1
|
Laban H, Siegmund S, Schlereth K, Trogisch FA, Ablieh A, Brandenburg L, Weigert A, De La Torre C, Mogler C, Hecker M, Kuebler WM, Korff T. Nuclear factor of activated T-cells 5 is indispensable for a balanced adaptive transcriptional response of lung endothelial cells to hypoxia. Cardiovasc Res 2024:cvae151. [PMID: 39107245 DOI: 10.1093/cvr/cvae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/07/2024] [Accepted: 06/01/2024] [Indexed: 08/09/2024] Open
Abstract
AIMS Chronic hypoxia causes detrimental structural alterations in the lung, which may cause pulmonary hypertension and are partially mediated by the endothelium. While its relevance for the development of hypoxia-associated lung diseases is well known, determinants controlling the initial adaptation of the lung endothelium to hypoxia remain largely unexplored. METHODS AND RESULTS We revealed that hypoxia activates the transcription factor nuclear factor of activated T-cells 5 (NFAT5) and studied its regulatory function in murine lung endothelial cells (MLECs). EC-specific knockout of Nfat5 (Nfat5(EC)-/-) in mice exposed to normobaric hypoxia (10% O2) for 21 days promoted vascular fibrosis and aggravated the increase in pulmonary right ventricular systolic pressure as well as right ventricular dysfunction as compared with control mice. Microarray- and single-cell RNA-sequencing-based analyses revealed an impaired growth factor-, energy-, and protein-metabolism-associated gene expression in Nfat5-deficient MLEC after exposure to hypoxia for 7 days. Specifically, loss of NFAT5 boosted the expression and release of platelet-derived growth factor B (Pdgfb)-a hypoxia-inducible factor 1 alpha (HIF1α)-regulated driver of vascular smooth muscle cell (VSMC) growth-in capillary MLEC of hypoxia-exposed Nfat5(EC)-/- mice, which was accompanied by intensified VSMC coverage of distal pulmonary arteries. CONCLUSION Collectively, our study shows that early and transient subpopulation-specific responses of MLEC to hypoxia may determine the degree of organ dysfunction in later stages. In this context, NFAT5 acts as a protective transcription factor required to rapidly adjust the endothelial transcriptome to cope with hypoxia. Specifically, NFAT5 restricts HIF1α-mediated Pdgfb expression and consequently limits muscularization and resistance of the pulmonary vasculature.
Collapse
Affiliation(s)
- Hebatullah Laban
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Sophia Siegmund
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Katharina Schlereth
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Felix A Trogisch
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
- Department of Cardiovascular Physiology and Cardiac Imaging Center, Core Facility Platform Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alia Ablieh
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Lennart Brandenburg
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Andreas Weigert
- Institute of Biochemistry I Pathobiochemistry, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Markus Hecker
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Ono M, Izumi Y, Maruyama K, Yasuoka Y, Hiramatsu A, Aramburu J, López-Rodríguez C, Nonoguchi H, Kakizoe Y, Adachi M, Kuwabara T, Mukoyama M. Characterization of gene expression in the kidney of renal tubular cell-specific NFAT5 knockout mice. Am J Physiol Renal Physiol 2024; 326:F394-F410. [PMID: 38153851 DOI: 10.1152/ajprenal.00233.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5; also called TonEBP/OREBP) is a transcription factor that is activated by hypertonicity and induces osmoprotective genes to protect cells against hypertonic conditions. In the kidney, renal tubular NFAT5 is known to be involved in the urine concentration mechanism. Previous studies have suggested that NFAT5 modulates the immune system and exerts various effects on organ damage, depending on organ and disease states. Pathophysiological roles of NFAT5 in renal tubular cells, however, still remain obscure. We conducted comprehensive analysis by performing transcription start site (TSS) sequencing on the kidney of inducible and renal tubular cell-specific NFAT5 knockout (KO) mice. Mice were subjected to unilateral ureteral obstruction to examine the relevance of renal tubular NFAT5 in renal fibrosis. TSS sequencing analysis identified 722 downregulated TSSs and 1,360 upregulated TSSs, which were differentially regulated ≤-1.0 and ≥1.0 in log2 fold, respectively. Those TSSs were annotated to 532 downregulated genes and 944 upregulated genes, respectively. Motif analysis showed that sequences that possibly bind to NFAT5 were enriched in TSSs of downregulated genes. Gene Ontology analysis with the upregulated genes suggested disorder of innate and adaptive immune systems in the kidney. Unilateral ureteral obstruction significantly exacerbated renal fibrosis in the renal medulla in KO mice compared with wild-type mice, accompanied by enhanced activation of immune responses. In conclusion, NFAT5 in renal tubules could have pathophysiological roles in renal fibrosis through modulating innate and adaptive immune systems in the kidney.NEW & NOTEWORTHY TSS-Seq analysis of the kidney from renal tubular cell-specific NFAT5 KO mice uncovered novel genes that are possibly regulated by NFAT5 in the kidney under physiological conditions. The study further implied disorders of innate and adaptive immune systems in NFAT5 KO mice, thereby exacerbating renal fibrosis at pathological states. Our results may implicate the involvement of renal tubular NFAT5 in the progression of renal fibrosis. Further studies would be worthwhile for the development of novel therapy to treat chronic kidney disease.
Collapse
Affiliation(s)
- Makoto Ono
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Kosuke Maruyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yukiko Yasuoka
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Akiko Hiramatsu
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Jose Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra and Barcelona Biomedical Research Park, Barcelona, Spain
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra and Barcelona Biomedical Research Park, Barcelona, Spain
| | - Hiroshi Nonoguchi
- Division of Internal Medicine, Kitasato University Medical Center, Saitama, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Masataka Adachi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| |
Collapse
|
3
|
Zhang P, Huang C, Liu H, Zhang M, Liu L, Zhai Y, Zhang J, Yang J, Yang J. The mechanism of the NFAT transcription factor family involved in oxidative stress response. J Cardiol 2024; 83:30-36. [PMID: 37149283 DOI: 10.1016/j.jjcc.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
As a transcriptional activator widely expressed in various tissues, nuclear factor of activated T cells (NFAT) is involved in the regulation of the immune system, the development of the heart and brain systems, and classically mediating pathological processes such as cardiac hypertrophy. Oxidative stress is an imbalance of intracellular redox status, characterized by excessive generation of reactive oxygen species, accompanied by mitochondrial dysfunction, calcium overload, and subsequent lipid peroxidation, inflammation, and apoptosis. Oxidative stress occurs during various pathological processes, such as chronic hypoxia, vascular smooth muscle cell phenotype switching, ischemia-reperfusion, and cardiac remodeling. Calcium overload leads to an increase in intracellular calcium concentration, while NFAT can be activated through calcium-calcineurin, which is also the main regulatory mode of NFAT factors. This review focuses on the effects of NFAT transcription factors on reactive oxygen species production, calcium overload, mitochondrial dysfunction, redox reactions, lipid peroxidation, inflammation, and apoptosis in response to oxidative stress. We hope to provide a reference for the functions and characteristics of NFAT involved in various stages of oxidative stress as well as related potential targets.
Collapse
Affiliation(s)
- Peiyue Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Cuiyuan Huang
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Haiyin Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Mengting Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Li Liu
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yuhong Zhai
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing Zhang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China.
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China.
| |
Collapse
|
4
|
The nuclear factor of activated T cells 5 (NFAT5) contributes to the renal corticomedullary differences in gene expression. Sci Rep 2022; 12:20304. [PMID: 36433977 PMCID: PMC9700710 DOI: 10.1038/s41598-022-24237-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
The corticomedullary osmotic gradient between renal cortex and medulla induces a specific spatial gene expression pattern. The factors that controls these differences are not fully addressed. Adaptation to hypertonic environment is mediated by the actions of the nuclear factor of activated T-cells 5 (NFAT5). NFAT5 induces the expression of genes that lead to intracellular accumulation of organic osmolytes. However, a systematical analysis of the NFAT5-dependent gene expression in the kidneys was missing. We used primary cultivated inner medullary collecting duct (IMCD) cells from control and NFAT5 deficient mice as well as renal cortex and inner medulla from principal cell specific NFAT5 deficient mice for gene expression profiling. In primary NFAT5 deficient IMCD cells, hyperosmolality induced changes in gene expression were abolished. The majority of the hyperosmolality induced transcripts in primary IMCD culture were determined to have the greatest expression in the inner medulla. Loss of NFAT5 altered the expression of more than 3000 genes in the renal cortex and more than 5000 genes in the inner medulla. Gene enrichment analysis indicated that loss of NFAT5 is associated with renal inflammation and increased expression of kidney injury marker genes, like lipocalin-2 or kidney injury molecule-1. In conclusion we show that NFAT5 is a master regulator of gene expression in the kidney collecting duct and in vivo loss of NFAT function induces a kidney injury like phenotype.
Collapse
|
5
|
Exploring the Expression of Pro-Inflammatory and Hypoxia-Related MicroRNA-20a, MicroRNA-30e, and MicroRNA-93 in Periodontitis and Gingival Mesenchymal Stem Cells under Hypoxia. Int J Mol Sci 2022; 23:ijms231810310. [PMID: 36142220 PMCID: PMC9499533 DOI: 10.3390/ijms231810310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/21/2022] [Accepted: 08/28/2022] [Indexed: 11/22/2022] Open
Abstract
Hypoxia associated with inflammation are common hallmarks observed in several diseases, and it plays a major role in the expression of non-coding RNAs, including microRNAs (miRNAs). In addition, the miRNA target genes for hypoxia-inducible factor-1α (HIF-1α) and nuclear factor of activated T cells-5 (NFAT5) modulate the adaptation to hypoxia. The objective of the present study was to explore hypoxia-related miRNA target genes for HIF-1α and NFAT5, as well as miRNA-20a, miRNA-30e, and miRNA-93 expression in periodontitis versus healthy gingival tissues and gingival mesenchymal stem cells (GMSCs) cultured under hypoxic conditions. Thus, a case-control study was conducted, including healthy and periodontitis subjects. Clinical data and gingival tissue biopsies were collected to analyze the expression of miRNA-20a, miRNA-30e, miRNA-93, HIF-1α, and NFAT5 by qRT-PCR. Subsequently, GMSCs were isolated and cultured under hypoxic conditions (1% O2) to explore the expression of the HIF-1α, NFAT5, and miRNAs. The results showed a significant upregulation of miRNA-20a (p = 0.028), miRNA-30e (p = 0.035), and miRNA-93 (p = 0.026) in periodontitis tissues compared to healthy gingival biopsies. NFAT5 mRNA was downregulated in periodontitis tissues (p = 0.037), but HIF-1α was not affected (p = 0.60). Interestingly, hypoxic GMSCs upregulated the expression of miRNA-20a and HIF-1α, but they downregulated miRNA-93e. In addition, NFAT5 mRNA expression was not affected in hypoxic GMSCs. In conclusion, in periodontitis patients, the expression of miRNA-20a, miRNA-30e, and miRNA-93 increased, but a decreased expression of NFAT5 mRNA was detected. In addition, GMSCs under hypoxic conditions upregulate the HIF-1α and increase miRNA-20a (p = 0.049) expression. This study explores the role of inflammatory and hypoxia-related miRNAs and their target genes in periodontitis and GMSCs. It is crucial to determine the potential therapeutic target of these miRNAs and hypoxia during the periodontal immune–inflammatory response, which should be analyzed in greater depth in future studies.
Collapse
|
6
|
Laban H, Siegmund S, Zappe M, Trogisch FA, Heineke J, Torre CDL, Fisslthaler B, Arnold C, Lauryn J, Büttner M, Mogler C, Kato K, Adams RH, Kuk H, Fischer A, Hecker M, Kuebler WM, Korff T. NFAT5/TonEBP Limits Pulmonary Vascular Resistance in the Hypoxic Lung by Controlling Mitochondrial Reactive Oxygen Species Generation in Arterial Smooth Muscle Cells. Cells 2021; 10:cells10123293. [PMID: 34943801 PMCID: PMC8699676 DOI: 10.3390/cells10123293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic hypoxia increases the resistance of pulmonary arteries by stimulating their contraction and augmenting their coverage by smooth muscle cells (SMCs). While these responses require adjustment of the vascular SMC transcriptome, regulatory elements are not well defined in this context. Here, we explored the functional role of the transcription factor nuclear factor of activated T-cells 5 (NFAT5/TonEBP) in the hypoxic lung. Regulatory functions of NFAT5 were investigated in cultured artery SMCs and lungs from control (Nfat5fl/fl) and SMC-specific Nfat5-deficient (Nfat5(SMC)−/−) mice. Exposure to hypoxia promoted the expression of genes associated with metabolism and mitochondrial oxidative phosphorylation (OXPHOS) in Nfat5(SMC)−/− versus Nfat5fl/fl lungs. In vitro, hypoxia-exposed Nfat5-deficient pulmonary artery SMCs elevated the level of OXPHOS-related transcripts, mitochondrial respiration, and production of reactive oxygen species (ROS). Right ventricular functions were impaired while pulmonary right ventricular systolic pressure (RVSP) was amplified in hypoxia-exposed Nfat5(SMC)−/− versus Nfat5fl/fl mice. Scavenging of mitochondrial ROS normalized the raise in RVSP. Our findings suggest a critical role for NFAT5 as a suppressor of OXPHOS-associated gene expression, mitochondrial respiration, and ROS production in pulmonary artery SMCs that is vital to limit ROS-dependent arterial resistance in a hypoxic environment.
Collapse
Affiliation(s)
- Hebatullah Laban
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Sophia Siegmund
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
| | - Maren Zappe
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
| | - Felix A. Trogisch
- Department of Cardiovascular Physiology, Mannheim Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany; (F.A.T.); (J.H.)
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
| | - Jörg Heineke
- Department of Cardiovascular Physiology, Mannheim Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany; (F.A.T.); (J.H.)
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
| | - Beate Fisslthaler
- Institute for Vascular Signalling, Goethe University, Frankfurt am Main, 60323 Frankfurt, Germany;
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, 60323 Frankfurt, Germany
| | - Caroline Arnold
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
| | - Jonathan Lauryn
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10099 Berlin, Germany; (J.L.); (W.M.K.)
| | - Michael Büttner
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany;
| | - Carolin Mogler
- Institute of Pathology, School of Medicine, Technical University Munich, 80333 Munich, Germany;
| | - Katsuhiro Kato
- Department of Tissue Morphogenesis, Faculty of Medicine, Max Planck Institute for Molecular Biomedicine, University of Münster, 48149 Münster, Germany; (K.K.); (R.H.A.)
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Faculty of Medicine, Max Planck Institute for Molecular Biomedicine, University of Münster, 48149 Münster, Germany; (K.K.); (R.H.A.)
| | - Hanna Kuk
- The Ottawa Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Andreas Fischer
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Internal Medicine I, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Hecker
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10099 Berlin, Germany; (J.L.); (W.M.K.)
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
- Correspondence: ; Tel.: +49-6221-544131; Fax: +49-6221-544038
| |
Collapse
|
7
|
NFAT5 Is Involved in GRP-Enhanced Secretion of GLP-1 by Sodium. Int J Mol Sci 2021; 22:ijms22083951. [PMID: 33921209 PMCID: PMC8069329 DOI: 10.3390/ijms22083951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022] Open
Abstract
Gastrin, secreted by G-cells, and glucagon-like peptide-1 (GLP-1), secreted by L-cells, may participate in the regulation of sodium balance. We studied the effect of sodium in mice in vivo and mouse ileum and human L-cells, on GLP-1 secretion, and the role of NFAT5 and gastrin-releasing peptide receptor (GRPR) in this process. A high-sodium diet increases serum GLP-1 levels in mice. Increasing sodium concentration stimulates GLP-1 secretion from mouse ileum and L-cells. GRP enhances the high sodium-induced increase in GLP-1 secretion. High sodium increases cellular GLP-1 expression, while low and high sodium concentrations increase NFAT5 and GRPR expression. Silencing NFAT5 in L-cells abrogates the stimulatory effect of GRP on the high sodium-induced GLP-1 secretion and protein expression, and the sodium-induced increase in GRPR expression. GLP-1 and gastrin decrease the expression of Na+-K+/ATPase and increase the phosphorylation of sodium/hydrogen exchanger type 3 (NHE3) in human renal proximal tubule cells (hRPTCs). This study gives a new perspective on the mechanisms of GLP-1 secretion, especially that engendered by ingested sodium, and the ability of GLP-1, with gastrin, to decrease Na+-K+/ATPase expression and NHE3 function in hRPTCs. These results may contribute to the better utilization of current and future GLP-1-based drugs in the treatment of hypertension.
Collapse
|
8
|
Chen BL, Li Y, Xu S, Nie Y, Zhang J. NFAT5 Regulated by STUB1, Facilitates Malignant Cell Survival and p38 MAPK Activation by Upregulating AQP5 in Chronic Lymphocytic Leukemia. Biochem Genet 2021; 59:870-883. [PMID: 33544297 DOI: 10.1007/s10528-021-10040-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a clonal proliferative disease of mature B lymphocytes. To further improve the prognosis of patients, it is necessary to further elucidate the pathogenesis of CLL and find more effective therapeutic targets. Nuclear Factor of Activated T cells 5 (NFAT5) is the major activated transcription factor (TF) upon osmotic pressure increase in mammalian cells, and it also regulates many target genes to affect various cellular functions. The effects of NFAT5 on tumor growth and metastasis have also been widely revealed. However, the effects of NFAT5 on the progression of CLL are still unclear. In this study, we found abnormally high expression of NFAT5 in human CLL patients. Additionally, NFAT5 depletion suppressed proliferation and stimulated apoptosis of CLL cells. Our data further confirmed NFAT5 regulated AQP5 expression and the phosphorylation of p38 MAPK. We also found that AQP5 overexpression reversed the inhibitory effect of NFAT5 depletion on cell proliferation in CLL cells. Furthermore, we revealed STUB1 directly bound to NFAT5 and promoted its degradation. Taken together, our results indicate the involvement of NFAT5 in CLL progression and suggest that NFAT5 could serve as a promising therapeutic target for CLL treatment.
Collapse
Affiliation(s)
- Bei Li Chen
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Yuchuan Li
- Department of Gynaecology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Shujuan Xu
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Yuwei Nie
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Jiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
9
|
Ugarte F, Santapau D, Gallardo V, Garfias C, Yizmeyián A, Villanueva S, Sepúlveda C, Rocco J, Pasten C, Urquidi C, Cavada G, San Martin P, Cano F, Irarrázabal CE. Urinary Extracellular Vesicles as a Source of NGAL for Diabetic Kidney Disease Evaluation in Children and Adolescents With Type 1 Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:654269. [PMID: 35046888 PMCID: PMC8762324 DOI: 10.3389/fendo.2021.654269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 11/15/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Tubular damage has a role in Diabetic Kidney Disease (DKD). We evaluated the early tubulointerstitial damage biomarkers in type-1 Diabetes Mellitus (T1DM) pediatric participants and studied the correlation with classical DKD parameters. METHODS Thirty-four T1DM and fifteen healthy participants were enrolled. Clinical and biochemical parameters [Glomerular filtration Rate (GFR), microalbuminuria (MAU), albumin/creatinine ratio (ACR), and glycated hemoglobin A1c (HbA1c)] were evaluated. Neutrophil gelatinase-associated lipocalin (NGAL), Hypoxia-inducible Factor-1α (HIF-1α), and Nuclear Factor of Activated T-cells-5 (NFAT5) levels were studied in the supernatant (S) and the exosome-like extracellular vesicles (E) fraction from urine samples. RESULTS In the T1DM, 12% had MAU >20 mg/L, 6% ACR >30 mg/g, and 88% had eGFR >140 ml/min/1.72 m2. NGAL in the S (NGAL-S) or E (NGAL-E) fraction was not detectable in the control. The NGAL-E was more frequent (p = 0.040) and higher (p = 0.002) than NGAL-S in T1DM. The T1DM participants with positive NGAL had higher age (p = 0.03), T1DM evolution (p = 0.03), and serum creatinine (p = 0.003) than negative NGAL. The NGAL-E correlated positively with tanner stage (p = 0.0036), the median levels of HbA1c before enrollment (p = 0.045) and was independent of ACR, MAU, and HbA1c at the enrollment. NFAT5 and HIF-1α levels were not detectable in T1DM or control. CONCLUSION Urinary exosome-like extracellular vesicles could be a new source of early detection of tubular injury biomarkers of DKD in T1DM patients.
Collapse
Affiliation(s)
- Francisca Ugarte
- Pediatric Endocrinology Unit, Pediatric Service, Clinica Universidad de los Andes, Santiago, Chile
- Departament of Pediatrics, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Pediatric Endocrinology and Diabetes Unit, Hospital Dr. Exequiel González Cortés, Santiago, Chile
| | - Daniela Santapau
- Centro de Medicina Regenerativa, Facultad de Medicina, Clinica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Vivian Gallardo
- Pediatric Endocrinology and Diabetes Unit, Hospital Dr. Exequiel González Cortés, Santiago, Chile
| | - Carolina Garfias
- Pediatric Endocrinology Unit, Pediatric Service, Clinica Universidad de los Andes, Santiago, Chile
| | - Anahí Yizmeyián
- Pediatric Endocrinology and Diabetes Unit, Hospital Dr. Exequiel González Cortés, Santiago, Chile
| | - Soledad Villanueva
- Pediatric Endocrinology and Diabetes Unit, Hospital Dr. Exequiel González Cortés, Santiago, Chile
| | - Carolina Sepúlveda
- Pediatric Endocrinology and Diabetes Unit, Hospital Dr. Exequiel González Cortés, Santiago, Chile
| | - Jocelyn Rocco
- Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigación e Innovación Biomédica (CIIB), Universidad de los Andes, Santiago, Chile
| | - Consuelo Pasten
- Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigación e Innovación Biomédica (CIIB), Universidad de los Andes, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Cinthya Urquidi
- Department of Epidemiology and Health Studies, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Gabriel Cavada
- Department of Public Health, School of Public Health, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pamela San Martin
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Francisco Cano
- Pediatric Nephrology Unit, Pediatric Service, Hospital Luis Calvo Mackennna, Santiago, Chile
| | - Carlos E. Irarrázabal
- Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigación e Innovación Biomédica (CIIB), Universidad de los Andes, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- *Correspondence: Carlos E. Irarrázabal,
| |
Collapse
|
10
|
The evolving role of TonEBP as an immunometabolic stress protein. Nat Rev Nephrol 2020; 16:352-364. [PMID: 32157251 DOI: 10.1038/s41581-020-0261-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
Tonicity-responsive enhancer-binding protein (TonEBP), which is also known as nuclear factor of activated T cells 5 (NFAT5), was discovered 20 years ago as a transcriptional regulator of the cellular response to hypertonic (hyperosmotic salinity) stress in the renal medulla. Numerous studies since then have revealed that TonEBP is a pleiotropic stress protein that is involved in a range of immunometabolic diseases. Some of the single-nucleotide polymorphisms (SNPs) in TONEBP introns are cis-expression quantitative trait loci that affect TONEBP transcription. These SNPs are associated with increased risk of type 2 diabetes mellitus, diabetic nephropathy, inflammation, high blood pressure and abnormal plasma osmolality, indicating that variation in TONEBP expression might contribute to these phenotypes. In addition, functional studies have shown that TonEBP is involved in the pathogenesis of rheumatoid arthritis, atherosclerosis, diabetic nephropathy, acute kidney injury, hyperlipidaemia and insulin resistance, autoimmune diseases (including type 1 diabetes mellitus and multiple sclerosis), salt-sensitive hypertension and hepatocellular carcinoma. These pathological activities of TonEBP are in contrast to the protective actions of TonEBP in response to hypertonicity, bacterial infection and DNA damage induced by genotoxins. An emerging theme is that TonEBP is a stress protein that mediates the cellular response to a range of pathological insults, including excess caloric intake, inflammation and oxidative stress.
Collapse
|
11
|
Cen L, Xing F, Xu L, Cao Y. Potential Role of Gene Regulator NFAT5 in the Pathogenesis of Diabetes Mellitus. J Diabetes Res 2020; 2020:6927429. [PMID: 33015193 PMCID: PMC7512074 DOI: 10.1155/2020/6927429] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/15/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5), a Rel/nuclear factor- (NF-) κB family member, is the only known gene regulator of the mammalian adaptive response to osmotic stress. Exposure to elevated glucose increases the expression and nuclear translocation of NFAT5, as well as NFAT5-driven transcriptional activity in vivo and in vitro. Increased expression of NFAT5 is closely correlated with the progression of diabetes in patients. The distinct structure of NFAT5 governs its physiological and pathogenic roles, indicating its opposing functions. The ability of NFAT5 to maintain cell homeostasis and proliferation is impaired in patients with diabetes. NFAT5 promotes the formation of aldose reductase, pathogenesis of diabetic vascular complications, and insulin resistance. Additionally, NFAT5 activates inflammation at a very early stage of diabetes and induces persistent inflammation. Recent studies revealed that NFAT5 is an effective therapeutic target for diabetes. Here, we describe the current knowledge about NFAT5 and its relationship with diabetes, focusing on its diverse regulatory functions, and highlight the importance of this protein as a potential therapeutic target in patients with diabetes.
Collapse
Affiliation(s)
- Lusha Cen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Fengling Xing
- Department of Dermatology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Liying Xu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Cao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Youdian Rd. 54th, Hangzhou 310006, China
| |
Collapse
|
12
|
Transcriptional Regulator TonEBP Mediates Oxidative Damages in Ischemic Kidney Injury. Cells 2019; 8:cells8101284. [PMID: 31635160 PMCID: PMC6830075 DOI: 10.3390/cells8101284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
TonEBP (tonicity-responsive enhancer binding protein) is a transcriptional regulator whose expression is elevated in response to various forms of stress including hyperglycemia, inflammation, and hypoxia. Here we investigated the role of TonEBP in acute kidney injury (AKI) using a line of TonEBP haplo-deficient mice subjected to bilateral renal ischemia followed by reperfusion (I/R). In the TonEBP haplo-deficient animals, induction of TonEBP, oxidative stress, inflammation, cell death, and functional injury in the kidney in response to I/R were all reduced. Analyses of renal transcriptome revealed that genes in several cellular pathways including peroxisome and mitochondrial inner membrane were suppressed in response to I/R, and the suppression was relieved in the TonEBP deficiency. Production of reactive oxygen species (ROS) and the cellular injury was reproduced in a renal epithelial cell line in response to hypoxia, ATP depletion, or hydrogen peroxide. The knockdown of TonEBP reduced ROS production and cellular injury in correlation with increased expression of the suppressed genes. The cellular injury was also blocked by inhibitors of necrosis. These results demonstrate that ischemic insult suppresses many genes involved in cellular metabolism leading to local oxidative stress by way of TonEBP induction. Thus, TonEBP is a promising target to prevent AKI.
Collapse
|
13
|
Serman Y, Fuentealba RA, Pasten C, Rocco J, Ko BCB, Carrión F, Irarrázabal CE. Emerging new role of NFAT5 in inducible nitric oxide synthase in response to hypoxia in mouse embryonic fibroblast cells. Am J Physiol Cell Physiol 2019; 317:C31-C38. [PMID: 31067085 DOI: 10.1152/ajpcell.00054.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously described the protective role of the nuclear factor of activated T cells 5 (NFAT5) during hypoxia. Alternatively, inducible nitric oxide synthase (iNOS) is also induced by hypoxia. Some evidence indicates that NFAT5 is essential for the expression of iNOS in Toll-like receptor-stimulated macrophages and that iNOS inhibition increases NFAT5 expression in renal ischemia-reperfusion. Here we studied potential NFAT5 target genes stimulated by hypoxia in mouse embryonic fibroblast (MEF) cells. We used three types of MEF cells associated with NFAT5 gene: NFAT5 wild type (MEF-NFAT5+/+), NFAT5 knockout (MEF-NFAT5-/-), and NFAT5 dominant-negative (MEF-NFAT5Δ/Δ) cells. MEF cells were exposed to 21% or 1% O2 in a time course curve of 48 h. We found that, in MEF-NFAT5+/+ cells exposed to 1% O2, NFAT5 was upregulated and translocated into the nuclei, and its transactivation domain activity was induced, concomitant with iNOS, aquaporin 1 (AQP-1), and urea transporter 1 (UTA-1) upregulation. Interestingly, in MEF-NFAT5-/- or MEF-NFAT5Δ/Δ cells, the basal levels of iNOS and AQP-1 expression were strongly downregulated, but not for UTA-1. The upregulation of AQP-1, UTA-1, and iNOS by hypoxia was blocked in both NFAT5-mutated cells. The iNOS induction by hypoxia was recovered in MEF-NFAT5-/- MEF cells, when recombinant NFAT5 protein expression was reconstituted, but not in MEF-NFAT5Δ/Δ cells, confirming the dominant-negative effect of MEF-NFAT5Δ/Δ cells. We did not see the rescue effect on AQP-1 expression. This work provides novel and relevant information about the signaling pathway of NFAT5 during responses to oxygen depletion in mammalian cells and suggests that the expression of iNOS induced by hypoxia is dependent on NFAT5.
Collapse
Affiliation(s)
- Yair Serman
- Laboratorio de Fisiología Integrativa y Molecular, Facultad de Medicina, Centro de Investigación Biomédica, Universidad de los Andes , Santiago , Chile
| | - Rodrigo A Fuentealba
- Laboratorio de Fisiología Integrativa y Molecular, Facultad de Medicina, Centro de Investigación Biomédica, Universidad de los Andes , Santiago , Chile
| | - Consuelo Pasten
- Laboratorio de Fisiología Integrativa y Molecular, Facultad de Medicina, Centro de Investigación Biomédica, Universidad de los Andes , Santiago , Chile
| | - Jocelyn Rocco
- Laboratorio de Fisiología Integrativa y Molecular, Facultad de Medicina, Centro de Investigación Biomédica, Universidad de los Andes , Santiago , Chile
| | - Ben C B Ko
- Department of Applied Biology and Chemical Technology, Polytechnic University of Hong Kong, Hong Kong, China
| | - Flavio Carrión
- Programa de Inmunología Traslacional, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo , Santiago , Chile
| | - Carlos E Irarrázabal
- Laboratorio de Fisiología Integrativa y Molecular, Facultad de Medicina, Centro de Investigación Biomédica, Universidad de los Andes , Santiago , Chile
| |
Collapse
|
14
|
Pasten C, Alvarado C, Rocco J, Contreras L, Aracena P, Liberona J, Suazo C, Michea L, Irarrázabal CE. l-NIL prevents the ischemia and reperfusion injury involving TLR-4, GST, clusterin, and NFAT-5 in mice. Am J Physiol Renal Physiol 2019; 316:F624-F634. [DOI: 10.1152/ajprenal.00398.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
On renal ischemia-reperfusion (I/R) injury, recruitment of neutrophils during the inflammatory process promotes local generation of oxygen and nitrogen reactive species, which, in turn, are likely to exacerbate tissue damage. The mechanism by which inducible nitric oxide synthase (iNOS) is involved in I/R has not been elucidated. In this work, the selective iNOS inhibitor l- N6-(1-iminoethyl)lysine (l-NIL) and the NOS substrate l-arginine were employed to understand the role of NOS activity on the expression of particular target genes and the oxidative stress elicited after a 30-min of bilateral renal ischemia, followed by 48-h reperfusion in Balb/c mice. The main findings of the present study were that pharmacological inhibition of iNOS with l-NIL during an I/R challenge of mice kidney decreased renal injury, prevented tissue loss of integrity, and improved renal function. Several novel findings regarding the molecular mechanism by which iNOS inhibition led to these protective effects are as follows: 1) a prevention of the I/R-related increase in expression of Toll-like receptor 4 (TLR-4), and its downstream target, IL-1β; 2) reduced oxidative stress following the I/R challenge; noteworthy, this study shows the first evidence of glutathione S-transferase (GST) inactivation following kidney I/R, a phenomenon fully prevented by iNOS inhibition; 3) increased expression of clusterin, a survival autophagy component; and 4) increased expression of nuclear factor of activated T cells 5 (NFAT-5) and its target gene aquaporin-1. In conclusion, prevention of renal damage following I/R by the pharmacological inhibition of iNOS with l-NIL was associated with the inactivation of proinflammatory pathway triggered by TLR-4, oxidative stress, renoprotection (autophagy inactivation), and NFAT-5 signaling pathway.
Collapse
Affiliation(s)
- Consuelo Pasten
- Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Cristóbal Alvarado
- School of Medicine and Science, Universidad San Sebastián, Concepción, Chile
- School of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Jocelyn Rocco
- Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Luis Contreras
- Department of Pathological Anatomy, Clínica Universidad de los Andes, Santiago, Chile
| | - Paula Aracena
- School of Medicine and Science, Universidad San Sebastián, Concepción, Chile
| | - Jéssica Liberona
- Institute of Biomedical Sciences, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristian Suazo
- Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Luis Michea
- Institute of Biomedical Sciences, School of Medicine, Universidad de Chile, Santiago, Chile
- Division of Nephrology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Carlos E. Irarrázabal
- Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
15
|
Aramburu J, López-Rodríguez C. Regulation of Inflammatory Functions of Macrophages and T Lymphocytes by NFAT5. Front Immunol 2019; 10:535. [PMID: 30949179 PMCID: PMC6435587 DOI: 10.3389/fimmu.2019.00535] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/27/2019] [Indexed: 11/13/2022] Open
Abstract
The transcription factor NFAT5, also known as TonEBP, belongs to the family of Rel homology domain-containing factors, which comprises the NF-κB proteins and the calcineurin-dependent NFAT1 to NFAT4. NFAT5 shares several structural and functional features with other Rel-family factors, for instance it recognizes DNA elements with the same core sequence as those bound by NFAT1 to 4, and like NF-κB it responds to Toll-like receptors (TLR) and activates macrophage responses to microbial products. On the other hand, NFAT5 is quite unique among Rel-family factors as it can be activated by hyperosmotic stress caused by elevated concentrations of extracellular sodium ions. NFAT5 regulates specific genes but also others that are inducible by NF-κB and NFAT1 to 4. The ability of NFAT5 to do so in response to hypertonicity, microbial products, and inflammatory stimuli may extend the capabilities of immune cells to mount effective anti-pathogen responses in diverse microenvironment and signaling conditions. Recent studies identifying osmostress-dependent and -independent functions of NFAT5 have broadened our understanding of how NFAT5 may modulate immune function. In this review we focus on the role of NFAT5 in macrophages and T cells in different contexts, discussing findings from in vivo mouse models of NFAT5 deficiency and reviewing current knowledge on its mechanisms of regulation. Finally, we propose several questions for future research.
Collapse
Affiliation(s)
- Jose Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
16
|
Orlov SN, Shiyan A, Boudreault F, Ponomarchuk O, Grygorczyk R. Search for Upstream Cell Volume Sensors: The Role of Plasma Membrane and Cytoplasmic Hydrogel. CURRENT TOPICS IN MEMBRANES 2018; 81:53-82. [PMID: 30243440 DOI: 10.1016/bs.ctm.2018.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The plasma membrane plays a prominent role in the regulation of cell volume by mediating selective transport of extra- and intracellular osmolytes. Recent studies show that upstream sensors of cell volume changes are mainly located within the cytoplasm that displays properties of a hydrogel and not in the plasma membrane. Cell volume changes occurring in anisosmotic medium as well as in isosmotic environment affect properties of cytoplasmic hydrogel that, in turn, trigger rapid regulatory volume increase and decrease (RVI and RVD). The downstream signaling pathways include reorganization of 2D cytoskeleton and altered composition of polyphosphoinositides located on the inner surface of the plasma membrane. In addition to its action on physico-chemical properties of cytoplasmic hydrogel, cell volume changes in anisosmotic conditions affect the ionic strength of the cytoplasm and the [Na+]i/[K+]i ratio. Elevated intracellular ionic strength evoked by long term exposure of cells to hypertonic environment resulted in the activation of TonEBP and augmented expression of genes controlling intracellular organic osmolyte levels. The role of Na+i/K+i -sensitive, Ca2+i -mediated and Ca2+i-independent mechanisms of excitation-transcription coupling in cell volume-adjustment remains unknown.
Collapse
Affiliation(s)
- Sergei N Orlov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia; Siberian State Medical University, Tomsk, Russia; National Research Tomsk State University, Tomsk, Russia
| | - Aleksandra Shiyan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Francis Boudreault
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Olga Ponomarchuk
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia; Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Ryszard Grygorczyk
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
17
|
Senavirathna LK, Huang C, Yang X, Munteanu MC, Sathiaseelan R, Xu D, Henke CA, Liu L. Hypoxia induces pulmonary fibroblast proliferation through NFAT signaling. Sci Rep 2018; 8:2709. [PMID: 29426911 PMCID: PMC5807313 DOI: 10.1038/s41598-018-21073-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 01/23/2018] [Indexed: 11/09/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and typically fatal lung disease with a very low survival rate. Excess accumulation of fibroblasts, myofibroblasts and extracellular matrix creates hypoxic conditions within the lungs, causing asphyxiation. Hypoxia is, therefore, one of the prominent features of IPF. However, there have been few studies concerning the effects of hypoxia on pulmonary fibroblasts. In this study, we investigated the molecular mechanisms of hypoxia-induced lung fibroblast proliferation. Hypoxia increased the proliferation of normal human pulmonary fibroblasts and IPF fibroblasts after exposure for 3–6 days. Cell cycle analysis demonstrated that hypoxia promoted the G1/S phase transition. Hypoxia downregulated cyclin D1 and A2 levels, while it upregulated cyclin E1 protein levels. However, hypoxia had no effect on the protein expression levels of cyclin-dependent kinase 2, 4, and 6. Chemical inhibition of hypoxia-inducible factor (HIF)-2 reduced hypoxia-induced fibroblast proliferation. Moreover, silencing of Nuclear Factor Activated T cell (NFAT) c2 attenuated the hypoxia-mediated fibroblasts proliferation. Hypoxia also induced the nuclear translocation of NFATc2, as determined by immunofluorescence staining. NFAT reporter assays showed that hypoxia-induced NFAT signaling activation is dependent on HIF-2, but not HIF-1. Furthermore, the inhibition or silencing of HIF-2, but not HIF-1, reduced the hypoxia-mediated NFATc2 nuclear translocation. Our studies suggest that hypoxia induces the proliferation of human pulmonary fibroblasts through NFAT signaling and HIF-2.
Collapse
Affiliation(s)
- Lakmini Kumari Senavirathna
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA.,Department of Physiological Sciences, Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA.,Department of Physiological Sciences, Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaoyun Yang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA.,Department of Physiological Sciences, Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Maria Cristina Munteanu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA.,Department of Physiological Sciences, Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Roshini Sathiaseelan
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA.,Department of Physiological Sciences, Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Dao Xu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA.,Department of Physiological Sciences, Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Craig A Henke
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA. .,Department of Physiological Sciences, Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
18
|
miR-125a, miR-139 and miR-324 contribute to Urocortin protection against myocardial ischemia-reperfusion injury. Sci Rep 2017; 7:8898. [PMID: 28827743 PMCID: PMC5566224 DOI: 10.1038/s41598-017-09198-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022] Open
Abstract
Urocortin 1 and 2 (Ucn-1 and Ucn-2) have established protective actions against myocardial ischemia-reperfusion (I/R) injuries. However, little is known about their role in posttranscriptional regulation in the process of cardioprotection. Herein, we investigated whether microRNAs play a role in urocortin-induced cardioprotection. Administration of Ucn-1 and Ucn-2 at the beginning of reperfusion significantly restored cardiac function, as evidenced ex vivo in Langendorff-perfused rat hearts and in vivo in rat subjected to I/R. Experiments using microarray and qRT-PCR determined that the addition of Ucn-1 at reperfusion modulated the expression of several miRNAs with unknown role in cardiac protection. Ucn-1 enhanced the expression of miR-125a-3p, miR-324-3p; meanwhile it decreased miR-139-3p. Similarly, intravenous infusion of Ucn-2 in rat model of I/R mimicked the effect of Ucn-1 on miR-324-3p and miR-139-3p. The effect of Ucn-1 involves the activation of corticotropin-releasing factor receptor-2, Epac2 and ERK1/2. Moreover, the overexpression of miR-125a-3p, miR-324-3p and miR-139-3p promoted dysregulation of genes expression involved in cell death and apoptosis (BRCA1, BIM, STAT2), in cAMP and Ca2+ signaling (PDE4a, CASQ1), in cell stress (NFAT5, XBP1, MAP3K12) and in metabolism (CPT2, FoxO1, MTRF1, TAZ). Altogether, these data unveil a novel role of urocortin in myocardial protection, involving posttranscriptional regulation with miRNAs.
Collapse
|
19
|
Al-Attar R, Zhang Y, Storey KB. Osmolyte regulation by TonEBP/NFAT5 during anoxia-recovery and dehydration-rehydration stresses in the freeze-tolerant wood frog ( Rana sylvatica). PeerJ 2017; 5:e2797. [PMID: 28133564 PMCID: PMC5251939 DOI: 10.7717/peerj.2797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/15/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The wood frog, Rana sylvatica, tolerates freezing as a means of winter survival. Freezing is considered to be an ischemic/anoxic event in which oxygen delivery is significantly impaired. In addition, cellular dehydration occurs during freezing because water is lost to extracellular compartments in order to promote freezing. In order to prevent severe cell shrinkage and cell death, it is important for the wood frog to have adaptive mechanisms for osmoregulation. One important mechanism of cellular osmoregulation occurs through the cellular uptake/production of organic osmolytes like sorbitol, betaine, and myo-inositol. Betaine and myo-inositol are transported by the proteins BGT-1 and SMIT, respectively. Sorbitol on the other hand, is synthesized inside the cell by the enzyme aldose reductase. These three proteins are regulated at the transcriptional level by the transcription factor, NFAT5/TonEBP. Therefore, the objective of this study was to elucidate the role of NFAT5/TonEBP in regulating BGT-1, SMIT, and aldose reductase, during dehydration and anoxia in the wood frog muscle, liver, and kidney tissues. METHODS Wood frogs were subjected to 24 h anoxia-4 h recovery and 40% dehydration-full rehydration experiments. Protein levels of NFAT5, BGT-1, SMIT, and aldose reductase were studied using immunoblotting in muscle, liver, and kidney tissues. RESULTS Immunoblotting results demonstrated downregulations in NFAT5 protein levels in both liver and kidney tissues during anoxia (decreases by 41% and 44% relative to control for liver and kidney, respectively). Aldose reductase protein levels also decreased in both muscle and kidney tissues during anoxia (by 37% and 30% for muscle and kidney, respectively). On the other hand, BGT-1 levels increased during anoxia in muscle (0.9-fold compared to control) and kidney (1.1-fold). Under 40% dehydration, NFAT5 levels decreased in liver by 53%. Aldose reductase levels also decreased by 42% in dehydrated muscle, and by 35% in dehydrated liver. In contrast, BGT-1 levels increased by 1.4-fold in dehydrated liver. SMIT levels also increased in both dehydrated muscle and liver (both by 0.8-fold). DISCUSSION Overall, we observed that osmoregulation through an NFAT5-mediated pathway is both tissue- and stress-specific. In both anoxia and dehydration, there appears to be a general reduction in NFAT5 levels resulting in decreased aldose reductase levels, however BGT-1 and SMIT levels still increase in certain tissues. Therefore, the regulation of osmoregulatory genes during dehydration and anoxia occurs beyond the transcriptional level, and it possibly involves RNA processing as well. These novel findings on the osmoregulatory mechanisms utilized by the wood frog advances our knowledge of osmoregulation during anoxia and dehydration. In addition, these findings highlight the importance of using this model to study molecular adaptations during stress.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University , Ottawa , ON , Canada
| | - Yichi Zhang
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University , Ottawa , ON , Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University , Ottawa , ON , Canada
| |
Collapse
|
20
|
Figueroa H, Cifuentes J, Lozano M, Alvarado C, Cabezas C, Eixarch E, Fernández E, Contreras L, Illanes SE, Hernández-Andrade E, Gratacós E, Irarrazabal CE. Nitric oxide synthase and changes in oxidative stress levels in embryonic kidney observed in a rabbit model of intrauterine growth restriction. Prenat Diagn 2016; 36:628-35. [PMID: 27109011 DOI: 10.1002/pd.4829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/17/2016] [Accepted: 04/11/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This work aimed to study the effect of uteroplacental circulation restriction on endothelial kidney damage in a fetal rabbit model. METHODS New Zealand rabbits were subjected to 40% to 50% of uteroplacental artery ligation at day 25 of pregnancy. After 5 days, surviving fetuses were harvested by cesarean section. The gene and protein expressions of selected enzymes associated with nitric oxide production and oxidative stress were analyzed in fetal kidney homogenates. RESULTS The placenta weight (6.06 ± 0.27, p < 0.0319) and fetal body (19.90 ± 1.03, p < 0.0001) were significantly reduced in the uteroplacental circulation restriction group. The kidneys from restricted fetuses presented a mild vascular congestion and glomerular capillary congestion, without inflammation or hypertrophy. We found endothelial nitric oxide synthase phosphorylation inhibition (0.23 ± 0.13, p < 0.012) and arginase-2 (0.29 ± 0.14, p < 0.023) protein induction in fetal kidneys of the circulation restriction group. Finally, the kidneys from circulation-restricted fetuses showed increased inducible nitric oxide synthase messenger RNA (mRNA) (2.68 ± 0.24, p < 0.01) and reduced heme oxygenase-1 mRNA (23 ± 1.3, p < 0.003), with increased reactive oxygen species (1.69 ± 0.09, p < 0.001) and nitrotyrosine protein (1.74 ± 0.28, p < 0.003) levels, without changes in Nox mRNA. CONCLUSION We describe significant deregulation of vascular activity and oxidative damage in kidneys of fetal rabbits that have been exposed to restriction of the uterine circulation. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Horacio Figueroa
- Department of Obstetrics and Gynecology and Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Jorge Cifuentes
- Laboratory of Molecular and Integrative Physiology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Mauricio Lozano
- Laboratory of Molecular and Integrative Physiology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Cristobal Alvarado
- Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Department of Biological and Chemical Sciences, Universidad San Sebastián, Concepción, Chile
| | - Claudia Cabezas
- Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Elisenda Eixarch
- Department of Maternal-Fetal Medicine, Institut Clínic de Ginecologia, Obstetricia i Neonatologia, and Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Ellio Fernández
- Laboratory of Molecular and Integrative Physiology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Luis Contreras
- Department of Pathological Anatomy, Clínica Universidad de los Andes, Santiago, Chile
| | - Sebastian E Illanes
- Department of Obstetrics and Gynecology and Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Edgar Hernández-Andrade
- Department of Biological and Chemical Sciences, Universidad San Sebastián, Concepción, Chile
| | - Eduard Gratacós
- Department of Maternal-Fetal Medicine, Institut Clínic de Ginecologia, Obstetricia i Neonatologia, and Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Carlos E Irarrazabal
- Laboratory of Molecular and Integrative Physiology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
21
|
Zhou X. How do kinases contribute to tonicity-dependent regulation of the transcription factor NFAT5? World J Nephrol 2016; 5:20-32. [PMID: 26788461 PMCID: PMC4707165 DOI: 10.5527/wjn.v5.i1.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/12/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023] Open
Abstract
NFAT5 plays a critical role in maintaining the renal functions. Its dis-regulation in the kidney leads to or is associated with certain renal diseases or disorders, most notably the urinary concentration defect. Hypertonicity, which the kidney medulla is normally exposed to, activates NFAT5 through phosphorylation of a signaling molecule or NFAT5 itself. Hypotonicity inhibits NFAT5 through a similar mechanism. More than a dozen of protein and lipid kinases have been identified to contribute to tonicity-dependent regulation of NFAT5. Hypertonicity activates NFAT5 by increasing its nuclear localization and transactivating activity in the early phase and protein abundance in the late phase. The known mechanism for inhibition of NFAT5 by hypotonicity is a decrease of nuclear NFAT5. The present article reviews the effect of each kinase on NFAT5 nuclear localization, transactivation and protein abundance, and the relationship among these kinases, if known. Cyclosporine A and tacrolimus suppress immune reactions by inhibiting the phosphatase calcineurin-dependent activation of NFAT1. It is hoped that this review would stimulate the interest to seek explanations from the NFAT5 regulatory pathways for certain clinical presentations and to explore novel therapeutic approaches based on the pathways. On the basic science front, this review raises two interesting questions. The first one is how these kinases can specifically signal to NFAT5 in the context of hypertonicity or hypotonicity, because they also regulate other cellular activities and even opposite activities in some cases. The second one is why these many kinases, some of which might have redundant functions, are needed to regulate NFAT5 activity. This review reiterates the concept of signaling through cooperation. Cells need these kinases working in a coordinated way to provide the signaling specificity that is lacking in the individual one. Redundancy in regulation of NFAT5 is a critical strategy for cells to maintain robustness against hypertonic or hypotonic stress.
Collapse
|
22
|
Carreño JE, Verdugo FJ, Contreras F, Montellano FA, Veloso S, Schalper KA, Sandoval M, Villanueva S, Marusic E, Irarrazabal CE. Spironolactone inhibits the activity of the Na+/H+exchanger in the aorta of mineralocorticoid-induced hypertensive rats. J Renin Angiotensin Aldosterone Syst 2015; 16:1225-31. [DOI: 10.1177/1470320315587193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/24/2015] [Indexed: 11/17/2022] Open
Affiliation(s)
- Juan E Carreño
- Laboratory of Molecular Physiology, Faculty of Medicine, Universidad de los Andes, Chile
| | - Fernando J Verdugo
- Laboratory of Molecular Physiology, Faculty of Medicine, Universidad de los Andes, Chile
| | - Felipe Contreras
- Laboratory of Molecular Physiology, Faculty of Medicine, Universidad de los Andes, Chile
| | - Felipe A Montellano
- Laboratory of Molecular Physiology, Faculty of Medicine, Universidad de los Andes, Chile
| | - Sebastian Veloso
- Laboratory of Molecular Physiology, Faculty of Medicine, Universidad de los Andes, Chile
| | | | - Mauricio Sandoval
- Laboratory of Molecular Physiology, Faculty of Medicine, Universidad de los Andes, Chile
| | - Sandra Villanueva
- Laboratory of Molecular Physiology, Faculty of Medicine, Universidad de los Andes, Chile
| | - Elisa Marusic
- Laboratory of Molecular Physiology, Faculty of Medicine, Universidad de los Andes, Chile
| | - Carlos E Irarrazabal
- Laboratory of Molecular Physiology, Faculty of Medicine, Universidad de los Andes, Chile
| |
Collapse
|
23
|
Leibrock CB, Alesutan I, Voelkl J, Pakladok T, Michael D, Schleicher E, Kamyabi-Moghaddam Z, Quintanilla-Martinez L, Kuro-o M, Lang F. NH4Cl Treatment Prevents Tissue Calcification in Klotho Deficiency. J Am Soc Nephrol 2015; 26:2423-33. [PMID: 25644113 DOI: 10.1681/asn.2014030230] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 11/30/2014] [Indexed: 11/03/2022] Open
Abstract
Klotho, a cofactor in suppressing 1,25(OH)2D3 formation, is a powerful regulator of mineral metabolism. Klotho-hypomorphic mice (kl/kl) exhibit excessive plasma 1,25(OH)2D3, Ca(2+), and phosphate concentrations, severe tissue calcification, volume depletion with hyperaldosteronism, and early death. Calcification is paralleled by overexpression of osteoinductive transcription factor Runx2/Cbfa1, Alpl, and senescence-associated molecules Tgfb1, Pai-1, p21, and Glb1. Here, we show that NH4Cl treatment in drinking water (0.28 M) prevented soft tissue and vascular calcification and increased the life span of kl/kl mice >12-fold in males and >4-fold in females without significantly affecting extracellular pH or plasma concentrations of 1,25(OH)2D3, Ca(2+), and phosphate. NH4Cl treatment significantly decreased plasma aldosterone and antidiuretic hormone concentrations and reversed the increase of Runx2/Cbfa1, Alpl, Tgfb1, Pai-1, p21, and Glb1 expression in aorta of kl/kl mice. Similarly, in primary human aortic smooth muscle cells (HAoSMCs), NH4Cl treatment reduced phosphate-induced mRNA expression of RUNX2/CBFA1, ALPL, and senescence-associated molecules. In both kl/kl mice and phosphate-treated HAoSMCs, levels of osmosensitive transcription factor NFAT5 and NFAT5-downstream mediator SOX9 were higher than in controls and decreased after NH4Cl treatment. Overexpression of NFAT5 in HAoSMCs mimicked the effect of phosphate and abrogated the effect of NH4Cl on SOX9, RUNX2/CBFA1, and ALPL mRNA expression. TGFB1 treatment of HAoSMCs upregulated NFAT5 expression and prevented the decrease of phosphate-induced NFAT5 expression after NH4Cl treatment. In conclusion, NH4Cl treatment prevents tissue calcification, reduces vascular senescence, and extends survival of klotho-hypomorphic mice. The effects of NH4Cl on vascular osteoinduction involve decrease of TGFB1 and inhibition of NFAT5-dependent osteochondrogenic signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Makoto Kuro-o
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | |
Collapse
|
24
|
Chen PY, Ho YR, Wu MJ, Huang SP, Chen PK, Tai MH, Ho CT, Yen JH. Cytoprotective effects of fisetin against hypoxia-induced cell death in PC12 cells. Food Funct 2015; 6:287-96. [DOI: 10.1039/c4fo00948g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fisetin protects cells under hypoxia through ROS scavenging and the HIF1α-, MAPK/ERK-, p38 MAPK- and PI3 K/Akt-dependent pathways in PC12 cells.
Collapse
Affiliation(s)
- Pei-Yi Chen
- Center of Medical Genetics
- Buddhist Tzu Chi General Hospital
- Hualien 970
- Taiwan
| | - Yi-Ru Ho
- Department of Molecular Biology and Human Genetics
- Tzu Chi University
- Hualien 970
- Taiwan
| | - Ming-Jiuan Wu
- Department of Biotechnology
- Chia Nan University of Pharmacy and Science
- Tainan 717
- Taiwan
| | - Shun-Ping Huang
- Department of Molecular Biology and Human Genetics
- Tzu Chi University
- Hualien 970
- Taiwan
| | - Po-Kong Chen
- Department of Molecular Biology and Human Genetics
- Tzu Chi University
- Hualien 970
- Taiwan
| | - Mi-Hsueh Tai
- Department of Molecular Biology and Human Genetics
- Tzu Chi University
- Hualien 970
- Taiwan
| | - Chi-Tang Ho
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics
- Tzu Chi University
- Hualien 970
- Taiwan
| |
Collapse
|
25
|
Yuzeng Q, Weiyang H, Xin G, Qingson Z, Youlin K, Ke R. Effects of transplantation with marrow-derived mesenchymal stem cells modified with survivin on renal ischemia-reperfusion injury in mice. Yonsei Med J 2014; 55:1130-7. [PMID: 24954347 PMCID: PMC4075377 DOI: 10.3349/ymj.2014.55.4.1130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To determine whether renal injury induced by ischemia-reperfusion (I/R) could be further improved by mesenchymal stem cells (MSCs) modified with survivin. MATERIALS AND METHODS Lentiviral vectors were used to introduce the survivin gene into MSCs and the MSCs modified with survivin were transplanted into established mice models of renal I/R injury. Seven days later, serum creatinine (Scr) and blood urea nitrogen (BUN) were measured and the survival of MSCs was determined. Hematoxylin and eosin staining was used to assess renal pathological change. The expressions of hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF) in kidney tissue were detected by western blot. RESULTS Mice transplanted with survivin-modified MSCs demonstrated good renal function recovery with Scr and BUN decline close to normal levels and improvement of renal I/R injury repair. Additionally, the survival of transplanted MSCs modified with survivin was enhanced and the expression of HGF and bFGF in kidney tissue was increased. CONCLUSION Our results demonstrated that MSCs engineered to over-express survivin could enhance their therapeutic effect on renal I/R injury in mice, probably via the improved survival ability of MSCs and increased production of protective cytokines in ischemic tissue.
Collapse
Affiliation(s)
- Qi Yuzeng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - He Weiyang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gou Xin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Zhou Qingson
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kuang Youlin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ren Ke
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Hao S, Bellner L, Zhao H, Ratliff BB, Darzynkiewicz Z, Vio CP, Ferreri NR. NFAT5 is protective against ischemic acute kidney injury. Hypertension 2013; 63:e46-52. [PMID: 24379188 DOI: 10.1161/hypertensionaha.113.02476] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NFAT5 is a transcription factor that protects the kidney from hypertonic stress and also is activated by hypoxia. We hypothesized that NFAT5 mitigates the extent of renal damage induced by ischemia-reperfusion injury (IRI). Mice were subjected to IRI by unilateral clamping of the left renal pedicle for 30 minutes followed by reperfusion. After 3 hours of reperfusion, the level of NFAT5 mRNA was similar in contralateral and clamped kidneys. However, after 48 hours, NFAT5 mRNA accumulation increased ≈3-fold in both outer medulla and medullary thick ascending limb tubules. NFAT1 levels were elevated at 3 hours but did not increase further at 48 hours. Mice were then either pretreated for 72 hours with an intrarenal injection of a lentivirus short-hairpin RNA construct to silence NFAT5 (enhanced green fluorescent protein-U6-N5-ex8) or a control vector (enhanced green fluorescent protein-U6) before induction of IRI. Neutrophil gelatinase-associated lipocalin and kidney ischemia molecule-1 mRNA levels increased after IRI and further increased after knockdown of NFAT5, suggesting that silencing of NFAT5 exacerbates renal damage during IRI. In contrast, silencing of NFAT1 had no effect on the levels of neutrophil gelatinase-associated lipocalin or kidney ischemia molecule-1 mRNA. Hematoxylin and eosin staining revealed patchy denudation of renal epithelial cells and tubular dilation when NFAT5 was silenced. The number of TUNEL-positive cells in the outer and inner medulla of the clamped kidney increased nearly 2-fold after knockdown of NFAT5 and was associated with an increase in the number of caspase-3-positive cells. Collectively, the data suggest that NFAT5 is part of a protective mechanism that limits renal damage induced by IRI.
Collapse
Affiliation(s)
- Shoujin Hao
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595.
| | | | | | | | | | | | | |
Collapse
|
27
|
Park JK, Kang TG, Kang MY, Park JE, Cho IA, Shin JK, Choi WJ, Lee SA, Choi WS, Kwon HM, Lee JH, Paik WY. Increased NFAT5 expression stimulates transcription of Hsp70 in preeclamptic placentas. Placenta 2013; 35:109-16. [PMID: 24398013 DOI: 10.1016/j.placenta.2013.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/10/2013] [Accepted: 12/13/2013] [Indexed: 01/25/2023]
Abstract
OBJECTIVE We investigated the expression of heat shock protein 70 (Hsp70), nuclear factor of activated T cells 5 (NFAT5), and hypoxia-induced factor-1α (HIF-1α) in the placentas of normal and preeclamptic pregnancies and in human placental hypoxia models in vitro to examine the regulatory mechanisms of placental Hsp70 expression. METHODS The expression levels of HIF-1α, NFAT5, and Hsp70 were examined in placental samples from 10 females with preeclampsia and 10 normotensive control patients and in human choriocarcinoma trophoblast cells treated with 1 mM CoCl2 by western blotting. Using models of placental hypoxia, pharmacological inhibition of HIF-1α with chetomin and shRNA knockdown and overexpression of NFAT5 were performed to investigate the roles of HIF-1α and NFAT5 in induction of Hsp70 by placental hypoxia. RESULTS The levels of HIF-1α, NFAT5, and Hsp70 expression were significantly higher in the preeclamptic compared to normal placentas. In the placental hypoxia models, the expression of HIF-1α, NFAT5, and Hsp70 were significantly higher after 3, 6, and 12 h of 1 mM CoCl2 treatment, respectively. Pharmacological inhibition of HIF-1α suppressed the induction of NFAT5 and Hsp70 at the protein level. shRNA knockdown of NFAT5 suppressed the induction of Hsp70 protein and overexpression of NFAT5 stimulated the induction of Hsp70 mRNA and protein in models of human placental hypoxia in vitro. CONCLUSION HIF-1α positively regulates the induction of NFAT5 and Hsp70 by placental hypoxia and NFAT5 stimulates transcription of Hsp70 in response to placental hypoxia in models of human placental hypoxia in vitro.
Collapse
Affiliation(s)
- J K Park
- Department of Obstetrics and Gynecology, School of Medicine, Gyeongsang National University, JinJu, South Korea; Institute of Health Sciences, School of Medicine, Gyeongsang National University, JinJu, South Korea
| | - T G Kang
- Department of Obstetrics and Gynecology, School of Medicine, Gyeongsang National University, JinJu, South Korea
| | - M Y Kang
- Institute of Health Sciences, School of Medicine, Gyeongsang National University, JinJu, South Korea
| | - J E Park
- Department of Obstetrics and Gynecology, School of Medicine, Gyeongsang National University, JinJu, South Korea
| | - I A Cho
- Institute of Health Sciences, School of Medicine, Gyeongsang National University, JinJu, South Korea
| | - J K Shin
- Department of Obstetrics and Gynecology, School of Medicine, Gyeongsang National University, JinJu, South Korea; Institute of Health Sciences, School of Medicine, Gyeongsang National University, JinJu, South Korea
| | - W J Choi
- Department of Obstetrics and Gynecology, School of Medicine, Gyeongsang National University, JinJu, South Korea; Institute of Health Sciences, School of Medicine, Gyeongsang National University, JinJu, South Korea
| | - S A Lee
- Department of Obstetrics and Gynecology, School of Medicine, Gyeongsang National University, JinJu, South Korea; Institute of Health Sciences, School of Medicine, Gyeongsang National University, JinJu, South Korea
| | - W S Choi
- Institute of Health Sciences, School of Medicine, Gyeongsang National University, JinJu, South Korea; Department of Anatomy, School of Medicine, Gyeongsang National University, JinJu, South Korea
| | - H M Kwon
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute and Science and Technology, Ulsan, South Korea
| | - J H Lee
- Department of Obstetrics and Gynecology, School of Medicine, Gyeongsang National University, JinJu, South Korea; Institute of Health Sciences, School of Medicine, Gyeongsang National University, JinJu, South Korea
| | - W Y Paik
- Department of Obstetrics and Gynecology, School of Medicine, Gyeongsang National University, JinJu, South Korea; Institute of Health Sciences, School of Medicine, Gyeongsang National University, JinJu, South Korea.
| |
Collapse
|
28
|
Inhibition of protein translation as a mechanism of acidotic pH protection against ischaemic injury through inhibition of CREB mediated tRNA synthetase expression. Exp Cell Res 2013; 319:3116-27. [DOI: 10.1016/j.yexcr.2013.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/22/2013] [Accepted: 07/18/2013] [Indexed: 12/11/2022]
|
29
|
Figueroa H, Lozano M, Suazo C, Eixarch E, Illanes SE, Carreño JE, Villanueva S, Hernández-Andrade E, Gratacós E, Irarrazabal CE. Intrauterine growth restriction modifies the normal gene expression in kidney from rabbit fetuses. Early Hum Dev 2012; 88:899-904. [PMID: 22944138 DOI: 10.1016/j.earlhumdev.2012.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/30/2012] [Accepted: 07/08/2012] [Indexed: 01/17/2023]
Abstract
The aim of this work was to study the effect of intrauterine growth restriction (IUGR) on fetal kidneys. The IUGR was induced by uteroplacental vessels ligature in a model of pregnant rabbit. We centralized the study in the gene expression of essential proteins for fetal kidney development and kidney protection against hypoxia, osmotic stress, and kidney injury. The gene expression of HIF-1α, NFAT5, IL-1β, NGAL, and ATM were studied by qRT-PCR and Western blot in kidneys from control and IUGR fetuses. Experimental IUGR fetuses were significantly smaller than the control animals (39 vs. 48 g, p<0.05). The number of glomeruli was decreased in IUGR kidneys, without morphological alterations. IUGR increased the gene expression of HIF-1α, NFAT5, IL-1β, NGAL, and ATM (p<0.05) in kidneys of fetuses undergoing IUGR, suggesting that fetal blood flow restriction produce alterations in gene expression in fetal kidneys.
Collapse
Affiliation(s)
- Horacio Figueroa
- Department of Obstetrics & Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|