1
|
Li M, Li H. Research progress on inhibitors and inhibitory mechanisms of mycotoxin biosynthesis. Mycotoxin Res 2024; 40:483-494. [PMID: 39164466 DOI: 10.1007/s12550-024-00553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Mycotoxins are secondary metabolites produced by fungi with harmful effects such as carcinogenicity, teratogenicity, nephrotoxicity, and hepatotoxicity. They cause widespread contamination of plant products such as crops, food, and feed, posing serious threats to the life and health of human beings and animals. It has been found that many traditionally synthesized and natural compounds are capable of inhibiting the growth of fungi and their secondary metabolite production. Natural compounds have attracted much attention due to their safety, environmental, and health friendly features. In this paper, compounds of plant origin with inhibitory effects on ochratoxins, aflatoxins, Fusarium toxins, and Alternaria toxins, including cinnamaldehyde, citral, magnolol, eugenol, pterostilbene, curcumin, and phenolic acid, are reviewed, and the inhibitory mechanisms of different compounds on the toxin production of fungi are also elucidated, with the aim of providing application references to reduce the contamination of fungal toxins, thus safeguarding the health of human beings and animals.
Collapse
Affiliation(s)
- Mengjie Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Honghua Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China.
| |
Collapse
|
2
|
Ge S, Xie Y, Ding K, Xu S, Xu H, Chang X, Li H, Wang R, Luo Z, Shan Y, Ding S. The combination of metabolome and transcriptome clarifies the inhibition of the Alternaria toxin accumulation by methyl ferulate. Food Chem 2024; 456:140060. [PMID: 38878540 DOI: 10.1016/j.foodchem.2024.140060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/17/2024] [Accepted: 06/09/2024] [Indexed: 07/24/2024]
Abstract
As one of the most typical pathogens in fruit postharvest diseases, Alternaria alternata (A. alternata) can produce Alternaria toxins (ATs) aggravating fruit decay and harming human health. In this study, ATs (tenuazonic acid, alternariol monomethyl ether, and alternariol) production was inhibited effectively by 200 and 8000 mg/L MF (methyl ferulate) in vitro and in vivo. 1-Octen-3-ol and 3-octanol were the potential iconic volatile organic compounds of ATs (R2 > 0.99). MF induced oxidative stress, resulting in physiological and metabolic disorders, membrane lipid oxidation and cell damage. It decreased precursors and energy supply by disturbing amino acid metabolism, ABC transporters, citrate cycle, pentose and glucuronate interconversions to regulate ATs synthesis. MF down-regulated the genes related to ATs synthesis (PksJ, AaTAS1, and OmtI), transport (AaMFS1 and MFS), and pathogenicity to affect ATs production and virulence. This study provided a theoretical basis for the control of ATs production.
Collapse
Affiliation(s)
- Shuai Ge
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ying Xie
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ke Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Saiqing Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Huan Li
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310000, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
3
|
Podlech J. Natural resorcylic lactones derived from alternariol. Beilstein J Org Chem 2024; 20:2171-2207. [PMID: 39224229 PMCID: PMC11368053 DOI: 10.3762/bjoc.20.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
In this overview, naturally occurring resorcylic lactones biosynthetically derived from alternariol and almost exclusively produced by fungi, are discussed with view on their isolation, structure, biological activities, biosynthesis, and total syntheses. This class of compounds consists until now of 127 naturally occurring compounds, with very divers structural motifs. Although only a handful of these toxins (i.e., alternariol and its 9-O-methyl ether, altenusin, dehydroaltenusin, altertenuol, and altenuene) were frequently found and isolated as fungal contaminants in food and feed and have been investigated in significant detail, further metabolites, which were much more rarely found as natural products, similarly show interesting biological activities.
Collapse
Affiliation(s)
- Joachim Podlech
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
4
|
Wang L, Wang C, Xu L, Wang M. Regulation of nitrogen utilization and mycotoxin biosynthesis by the GATA transcription factor AaAreA in Alternaria alternata. World J Microbiol Biotechnol 2024; 40:236. [PMID: 38850454 DOI: 10.1007/s11274-024-04045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Alternaria alternata is a prevalent postharvest pathogen that generates diverse mycotoxins, notably alternariol (AOH) and alternariol monomethyl ether (AME), which are recurrent severe contaminants. Nitrogen sources modulate fungal growth, development, and secondary metabolism, including mycotoxin production. The GATA transcription factor AreA regulates nitrogen source utilization. However, little is known about its involvement in the regulation of nitrogen utilization in A. alternata. To examine the regulatory mechanism of AaAreA on AOH and AME biosynthesis in A. alternata, we analyzed the impact of diverse nitrogen sources on the fungal growth, conidiation and mycotoxin production. The use of a secondary nitrogen source (NaNO3) enhanced mycelial elongation and sporulation more than the use of a primary source (NH4Cl). NaNO3 favored greater mycotoxin accumulation than did NH4Cl. The regulatory roles of AaAreA were further clarified through gene knockout. The absence of AaAreA led to an overall reduction in growth in minimal media containing any nitrogen source except NH4Cl. AaAreA positively regulates mycotoxin biosynthesis when both NH4Cl and NaNO3 are used as nitrogen sources. Subcellular localization analysis revealed abundant nuclear transport when NaNO3 was the sole nitrogen source. The regulatory pathway of AaAreA was systematically revealed through comprehensive transcriptomic analyses. The deletion of AaAreA significantly impedes the transcription of mycotoxin biosynthetic genes, including aohR, pksI and omtI. The interaction between AaAreA and aohR, a pathway-specific transcription factor gene, demonstrated that AaAreA binds to the aohR promoter sequence (5'-GGCTATGGAAA-3'), activating its transcription. The expressed AohR regulates the expression of downstream synthase genes in the cluster, ultimately impacting mycotoxin production. This study provides valuable information to further understand how AreA regulates AOH and AME biosynthesis in A. alternata, thereby enabling the effective design of control measures for mycotoxin contamination.
Collapse
Affiliation(s)
- Liuqing Wang
- Institute of Quality Standard and Testing Technology of BAAFS (Beijing Academy of Agriculture and Forestry Sciences), No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing, 100097, China
| | - Cheng Wang
- Laboratory of Quality and Safety Risk Assessment for Agri-Products (Urumqi), Ministry of Agriculture and Rural Affairs, Institute of Quality Standards & Testing Technology for Agri-Products, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| | - Liang Xu
- Flower Technology Extension and Demonstration Station of Daxing District, Beijing, 102601, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology of BAAFS (Beijing Academy of Agriculture and Forestry Sciences), No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing, 100097, China.
| |
Collapse
|
5
|
Saleh I, Zeidan R, Abu-Dieyeh M. The characteristics, occurrence, and toxicological effects of alternariol: a mycotoxin. Arch Toxicol 2024; 98:1659-1683. [PMID: 38662238 PMCID: PMC11106155 DOI: 10.1007/s00204-024-03743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Alternaria species are mycotoxin-producing fungi known to infect fresh produce and to cause their spoilage. Humans get exposed to fungal secondary metabolites known as mycotoxin via the ingestion of contaminated food. Alternariol (AOH) (C14H10O5) is an isocoumarins produced by different species of Alternaria including Alternaria alternata. AOH is often found in grain, fruits and fruits-based food products with high levels in legumes, nuts, and tomatoes. AOH was first discovered in 1953, and it is nowadays linked to esophagus cancer and endocrine disruption due to its similarity to estrogen. Although considered as an emerging mycotoxin with no regulated levels in food, AOH occurs in highly consumed dietary products and has been detected in various masked forms, which adds to its occurrence. Therefore, this comprehensive review was developed to give an overview on recent literature in the field of AOH. The current study summarizes published data on occurrence levels of AOH in different food products in the last ten years and evaluates those levels in comparison to recommended levels by the regulating entities. Such surveillance facilitates the work of health risk assessors and highlights commodities that are most in need of AOH levels regulation. In addition, the effects of AOH on cells and animal models were summarized in two tables; data include the last two-year literature studies. The review addresses also the main characteristics of AOH and the possible human exposure routes, the populations at risk, and the effect of anthropogenic activities on the widespread of the mycotoxin. The commonly used detection and control methods described in the latest literature are also discussed to guide future researchers to focus on mitigating mycotoxins contamination in the food industry. This review aims mainly to serve as a guideline on AOH for mycotoxin regulation developers and health risk assessors.
Collapse
Affiliation(s)
- Iman Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Randa Zeidan
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammed Abu-Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
6
|
Liu D, Piao J, Li Y, Guan H, Hao J, Zhou R. Transcriptome Analysis Reveals Candidate Genes for Light Regulation of Elsinochrome Biosynthesis in Elsinoë arachidis. Microorganisms 2024; 12:1027. [PMID: 38792856 PMCID: PMC11124282 DOI: 10.3390/microorganisms12051027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Light regulation is critical in fungal growth, development, morphogenesis, secondary metabolism, and the biological clock. The fungus Elsinoë arachidis is known to produce the mycotoxin Elsinochrome (ESC), a key factor contributing to its pathogenicity, under light conditions. Although previous studies have predominantly focused on the light-induced production of ESC and its biosynthetic pathways, the detailed mechanisms underlying this process remain largely unexplored. This study explores the influence of light on ESC production and gene expression in E. arachidis. Under white light exposure for 28 days, the ESC yield was observed to reach 33.22 nmol/plug. Through transcriptome analysis, 5925 genes were identified as differentially expressed between dark and white light conditions, highlighting the significant impact of light on gene expression. Bioinformatics identified specific light-regulated genes, including eight photoreceptor genes, five global regulatory factors, and a cluster of 12 genes directly involved in the ESC biosynthesis, with expression trends confirmed by RT-qPCR. In conclusion, the study reveals the substantial alteration in gene expression associated with ESC biosynthesis under white light and identifies potential candidates for in-depth functional analysis. These findings advance understanding of ESC biosynthesis regulation and suggest new strategies for fungal pathogenicity control.
Collapse
Affiliation(s)
| | | | | | | | | | - Rujun Zhou
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (D.L.); (J.P.); (Y.L.); (H.G.); (J.H.)
| |
Collapse
|
7
|
Li R, Su Z, Sun C, Wu S. Antibacterial insights into alternariol and its derivative alternariol monomethyl ether produced by a marine fungus. Appl Environ Microbiol 2024; 90:e0005824. [PMID: 38470179 PMCID: PMC11022538 DOI: 10.1128/aem.00058-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024] Open
Abstract
Alternaria alternata FB1 is a marine fungus identified as a candidate for plastic degradation in our previous study. This fungus has been recently shown to produce secondary metabolites with significant antimicrobial activity against various pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and the notorious aquaculture pathogen Vibrio anguillarum. The antibacterial compounds were purified and identified as alternariol (AOH) and its derivative, alternariol monomethyl ether (AME). We found that AOH and AME primarily inhibited pathogenic bacteria (MRSA or V. anguillarum) by disordering cell division and some other key physiological and biochemical processes. We further demonstrated that AOH could effectively inhibit the unwinding activity of MRSA topoisomerases, which are closely related to cell division and are the potential action target of AOH. The antibacterial activities of AOH and AME were verified by using zebrafish as the in vivo model. Notably, AOH and AME did not significantly affect the viability of normal human liver cells at concentrations that effectively inhibited MRSA or V. anguillarum. Finally, we developed the genetic operation system of A. alternata FB1 and blocked the biosynthesis of AME by knocking out omtI (encoding an O-methyl transferase), which facilitated A. alternata FB1 to only produce AOH. The development of this system in the marine fungus will accelerate the discovery of novel natural products and further bioactivity study.IMPORTANCEMore and more scientific reports indicate that alternariol (AOH) and its derivative alternariol monomethyl ether (AME) exhibit antibacterial activities. However, limited exploration of their detailed antibacterial mechanisms has been performed. In the present study, the antibacterial mechanisms of AOH and AME produced by the marine fungus Alternaria alternata FB1 were disclosed in vitro and in vivo. Given their low toxicity on the normal human liver cell line under the concentrations exhibiting significant antibacterial activity against different pathogens, AOH and AME are proposed to be good candidates for developing promising antibiotics against methicillin-resistant Staphylococcus aureus and Vibrio anguillarum. We also succeeded in blocking the biosynthesis of AME, which facilitated us to easily obtain pure AOH. Moreover, based on our previous results, A. alternata FB1 was shown to enable polyethylene degradation.
Collapse
Affiliation(s)
- Rongmei Li
- College of Life Sciences, Qingdao University, Qingdao, China
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhenjie Su
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shimei Wu
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Farhana, Farooq ABU, Haroon U, Saleem H, Akbar M, Anar M, Nawaz M, Ahmad HA, Ahmed J, Chaudhary HJ, Munis MFH. Bacillus safensis filtrate-based ZnO nanoparticles control black heart rot disease of apricot fruits by maintaining its soluble sugars and carotenoids. World J Microbiol Biotechnol 2024; 40:125. [PMID: 38441800 DOI: 10.1007/s11274-024-03944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Black heart rot is a serious disease of apricot and it has been reported to be caused by Alternaria solani, around the world. The present research was designed to control this disastrous disease using zinc oxide nanoparticles (b-ZnO NPs). These NPs were synthesized in the filtrate of a useful bacterium (Bacillus safensis) and applied to control black heart rot of apricot. After synthesis, the reduction of b-ZnO NPs was confirmed by UV-visible spectroscopy, at 330 nm. Fourier transform infrared (FTIR) spectra ensured the presence of multiple functional groups (alcohols, phenols, carboxylic acids, nitro compounds and amines) on the surface of b-ZnO NPs. X-Ray diffraction (XRD) analysis elucidated their average size (18 nm) while scanning electron microscopy (SEM) micrograph described the spherical shape of b-ZnO NPs. The synthesized b-ZnO NPs were applied in four different concentrations (0.25 mg/ml, 0.50 mg/ml, 0.75 mg/ml, 1.0 mg/ml) under both in vitro and in vivo conditions. These NPs were very efficient in inhibiting mycelial growth (85.1%) of A. solani at 0.75 mg/ml concentration of NPs, in vitro. Same concentration also performed best, in vivo, and significantly reduced disease incidence (by 67%) on self-inoculated apricot fruit. Apart from this, application of b-ZnO NPs helped apricot fruit to maintain its quality under fungal-stress conditions. The decay of apricot fruit was reduced and they maintained greater firmness and higher weight. Moreover, b-ZnO NPs treated fruits controlled black heart rot disease by maintaining higher contents of ascorbic acid, soluble sugars and carotenoids. These b-ZnO NPs were produced in powder form for their easy carriage to the farmers' fields.
Collapse
Affiliation(s)
- Farhana
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Abu Bakr Umer Farooq
- Department of Biotechnology, COMSATS University, Vehari Campus, Islamabad, Pakistan
| | - Urooj Haroon
- Department of Plant Pathology, University of California, Davis, CA, 91616, USA
| | - Hira Saleem
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mahnoor Akbar
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Maryam Anar
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Nawaz
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hassaan Ateeb Ahmad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Junaid Ahmed
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | |
Collapse
|
9
|
Sehim AE, Abd Elghaffar RY, Emam AM, El-Desoukey TA. Evaluation of the efficacy of ozonated olive oil for controlling the growth of Alternaria alternata and its toxins. Heliyon 2023; 9:e17885. [PMID: 37483790 PMCID: PMC10359872 DOI: 10.1016/j.heliyon.2023.e17885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
Toxigenic fungi infect fruits and vegetables either during harvest or storage and create mycotoxins as secondary metabolites, which pose a serious threat to human and animal health throughout the food chain. Therefore, the objective of this study was to determine the inhibitory effect of OZO against the growth and spore germination of the Alternaria alternata fungal strain. Additionally, evaluation of the synthesis inhibition of Alternaria toxins (ATs), among which are alternariol (AOH), alternariol-9-methyl ether (AME), and tenuazonic acid (TeA) in the potato dextrose broth (PDB) medium and orange fruit after harvest. The results indicated that the inhibition zone was 29.0 ± 1.2 mm at 20 mg/L of OZO. The MIC and MFC values were recorded at 0.186 and 1.57 mg/mL, respectively. In this regard, OZO prevented conidia germination at 98.8% with the treatment of 5 mg/mL. OZO at 20 mg/mL was efficacious in producing a high loss in ATs production in the PDB medium, reaching 73.4, 76, and 67.1% for AOH, AME, and TeA, respectively. In addition, OZO prevents the biosynthesis of AOH and AME during the storage of orange fruits compared with the positive control sample. In contrast, 20 mg/mL reduced TeA accumulation and the appearance of Alternaria brown spot (ABS) in orange. To the best of our knowledge, this is the first report that studies OZO to control ATs in vitro in orange fruits.
Collapse
Affiliation(s)
- Amira E. Sehim
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | | | - Amany M. Emam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Tarek A. El-Desoukey
- Department of Food Toxicology and Contaminant, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
10
|
Bacha SAS, Li Y, Nie J, Xu G, Han L, Farooq S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. FRONTIERS IN PLANT SCIENCE 2023; 14:1139757. [PMID: 37077634 PMCID: PMC10108681 DOI: 10.3389/fpls.2023.1139757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Mycotoxins are toxic secondary metabolites produced by certain fungi, which can contaminate various food commodities, including fruits and their derived products. Patulin and Alternaria toxins are among the most commonly encountered mycotoxins in fruit and their derived products. In this review, the sources, toxicity, and regulations related to these mycotoxins, as well as their detection and mitigation strategies are widely discussed. Patulin is a mycotoxin produced mainly by the fungal genera Penicillium, Aspergillus, and Byssochlamys. Alternaria toxins, produced by fungi in the Alternaria genus, are another common group of mycotoxins found in fruits and fruit products. The most prevalent Alternaria toxins are alternariol (AOH) and alternariol monomethyl ether (AME). These mycotoxins are of concern due to their potential negative effects on human health. Ingesting fruits contaminated with these mycotoxins can cause acute and chronic health problems. Detection of patulin and Alternaria toxins in fruit and their derived products can be challenging due to their low concentrations and the complexity of the food matrices. Common analytical methods, good agricultural practices, and contamination monitoring of these mycotoxins are important for safe consumption of fruits and derived products. And Future research will continue to explore new methods for detecting and managing these mycotoxins, with the ultimate goal of ensuring the safety and quality of fruits and derived product supply.
Collapse
Affiliation(s)
- Syed Asim Shah Bacha
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yinping Li
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Guofeng Xu
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Saqib Farooq
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
11
|
Witte TE, Villenueve N, Shields SW, Sproule A, Eggertson Q, Kim NE, Boddy CN, Dettman JR, Overy DP. Untargeted metabolomics screening reveals unique secondary metabolite production from Alternaria section Alternaria. Front Mol Biosci 2022; 9:1038299. [PMID: 36504718 PMCID: PMC9731300 DOI: 10.3389/fmolb.2022.1038299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022] Open
Abstract
Alternaria section Alternaria is comprised of many species that infect a broad diversity of important crop plants and cause post-harvest spoilage. Alternaria section Alternaria species, such as A. alternata and A. arborescens, are prolific producers of secondary metabolites that act as virulence factors of disease and are mycotoxins that accumulate in infected tissues-metabolites that can vary in their spectrum of production between individuals from the same fungal species. Untargeted metabolomics profiling of secondary metabolite production using mass spectrometry is an effective means to detect phenotypic anomalies in secondary metabolism within a species. Secondary metabolite phenotypes from 36 Alternaria section Alternaria isolates were constructed to observe frequency of production patterns. A clear and unique mass feature pattern was observed for three of the strains that were linked with the production of the dehydrocurvularin family of toxins and associated detoxification products. Examination of corresponding genomes revealed the presence of the dehydrocurvularin biosynthesis gene cluster associated with a sub-telomeric accessory region. A comparison of sequence similarity and occurrences of the dehydrocurvularin biosynthetic gene cluster within Pleosporalean fungi is presented and discussed.
Collapse
Affiliation(s)
- Thomas E. Witte
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Nicolas Villenueve
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Samuel W. Shields
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Amanda Sproule
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Quinn Eggertson
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Natalie E. Kim
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Christopher N. Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Jeremy R. Dettman
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - David P. Overy
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
12
|
Cerón-Bustamante M, Balducci E, Beccari G, Nicholson P, Covarelli L, Benincasa P. Effect of light spectra on cereal fungal pathogens, a review. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Cardoso de Oliveira R, Mendonça CMN, Verissimo NV, de Almeida SRY, Correa B, Watanabe I, de Souza de Azevedo PO, de Souza Oliveira RP. Evaluating the potential of
Pediococcus pentosaceus
as a biocontrol agent against tenuazonic acid‐producing
Alternaria alternata
on livestock feeds. J Appl Microbiol 2022; 133:3020-3029. [DOI: 10.1111/jam.15746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Rodrigo Cardoso de Oliveira
- Laboratory of Microbial Biomolecules, Department of Biochemical and Pharmaceutical Technology University of São Paulo São Paulo Brazil
| | - Carlos Miguel Nobrega Mendonça
- Laboratory of Microbial Biomolecules, Department of Biochemical and Pharmaceutical Technology University of São Paulo São Paulo Brazil
| | - Nathalia Vieira Verissimo
- Laboratory of Microbial Biomolecules, Department of Biochemical and Pharmaceutical Technology University of São Paulo São Paulo Brazil
| | | | - Benedito Correa
- Laboratory of Mycotoxins and Toxigenic Fungi, Department of Microbiology University of São Paulo São Paulo Brazil
| | - Ii‐Sei Watanabe
- Department of Anatomy, Biomedical Sciences Institute University of São Paulo Brazil
| | - Pamela Oliveira de Souza de Azevedo
- Laboratory of Microbial Biomolecules, Department of Biochemical and Pharmaceutical Technology University of São Paulo São Paulo Brazil
- SAZ Animal Nutrition São Paulo Brazil
| | | |
Collapse
|
14
|
Saleem A, El-Shahir AA. Morphological and Molecular Characterization of Some Alternaria Species Isolated from Tomato Fruits Concerning Mycotoxin Production and Polyketide Synthase Genes. PLANTS (BASEL, SWITZERLAND) 2022; 11:1168. [PMID: 35567169 PMCID: PMC9103205 DOI: 10.3390/plants11091168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022]
Abstract
Tomatoes (Lycopersicon esculentum) are one of the main crops grown in Egypt. The fungal black spot illness of fruits is usually associated with the secretion of mycotoxin by Alternaria toxigenic species. Twenty Alternaria isolates were isolated from infected tomatoes fruits by baiting technique, morphologically identified to species level, and confirmed using Internal Transcribed Spacer (ITS) gene sequencing. ITS gene sequencing of fragments obtained 547, 547, 542, 554, and 547 bp for A. alternata, A. brassicicola, A. citri, A. radicina, and A. tenuissima, respectively. Alternaria species were investigated for mycotoxin production using the high-performance liquid chromatography (HPLC) technique. The data from the HPLC analysis showed that the mycotoxins were determined in four out of five Alternaria species, with the incidence ranging from 0.89-9.85 µg/mL of fungal extract at different retention times. Alternaria alternata was the most active species and produced three types of toxins. Polyketide synthase genes (pksH and pksJ) which are involved in the Alternaria toxin's biosynthesis were also amplified from the DNA of Alternaria species.
Collapse
Affiliation(s)
| | - Amany A. El-Shahir
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt; or
| |
Collapse
|
15
|
Wang L, Wang M, Jiao J, Liu H. Roles of AaVeA on Mycotoxin Production via Light in Alternaria alternata. Front Microbiol 2022; 13:842268. [PMID: 35250954 PMCID: PMC8894881 DOI: 10.3389/fmicb.2022.842268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Alternaria alternata is a principal plant pathogen responsible for the biosynthesis of mycotoxins, including tenuazonic acid (TeA), alternariol (AOH), and alternariol monomethyl ether (AME). The velvet gene VeA is involved in fungal growth, development, and secondary metabolism, including mycotoxin biosynthesis via light regulation. In this study, the detailed regulatory roles of AaVeA in A. alternata with various light sources were investigated from the comparative analyses between the wild type and the gene knockout strains. In fungal growth and conidiation, mycelial extension was independent of light regulation in A. alternata. Red light favored conidiation, but blue light repressed it. The absence of AaVeA caused the marked reduction of hyphae extension and conidiophore formation even though red light could not induce more spores in ΔAaVeA mutant. The differentially expressed genes (DEGs) enriched in hyphal growth and conidiation were drastically transcribed from the comparatively transcriptomic profile between the wild type and ΔAaVeA mutant strains with or without light. In mycotoxin production, TeA biosynthesis seems no obvious effect by light regulation, but AOH and AME formation was significantly stimulated by blue light. Nevertheless, the disruption of AaVeA resulted in a marked decrease in mycotoxin production and the action of the stimulation was lost via blue light for the abundant accumulation of AOH and AME in the ΔAaVeA strain. From DEG expression and further verification by RT-qPCR, the loss of AaVeA caused the discontinuous supply of the substrates for mycotoxin biosynthesis and the drastic decline of biosynthetic gene expression. In addition, pathogenicity depends on AaVeA regulation in tomato infected by A. alternata in vivo. These findings provide a distinct understanding of the roles of AaVeA in fungal growth, development, mycotoxin biosynthesis, and pathogenicity in response to various light sources.
Collapse
Affiliation(s)
- Liuqing Wang
- Institute of Quality Standard and Testing Technology of BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology of BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing, China
- *Correspondence: Meng Wang,
| | - Jian Jiao
- Institutes of Science and Development, Chinese Academy of Sciences, Beijing, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| |
Collapse
|
16
|
Addante-Moya LG, Abad-Somovilla A, Abad-Fuentes A, Agulló C, Mercader JV. Assessment of the Optimum Linker Tethering Site of Alternariol Haptens for Antibody Generation and Immunoassay Development. Toxins (Basel) 2021; 13:toxins13120883. [PMID: 34941720 PMCID: PMC8705777 DOI: 10.3390/toxins13120883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 01/19/2023] Open
Abstract
Immunochemical methods for mycotoxin analysis require antigens with well-defined structures and antibodies with outstanding binding properties. Immunoreagents for the mycotoxins alternariol and/or alternariol monomethyl ether have typically been obtained with chemically uncharacterized haptens, and antigen conjugates have most likely been prepared with mixtures of functionalized molecules. For the first time, total synthesis was performed, in the present study, to obtain two haptens with opposite linker attachment locations. The functionalized synthetic haptens were purified and deeply characterized by different spectrometric methods, allowing the preparation of bioconjugates with unequivocal structures. Direct and indirect competitive enzyme-linked immunosorbent assays, using homologous and heterologous conjugates, were employed to extensively evaluate the generated immunoreagents. Antibodies with high affinity were raised from conjugates of both haptens, and a structure-activity relationship between the synthetic haptens and the specificity of the generated antibodies could be established. These results pave the way for the development of novel highly sensitive immunoassays selective of one or two of these Alternaria mycotoxins.
Collapse
Affiliation(s)
- Luis G. Addante-Moya
- Department of Organic Chemistry, University of Valencia, Doctor Moliner 50, 46100 Burjassot, Valencia, Spain; (L.G.A.-M.); (A.A.-S.); (C.A.)
| | - Antonio Abad-Somovilla
- Department of Organic Chemistry, University of Valencia, Doctor Moliner 50, 46100 Burjassot, Valencia, Spain; (L.G.A.-M.); (A.A.-S.); (C.A.)
| | - Antonio Abad-Fuentes
- Spanish Council for Scientific Research, Institute of Agrochemistry and Food Technology, Agustí Escardino 7, 46980 Paterna, Valencia, Spain;
| | - Consuelo Agulló
- Department of Organic Chemistry, University of Valencia, Doctor Moliner 50, 46100 Burjassot, Valencia, Spain; (L.G.A.-M.); (A.A.-S.); (C.A.)
| | - Josep V. Mercader
- Spanish Council for Scientific Research, Institute of Agrochemistry and Food Technology, Agustí Escardino 7, 46980 Paterna, Valencia, Spain;
- Correspondence:
| |
Collapse
|
17
|
Aichinger G. Natural Dibenzo-α-Pyrones: Friends or Foes? Int J Mol Sci 2021; 22:13063. [PMID: 34884865 PMCID: PMC8657677 DOI: 10.3390/ijms222313063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Natural dibenzo-α-pyrones (DAPs) can be viewed from two opposite angles. From one angle, the gastrointestinal metabolites urolithins are regarded as beneficial, while from the other, the emerging mycotoxin alternariol and related fungal metabolites are evaluated critically with regards to potential hazardous effects. Thus, the important question is: can the structural characteristics of DAP subgroups be held responsible for distinct bioactivity patterns? If not, certain toxicological and/or pharmacological aspects of natural DAPs might yet await elucidation. Thus, this review focuses on comparing published data on the two groups of natural DAPs regarding both adverse and beneficial effects on human health. Literature on genotoxic, estrogenic, endocrine-disruptive effects, as well as on the induction of the cellular anti-oxidative defense system, anti-inflammatory properties, the inhibition of kinases, the activation of mitophagy and the induction of autophagy, is gathered and critically reviewed. Indeed, comparing published data suggests similar bioactivity profiles of alternariol and urolithin A. Thus, the current stratification into hazardous Alternaria toxins and healthy urolithins seems debatable. An extrapolation of bioactivities to the other DAP sub-class could serve as a promising base for further research. Conclusively, urolithins should be further evaluated toward high-dose toxicity, while alternariol derivatives could be promising chemicals for the development of therapeutics.
Collapse
Affiliation(s)
- Georg Aichinger
- Laboratory of Toxicology, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
18
|
Liu L, Chen F, Chen S, Fang W, Liu Y, Guan Z. Dual species dynamic transcripts reveal the interaction mechanisms between Chrysanthemum morifolium and Alternaria alternata. BMC Genomics 2021; 22:523. [PMID: 34243707 PMCID: PMC8268330 DOI: 10.1186/s12864-021-07709-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chrysanthemum (Chrysanthemum morifolium) black spot disease caused by Alternaria alternata is one of the plant's most destructive diseases. Dual RNA-seq was performed to simultaneously assess their transcriptomes to analyze the potential interaction mechanism between the two species, i.e., host and pathogen. RESULTS C. morifolium and A. alternata were subjected to dual RNA-seq at 1, 12, and 24 h after inoculation, and differential expression genes (DEGs) in both species were identified. This analysis confirmed 153,532 DEGs in chrysanthemum and 14,932 DEGs in A. alternata, which were involved in plant-fungal interactions and phytohormone signaling. Fungal DEGs such as toxin synthesis related enzyme and cell wall degrading enzyme genes played important roles during chrysanthemum infection. Moreover, a series of key genes highly correlated with the early, middle, or late infection stage were identified, together with the regulatory network of key genes annotated in the Plant Resistance Genes database (PRGdb) or Pathogen-Host Interactions database (PHI-base). Highly correlated genes were identified at the late infection stage, expanding our understanding of the interplay between C. morifolium and A. alternata. Additionally, six DEGs each from chrysanthemum and A. alternata were selected for quantitative real-time PCR (qRT-PCR) assays to validate the RNA-seq output. CONCLUSIONS Collectively, data obtained in this study enriches the resources available for research into the interactions that exist between chrysanthemum and A. alternata, thereby providing a theoretical basis for the development of new chrysanthemum cultivars with resistance to pathogen.
Collapse
Affiliation(s)
- Lina Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, 210095, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, 210095, Nanjing, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, 210095, Nanjing, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
19
|
Zhao S, Tian K, Li Y, Ji W, Liu F, Khan B, Yan W, Ye Y. Enantiomeric Dibenzo-α-Pyrone Derivatives from Alternaria alternata ZHJG5 and Their Potential as Agrochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15115-15122. [PMID: 33289556 DOI: 10.1021/acs.jafc.0c04106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three pairs of enantiomeric dibenzo-α-pyrone derivatives (1-3) including two pairs of new racemates (±)-alternaone A (1) and (±)-alternaone B (2) and one new enantiomer (-)-alternatiol (3), together with five known compounds (4-8) were isolated from the fungus Alternaria alternata ZHJG5. Their structures were confirmed by spectroscopic data and single-crystal X-ray diffraction analysis. All enantiomers were separated via chiral high-performance liquid chromatography, with their configurations determined by electronic circular dichroism calculation. Biogenetically, a key epoxy-rearrangement step was proposed for the formation of skeletons in 1-3; (+) 1, (-)-1, and 5 presented moderate antibacterial inhibition on phytopathogenic bacteria Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola. In the antifungal test, compounds 7 and 8 showed a moderate protective effect against Botrytis cinerea in vivo.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Kailin Tian
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Yu Li
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Wenxia Ji
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Fang Liu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Babar Khan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Wei Yan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yonghao Ye
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| |
Collapse
|
20
|
Igbalajobi O, Gao J, Fischer R. The HOG Pathway Plays Different Roles in Conidia and Hyphae During Virulence of Alternaria alternata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1405-1410. [PMID: 33104446 DOI: 10.1094/mpmi-06-20-0165-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The black mold Alternaria alternata causes dramatic losses in agriculture due to postharvest colonization and mycotoxin formation and is a weak pathogen on living plants. Fungal signaling processes are crucial for successful colonization of a host plant. Because the mitogen-activated protein kinase HogA is important for the expression of stress-associated genes, we tested a ∆hogA-deletion strain for pathogenicity. When conidia were used as inoculum, the ∆hogA-deletion strain was largely impaired in colonizing tomato and apple. In comparison, hyphae as inoculum colonized the fruit very well. Hence, HogA appears to be important only in the initial stages of plant colonization. A similar difference between conidial inoculum and hyphal inoculum was observed on artificial medium in the presence of different stress agents. Whereas wild-type conidia adapted well to different stresses, the ∆hogA-deletion strain failed to grow under the same conditions. With hyphae as inoculum, the wild type and the ∆hogA-deletion strain grew in a very similar way. At the molecular level, we observed upregulation of several catalase (catA, -B, and -D) and superoxide dismutase (sodA, -B, and -E) genes in germlings but not in hyphae after exposure to 4 mM hydrogen peroxide. The upregulation required the high osmolarity glycerol (HOG) pathway. In contrast, in mycelia, catD, sodA, sodB, and sodE were upregulated upon stress in the absence of HogA. Several other stress-related genes behaved in a similar way.
Collapse
Affiliation(s)
- Olumuyiwa Igbalajobi
- Karlsruhe Institute of Technology (KIT)-South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4,D-76131 Karlsruhe, Germany
| | - Jia Gao
- Karlsruhe Institute of Technology (KIT)-South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4,D-76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT)-South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4,D-76131 Karlsruhe, Germany
| |
Collapse
|
21
|
Chauhan DS, Gupta P, Pottoo FH, Amir M. Secondary Metabolites in the Treatment of Diabetes Mellitus: A Paradigm Shift. Curr Drug Metab 2020; 21:493-511. [PMID: 32407267 DOI: 10.2174/1389200221666200514081947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/07/2020] [Accepted: 03/10/2020] [Indexed: 01/09/2023]
Abstract
Diabetes mellitus (DM) is a chronic, polygenic and non-infectious group of diseases that occurs due to insulin resistance or its low production by the pancreas and is also associated with lifelong damage, dysfunction and collapse of various organs. Management of diabetes is quite complex having many bodily and emotional complications and warrants efficient measures for prevention and control of the same. As per the estimates of the current and future diabetes prevalence, around 425 million people were diabetic in 2017 which is anticipated to rise up to 629 million by 2045. Various studies have vaguely proven the fact that several vitamins, minerals, botanicals and secondary metabolites demonstrate hypoglycemic activity in vivo as well as in vitro. Flavonoids, anthocyanin, catechin, lipoic acid, coumarin metabolites, etc. derived from herbs were found to elicit a significant influence on diabetes. However, the prescription of herbal compounds depend on various factors, including the degree of diabetes progression, comorbidities, feasibility, economics as well as their ADR profile. For instance, cinnamon could be a more favorable choice for diabetic hypertensive patients. Diabecon®, Glyoherb® and Diabeta Plus® are some of the herbal products that had been launched in the market for the favorable or adjuvant therapy of diabetes. Moreover, Aloe vera leaf gel extract demonstrates significant activity in diabetes. The goal of this review was to inscribe various classes of secondary metabolites, in particular those obtained from plants, and their role in the treatment of DM. Recent advancements in recognizing the markers which can be employed for identifying altered metabolic pathways, biomarker discovery, limitations, metabolic markers of drug potency and off-label effects are also reviewed.
Collapse
Affiliation(s)
| | - Paras Gupta
- Department of Clinical Research, DIPSAR, Pushp Vihar Sec-3, New Dehli, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Mohd Amir
- Department of Natural Product & Alternative Medicine, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
22
|
Transcriptomic Insights into the Antifungal Effects of Magnolol on the Growth and Mycotoxin Production of Alternaria alternata. Toxins (Basel) 2020; 12:toxins12100665. [PMID: 33092244 PMCID: PMC7594048 DOI: 10.3390/toxins12100665] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023] Open
Abstract
Alternaria alternata is an important phytopathogen causing fruit black rot and also producing a variety of mycotoxins, such as alternariol (AOH) and alternariol monomethyl ether (AME) as two main contaminants. This could lead to economic losses of agricultural products as well as human health risks. In this study, magnolol extracted from the traditional Chinese herb, Mangnolia officinalis, exhibited an obvious antifungal property and could completely suppress the mycelial growth at 100 μM. Morphological differences of A. alternata were observed to be significantly shrunk and wrinkled after the exposure to magnolol. Furthermore, AOH and AME were no longer produced in response to 50 μM of magnolol. To uncover the antifungal and antimycotoxigenic mechanisms, the transcriptomic profiles of A. alternata—treated with or without magnolol—were evaluated. The clustered genes responsible for AOH and AME biosynthesis were obviously less transcribed under magnolol stress and this was further confirmed by qRT-PCR. The global regulators of carbon and nitrogen utilization, such as CreA and NmrA, were significantly down-regulated and this possibly caused the reduction in mycotoxins. In addition, fatty acid β-oxidation was regarded to contribute to polyketide mycotoxin production for the supply of precursor acetyl-CoA while the expression of these related genes was inhibited. The response to magnolol led to the marked alteration of oxidative stress and the down-expression of the mitogen-activated protein kinase (MAPK) signaling pathway from the transcriptome data and the determination of peroxidase (POD), superoxide dismutase (SOD) and glutathione (GSH) assays. This above might be the very reason for the growth supression and mycotoxin production of A. alternata by magnolol. This study provides new insights into its potential as an important active ingredient for the control of A. alternata and its mycotoxins in fruits and their products.
Collapse
|
23
|
Kelman MJ, Renaud JB, Seifert KA, Mack J, Yeung KKC, Sumarah MW. Chemotaxonomic Profiling of Canadian Alternaria Populations Using High-Resolution Mass Spectrometry. Metabolites 2020; 10:E238. [PMID: 32526912 PMCID: PMC7345142 DOI: 10.3390/metabo10060238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 11/18/2022] Open
Abstract
Alternaria spp. occur as plant pathogens worldwide under field and storage conditions. They lead to food spoilage and also produce several classes of secondary metabolites that contaminate the food production chain. From a food safety perspective, the major challenge of assessing the risk of Alternaria contamination is the lack of a clear consensus on their species-level taxonomy. Furthermore, there are currently no reliable DNA sequencing methods to allow for differentiation of the toxigenic potential of these fungi. Our objective was to determine which species of Alternaria exist in Canada, and to describe the compounds they make. To address these issues, we performed metabolomic profiling using liquid chromatography high-resolution mass spectrometry (LC-HRMS) on 128 Canadian strains of Alternaria to determine their chemotaxonomy. The Alternaria strains were analyzed using principal component analysis (PCA) and unbiased k-means clustering to identify metabolites with significant differences (p < 0.001) between groups. Four populations or 'chemotypes' were identified within the strains studied, and several known secondary metabolites of Alternaria were identified as distinguishing metabolites, including tenuazonic acid, phomapyrones, and altenuene. Though species-level identifications could not be concluded for all groups through metabolomics alone, A. infectoria was able to be identified as a distinct population.
Collapse
Affiliation(s)
- Megan J. Kelman
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (M.J.K.); (J.B.R.)
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada;
| | - Justin B. Renaud
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (M.J.K.); (J.B.R.)
| | - Keith A. Seifert
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.A.S.); (J.M.)
| | - Jonathan Mack
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.A.S.); (J.M.)
| | - Ken K.-C. Yeung
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada;
- Department of Biochemistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mark W. Sumarah
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (M.J.K.); (J.B.R.)
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada;
| |
Collapse
|
24
|
Draft Genome Sequences of Alternaria Strains Isolated from Grapes and Apples. Microbiol Resour Announc 2020; 9:9/14/e01491-19. [PMID: 32241865 PMCID: PMC7118191 DOI: 10.1128/mra.01491-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the draft genome sequences of Alternaria alternata, isolated from seedless grapes, and Alternaria arborescens and Alternaria atra, isolated from Red Delicious apples, all from the Washington, DC, area.
Collapse
|
25
|
Alternaria alternata uses two siderophore systems for iron acquisition. Sci Rep 2020; 10:3587. [PMID: 32107432 PMCID: PMC7046739 DOI: 10.1038/s41598-020-60468-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/10/2020] [Indexed: 01/21/2023] Open
Abstract
Iron is one of the most abundant elements on earth and essential for life. However, Fe3+ ions are rather insoluble and microorganisms such as fungi may use siderophores as strong chelators for uptake. In addition, free cytoplasmic iron is rather toxic and intracellular siderophores are used to control the toxicity. Siderophores are also important for iron storage. We studied two siderophore systems in the plant necrotrophic fungus Alternaria alternata and show that the non-ribosomal peptide synthase, Nps2, is required for the biosynthesis of intracellular ferricrocin, whereas Nps6 is needed for the formation of extracellular coprogen and coprogen B. Whereas nps2 was dispensable for growth on iron-depleted medium, nps6 was essential under those conditions. nps2 deletion caused an increase in spore formation and reduced pathogenicity on tomato. Our results suggest that A. alternata employs an external and an internal siderophore system to adapt to low iron conditions.
Collapse
|
26
|
Darma R, Lutz A, Elliott CE, Idnurm A. Identification of a gene cluster for the synthesis of the plant hormone abscisic acid in the plant pathogen Leptosphaeria maculans. Fungal Genet Biol 2019; 130:62-71. [DOI: 10.1016/j.fgb.2019.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/10/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022]
|
27
|
Sadhu A, Moriyasu Y, Acharya K, Bandyopadhyay M. Nitric oxide and ROS mediate autophagy and regulate Alternaria alternata toxin-induced cell death in tobacco BY-2 cells. Sci Rep 2019; 9:8973. [PMID: 31222105 PMCID: PMC6586778 DOI: 10.1038/s41598-019-45470-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/09/2019] [Indexed: 11/25/2022] Open
Abstract
Synergistic interaction of nitric oxide (NO) and reactive oxygen species (ROS) is essential to initiate cell death mechanisms in plants. Though autophagy is salient in either restricting or promoting hypersensitivity response (HR)-related cell death, the crosstalk between the reactive intermediates and autophagy during hypersensitivity response is paradoxical. In this investigation, the consequences of Alternaria alternata toxin (AaT) in tobacco BY-2 cells were examined. At 3 h, AaT perturbed intracellular ROS homeostasis, altered antioxidant enzyme activities, triggered mitochondrial depolarization and induced autophagy. Suppression of autophagy by 3-Methyladenine caused a decline in cell viability in AaT treated cells, which indicated the vital role of autophagy in cell survival. After 24 h, AaT facilitated Ca2+ influx with an accumulation of reactive oxidant intermediates and NO, to manifest necrotic cell death. Inhibition of NO accumulation by 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) decreased the level of necrotic cell death, and induced autophagy, which suggests NO accumulation represses autophagy and facilitates necrotic cell death at 24 h. Application of N-acetyl-L-cysteine at 3 h, confirmed ROS to be the key initiator of autophagy, and together with cPTIO for 24 h, revealed the combined effects of NO and ROS is required for necrotic HR cell death.
Collapse
Affiliation(s)
- Abhishek Sadhu
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Yuji Moriyasu
- Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Saitama, 338-8570, Japan
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
28
|
Wenderoth M, Garganese F, Schmidt‐Heydt M, Soukup ST, Ippolito A, Sanzani SM, Fischer R. Alternariol as virulence and colonization factor of
Alternaria alternata
during plant infection. Mol Microbiol 2019; 112:131-146. [DOI: 10.1111/mmi.14258] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Maximilian Wenderoth
- Department of Microbiology Karlsruhe Institute of Technology (KIT) – South Campus Fritz‐Haber‐Weg 4D‐76131 Karlsruhe Germany
| | - Francesca Garganese
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti Università degli Studi di Bari Aldo Moro Via Amendola 165/A70126 Bari Italy
| | - Markus Schmidt‐Heydt
- Department of Safety and Quality of Fruit and Vegetables Max Rubner‐Institut Haid‐und‐Neu‐Str. 976131 Karlsruhe Germany
| | - Sebastian Tobias Soukup
- Department of Safety and Quality of Fruit and Vegetables Max Rubner‐Institut Haid‐und‐Neu‐Str. 976131 Karlsruhe Germany
| | - Antonio Ippolito
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti Università degli Studi di Bari Aldo Moro Via Amendola 165/A70126 Bari Italy
| | - Simona Marianna Sanzani
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti Università degli Studi di Bari Aldo Moro Via Amendola 165/A70126 Bari Italy
| | - Reinhard Fischer
- Department of Microbiology Karlsruhe Institute of Technology (KIT) – South Campus Fritz‐Haber‐Weg 4D‐76131 Karlsruhe Germany
| |
Collapse
|
29
|
Youssar L, Wernet V, Hensel N, Yu X, Hildebrand HG, Schreckenberger B, Kriegler M, Hetzer B, Frankino P, Dillin A, Fischer R. Intercellular communication is required for trap formation in the nematode-trapping fungus Duddingtonia flagrans. PLoS Genet 2019; 15:e1008029. [PMID: 30917129 PMCID: PMC6453484 DOI: 10.1371/journal.pgen.1008029] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 04/08/2019] [Accepted: 02/18/2019] [Indexed: 11/21/2022] Open
Abstract
Nematode-trapping fungi (NTF) are a large and diverse group of fungi, which may switch from a saprotrophic to a predatory lifestyle if nematodes are present. Different fungi have developed different trapping devices, ranging from adhesive cells to constricting rings. After trapping, fungal hyphae penetrate the worm, secrete lytic enzymes and form a hyphal network inside the body. We sequenced the genome of Duddingtonia flagrans, a biotechnologically important NTF used to control nematode populations in fields. The 36.64 Mb genome encodes 9,927 putative proteins, among which are more than 638 predicted secreted proteins. Most secreted proteins are lytic enzymes, but more than 200 were classified as small secreted proteins (< 300 amino acids). 117 putative effector proteins were predicted, suggesting interkingdom communication during the colonization. As a first step to analyze the function of such proteins or other phenomena at the molecular level, we developed a transformation system, established the fluorescent proteins GFP and mCherry, adapted an assay to monitor protein secretion, and established gene-deletion protocols using homologous recombination or CRISPR/Cas9. One putative virulence effector protein, PefB, was transcriptionally induced during the interaction. We show that the mature protein is able to be imported into nuclei in Caenorhabditis elegans cells. In addition, we studied trap formation and show that cell-to-cell communication is required for ring closure. The availability of the genome sequence and the establishment of many molecular tools will open new avenues to studying this biotechnologically relevant nematode-trapping fungus. Nematode-trapping fungi are fascinating microorganisms, because they are able to switch from saprotrophic growth to a predatory lifestyle. Duddingtonia flagrans forms adhesive trap systems and conidia and resistant chlamydospores. Chlamydospores are ideal for dissemination in the environment to control nematode populations in the field. We show that D. flagrans is able to catch C. elegans but also the very large wine-pathogenic nematode Xiphinema index. We sequenced the D. flagrans genome and show that it encodes about 10,000 genes with a large proportion of secreted proteins. We hypothesize that virulence effector proteins are involved in the interkingdom organismic interaction and identified more than 100 candidates. In order to investigate the molecular biology of D. flagrans and its interaction with nematodes, we established a transformation system and several molecular tools. We show that cell-to-cell communication and hyphal fusion are required for trap formation. Finally, we show that one putative virulence effector protein targets nuclei when expressed in C. elegans.
Collapse
Affiliation(s)
- Loubna Youssar
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Valentin Wernet
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Nicole Hensel
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Xi Yu
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Heinz-Georg Hildebrand
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Birgit Schreckenberger
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Marius Kriegler
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | | | - Phillip Frankino
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of Berkeley, Berkeley, California, United States of America
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of Berkeley, Berkeley, California, United States of America
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
30
|
da Cruz Cabral L, Delgado J, Patriarca A, Rodríguez A. Differential response to synthetic and natural antifungals by Alternaria tenuissima in wheat simulating media: Growth, mycotoxin production and expression of a gene related to cell wall integrity. Int J Food Microbiol 2019; 292:48-55. [DOI: 10.1016/j.ijfoodmicro.2018.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/02/2018] [Accepted: 12/06/2018] [Indexed: 12/28/2022]
|
31
|
Schor R, Cox R. Classic fungal natural products in the genomic age: the molecular legacy of Harold Raistrick. Nat Prod Rep 2018. [PMID: 29537034 DOI: 10.1039/c8np00021b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 1893 to 2017Harold Raistrick was involved in the discovery of many of the most important classes of fungal metabolites during the 20th century. This review focusses on how these discoveries led to developments in isotopic labelling, biomimetic chemistry and the discovery, analysis and exploitation of biosynthetic gene clusters for major classes of fungal metabolites including: alternariol; geodin and metabolites of the emodin pathway; maleidrides; citrinin and the azaphilones; dehydrocurvularin; mycophenolic acid; and the tropolones. Key recent advances in the molecular understanding of these important pathways, including the discovery of biosynthetic gene clusters, the investigation of the molecular and chemical aspects of key biosynthetic steps, and the reengineering of key components of the pathways are reviewed and compared. Finally, discussion of key relationships between metabolites and pathways and the most important recent advances and opportunities for future research directions are given.
Collapse
Affiliation(s)
- Raissa Schor
- Institut für Organische Chemie, BMWZ, Leibniz Universität Hannover, Germany.
| | - Russell Cox
- Institut für Organische Chemie, BMWZ, Leibniz Universität Hannover, Germany.
| |
Collapse
|
32
|
Nayyar BG, Woodward S, Mur LAJ, Akram A, Arshad M, Saqlan Naqvi SM, Akhund S. The Incidence of Alternaria Species Associated with Infected Sesamum indicum L. Seeds from Fields of the Punjab, Pakistan. THE PLANT PATHOLOGY JOURNAL 2017; 33:543-553. [PMID: 29238277 PMCID: PMC5720601 DOI: 10.5423/ppj.oa.04.2017.0081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/09/2017] [Accepted: 07/23/2017] [Indexed: 06/01/2023]
Abstract
Sesame (Sesamum indicum) is an important oil seed crop of Asia. Yields can be negatively impacted by various factors, including disease, particularly those caused by fungi which create problems in both production and storage. Foliar diseases of sesame such as Alternaria leaf blight may cause significant yield losses, with reductions in plant health and seed quality. The work reported here determined the incidence of Alternaria species infecting sesame seeds grown in the Punjab, Pakistan. A total of 428 Alternaria isolates were obtained from 105 seed samples and grouped into 36 distinct taxonomic groups based on growth pattern and morphological characters. Isolation frequency and relative density of surface sterilized and non-surface sterilized seeds showed that three isolates (A13, A47 and A215) were the most common morphological groups present. These isolates were further identified using sequencing of the Internal Transcribed Spacer (ITS) region of ribosomal DNA (rDNA) and the Alternaria major allergen gene (Alt a 1). Whilst ITS of rDNA did not resolve the isolates into Alternaria species, the Alt a 1 sequences exhibited > 99% homology with Alternaria alternata (KP123850.1) in GenBank accessions. The pathogenicity and virulence of these isolates of Alternaria alternata was confirmed in inoculations of sesame plants resulting in typical symptoms of leaf blight disease. This work confirms the identity of a major source of sesame leaf blight in Pakistan which will aid in formulating effective disease management strategies.
Collapse
Affiliation(s)
- Brian Gagosh Nayyar
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300,
Pakistan
| | - Steve Woodward
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruikshank Building, St. Machar Drive, Aberdeen AB24 3UU, Scotland,
UK
| | - Luis A. J. Mur
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Edward Llwyd Building, Penglais Campus, Aberystwyth SY23 3DA, Wales,
UK
| | - Abida Akram
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300,
Pakistan
| | - Muhammad Arshad
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300,
Pakistan
| | - S. M. Saqlan Naqvi
- Department of Biochemistry, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300,
Pakistan
| | - Shaista Akhund
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300,
Pakistan
| |
Collapse
|
33
|
|
34
|
Choudhary P, Kashyap PL, Goswami SK, Chakdar H, Srivastava AK, Saxena AK. Genome-Wide Analysis of Microsatellites in Alternaria arborescens and Elucidation of the Function of Polyketide Synthase (PksJ). Interdiscip Sci 2017; 10:813-822. [PMID: 28975513 DOI: 10.1007/s12539-017-0251-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 05/01/2017] [Accepted: 07/05/2017] [Indexed: 10/18/2022]
Abstract
Microsatellites or simple sequence repeats (SSRs) have been the most widely applied class of molecular markers used in genetic studies, having applications in genetic conservation, population studies, as well as diagnostics of fungi. Mining and analysis of SSRs of the whole genome sequence have been carried out in this study for the fungus Alternaria arborescens causing early blight of tomato and well known for producing mycotoxins like alternariol (AOH), alternariol monomethyl ether (AME), etc. A total of 4097 microsatellites were identified in A. Arborescens genome. Contig 1 was identified as the most SSR-rich region which was further analyzed to correlate the presence of SSRs with different biological processes. A total of 246 putative genes were predicted in this study and KEGG pathway analysis of 155 predicted genes indicated that SSRs can be linked with important metabolic pathways, molecular functioning, signal transduction, and cellular processes. The prediction of fungal mycotoxin inducer gene Polyketide synthase (PksJ) linked with SSR in this study may be a potential candidate participating in oncogenic signal transduction in human. Our study is the first report of PksJ gene in A. arborescens, a precursor of AOH and AME.
Collapse
Affiliation(s)
- Prassan Choudhary
- Microbial Technology Unit, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, India
| | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Regional Station, Shimla, 171002, India
| | - Sanjay Kumar Goswami
- Microbial Technology Unit, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, India
| | - Hillol Chakdar
- Microbial Technology Unit, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, India.
| | - Alok Kumar Srivastava
- Microbial Technology Unit, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, India
| | - Anil Kumar Saxena
- Microbial Technology Unit, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, India
| |
Collapse
|
35
|
Estiarte N, Crespo-Sempere A, Marín S, Sanchis V, Ramos A. Exploring polyamine metabolism of Alternaria alternata to target new substances to control the fungal infection. Food Microbiol 2017; 65:193-204. [DOI: 10.1016/j.fm.2017.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 01/18/2017] [Accepted: 02/01/2017] [Indexed: 11/30/2022]
|
36
|
Abstract
Alternariais one of the major mycotoxigenic fungal genera with more than 70 reported metabolites.Alternariamycotoxins showed notably toxicity, such as mutagenicity, carcinogenicity, induction of DNA strand break, sphingolipid metabolism disruption, or inhibition of enzymes activity and photophosphorylation. This review reports on the toxicity, stability, metabolism, current analytical methods, and prevalence ofAlternariamycotoxins in food and feed through the most recent published research. Half of the publications were focused on fruits, vegetables, and derived products—mainly tomato and apples—while cereals and cereal by-products represented 38%. The most studied compounds were alternariol, alternariol methyl ether, tentoxin, and tenuazonic acid, but altenuene, altertoxins (I, II, and III), and macrosporin have been gaining importance in recent years. Solid-liquid extraction (50%) with acetonitrile or ethyl acetate was the most common extraction methodology, followed by QuEChERS and dilution-direct injection (both 14%). High- and ultraperformance liquid chromatography coupled with tandem mass spectrometry was the predominant determination technique (80%). The highest levels of alternariol and alternariol methyl ether were found in lentils, oilseeds, tomatoes, carrots, juices, wines, and cereals. Tenuazonic acid highest levels were detected in cereals followed by beer, while alternariol, alternariol methyl ether, tenuazonic acid, and tentoxin were found in legumes, nuts, and oilseeds.
Collapse
|
37
|
Che JX, Shi JL, Lu Y, Liu YL. Validation of reference genes for normalization of gene expression by qRT-PCR in a resveratrol-producing entophytic fungus (Alternaria sp. MG1). AMB Express 2016; 6:106. [PMID: 27826948 PMCID: PMC5101243 DOI: 10.1186/s13568-016-0283-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 12/12/2022] Open
Abstract
Alternaria sp. MG1, an endophytic fungus isolated from Vitis vinifera, can independently produce resveratrol, indicating that this species contains the key genes for resveratrol biosynthesis. Identification of these key genes is essential to understand the resveratrol biosynthesis pathway in this strain, which is currently unknown in microorganisms. qRT-PCR is an efficient and widely used method to identify the key genes related to unknown pathways at the level of gene expression. Verification of stable reference genes in this strain is essential for qRT-PCR data normalization, although results have been reported for other Alternaria sp. strains. In this study, nine candidate reference genes including TUBA, EF1, EF2, UBC, UFD, RPS5, RPS24, ACTB and 18S were evaluated for expression stability in a diverse set of six samples representing different growth periods. We compared cell culture conditions and an optimized condition for resveratrol production. The comparison of the results was performed using four statistical softwares. A combination of TUBA and EF1 was found to be suitable for normalization of Alternaria sp. MG1 in different developmental stages, and 18S was found to be the least stable. The reference genes verified in this study will facilitate further research to explore gene expression and molecular mechanisms as well as the improvement of secondary metabolite yields in Alternaria sp. MG1. To our knowledge, this is the first validation of reference genes in Alternaria with the capability to produce resveratrol. Additionally, these results provide useful guidelines for the selection of reference genes in other Alternaria species.
Collapse
|
38
|
Estiarte N, Lawrence C, Sanchis V, Ramos A, Crespo-Sempere A. LaeA and VeA are involved in growth morphology, asexual development, and mycotoxin production in Alternaria alternata. Int J Food Microbiol 2016; 238:153-164. [DOI: 10.1016/j.ijfoodmicro.2016.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/29/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022]
|
39
|
Estiarte N, Crespo-Sempere A, Marín S, Sanchis V, Ramos A. Effect of 1-methylcyclopropene on the development of black mold disease and its potential effect on alternariol and alternariol monomethyl ether biosynthesis on tomatoes infected with Alternaria alternata. Int J Food Microbiol 2016; 236:74-82. [DOI: 10.1016/j.ijfoodmicro.2016.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/17/2016] [Accepted: 07/03/2016] [Indexed: 11/30/2022]
|
40
|
Draft Genome Sequence of Alternaria alternata Isolated from Onion Leaves in South Africa. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01022-16. [PMID: 27660793 PMCID: PMC5034144 DOI: 10.1128/genomea.01022-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alternaria alternata (Fr.) Keissler strain PPRI 21032 was isolated from onion leaves collected in Roodeplaat, Pretoria, South Africa. The whole genome of this strain was sequenced and produced a total of 33.12 Mb with a GC content of 50.9%. The whole genome comprises 11,701 predicted coding sequences.
Collapse
|
41
|
Garganese F, Schena L, Siciliano I, Prigigallo MI, Spadaro D, De Grassi A, Ippolito A, Sanzani SM. Characterization of Citrus-Associated Alternaria Species in Mediterranean Areas. PLoS One 2016; 11:e0163255. [PMID: 27636202 PMCID: PMC5026349 DOI: 10.1371/journal.pone.0163255] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/05/2016] [Indexed: 01/05/2023] Open
Abstract
Alternaria brown spot is one of the most important diseases of tangerines and their hybrids worldwide. Recently, outbreaks in Mediterranean areas related to susceptible cultivars, refocused attention on the disease. Twenty representatives were selected from a collection of 180 isolates of Alternaria spp. from citrus leaves and fruit. They were characterized along with reference strains of Alternaria spp. Micro- and macroscopic characteristics separated most Alternaria isolates into six morphotypes referable to A. alternata (5) and A. arborescens (1). Phylogenetic analyses, based on endopolygalacturonase (endopg) and internal transcribed spacer (ITS), confirmed this finding. Moreover, a five-gene phylogeny including two anonymous genomics regions (OPA 1-3 and OPA 2-1), and the beta-tubulin gene (ß-tub), produced a further clustering of A. alternata into three clades. This analysis suggested the existence of intra-species molecular variability. Investigated isolates showed different levels of virulence on leaves and fruit. In particular, the pathogenicity on fruit seemed to be correlated with the tissue of isolation and the clade. The toxigenic behavior of Alternaria isolates was also investigated, with tenuazonic acid (TeA) being the most abundant mycotoxin (0.2-20 mg/L). Isolates also synthesized the mycotoxins alternariol (AOH), its derivate alternariol monomethyl ether (AME), and altenuene (ALT), although to a lesser extent. AME production significantly varied among the six morphotypes. The expression of pksJ/pksH, biosynthetic genes of AOH/AME, was not correlated with actual toxin production, but it was significantly different between the two genotypes and among the four clades. Finally, ten isolates proved to express the biosynthetic genes of ACTT1 phytotoxin, and thus to be included in the Alternaria pathotype tangerine. A significant correlation between pathogenicity on leaves and ACTT1 gene expression was recorded. The latter was significantly dependent on geographical origin. The widespread occurrence of Alternaria spp. on citrus fruit and their ability to produce mycotoxins might represent a serious concern for producers and consumers.
Collapse
Affiliation(s)
- Francesca Garganese
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi Aldo Moro, Bari, Italy
| | - Leonardo Schena
- Dipartimento di Agraria, Università Mediterranea, Reggio Calabria, Italy
| | - Ilenia Siciliano
- Centro di Competenza per l'Innovazione in campo agro-ambientale-AGROINNOVA, Università degli Studi di Torino, Grugliasco (TO), Italy
| | | | - Davide Spadaro
- Centro di Competenza per l'Innovazione in campo agro-ambientale-AGROINNOVA, Università degli Studi di Torino, Grugliasco (TO), Italy
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco (TO), Italy
| | - Anna De Grassi
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi Aldo Moro, Bari, Italy
| | - Antonio Ippolito
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi Aldo Moro, Bari, Italy
| | - Simona Marianna Sanzani
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi Aldo Moro, Bari, Italy
| |
Collapse
|
42
|
Genomic and transcriptomic analyses of the tangerine pathotype of Alternaria alternata in response to oxidative stress. Sci Rep 2016; 6:32437. [PMID: 27582273 PMCID: PMC5007530 DOI: 10.1038/srep32437] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022] Open
Abstract
The tangerine pathotype of Alternaria alternata produces the A. citri toxin (ACT) and is the causal agent of citrus brown spot that results in significant yield losses worldwide. Both the production of ACT and the ability to detoxify reactive oxygen species (ROS) are required for A. alternata pathogenicity in citrus. In this study, we report the 34.41 Mb genome sequence of strain Z7 of the tangerine pathotype of A. alternata. The host selective ACT gene cluster in strain Z7 was identified, which included 25 genes with 19 of them not reported previously. Of these, 10 genes were present only in the tangerine pathotype, representing the most likely candidate genes for this pathotype specialization. A transcriptome analysis of the global effects of H2O2 on gene expression revealed 1108 up-regulated and 498 down-regulated genes. Expressions of those genes encoding catalase, peroxiredoxin, thioredoxin and glutathione were highly induced. Genes encoding several protein families including kinases, transcription factors, transporters, cytochrome P450, ubiquitin and heat shock proteins were found associated with adaptation to oxidative stress. Our data not only revealed the molecular basis of ACT biosynthesis but also provided new insights into the potential pathways that the phytopathogen A. alternata copes with oxidative stress.
Collapse
|
43
|
Lai D, Wang A, Cao Y, Zhou K, Mao Z, Dong X, Tian J, Xu D, Dai J, Peng Y, Zhou L, Liu Y. Bioactive Dibenzo-α-pyrone Derivatives from the Endophytic Fungus Rhizopycnis vagum Nitaf22. JOURNAL OF NATURAL PRODUCTS 2016; 79:2022-31. [PMID: 27441892 DOI: 10.1021/acs.jnatprod.6b00327] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Six new dibenzo-α-pyrones, rhizopycnolides A (1) and B (2) and rhizopycnins A-D (3-6), together with eight known congeners (7-14), were isolated from the endophytic fungus Rhizopycnis vagum Nitaf22 obtained from Nicotiana tabacum. The structures of the new compounds were unambiguously elucidated using NMR, HRESIMS, TDDFT ECD calculation, and X-ray crystallography data. Rhizopycnolides A (1) and B (2) feature an uncommon γ-butyrolactone-fused dibenzo-α-pyrone tetracyclic skeleton (6/6/6/5), while rhizopycnin B (4) was the first amino group containing dibenzo-α-pyrone. Rhizopycnolides A (1) and B (2) are proposed to be biosynthesized from polyketide and tricarboxylic acid cycle pathways. The isolated compounds were tested for their antibacterial, antifungal, and cytotoxic activities. Among them, rhizopycnolide A (1), rhizopycnins C (5) and D (6), TMC-264 (8), penicilliumolide D (11), and alternariol (12) were active against the tested pathogenic bacteria Agrobacterium tumefaciens, Bacillus subtilis, Pseudomonas lachrymans, Ralstonia solanacearum, Staphylococcus hemolyticus, and Xanthomonas vesicatoria with MIC values in the range 25-100 μg/mL. Rhizopycnin D (6) and TMC-264 (8) strongly inhibited the spore germination of Magnaporthe oryzae with IC50 values of 9.9 and 12.0 μg/mL, respectively. TMC-264 (8) showed potent cytotoxicity against five human cancer cell lines (HCT-116, HepG2, BGC-823, NCI-H1650, and A2780) with IC50 values of 3.2-7.8 μM.
Collapse
Affiliation(s)
- Daowan Lai
- Key Laboratory of Plant Pathology, Ministry of Agriculture/Department of Plant Pathology, College of Plant Protection, China Agricultural University , Beijing 100193, People's Republic of China
| | - Ali Wang
- Key Laboratory of Plant Pathology, Ministry of Agriculture/Department of Plant Pathology, College of Plant Protection, China Agricultural University , Beijing 100193, People's Republic of China
| | - Yuheng Cao
- Key Laboratory of Plant Pathology, Ministry of Agriculture/Department of Plant Pathology, College of Plant Protection, China Agricultural University , Beijing 100193, People's Republic of China
| | - Kaiyi Zhou
- Key Laboratory of Plant Pathology, Ministry of Agriculture/Department of Plant Pathology, College of Plant Protection, China Agricultural University , Beijing 100193, People's Republic of China
| | - Ziling Mao
- Key Laboratory of Plant Pathology, Ministry of Agriculture/Department of Plant Pathology, College of Plant Protection, China Agricultural University , Beijing 100193, People's Republic of China
| | - Xuejiao Dong
- Key Laboratory of Plant Pathology, Ministry of Agriculture/Department of Plant Pathology, College of Plant Protection, China Agricultural University , Beijing 100193, People's Republic of China
| | - Jin Tian
- Key Laboratory of Plant Pathology, Ministry of Agriculture/Department of Plant Pathology, College of Plant Protection, China Agricultural University , Beijing 100193, People's Republic of China
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing 100101, People's Republic of China
| | - Dan Xu
- Key Laboratory of Plant Pathology, Ministry of Agriculture/Department of Plant Pathology, College of Plant Protection, China Agricultural University , Beijing 100193, People's Republic of China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Yu Peng
- Technical Centre of Hunan Tobacco Industry Co. Ltd. , Changsha 410014, People's Republic of China
| | - Ligang Zhou
- Key Laboratory of Plant Pathology, Ministry of Agriculture/Department of Plant Pathology, College of Plant Protection, China Agricultural University , Beijing 100193, People's Republic of China
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Processing, Ministry of Agriculture , Beijing 100193, People's Republic of China
| |
Collapse
|
44
|
|
45
|
Hou Y, Ma X, Wan W, Long N, Zhang J, Tan Y, Duan S, Zeng Y, Dong Y. Comparative Genomics of Pathogens Causing Brown Spot Disease of Tobacco: Alternaria longipes and Alternaria alternata. PLoS One 2016; 11:e0155258. [PMID: 27159564 PMCID: PMC4861331 DOI: 10.1371/journal.pone.0155258] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/26/2016] [Indexed: 12/30/2022] Open
Abstract
The genus Alternaria is a group of infectious/contagious pathogenic fungi that not only invade a wide range of crops but also induce severe allergic reactions in a part of the human population. In this study, two strains Alternaria longipes cx1 and Alternaria alternata cx2 were isolated from different brown spot lesions on infected tobacco leaves. Their complete genomes were sequenced, de novo assembled, and comparatively analyzed. Phylogenetic analysis revealed that A. longipes cx1 and A. alternata cx2 diverged 3.3 million years ago, indicating a recent event of speciation. Seventeen non-ribosomal peptide synthetase (NRPS) genes and 13 polyketide synthase (PKS) genes in A. longipes cx1 and 13 NRPS genes and 12 PKS genes in A. alternata cx2 were identified in these two strains. Some of these genes were predicted to participate in the synthesis of non-host specific toxins (non-HSTs), such as tenuazonic acid (TeA), alternariol (AOH) and alternariol monomethyl ether (AME). By comparative genome analysis, we uncovered that A. longipes cx1 had more genes putatively involved in pathogen-plant interaction, more carbohydrate-degrading enzymes and more secreted proteins than A. alternata cx2. In summary, our results demonstrate the genomic distinction between A. longipes cx1 and A. altenata cx2. They will not only improve the understanding of the phylogenetic relationship among genus Alternaria, but more importantly provide valuable genomic resources for the investigation of plant-pathogen interaction.
Collapse
Affiliation(s)
- Yujie Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao Ma
- Longrun Pu-erh Tea Academy, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wenting Wan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ni Long
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jing Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuntao Tan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shengchang Duan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yan Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Science, Kunming, Yunnan, China
| | - Yang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Biological Big Data College, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
46
|
Abstract
The α-pyrone moiety is a structural feature found in a huge variety of biologically active metabolites. In recent times new insights into additional biosynthetic mechanisms, yielding in such six-membered unsaturated ester ring residues have been obtained. The purpose of this mini-review is to give a brief overview of α-pyrones and the mechanisms forming the basis of their natural synthesis. Especially the chain interconnecting enzymes, showing homology to ketosynthases which catalyze Claisen-like condensation reactions, will be presented.
Collapse
Affiliation(s)
- Till F Schäberle
- Institute for Pharmaceutical Biology, University of Bonn, Nußallee 6, 53115 Bonn, Germany
| |
Collapse
|
47
|
Throckmorton K, Wiemann P, Keller NP. Evolution of Chemical Diversity in a Group of Non-Reduced Polyketide Gene Clusters: Using Phylogenetics to Inform the Search for Novel Fungal Natural Products. Toxins (Basel) 2015; 7:3572-607. [PMID: 26378577 PMCID: PMC4591646 DOI: 10.3390/toxins7093572] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/21/2015] [Accepted: 08/26/2015] [Indexed: 12/11/2022] Open
Abstract
Fungal polyketides are a diverse class of natural products, or secondary metabolites (SMs), with a wide range of bioactivities often associated with toxicity. Here, we focus on a group of non-reducing polyketide synthases (NR-PKSs) in the fungal phylum Ascomycota that lack a thioesterase domain for product release, group V. Although widespread in ascomycete taxa, this group of NR-PKSs is notably absent in the mycotoxigenic genus Fusarium and, surprisingly, found in genera not known for their secondary metabolite production (e.g., the mycorrhizal genus Oidiodendron, the powdery mildew genus Blumeria, and the causative agent of white-nose syndrome in bats, Pseudogymnoascus destructans). This group of NR-PKSs, in association with the other enzymes encoded by their gene clusters, produces a variety of different chemical classes including naphthacenediones, anthraquinones, benzophenones, grisandienes, and diphenyl ethers. We discuss the modification of and transitions between these chemical classes, the requisite enzymes, and the evolution of the SM gene clusters that encode them. Integrating this information, we predict the likely products of related but uncharacterized SM clusters, and we speculate upon the utility of these classes of SMs as virulence factors or chemical defenses to various plant, animal, and insect pathogens, as well as mutualistic fungi.
Collapse
Affiliation(s)
- Kurt Throckmorton
- Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706-1580, USA.
| | - Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706-1521, USA.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706-1521, USA.
| |
Collapse
|
48
|
Pusztahelyi T, Holb IJ, Pócsi I. Secondary metabolites in fungus-plant interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:573. [PMID: 26300892 PMCID: PMC4527079 DOI: 10.3389/fpls.2015.00573] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/13/2015] [Indexed: 05/18/2023]
Abstract
Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.
Collapse
Affiliation(s)
- Tünde Pusztahelyi
- Central Laboratory, Faculty of Agricultural and Food Sciences and Environmental Management, University of DebrecenDebrecen, Hungary
| | - Imre J. Holb
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Horticulture, University of DebrecenDebrecen, Hungary
- Department of Plant Pathology, Centre for Agricultural Research, Plant Protection Institute, Hungarian Academy of SciencesDebrecen, Hungary
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, Hungary
| |
Collapse
|
49
|
SnPKS19 Encodes the Polyketide Synthase for Alternariol Mycotoxin Biosynthesis in the Wheat Pathogen Parastagonospora nodorum. Appl Environ Microbiol 2015; 81:5309-17. [PMID: 26025896 DOI: 10.1128/aem.00278-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/20/2015] [Indexed: 12/12/2022] Open
Abstract
Alternariol (AOH) is an important mycotoxin from the Alternaria fungi. AOH was detected for the first time in the wheat pathogen Parastagonospora nodorum in a recent study. Here, we exploited reverse genetics to demonstrate that SNOG_15829 (SnPKS19), a close homolog of Penicillium aethiopicum norlichexanthone (NLX) synthase gene gsfA, is required for AOH production. We further validate that SnPKS19 is solely responsible for AOH production by heterologous expression in Aspergillus nidulans. The expression profile of SnPKS19 based on previous P. nodorum microarray data correlated with the presence of AOH in vitro and its absence in planta. Subsequent characterization of the ΔSnPKS19 mutants showed that SnPKS19 and AOH are not involved in virulence and oxidative stress tolerance. Identification and characterization of the P. nodorum SnPKS19 cast light on a possible alternative AOH synthase gene in Alternaria alternata and allowed us to survey the distribution of AOH synthase genes in other fungal genomes. We further demonstrate that phylogenetic analysis could be used to differentiate between AOH synthases and the closely related NLX synthases. This study provides the basis for studying the genetic regulation of AOH production and for development of molecular diagnostic methods for detecting AOH-producing fungi in the future.
Collapse
|
50
|
Fischer R. Promiscuity breeds diversity: the role of polyketide synthase in natural product biosynthesis. ACTA ACUST UNITED AC 2015; 21:701-2. [PMID: 24950100 DOI: 10.1016/j.chembiol.2014.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Secondary metabolites are often highly biologically active molecules and are widely used from antibacterial to anticancer drugs. In this issue of Chemistry and Biology, Zaehle and coworkers describe the gene cluster and biosynthesis of the polyketide terrein, a secondary metabolite produced by the soil-borne fungus Aspergillus terreus.
Collapse
Affiliation(s)
- Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)-South Campus, Hertzstrasse 16, 76187 Karlsruhe, Germany.
| |
Collapse
|