1
|
de Lima-Pardini AC, Mikhail Y, Dominguez-Vargas AU, Dancause N, Scott SH. Transcranial magnetic stimulation in non-human primates: A systematic review. Neurosci Biobehav Rev 2023; 152:105273. [PMID: 37315659 DOI: 10.1016/j.neubiorev.2023.105273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/06/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
Transcranial magnetic stimulation (TMS) is widely employed as a tool to investigate and treat brain diseases. However, little is known about the direct effects of TMS on the brain. Non-human primates (NHPs) are a valuable translational model to investigate how TMS affects brain circuits given their neurophysiological similarity with humans and their capacity to perform complex tasks that approach human behavior. This systematic review aimed to identify studies using TMS in NHPs as well as to assess their methodological quality through a modified reference checklist. The results show high heterogeneity and superficiality in the studies regarding the report of the TMS parameters, which have not improved over the years. This checklist can be used for future TMS studies with NHPs to ensure transparency and critical appraisal. The use of the checklist would improve methodological soundness and interpretation of the studies, facilitating the translation of the findings to humans. The review also discusses how advancements in the field can elucidate the effects of TMS in the brain.
Collapse
Affiliation(s)
- Andrea C de Lima-Pardini
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada.
| | - Youstina Mikhail
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Adan-Ulises Dominguez-Vargas
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Numa Dancause
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Department of Medicine, Queen's University, Kingston, ON, Canada; Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
| |
Collapse
|
2
|
Covariations between pupil diameter and supplementary eye field activity suggest a role in cognitive effort implementation. PLoS Biol 2022; 20:e3001654. [PMID: 35617290 PMCID: PMC9135265 DOI: 10.1371/journal.pbio.3001654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
In both human and nonhuman primates (NHP), the medial prefrontal region, defined as the supplementary eye field (SEF), can indirectly influence behavior selection through modulation of the primary selection process in the oculomotor structures. To perform this oculomotor control, SEF integrates multiple cognitive signals such as attention, memory, reward, and error. As changes in pupil responses can assess these cognitive efforts, a better understanding of the precise dynamics by which pupil diameter and medial prefrontal cortex activity interact requires thorough investigations before, during, and after changes in pupil diameter. We tested whether SEF activity is related to pupil dynamics during a mixed pro/antisaccade oculomotor task in 2 macaque monkeys. We used functional ultrasound (fUS) imaging to examine temporal changes in brain activity at the 0.1-s time scale and 0.1-mm spatial resolution concerning behavioral performance and pupil dynamics. By combining the pupil signals and real-time imaging of NHP during cognitive tasks, we were able to infer localized cerebral blood volume (CBV) responses within a restricted part of the dorsomedial prefrontal cortex, referred to as the SEF, an area in which antisaccade preparation activity is also recorded. Inversely, SEF neurovascular activity measured by fUS imaging was found to be a robust predictor of specific variations in pupil diameter over short and long-time scales. Furthermore, we directly manipulated pupil diameter and CBV in the SEF using reward modulations. These results bring a novel understanding of the physiological links between pupil and SEF, but it also raises questions about the role of anterior cingulate cortex (ACC), as CBV variations in the ACC seems to be negligible compared to CBV variations in the SEF. Ultrafast functional imaging reveals short- and long-term covariations between pupil diameter and activity in the Supplementary Eye Field (SEF) of awake behaving non-human primates, yielding a novel understanding of the physiological links between the pupil and SEF.
Collapse
|
3
|
Lehmann SJ, Corneil BD. Completing the puzzle: Why studies in non-human primates are needed to better understand the effects of non-invasive brain stimulation. Neurosci Biobehav Rev 2021; 132:1074-1085. [PMID: 34742722 DOI: 10.1016/j.neubiorev.2021.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/29/2021] [Accepted: 10/31/2021] [Indexed: 11/27/2022]
Abstract
Brain stimulation is a core method in neuroscience. Numerous non-invasive brain stimulation (NIBS) techniques are currently in use in basic and clinical research, and recent advances promise the ability to non-invasively access deep brain structures. While encouraging, there is a surprising gap in our understanding of precisely how NIBS perturbs neural activity throughout an interconnected network, and how such perturbed neural activity ultimately links to behaviour. In this review, we will consider why non-human primate (NHP) models of NIBS are ideally situated to address this gap in knowledge, and why the oculomotor network that moves our line of sight offers a particularly valuable platform in which to empirically test hypothesis regarding NIBS-induced changes in brain and behaviour. NHP models of NIBS will enable investigation of the complex, dynamic effects of brain stimulation across multiple hierarchically interconnected brain areas, networks, and effectors. By establishing such links between brain and behavioural output, work in NHPs can help optimize experimental and therapeutic approaches, improve NIBS efficacy, and reduce side-effects of NIBS.
Collapse
Affiliation(s)
- Sebastian J Lehmann
- Department of Physiology and Pharmacology, Western University, London, Ontario, N6A 5B7, Canada.
| | - Brian D Corneil
- Department of Physiology and Pharmacology, Western University, London, Ontario, N6A 5B7, Canada; Department of Psychology, Western University, London, Ontario, N6A 5B7, Canada; Robarts Research Institute, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
4
|
Brulé S, Herlin B, Pouget P, Missal M. Ketamine reduces temporal expectation in the rhesus monkey. Psychopharmacology (Berl) 2021; 238:559-567. [PMID: 33169200 DOI: 10.1007/s00213-020-05706-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
RATIONALE Ketamine, a well-known general dissociative anesthetic agent that is a non-competitive antagonist of the N-methyl-D-aspartate receptor, perturbs the perception of elapsed time and the expectation of upcoming events. OBJECTIVE The objective of this study was to determine the influence of ketamine on temporal expectation in the rhesus monkey. METHODS Two rhesus monkeys were trained to make a saccade between a central warning stimulus and an eccentric visual target that served as imperative stimulus. The delay between the warning and the imperative stimulus could take one of four different values randomly with the same probability (variable foreperiod paradigm). During experimental sessions, a subanesthetic low dose of ketamine (0.25-0.35 mg/kg) was injected i.m. and the influence of the drug on movement latency was measured. RESULTS We found that in the control conditions, saccadic latencies strongly decreased with elapsed time before the appearance of the visual target showing that temporal expectation built up during the delay period between the warning and the imperative stimulus. However, after ketamine injection, temporal expectation was significantly reduced in both subjects. In addition, ketamine also increased average movement latency but this effect could be dissociated from the reduction of temporal expectation. CONCLUSION In conclusion, a subanesthetic dose of ketamine could have two independent effects: increasing reaction time and decreasing temporal expectation. This alteration of temporal expectation could explain cognitive deficits observed during ketamine use.
Collapse
Affiliation(s)
- Sophie Brulé
- Institute of Brain and Spinal Cord, UMRS 975 Inserm, CNRS 7225, UMPC, Paris, France
| | - Bastien Herlin
- Institute of Brain and Spinal Cord, UMRS 975 Inserm, CNRS 7225, UMPC, Paris, France
| | - Pierre Pouget
- Institute of Brain and Spinal Cord, UMRS 975 Inserm, CNRS 7225, UMPC, Paris, France
| | - Marcus Missal
- Institute of Neurosciences (IONS), Cognition and System (COSY), Université catholique de Louvain, 53 av Mounier, B1.53. 4 COSY, 1200, Brussels, Belgium.
| |
Collapse
|
5
|
Abstract
Nowadays, several techniques exist to study and better understand how the brain works (fMRI, EEG, electrophysiology, etc.). Each has its own advantages and disadvantages (spatiotemporal resolution, maximal recording depth, signal-to-noise ratio, etc.). In this article, we show that the new functional ultrasound (fUS) imaging technique is appropriate to record and map brain activity in awake primates on a scale previously unreachable. It allows distinguishing patterns similar to ocular dominance bands in the visual cortex through all layers of the cortex, which was impossible before with common techniques. This paper demonstrates the utility of fUS imaging for studying brain activity in awake primates and its interest to all neuroscientists. Deep regions of the brain are not easily accessible to investigation at the mesoscale level in awake animals or humans. We have recently developed a functional ultrasound (fUS) technique that enables imaging hemodynamic responses to visual tasks. Using fUS imaging on two awake nonhuman primates performing a passive fixation task, we constructed retinotopic maps at depth in the visual cortex (V1, V2, and V3) in the calcarine and lunate sulci. The maps could be acquired in a single-hour session with relatively few presentations of the stimuli. The spatial resolution of the technology is illustrated by mapping patterns similar to ocular dominance (OD) columns within superficial and deep layers of the primary visual cortex. These acquisitions using fUS suggested that OD selectivity is mostly present in layer IV but with extensions into layers II/III and V. This imaging technology provides a new mesoscale approach to the mapping of brain activity at high spatiotemporal resolution in awake subjects within the whole depth of the cortex.
Collapse
|
6
|
Mathew J, Danion FR. Ups and downs in catch-up saccades following single-pulse TMS-methodological considerations. PLoS One 2018; 13:e0205208. [PMID: 30307976 PMCID: PMC6181330 DOI: 10.1371/journal.pone.0205208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/20/2018] [Indexed: 12/02/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) can interfere with smooth pursuit or with saccades initiated from a fixed position toward a fixed target, but little is known about the effect of TMS on catch-up saccade made to assist smooth pursuit. Here we explored the effect of TMS on catch-up saccades by means of a situation in which the moving target was driven by an external agent, or moved by the participants’ hand, a condition known to decrease the occurrence of catch-up saccade. Two sites of stimulation were tested, the vertex and M1 hand area. Compared to conditions with no TMS, we found a consistent modulation of saccadic activity after TMS such that it decreased at 40-100ms, strongly resumed at 100-160ms, and then decreased at 200-300ms. Despite this modulatory effect, the accuracy of catch-up saccade was maintained, and the mean saccadic activity over the 0-300ms period remained unchanged. Those findings are discussed in the context of studies showing that single-pulse TMS can induce widespread effects on neural oscillations as well as perturbations in the latency of saccades during reaction time protocols. At a more general level, despite challenges and interpretational limitations making uncertain the origin of this modulatory effect, our study provides direct evidence that TMS over presumably non-oculomotor regions interferes with the initiation of catch-up saccades, and thus offers methodological considerations for future studies that wish to investigate the underlying neural circuitry of catch-up saccades using TMS.
Collapse
Affiliation(s)
- James Mathew
- Aix Marseille University, CNRS, Institut de Neurosciences de la Timone UMR 7289, Marseille, France
| | - Frederic R Danion
- Aix Marseille University, CNRS, Institut de Neurosciences de la Timone UMR 7289, Marseille, France
| |
Collapse
|
7
|
Bell AH, Bultitude JH. Methods matter: A primer on permanent and reversible interference techniques in animals for investigators of human neuropsychology. Neuropsychologia 2018; 115:211-219. [PMID: 28943365 PMCID: PMC6018620 DOI: 10.1016/j.neuropsychologia.2017.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/07/2017] [Accepted: 09/19/2017] [Indexed: 12/05/2022]
Abstract
The study of patients with brain lesions has contributed greatly to our understanding of the biological bases of human cognition, but this approach also has several unavoidable limitations. Research that uses animal models complements and extends human neuropsychology by addressing many of these limitations. In this review, we provide an overview of permanent and reversible animal lesion techniques for researchers of human neuropsychology, with the aim of highlighting how these methods provide a valuable adjunct to behavioural, neuroimaging, physiological, and clinical investigations in humans. Research in animals has provided important lessons about how the limitations of one or more techniques, or differences in their mechanism of action, has impacted upon the understanding of brain organisation and function. These cautionary tales highlight the importance of striving for a thorough understanding of how any intereference technique works (whether in animal or human), and for how to best use animal research to clarify the precise mechanisms underlying temporary lesion methods in humans.
Collapse
Affiliation(s)
- Andrew H Bell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK; Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Janet H Bultitude
- Department of Psychology, University of Bath, Bath, UK; Centre for Pain Research, University of Bath, Bath, UK; The Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Seewoo BJ, Etherington SJ, Feindel KW, Rodger J. Combined rTMS/fMRI Studies: An Overlooked Resource in Animal Models. Front Neurosci 2018; 12:180. [PMID: 29628873 PMCID: PMC5876299 DOI: 10.3389/fnins.2018.00180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 12/11/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique, which has brain network-level effects in healthy individuals and is also used to treat many neurological and psychiatric conditions in which brain connectivity is believed to be abnormal. Despite the fact that rTMS is being used in a clinical setting and animal studies are increasingly identifying potential cellular and molecular mechanisms, little is known about how these mechanisms relate to clinical changes. This knowledge gap is amplified by non-overlapping approaches used in preclinical and clinical rTMS studies: preclinical studies are mostly invasive, using cellular and molecular approaches, while clinical studies are non-invasive, including functional magnetic resonance imaging (fMRI), TMS electroencephalography (EEG), positron emission tomography (PET), and behavioral measures. A non-invasive method is therefore needed in rodents to link our understanding of cellular and molecular changes to functional connectivity changes that are clinically relevant. fMRI is the technique of choice for examining both short and long term functional connectivity changes in large-scale networks and is becoming increasingly popular in animal research because of its high translatability, but, to date, there have been no reports of animal rTMS studies using this technique. This review summarizes the main studies combining different rTMS protocols with fMRI in humans, in both healthy and patient populations, providing a foundation for the design of equivalent studies in animals. We discuss the challenges of combining these two methods in animals and highlight considerations important for acquiring clinically-relevant information from combined rTMS/fMRI studies in animals. We believe that combining rTMS and fMRI in animal models will generate new knowledge in the following ways: functional connectivity changes can be explored in greater detail through complementary invasive procedures, clarifying mechanism and improving the therapeutic application of rTMS, as well as improving interpretation of fMRI data. And, in a more general context, a robust comparative approach will refine the use of animal models of specific neuropsychiatric conditions.
Collapse
Affiliation(s)
- Bhedita J Seewoo
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia.,Centre for Microscopy, Characterization and Analysis, Research Infrastructure Centers, The University of Western Australia, Perth, WA, Australia
| | - Sarah J Etherington
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Kirk W Feindel
- Centre for Microscopy, Characterization and Analysis, Research Infrastructure Centers, The University of Western Australia, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Research, Perth, WA, Australia
| |
Collapse
|
9
|
Hamilton KR, Littlefield AK, Anastasio NC, Cunningham KA, Fink LHL, Wing VC, Mathias CW, Lane SD, Schütz CG, Swann AC, Lejuez CW, Clark L, Moeller FG, Potenza MN. Rapid-response impulsivity: definitions, measurement issues, and clinical implications. Personal Disord 2016; 6:168-181. [PMID: 25867840 DOI: 10.1037/per0000100] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Impulsivity is a multifaceted construct that is a core feature of multiple psychiatric conditions and personality disorders. However, progress in understanding and treating impulsivity is limited by a lack of precision and consistency in its definition and assessment. Rapid-response impulsivity (RRI) represents a tendency toward immediate action that occurs with diminished forethought and is out of context with the present demands of the environment. Experts from the International Society for Research on Impulsivity (InSRI) met to discuss and evaluate RRI measures in terms of reliability, sensitivity, and validity, with the goal of helping researchers and clinicians make informed decisions about the use and interpretation of findings from RRI measures. Their recommendations are described in this article. Commonly used clinical and preclinical RRI tasks are described, and considerations are provided to guide task selection. Tasks measuring two conceptually and neurobiologically distinct types of RRI, "refraining from action initiation" (RAI) and "stopping an ongoing action" (SOA) are described. RAI and SOA tasks capture distinct aspects of RRI that may relate to distinct clinical outcomes. The InSRI group recommends that (a) selection of RRI measures should be informed by careful consideration of the strengths, limitations, and practical considerations of the available measures; (b) researchers use both RAI and SOA tasks in RRI studies to allow for direct comparison of RRI types and examination of their associations with clinically relevant measures; and (c) similar considerations be made for human and nonhuman studies in an effort to harmonize and integrate preclinical and clinical research.
Collapse
Affiliation(s)
- Kristen R Hamilton
- Department of Psychology, Maryland Neuroimaging Center, Center for Addictions, Personality, and Emotion Research, University of Maryland
| | | | - Noelle C Anastasio
- Center for Addiction Research, Department of Pharmacology and Toxicology, University of Texas Medical Branch
| | - Kathryn A Cunningham
- Center for Addiction Research, Department of Pharmacology and Toxicology, University of Texas Medical Branch
| | - Latham H L Fink
- Center for Addiction Research, University of Texas Medical Branch
| | - Victoria C Wing
- Schizophrenia Division, Complex Mental Illness, Centre for Addiction and Mental Health
| | - Charles W Mathias
- Department of Psychiatry, Division of Neurobehavioral Research, University of Texas Health Science Center at San Antonio
| | - Scott D Lane
- Department of Psychiatry and Behavioral Sciences, University of Texas at Houston Medical School
| | | | - Alan C Swann
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine
| | - C W Lejuez
- Department of Psychology, Maryland Neuroimaging Center, Center for Addictions, Personality, and Emotion Research, University of Maryland
| | - Luke Clark
- Centre for Gambling Research at UBC, Department of Psychology, University of British Columbia
| | - F Gerard Moeller
- Department of Psychiatry, Virginia Commonwealth University School of Medicine
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine
| |
Collapse
|
10
|
Ameqrane I, Wattiez N, Pouget P, Missal M, Pouget P, Pierre P, Missal M, Marcus M. A subanesthetic dose of ketamine in the Rhesus monkey reduces the occurrence of anticipatory saccades. Psychopharmacology (Berl) 2015; 232:3563-72. [PMID: 26153067 DOI: 10.1007/s00213-015-4005-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/28/2015] [Indexed: 12/20/2022]
Abstract
RATIONALE It has been shown that antagonism of the glutamatergic N-methyl-D-aspartate (NMDA) receptor with subanesthetic doses of ketamine perturbs the perception of elapsed time. Anticipatory eye movements are based on an internal representation of elapsed time. Therefore, the occurrence of anticipatory saccades could be a particularly sensitive indicator of abnormal time perception due to NMDA receptors blockade. OBJECTIVES The objective of this study was to determine whether the occurrence of anticipatory saccades could be selectively altered by a subanesthetic dose of ketamine. METHODS Three Rhesus monkeys were trained in a simple visually guided saccadic task with a variable delay. Monkeys were rewarded for making a visually guided saccade at the end of the delay. Premature anticipatory saccades to the future position of the eccentric target initiated before the end of the delay were not rewarded. A subanesthetic dose of ketamine (0.25 mg/kg) or a saline solution of the same volume was injected i.m. during the task. RESULTS We found that the injected dose of ketamine did not induce sedation or abnormal behavior. However, in ∼4 min, ketamine induced a strong reduction of the occurrence of anticipatory saccades but did not reduce the occurrence of visually guided saccades. CONCLUSION This unexpected reduction of anticipatory saccade occurrence could be interpreted as resulting from an altered use of the perception of elapsed time during the delay period induced by NMDA receptors antagonism.
Collapse
|
11
|
Drucker CB, Carlson ML, Toda K, DeWind NK, Platt ML. Non-invasive primate head restraint using thermoplastic masks. J Neurosci Methods 2015; 253:90-100. [PMID: 26112334 DOI: 10.1016/j.jneumeth.2015.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/03/2015] [Accepted: 06/15/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND The success of many neuroscientific studies depends upon adequate head fixation of awake, behaving animals. Typically, this is achieved by surgically affixing a head-restraint prosthesis to the skull. NEW METHOD Here we report the use of thermoplastic masks to non-invasively restrain monkeys' heads. Mesh thermoplastic sheets become pliable when heated and can then be molded to an individual monkey's head. After cooling, the custom mask retains this shape indefinitely for day-to-day use. RESULTS We successfully trained rhesus macaques (Macaca mulatta) to perform cognitive tasks while wearing thermoplastic masks. Using these masks, we achieved a level of head stability sufficient for high-resolution eye-tracking and intracranial electrophysiology. COMPARISON WITH EXISTING METHOD Compared with traditional head-posts, we find that thermoplastic masks perform at least as well during infrared eye-tracking and single-neuron recordings, allow for clearer magnetic resonance image acquisition, enable freer placement of a transcranial magnetic stimulation coil, and impose lower financial and time costs on the lab. CONCLUSIONS We conclude that thermoplastic masks are a viable non-invasive form of primate head restraint that enable a wide range of neuroscientific experiments.
Collapse
Affiliation(s)
- Caroline B Drucker
- Department of Neurobiology and Center for Cognitive Neuroscience, Levine Science Research Center, Box 90999, Duke University, Durham, NC 27708, USA.
| | - Monica L Carlson
- Department of Neurobiology and Center for Cognitive Neuroscience, Levine Science Research Center, Box 90999, Duke University, Durham, NC 27708, USA.
| | - Koji Toda
- Department of Neurobiology and Center for Cognitive Neuroscience, Levine Science Research Center, Box 90999, Duke University, Durham, NC 27708, USA; Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku 102-0083, Tokyo, Japan.
| | - Nicholas K DeWind
- Department of Neurobiology and Center for Cognitive Neuroscience, Levine Science Research Center, Box 90999, Duke University, Durham, NC 27708, USA.
| | - Michael L Platt
- Department of Neurobiology and Center for Cognitive Neuroscience, Levine Science Research Center, Box 90999, Duke University, Durham, NC 27708, USA; Department of Evolutionary Anthropology, 104 Biological Sciences Building, Box 90383, Duke University, Durham, NC 27708, USA; Duke Institute for Brain Sciences, Levine Science Research Center, Box 90999, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
12
|
Lee WH, Lisanby SH, Laine AF, Peterchev AV. Electric Field Model of Transcranial Electric Stimulation in Nonhuman Primates: Correspondence to Individual Motor Threshold. IEEE Trans Biomed Eng 2015; 62:2095-105. [PMID: 25910001 DOI: 10.1109/tbme.2015.2425406] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To develop a pipeline for realistic head models of nonhuman primates (NHPs) for simulations of noninvasive brain stimulation, and use these models together with empirical threshold measurements to demonstrate that the models capture individual anatomical variability. METHODS Based on structural MRI data, we created models of the electric field (E-field) induced by right unilateral (RUL) electroconvulsive therapy (ECT) in four rhesus macaques. Individual motor threshold (MT) was measured with transcranial electric stimulation (TES) administered through the RUL electrodes in the same subjects. RESULTS The interindividual anatomical differences resulted in 57% variation in median E-field strength in the brain at fixed stimulus current amplitude. Individualization of the stimulus current by MT reduced the E-field variation in the target motor area by 27%. There was significant correlation between the measured MT and the ratio of simulated electrode current and E-field strength (r(2) = 0.95, p = 0.026). Exploratory analysis revealed significant correlations of this ratio with anatomical parameters including of the superior electrode-to-cortex distance, vertex-to-cortex distance, and brain volume (r(2) > 0.96, p < 0.02). The neural activation threshold was estimated to be 0.45 ±0.07 V/cm for 0.2-ms stimulus pulse width. CONCLUSION These results suggest that our individual-specific NHP E-field models appropriately capture individual anatomical variability relevant to the dosing of TES/ECT. These findings are exploratory due to the small number of subjects. SIGNIFICANCE This study can contribute insight in NHP studies of ECT and other brain stimulation interventions, help link the results to clinical studies, and ultimately lead to more rational brain stimulation dosing paradigms.
Collapse
|
13
|
Transcranial magnetic stimulation of the prefrontal cortex in awake nonhuman primates evokes a polysynaptic neck muscle response that reflects oculomotor activity at the time of stimulation. J Neurosci 2015; 34:14803-15. [PMID: 25355232 DOI: 10.1523/jneurosci.2907-14.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has emerged as an important technique in cognitive neuroscience, permitting causal inferences about the contribution of a given brain area to behavior. Despite widespread use, exactly how TMS influences neural activity throughout an interconnected network, and how such influences ultimately change behavior, remain unclear. The oculomotor system of nonhuman primates (NHPs) offers a potential animal model to bridge this gap. Here, based on results suggesting that neck muscle activity provides a sensitive indicator of oculomotor activation, we show that single pulses of TMS over the frontal eye fields (FEFs) in awake NHPs evoked rapid (within ∼25 ms) and fairly consistent (∼50-75% of all trials) expression of a contralateral head-turning synergy. This neck muscle response resembled that evoked by subsaccadic electrical microstimulation of the FEF. Systematic variation in TMS location revealed that this response could also be evoked from the dorsolateral prefrontal cortex (dlPFC). Combining TMS with an oculomotor task revealed state dependency, with TMS evoking larger neck muscle responses when the stimulated area was actively engaged. Together, these results advance the suitability of the NHP oculomotor system as an animal model for TMS. The polysynaptic neck muscle response evoked by TMS of the prefrontal cortex is a quantifiable trial-by-trial reflection of oculomotor activation, comparable to the monosynaptic motor-evoked potential evoked by TMS of primary motor cortex. Our results also speak to a role for both the FEF and dlPFC in head orienting, presumably via subcortical connections with the superior colliculus.
Collapse
|
14
|
Pouget P. The cortex is in overall control of 'voluntary' eye movement. Eye (Lond) 2014; 29:241-5. [PMID: 25475239 DOI: 10.1038/eye.2014.284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/23/2014] [Indexed: 11/09/2022] Open
Abstract
The neural circuits that control eye movements are complex and distributed in brainstem, basal ganglia, cerebellum, and multiple areas of cortex. The anatomical function of the substrates implicated in eye movements has been studied for decades in numerous countries, laboratories, and clinics. The modest goal of this brief review is twofold. (1) To present a focused overview of the knowledge about the role of the cerebral cortex in voluntary control of eye movements. (2) To very briefly mention two findings showing that the accepted hierarchy between the frontal and the occipital sensory areas involved in sensory-motor transformation might not be so trivial to reconcile, and to interpret in the context of eye movement command. This presentation has been part of the 44th Cambridge Ophthalmological Symposium, on ocular motility, 3 September 2014 to 5 November 2014.
Collapse
Affiliation(s)
- P Pouget
- 1] CNRS 7225, Paris, France [2] ICM, Paris, France [3] Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
15
|
Chapman BB, Corneil BD. Short-duration stimulation of the supplementary eye fields perturbs anti-saccade performance while potentiating contralateral head orienting. Eur J Neurosci 2014; 39:295-307. [PMID: 24417515 DOI: 10.1111/ejn.12403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 11/29/2022]
Abstract
Many forms of brain stimulation utilize the notion of state dependency, whereby greater influences are observed when a given area is more engaged at the time of stimulation. Here, by delivering intracortical microstimulation (ICMS) to the supplementary eye fields (SEF) of monkeys performing interleaved pro- and anti-saccades, we show a surprising diversity of state-dependent effects of ICMS-SEF. Short-duration ICMS-SEF passed around cue presentation selectively disrupted anti-saccades by increasing reaction times and error rates bilaterally, and also recruited neck muscles, favoring contralateral head turning to a greater degree on anti-saccade trials. These results are consistent with the functional relevance of the SEF for anti-saccades. The multiplicity of stimulation-evoked effects, with ICMS-SEF simultaneously disrupting anti-saccade performance and facilitating contralateral head orienting, probably reflects both the diversity of cortical and subcortical targets of SEF projections, and the response of this oculomotor network to stimulation. We speculate that the bilateral disruption of anti-saccades arises via feedback loops that may include the thalamus, whereas neck muscle recruitment arises via feedforward polysynaptic pathways to the motor periphery. Consideration of both sets of results reveals a more complete picture of the highly complex and multiphasic response to ICMS-SEF that can play out differently in different effector systems.
Collapse
|
16
|
Vernet M, Quentin R, Chanes L, Mitsumasu A, Valero-Cabré A. Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Front Integr Neurosci 2014; 8:66. [PMID: 25202241 PMCID: PMC4141567 DOI: 10.3389/fnint.2014.00066] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/01/2014] [Indexed: 01/06/2023] Open
Abstract
The planning, control and execution of eye movements in 3D space relies on a distributed system of cortical and subcortical brain regions. Within this network, the Eye Fields have been described in animals as cortical regions in which electrical stimulation is able to trigger eye movements and influence their latency or accuracy. This review focuses on the Frontal Eye Field (FEF) a “hub” region located in Humans in the vicinity of the pre-central sulcus and the dorsal-most portion of the superior frontal sulcus. The straightforward localization of the FEF through electrical stimulation in animals is difficult to translate to the healthy human brain, particularly with non-invasive neuroimaging techniques. Hence, in the first part of this review, we describe attempts made to characterize the anatomical localization of this area in the human brain. The outcome of functional Magnetic Resonance Imaging (fMRI), Magneto-encephalography (MEG) and particularly, non-invasive mapping methods such a Transcranial Magnetic Stimulation (TMS) are described and the variability of FEF localization across individuals and mapping techniques are discussed. In the second part of this review, we will address the role of the FEF. We explore its involvement both in the physiology of fixation, saccade, pursuit, and vergence movements and in associated cognitive processes such as attentional orienting, visual awareness and perceptual modulation. Finally in the third part, we review recent evidence suggesting the high level of malleability and plasticity of these regions and associated networks to non-invasive stimulation. The exploratory, diagnostic, and therapeutic interest of such interventions for the modulation and improvement of perception in 3D space are discussed.
Collapse
Affiliation(s)
- Marine Vernet
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France
| | - Romain Quentin
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France
| | - Lorena Chanes
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France
| | - Andres Mitsumasu
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France
| | - Antoni Valero-Cabré
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France ; Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, School of Medicine, Boston University Boston, MA, USA ; Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia Barcelona, Spain
| |
Collapse
|
17
|
Deffieux T, Younan Y, Wattiez N, Tanter M, Pouget P, Aubry JF. Low-Intensity Focused Ultrasound Modulates Monkey Visuomotor Behavior. Curr Biol 2013; 23:2430-3. [DOI: 10.1016/j.cub.2013.10.029] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/18/2013] [Accepted: 10/10/2013] [Indexed: 11/24/2022]
|