 5689, Addis Ababa, Ethiopia
| | - Salim Bashir
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, 13314, Khartoum North, Sudan
| | - Boubacar Diallo
- National Coordinateur RGA, Ministère Elevage - Productions Animales, B.P. 559, Conakry, Guinea
| | - Morris Agaba
- Nelson Mandela African Institution of Science and Technology, Nelson Mandela Road. P. O. Box 447, Arusha, Tanzania
| | - Kwondo Kim
- C&K genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-741, Republic of Korea
| | - Woori Kwak
- C&K genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea
| | - Samsun Sung
- C&K genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea
| | - Minseok Seo
- C&K genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea
| | - Hyeonsoo Jeong
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Taehyung Kwon
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Mengistie Taye
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-742, Republic of Korea
- College of Agriculture and Environmental Sciences, Bahir Dar University, P. O. Box 79, Bahir Dar, Ethiopia
| | - Ki-Duk Song
- The Animal Molecular Genetics and Breeding Center, Chonbuk National University, Jeonju, 54896, Republic of Korea
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | - Dajeong Lim
- Division of Animal Genomics & Bioinformatics, National Institute of Animal Science, RDA, Jeonju, 565-851, Republic of Korea
| | - Seoae Cho
- C&K genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea
| | - Hyun-Jeong Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-741, Republic of Korea
- Animal Nutritional & Physiology Team, National Institute of Animal Science, RDA, Jeonju, 565-851, Republic of Korea
| | - Duhak Yoon
- Department of Animal Science, Kyungpook National University, Sangju, 742-711, Republic of Korea
| | - Sung Jong Oh
- National Institute of Animal Science, RDA, Jeonju, 565-851, Republic of Korea
| | - Stephen Kemp
- International Livestock Research Institute (ILRI), Box 30709 -00100, Nairobi, Kenya
- The Centre for Tropical Livestock Genetics and Health, The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Hak-Kyo Lee
- The Animal Molecular Genetics and Breeding Center, Chonbuk National University, Jeonju, 54896, Republic of Korea.
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | - Heebal Kim
- C&K genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea.
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-742, Republic of Korea.
- Institute for Biomedical Sciences, Shinshu University, Nagano, Japan.
| |
Collapse
|
39
|
Hristov P, Sirakova D, Mitkov I, Spassov N, Radoslavov G. Balkan brachicerous cattle - the first domesticated cattle in Europe. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 29:56-61. [PMID: 27931135 DOI: 10.1080/24701394.2016.1238901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The present study aimed to compare mitochondrial diversity among Balkan Neolithic/Chalcolithic cattle and present day Shorthorn Rhodopean cattle (Busha) to throw a new insight into European cattle domestication. The results showed that both ancient- and present-day samples belonged to the macrohaplogroup T. From the 28 sequences (8 ancient and 20 modern), the T1 and T2 haplogroup represent about 3.6% (1/28; 1/28). The T3 haplogroup was with the highest frequency - 57% (16/28). Based on the SNPs on 16057A and 16133C, the new T6 haplogroup was proposed. This haplogroup represents 75% from the ancient and 20% from the present day Bulgarian brachicerous cattle population. The survey in GenBank data base did not find a similar motif, except for the recent Serbian Busha cattle. Overall, these results showed that: (i) The newly named T6 haplogroup is Balkan specific; (ii) The T6 haplogroup survives in present day Bulgarian rhodopean cattle; (iii) The Balkan brachicerous cattle is the oldest European cattle breed.
Collapse
Affiliation(s)
- Peter Hristov
- a Department of Animal Diversity and Resources , Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - Daniela Sirakova
- a Department of Animal Diversity and Resources , Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - Ivan Mitkov
- a Department of Animal Diversity and Resources , Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - Nikolai Spassov
- b Palaeontology and Mineralogy Department , National Museum of Natural History Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - Georgi Radoslavov
- a Department of Animal Diversity and Resources , Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences , Sofia , Bulgaria
| |
Collapse
|
40
|
Di Lorenzo P, Lancioni H, Ceccobelli S, Curcio L, Panella F, Lasagna E. Uniparental genetic systems: a male and a female perspective in the domestic cattle origin and evolution. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
41
|
Hristov P, Spassov N, Iliev N, Radoslavov G. An independent event of Neolithic cattle domestication on the South-eastern Balkans: evidence from prehistoric aurochs and cattle populations. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 28:383-391. [PMID: 26711535 DOI: 10.3109/19401736.2015.1127361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neolithic/Chalcolithic livestock domestication is an important issue for understanding the mode of life and economics of ancient human communities. The Balkans appears to be a crucial point for clarifying the socio-economical interrelations between the Oldest Middle Eastern/Anatolian and newly formed cultures in Europe. Two main hypotheses regarding the early history of cattle domestication, from their ancestor - the aurochs, have been discussed: multipoint domestication centers or single point origin and subsequent worldwide dissemination. In this study, we provide molecular data about the Balkan aurochs for the first time as well as additional information for the Neolithic/Chalcolithic cattle populations in this geographic location. A total of seventeen samples from different ancient settlements were analyzed according to D-loop control region. The results did not show different genetic profile of wild and domestic populations. All haplotypes were found to belong to the basic macro-haplogroup T. The majority of specimens (n = 14) were defined to form a new Balkan-specific T6 haplogroup. Only two of the ancient samples analyzed were assigned to the T3 haplotype predominating in Europe. We attempt to throw new light on the earliest cattle domestication events in Europe, thus, the results presented are discussed in two directions: (a) The possibility of local independent domestication processes in Neolithic South-Eastern Europe; (b) The single point domestication in the Middle East and subsequent cattle dissemination in Europe. Our data does not exclude the possibility for independent domestication events followed by a second wave of parallel dissemination of cattle herds via the Mediterranean route.
Collapse
Affiliation(s)
- Peter Hristov
- a Department of Animal Diversity and Resources , Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences , Sofia 1113 , Bulgaria
| | - Nikolai Spassov
- b Palaeontology and Mineralogy Department , National Museum of Natural History, Bulgarian Academy of Sciences , 1 "Tsar Osvoboditel" Blvd , Sofia 1000 , Bulgaria
| | - Nikolai Iliev
- b Palaeontology and Mineralogy Department , National Museum of Natural History, Bulgarian Academy of Sciences , 1 "Tsar Osvoboditel" Blvd , Sofia 1000 , Bulgaria
| | - Georgi Radoslavov
- a Department of Animal Diversity and Resources , Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences , Sofia 1113 , Bulgaria
| |
Collapse
|
42
|
Colli L, Lancioni H, Cardinali I, Olivieri A, Capodiferro MR, Pellecchia M, Rzepus M, Zamani W, Naderi S, Gandini F, Vahidi SMF, Agha S, Randi E, Battaglia V, Sardina MT, Portolano B, Rezaei HR, Lymberakis P, Boyer F, Coissac E, Pompanon F, Taberlet P, Ajmone Marsan P, Achilli A. Whole mitochondrial genomes unveil the impact of domestication on goat matrilineal variability. BMC Genomics 2015; 16:1115. [PMID: 26714643 PMCID: PMC4696231 DOI: 10.1186/s12864-015-2342-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/22/2015] [Indexed: 01/31/2023] Open
Abstract
Background The current extensive use of the domestic goat (Capra hircus) is the result of its medium size and high adaptability as multiple breeds. The extent to which its genetic variability was influenced by early domestication practices is largely unknown. A common standard by which to analyze maternally-inherited variability of livestock species is through complete sequencing of the entire mitogenome (mitochondrial DNA, mtDNA). Results We present the first extensive survey of goat mitogenomic variability based on 84 complete sequences selected from an initial collection of 758 samples that represent 60 different breeds of C. hircus, as well as its wild sister species, bezoar (Capra aegagrus) from Iran. Our phylogenetic analyses dated the most recent common ancestor of C. hircus to ~460,000 years (ka) ago and identified five distinctive domestic haplogroups (A, B1, C1a, D1 and G). More than 90 % of goats examined were in haplogroup A. These domestic lineages are predominantly nested within C. aegagrus branches, diverged concomitantly at the interface between the Epipaleolithic and early Neolithic periods, and underwent a dramatic expansion starting from ~12–10 ka ago. Conclusions Domestic goat mitogenomes descended from a small number of founding haplotypes that underwent domestication after surviving the last glacial maximum in the Near Eastern refuges. All modern haplotypes A probably descended from a single (or at most a few closely related) female C. aegagrus. Zooarchaelogical data indicate that domestication first occurred in Southeastern Anatolia. Goats accompanying the first Neolithic migration waves into the Mediterranean were already characterized by two ancestral A and C variants. The ancient separation of the C branch (~130 ka ago) suggests a genetically distinct population that could have been involved in a second event of domestication. The novel diagnostic mutational motifs defined here, which distinguish wild and domestic haplogroups, could be used to understand phylogenetic relationships among modern breeds and ancient remains and to evaluate whether selection differentially affected mitochondrial genome variants during the development of economically important breeds. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2342-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Licia Colli
- Institute of Zootechnics, Università Cattolica del S. Cuore, Piacenza, 29122, Italy. .,Research Center on Biodiversity and Ancient DNA - BioDNA, Università Cattolica del S. Cuore, Piacenza, 29122, Italy.
| | - Hovirag Lancioni
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, 06123, Italy.
| | - Irene Cardinali
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, 06123, Italy.
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, 27100, Italy.
| | - Marco Rosario Capodiferro
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, 06123, Italy. .,Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, 27100, Italy.
| | - Marco Pellecchia
- Institute of Zootechnics, Università Cattolica del S. Cuore, Piacenza, 29122, Italy.
| | - Marcin Rzepus
- Institute of Zootechnics, Università Cattolica del S. Cuore, Piacenza, 29122, Italy. .,Institute of Food Science and Nutrition - ISAN, Università Cattolica del S. Cuore, Piacenza, 29122, Italy.
| | - Wahid Zamani
- Université Grenoble Alpes, Laboratoire d'Ecologie Alpine, Grenoble, 38041, France. .,Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, 46414-356, Iran.
| | - Saeid Naderi
- Natural Resources Faculty, University of Guilan, Guilan, 41335-1914, Iran.
| | - Francesca Gandini
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, 27100, Italy. .,School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK.
| | | | - Saif Agha
- Department of Animal Production, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
| | - Ettore Randi
- Laboratorio di Genetica, Istituto per la Protezione e la Ricerca Ambientale (ISPRA), Bologna, 40064, Italy. .,Department 18/Section of Environmental Engineering, Aalborg University, Aalborg, DK-9000, Denmark.
| | - Vincenza Battaglia
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, 27100, Italy.
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Palermo, 90128, Italy.
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Palermo, 90128, Italy.
| | - Hamid Reza Rezaei
- Environmental Sciences Department, Gorgan University of Agriculture and Natural Resources, Gorgan, 49138-15739, Iran.
| | - Petros Lymberakis
- Natural History Museum of Crete, University of Crete, Iraklio, Crete, 71409, Greece.
| | - Frédéric Boyer
- Université Grenoble Alpes, Laboratoire d'Ecologie Alpine, Grenoble, 38041, France.
| | - Eric Coissac
- Université Grenoble Alpes, Laboratoire d'Ecologie Alpine, Grenoble, 38041, France.
| | - François Pompanon
- Université Grenoble Alpes, Laboratoire d'Ecologie Alpine, Grenoble, 38041, France.
| | - Pierre Taberlet
- Université Grenoble Alpes, Laboratoire d'Ecologie Alpine, Grenoble, 38041, France.
| | - Paolo Ajmone Marsan
- Institute of Zootechnics, Università Cattolica del S. Cuore, Piacenza, 29122, Italy. .,Research Center on Biodiversity and Ancient DNA - BioDNA, Università Cattolica del S. Cuore, Piacenza, 29122, Italy.
| | - Alessandro Achilli
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, 06123, Italy. .,Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, 27100, Italy.
| |
Collapse
|
43
|
Wang MD, Dzama K, Rees DJG, Muchadeyi FC. Tropically adapted cattle of Africa: perspectives on potential role of copy number variations. Anim Genet 2015; 47:154-64. [DOI: 10.1111/age.12391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 12/12/2022]
Affiliation(s)
- M. D. Wang
- Department of Animal Sciences; University of Stellenbosch; Private Bag X1 Matieland 7602 South Africa
- Biotechnology Platform; Agricultural Research Council; Private Bag X5 Onderstepoort 0110 South Africa
| | - K. Dzama
- Department of Animal Sciences; University of Stellenbosch; Private Bag X1 Matieland 7602 South Africa
| | - D. J. G. Rees
- Biotechnology Platform; Agricultural Research Council; Private Bag X5 Onderstepoort 0110 South Africa
| | - F. C. Muchadeyi
- Biotechnology Platform; Agricultural Research Council; Private Bag X5 Onderstepoort 0110 South Africa
| |
Collapse
|
44
|
Vai S, Vilaça ST, Romandini M, Benazzo A, Visentini P, Modolo M, Bertolini M, MacQueen P, Austin J, Cooper A, Caramelli D, Lari M, Bertorelle G. The Biarzo case in northern Italy: is the temporal dynamic of swine mitochondrial DNA lineages in Europe related to domestication? Sci Rep 2015; 5:16514. [PMID: 26549464 PMCID: PMC4637886 DOI: 10.1038/srep16514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/05/2015] [Indexed: 11/09/2022] Open
Abstract
Genetically-based reconstructions of the history of pig domestication in Europe are based on two major pillars: 1) the temporal changes of mitochondrial DNA lineages are related to domestication; 2) Near Eastern haplotypes which appeared and then disappeared in some sites across Europe are genetic markers of the first Near Eastern domestic pigs. We typed a small but informative fragment of the mitochondrial DNA in 23 Sus scrofa samples from a site in north eastern Italy (Biarzo shelter) which provides a continuous record across a ≈6,000 year time frame from the Upper Palaeolithic to the Neolithic. We additionally carried out several radiocarbon dating. We found that a rapid mitochondrial DNA turnover occurred during the Mesolithic, suggesting that substantial changes in the composition of pig mitochondrial lineages can occur naturally across few millennia independently of domestication processes. Moreover, so-called Near Eastern haplotypes were present here at least two millennia before the arrival of Neolithic package in the same area. Consequently, we recommend a re-evaluation of the previous idea that Neolithic farmers introduced pigs domesticated in the Near East, and that Mesolithic communities acquired domestic pigs via cultural exchanges, to include the possibility of a more parsimonious hypothesis of local domestication in Europe.
Collapse
Affiliation(s)
- Stefania Vai
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | - Sibelle Torres Vilaça
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | - Matteo Romandini
- Dipartimento di Studi Umanistici, Sezione di Scienze Preistoriche e Antropologiche, Università di Ferrara, Ferrara, Italy
| | - Andrea Benazzo
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | | | - Marta Modolo
- Dipartimento di Studi Umanistici, Sezione di Scienze Preistoriche e Antropologiche, Università di Ferrara, Ferrara, Italy
| | - Marco Bertolini
- Dipartimento di Studi Umanistici, Sezione di Scienze Preistoriche e Antropologiche, Università di Ferrara, Ferrara, Italy
| | - Peggy MacQueen
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, Australia
| | - Jeremy Austin
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, Australia
| | - Alan Cooper
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, Australia
| | - David Caramelli
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | - Martina Lari
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | - Giorgio Bertorelle
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| |
Collapse
|
45
|
Olivieri A, Gandini F, Achilli A, Fichera A, Rizzi E, Bonfiglio S, Battaglia V, Brandini S, De Gaetano A, El-Beltagi A, Lancioni H, Agha S, Semino O, Ferretti L, Torroni A. Mitogenomes from Egyptian Cattle Breeds: New Clues on the Origin of Haplogroup Q and the Early Spread of Bos taurus from the Near East. PLoS One 2015; 10:e0141170. [PMID: 26513361 PMCID: PMC4626031 DOI: 10.1371/journal.pone.0141170] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/04/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Genetic studies support the scenario that Bos taurus domestication occurred in the Near East during the Neolithic transition about 10 thousand years (ky) ago, with the likely exception of a minor secondary event in Italy. However, despite the proven effectiveness of whole mitochondrial genome data in providing valuable information concerning the origin of taurine cattle, until now no population surveys have been carried out at the level of mitogenomes in local breeds from the Near East or surrounding areas. Egypt is in close geographic and cultural proximity to the Near East, in particular the Nile Delta region, and was one of the first neighboring areas to adopt the Neolithic package. Thus, a survey of mitogenome variation of autochthonous taurine breeds from the Nile Delta region might provide new insights on the early spread of cattle rearing outside the Near East. METHODOLOGY Using Illumina high-throughput sequencing we characterized the mitogenomes from two cattle breeds, Menofi (N = 17) and Domiaty (N = 14), from the Nile Delta region. Phylogenetic and Bayesian analyses were subsequently performed. CONCLUSIONS Phylogenetic analyses of the 31 mitogenomes confirmed the prevalence of haplogroup T1, similar to most African cattle breeds, but showed also high frequencies for haplogroups T2, T3 and Q1, and an extremely high haplotype diversity, while Bayesian skyline plots pointed to a main episode of population growth ~12.5 ky ago. Comparisons of Nile Delta mitogenomes with those from other geographic areas revealed that (i) most Egyptian mtDNAs are probably direct local derivatives from the founder domestic herds which first arrived from the Near East and the extent of gene flow from and towards the Nile Delta region was limited after the initial founding event(s); (ii) haplogroup Q1 was among these founders, thus proving that it underwent domestication in the Near East together with the founders of the T clades.
Collapse
Affiliation(s)
- Anna Olivieri
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
- * E-mail:
| | - Francesca Gandini
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Alessandro Fichera
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Ermanno Rizzi
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate (Milano), Italy
- Fondazione Telethon, Milano, Italy
| | - Silvia Bonfiglio
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Vincenza Battaglia
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Stefania Brandini
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Anna De Gaetano
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Ahmed El-Beltagi
- Animal Production Research Institute (APRI), Ministry of Agriculture, Cairo, Egypt
| | - Hovirag Lancioni
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Saif Agha
- Department of Animal Production, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Luca Ferretti
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| |
Collapse
|
46
|
Park SDE, Magee DA, McGettigan PA, Teasdale MD, Edwards CJ, Lohan AJ, Murphy A, Braud M, Donoghue MT, Liu Y, Chamberlain AT, Rue-Albrecht K, Schroeder S, Spillane C, Tai S, Bradley DG, Sonstegard TS, Loftus BJ, MacHugh DE. Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle. Genome Biol 2015; 16:234. [PMID: 26498365 PMCID: PMC4620651 DOI: 10.1186/s13059-015-0790-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/25/2015] [Indexed: 11/10/2022] Open
Abstract
Background Domestication of the now-extinct wild aurochs, Bos primigenius, gave rise to the two major domestic extant cattle taxa, B. taurus and B. indicus. While previous genetic studies have shed some light on the evolutionary relationships between European aurochs and modern cattle, important questions remain unanswered, including the phylogenetic status of aurochs, whether gene flow from aurochs into early domestic populations occurred, and which genomic regions were subject to selection processes during and after domestication. Here, we address these questions using whole-genome sequencing data generated from an approximately 6,750-year-old British aurochs bone and genome sequence data from 81 additional cattle plus genome-wide single nucleotide polymorphism data from a diverse panel of 1,225 modern animals. Results Phylogenomic analyses place the aurochs as a distinct outgroup to the domestic B. taurus lineage, supporting the predominant Near Eastern origin of European cattle. Conversely, traditional British and Irish breeds share more genetic variants with this aurochs specimen than other European populations, supporting localized gene flow from aurochs into the ancestors of modern British and Irish cattle, perhaps through purposeful restocking by early herders in Britain. Finally, the functions of genes showing evidence for positive selection in B. taurus are enriched for neurobiology, growth, metabolism and immunobiology, suggesting that these biological processes have been important in the domestication of cattle. Conclusions This work provides important new information regarding the origins and functional evolution of modern cattle, revealing that the interface between early European domestic populations and wild aurochs was significantly more complex than previously thought. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0790-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen D E Park
- IdentiGEN Ltd, Unit 2, Trinity Enterprise Centre, Pearse Street, Dublin 2, Ireland.
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland. .,Department of Animal Science, University of Connecticut, Storrs, CT, 06029, USA.
| | - Paul A McGettigan
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | - Ceiridwen J Edwards
- Research Laboratory for Archaeology and the History of Art, Dyson Perrins Building, South Parks Rd, Oxford, OX1 3QY, UK.
| | - Amanda J Lohan
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| | - Alison Murphy
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| | - Martin Braud
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland.
| | - Mark T Donoghue
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland.
| | - Yuan Liu
- BGI Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China.
| | - Andrew T Chamberlain
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - Kévin Rue-Albrecht
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Steven Schroeder
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, 20705-2350, USA.
| | - Charles Spillane
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland.
| | - Shuaishuai Tai
- BGI Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China.
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College, Dublin 2, Ireland.
| | - Tad S Sonstegard
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, 20705-2350, USA. .,Recombinetics Inc., St. Paul, MN, 55104, USA.
| | - Brendan J Loftus
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland. .,UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland. .,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
47
|
Mwai O, Hanotte O, Kwon YJ, Cho S. African Indigenous Cattle: Unique Genetic Resources in a Rapidly Changing World. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:911-21. [PMID: 26104394 PMCID: PMC4478499 DOI: 10.5713/ajas.15.0002r] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
At least 150 indigenous African cattle breeds have been named, but the majority of African cattle populations remain largely uncharacterized. As cattle breeds and populations in Africa adapted to various local environmental conditions, they acquired unique features. We know now that the history of African cattle was particularly complex and while several of its episodes remain debated, there is no doubt that African cattle population evolved dramatically over time. Today, we find a mosaic of genetically diverse population from the purest Bos taurus to the nearly pure Bos indicus. African cattle are now found all across the continent, with the exception of the Sahara and the river Congo basin. They are found on the rift valley highlands as well as below sea level in the Afar depression. These unique livestock genetic resources are in danger to disappear rapidly following uncontrolled crossbreeding and breed replacements with exotic breeds. Breeding improvement programs of African indigenous livestock remain too few while paradoxically the demand of livestock products is continually increasing. Many African indigenous breeds are endangered now, and their unique adaptive traits may be lost forever. This paper reviews the unique known characteristics of indigenous African cattle populations while describing the opportunities, the necessity and urgency to understand and utilize these resources to respond to the needs of the people of the continent and to the benefit of African farmers.
Collapse
Affiliation(s)
- Okeyo Mwai
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Olivier Hanotte
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Young-Jun Kwon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Korea
| | - Seoae Cho
- CHO&KIM genomics, Seoul 151-919, Korea
| |
Collapse
|
48
|
Niemi M, Bläuer A, Iso-Touru T, Harjula J, Nyström Edmark V, Rannamäe E, Lõugas L, Sajantila A, Lidén K, Taavitsainen JP. Temporal fluctuation in North East Baltic Sea region cattle population revealed by mitochondrial and Y-chromosomal DNA analyses. PLoS One 2015; 10:e0123821. [PMID: 25992976 PMCID: PMC4439080 DOI: 10.1371/journal.pone.0123821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 03/07/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ancient DNA analysis offers a way to detect changes in populations over time. To date, most studies of ancient cattle have focused on their domestication in prehistory, while only a limited number of studies have analysed later periods. Conversely, the genetic structure of modern cattle populations is well known given the undertaking of several molecular and population genetic studies. RESULTS Bones and teeth from ancient cattle populations from the North-East Baltic Sea region dated to the Prehistoric (Late Bronze and Iron Age, 5 samples), Medieval (14), and Post-Medieval (26) periods were investigated by sequencing 667 base pairs (bp) from the mitochondrial DNA (mtDNA) and 155 bp of intron 19 in the Y-chromosomal UTY gene. Comparison of maternal (mtDNA haplotypes) genetic diversity in ancient cattle (45 samples) with modern cattle populations in Europe and Asia (2094 samples) revealed 30 ancient mtDNA haplotypes, 24 of which were shared with modern breeds, while 6 were unique to the ancient samples. Of seven Y-chromosomal sequences determined from ancient samples, six were Y2 and one Y1 haplotype. Combined data including Swedish samples from the same periods (64 samples) was compared with the occurrence of Y-chromosomal haplotypes in modern cattle (1614 samples). CONCLUSIONS The diversity of haplogroups was highest in the Prehistoric samples, where many haplotypes were unique. The Medieval and Post-Medieval samples also show a high diversity with new haplotypes. Some of these haplotypes have become frequent in modern breeds in the Nordic Countries and North-Western Russia while other haplotypes have remained in only a few local breeds or seem to have been lost. A temporal shift in Y-chromosomal haplotypes from Y2 to Y1 was detected that corresponds with the appearance of new mtDNA haplotypes in the Medieval and Post-Medieval period. This suggests a replacement of the Prehistoric mtDNA and Y chromosomal haplotypes by new types of cattle.
Collapse
Affiliation(s)
- Marianna Niemi
- Biotechnology and Food Research, MTT Agrifood Research Finland, Jokioinen, Finland
- University of Helsinki, Department of Forensic Medicine, Helsinki, Finland
- * E-mail:
| | - Auli Bläuer
- Biotechnology and Food Research, MTT Agrifood Research Finland, Jokioinen, Finland
- Department of Archaeology, University of Turku, Turku, Finland
| | - Terhi Iso-Touru
- Biotechnology and Food Research, MTT Agrifood Research Finland, Jokioinen, Finland
| | - Janne Harjula
- Biotechnology and Food Research, MTT Agrifood Research Finland, Jokioinen, Finland
- Department of Archaeology, University of Turku, Turku, Finland
| | | | - Eve Rannamäe
- Institute of History and Archaeology, University of Tartu, Tartu, Estonia
| | - Lembi Lõugas
- Institute of history, Tallinn University, Tallinn, Estonia
| | - Antti Sajantila
- University of Helsinki, Department of Forensic Medicine, Helsinki, Finland
| | - Kerstin Lidén
- Archaeological Research Laboratory, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
49
|
Deng F, Xia C, Jia X, Song T, Liu J, Lai SJ, Chen SY. Comparative Study on the Genetic Diversity ofGHRGene in Tibetan Cattle and Holstein Cows. Anim Biotechnol 2015; 26:217-21. [DOI: 10.1080/10495398.2014.993082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
McTavish EJ, Hillis DM. How do SNP ascertainment schemes and population demographics affect inferences about population history? BMC Genomics 2015; 16:266. [PMID: 25887858 PMCID: PMC4428227 DOI: 10.1186/s12864-015-1469-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/17/2015] [Indexed: 12/15/2022] Open
Abstract
Background The selection of variable sites for inclusion in genomic analyses can influence results, especially when exemplar populations are used to determine polymorphic sites. We tested the impact of ascertainment bias on the inference of population genetic parameters using empirical and simulated data representing the three major continental groups of cattle: European, African, and Indian. We simulated data under three demographic models. Each simulated data set was subjected to three ascertainment schemes: (I) random selection; (II) geographically biased selection; and (III) selection biased toward loci polymorphic in multiple groups. Empirical data comprised samples of 25 individuals representing each continental group. These cattle were genotyped for 47,506 loci from the bovine 50 K SNP panel. We compared the inference of population histories for the empirical and simulated data sets across different ascertainment conditions using FST and principal components analysis (PCA). Results Bias toward shared polymorphism across continental groups is apparent in the empirical SNP data. Bias toward uneven levels of within-group polymorphism decreases estimates of FST between groups. Subpopulation-biased selection of SNPs changes the weighting of principal component axes and can affect inferences about proportions of admixture and population histories using PCA. PCA-based inferences of population relationships are largely congruent across types of ascertainment bias, even when ascertainment bias is strong. Conclusions Analyses of ascertainment bias in genomic data have largely been conducted on human data. As genomic analyses are being applied to non-model organisms, and across taxa with deeper divergences, care must be taken to consider the potential for bias in ascertainment of variation to affect inferences. Estimates of FST, time of separation, and population divergence as estimated by principal components analysis can be misleading if this bias is not taken into account. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1469-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily Jane McTavish
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA. .,Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, Heidelberg, D-69118, Germany.
| | - David M Hillis
- Department of Integrative Biology, University of Texas, One University Station C0990, Austin, TX, 78712, USA.
| |
Collapse
|