1
|
Băghină RM, Crișan S, Luca S, Pătru O, Lazăr MA, Văcărescu C, Negru AG, Luca CT, Gaiță D. Association between Inflammation and New-Onset Atrial Fibrillation in Acute Coronary Syndromes. J Clin Med 2024; 13:5088. [PMID: 39274304 PMCID: PMC11396258 DOI: 10.3390/jcm13175088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Acute coronary syndrome (ACS) is a complex clinical syndrome that encompasses acute myocardial infarction (AMI) and unstable angina (UA). Its underlying mechanism refers to coronary plaque disruption, with consequent platelet aggregation and thrombosis. Inflammation plays an important role in the progression of atherosclerosis by mediating the removal of necrotic tissue following myocardial infarction and shaping the repair processes that are essential for the recovery process after ACS. As a chronic inflammatory disorder, atherosclerosis is characterized by dysfunctional immune inflammation involving interactions between immune (macrophages, T lymphocytes, and monocytes) and vascular cells (endothelial cells and smooth muscle cells). New-onset atrial fibrillation (NOAF) is one of the most common arrhythmic complications in the setting of acute coronary syndromes, especially in the early stages, when the myocardial inflammatory reaction is at its maximum. The main changes in the atrial substrate are due to atrial ischemia and acute infarcts that can be attributed to neurohormonal factors. The high incidence of atrial fibrillation (AF) post-myocardial infarction may be secondary to inflammation. Inflammatory response and immune system cells have been involved in the initiation and development of atrial fibrillation. Several inflammatory indexes, such as C-reactive protein and interleukins, have been demonstrated to be predictive of prognosis in patients with ACS. The cell signaling activation patterns associated with fibrosis, apoptosis, and hypertrophy are forms of cardiac remodeling that occur at the atrial level, predisposing to AF. According to a recent study, the presence of fibrosis and lymphomononuclear infiltration in the atrial tissue was associated with a prior history of AF. However, inflammation may contribute to both the occurrence/maintenance of AF and its thromboembolic complications.
Collapse
Affiliation(s)
- Ruxandra-Maria Băghină
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Simina Crișan
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Silvia Luca
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Oana Pătru
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Mihai-Andrei Lazăr
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Cristina Văcărescu
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Alina Gabriela Negru
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Constantin-Tudor Luca
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Dan Gaiță
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| |
Collapse
|
2
|
Huang M, Wang L, Zhang Q, Zhou L, Liao R, Wu A, Wang X, Luo J, Huang F, Zou W, Wu J. Interleukins in Platelet Biology: Unraveling the Complex Regulatory Network. Pharmaceuticals (Basel) 2024; 17:109. [PMID: 38256942 PMCID: PMC10820339 DOI: 10.3390/ph17010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Interleukins, a diverse family of cytokines produced by various cells, play crucial roles in immune responses, immunoregulation, and a wide range of physiological and pathological processes. In the context of megakaryopoiesis, thrombopoiesis, and platelet function, interleukins have emerged as key regulators, exerting significant influence on the development, maturation, and activity of megakaryocytes (MKs) and platelets. While the therapeutic potential of interleukins in platelet-related diseases has been recognized for decades, their clinical application has been hindered by limitations in basic research and challenges in drug development. Recent advancements in understanding the molecular mechanisms of interleukins and their interactions with MKs and platelets, coupled with breakthroughs in cytokine engineering, have revitalized the field of interleukin-based therapeutics. These breakthroughs have paved the way for the development of more effective and specific interleukin-based therapies for the treatment of platelet disorders. This review provides a comprehensive overview of the effects of interleukins on megakaryopoiesis, thrombopoiesis, and platelet function. It highlights the potential clinical applications of interleukins in regulating megakaryopoiesis and platelet function and discusses the latest bioengineering technologies that could improve the pharmacokinetic properties of interleukins. By synthesizing the current knowledge in this field, this review aims to provide valuable insights for future research into the clinical application of interleukins in platelet-related diseases.
Collapse
Affiliation(s)
- Miao Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.H.); (Q.Z.)
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Qianhui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.H.); (Q.Z.)
| | - Ling Zhou
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Rui Liao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Xinle Wang
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (X.W.); (J.L.)
| | - Jiesi Luo
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (X.W.); (J.L.)
| | - Feihong Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Wenjun Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.H.); (Q.Z.)
| | - Jianming Wu
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (X.W.); (J.L.)
- The Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education of China, Luzhou 646000, China
| |
Collapse
|
3
|
The Value of Interleukin-17A as a Prognostic Indicator in COVID-19 Patients. Jundishapur J Microbiol 2023. [DOI: 10.5812/jjm-130316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: SARS-CoV-2 infections (COVID-19) first occurred in Wuhan, China, in December 2019 and spread worldwide, causing significant mortality and morbidity. IL-17A may mediate numerous immunopathological effects secondary to cytokine release syndrome during SARS-CoV-2 infection. However, there has not been enough research on its effect on prognosis. Objectives: This study evaluated the predictive power of serum interleukin (IL)-17A level as a prognostic marker in COVID-19. Methods: The study included 152 patients diagnosed with COVID-19 by real-time polymerase chain reaction analysis of nasopharyngeal swab samples in the infectious diseases department and intensive care unit of our hospital between October 1 and December 31, 2020. The control group consisted of 40 asymptomatic healthcare workers who had negative RT-PCR results during routine COVID-19 screening in our hospital. Samples were collected in anticoagulant-free tubes and left at room temperature for 30 minutes. Afterward, it was centrifuged at 1000 × g for 15 minutes at 4°C per the instructions provided with the enzyme-linked immunoassay (ELISA) kit. Serum IL-17A levels were measured using the Human Interleukin 17A ELISA Kit. Results: Serum IL-17A levels were significantly higher in COVID-19 patients than in controls (P < 0.001). IL-17A levels increased significantly in association with disease severity in patients with the moderate, severe, and critical disease, with a less pronounced difference between severe and critical patients (moderate vs. severe, P < 0.001; severe vs. critical, P = 0.048). IL-17A levels at hospital admission and day 7 were significantly higher in non-surviving patients (P < 0.001). At a cut-off value of 210.25 ng/L, IL-17A at admission had a predictive power of 0.792 (P < 0.001). Compared to baseline, IL-17A values on day seven were significantly increased in non-survivors (P = 0.004) and decreased in survivors (P = 0.014). An increase of 26.17 ng/L or more on day 7 had a predictive mortality power of 0.634 (P = 0.005). Conclusions: The results of this study suggest that IL-17A, an important part of the immune system previously shown to be useful in the treatment and follow-up of COVID-19, may also help predict mortality in COVID-19 patients.
Collapse
|
4
|
Resende GG, da Cruz Lage R, Lobê SQ, Medeiros AF, Costa E Silva AD, Nogueira Sá AT, Oliveira AJDA, Sousa D, Guimarães HC, Gomes IC, Souza RP, Aguiar RS, Tunala R, Forestiero F, Bueno Filho JSS, Teixeira MM. Blockade of interleukin seventeen (IL-17A) with secukinumab in hospitalized COVID-19 patients - the BISHOP study. Infect Dis (Lond) 2022; 54:591-599. [PMID: 35485381 DOI: 10.1080/23744235.2022.2066171] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Patients with severe COVID-19 seem to evolve with a compromised antiviral response and hyperinflammation. Neutrophils are critical players in COVID-19. IL-17A plays a major role in protection against extracellular pathogens and neutrophil attraction/activation. We hypothesized that secukinumab, an anti-IL17A monoclonal antibody, could prevent the deleterious hyperinflammation in COVID-19. METHODS BISHOP was a randomized, open-label, single-centre, phase-II controlled trial. Fifty adult patients hospitalized with PCR-positive Covid-19, were randomized 1:1 to receive 300 mg of secukinumab subcutaneously at day-0 plus standard of care (group A) or standard of care alone (group B). A second dose of 300 mg of secukinumab could be administered on day-7, according to staff judgement. The primary endpoint was ventilator-free days at day-28 (VFD-28). Secondary efficacy and safety outcomes were also explored. RESULTS An intention-to-treat analysis showed no difference in VFD-28: 23.7 (95%CI 19.6-27.8) in group A vs. 23.8 (19.9-27.6) in group B, p = .62; There was also no difference in hospitalization time, intensive care unit demand and the incidence of circulatory shock, acute kidney injury, fungal or bacterial co-infections. There was no difference in the incidence of severe adverse events. Pulmonary thromboembolism occurred only in males and was less frequent in secukinumab-treated patients (4.2% vs. 26.2% p = .04). There was one death in each group. Upper airway viral clearance was also similar in both groups. CONCLUSION The efficacy of secukinumab in the treatment of Covid19 was not demonstrated. Secukinumab decreased pulmonary embolism in male patients. There was no difference between groups in adverse events and no unexpected events were observed.
Collapse
Affiliation(s)
- Gustavo Gomes Resende
- Rheumatology Unit, Hospital das Clínicas - Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo da Cruz Lage
- Rheumatology Unit, Hospital das Clínicas - Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | | | | | | | | | - Denise Sousa
- Hospital Risoleta Tolentino Neves, Belo Horizonte, Brazil
| | | | | | - Renan Pedra Souza
- Dept. of Genetics, Ecology and Evolution - UFMG, Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Wang J, He L, Li W, Lv S. A Role of IL-17 in Rheumatoid Arthritis Patients Complicated With Atherosclerosis. Front Pharmacol 2022; 13:828933. [PMID: 35211020 PMCID: PMC8861488 DOI: 10.3389/fphar.2022.828933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is mainly caused by joint inflammation. RA significantly increases the probability of cardiovascular disease. Although the progress of RA has been well controlled recently, the mortality of patients with RA complicated with cardiovascular disease is 1.5–3 times higher than that of patients with RA alone. The number of people with atherosclerosis in patients with RA is much higher than that in the general population, and atherosclerotic lesions develop more rapidly in patients with RA, which has become one of the primary factors resulting in the death of patients with RA. The rapid development of atherosclerosis in RA is induced by inflammation-related factors. Recent studies have reported that the expression of IL-17 is significantly upregulated in patients with RA and atherosclerosis. Simultaneously, there is evidence that IL-17 can regulate the proliferation, migration, and apoptosis of vascular endothelial cells and vascular smooth muscle cells through various ways and promote the secretion of several cytokines leading to the occurrence and development of atherosclerosis. Presently, there is no clear prevention or treatment plan for atherosclerosis in patients with RA. Therefore, this paper explores the mechanism of IL-17 in RA complicated with atherosclerosis and shows the reasons for the high incidence of atherosclerosis in patients with RA. It is hoped that the occurrence and development of atherosclerosis in patients with RA can be diagnosed or prevented in time in the early stage of lesions, and the prevention and treatment of cardiovascular complications in patients with RA can be enhanced to reduce mortality.
Collapse
Affiliation(s)
- Jiexin Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linxi He
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shangbin Lv
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Xin Y, Peng J, Hong YY, Chao QC, Na S, Pan S, Zhao LF. Advances in research on the effects of platelet activation in acute lung injury (Review). Biomed Rep 2022; 16:17. [PMID: 35154701 PMCID: PMC8814673 DOI: 10.3892/br.2022.1500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Acute lung injury (ALI) is an acute hypoxic respiratory insufficiency or failure caused by various factors inside and outside the lungs. ALI is associated with high morbidity and a poor prognosis in hospitalized patients. The lungs serve as a reservoir for platelet precursor megakaryocytes and are closely associated with platelets. Platelets not only play a central role in hemostasis, coagulation and wound healing, but can also act as inflammatory cells capable of stimulating non-hemostatic immune functions under inflammatory conditions, participating in the progression of various inflammatory diseases, and can result in tissue damage. Therefore, it was speculated that platelets may play an important role in the pathogenesis of ALI. In this review, the latest research progress on secretion of bioactive mediators from platelets, platelet activation-related signaling pathways, and the direct contact reactions between platelets and neutrophils with endothelial cells that result in ALI are described, providing evidence to support the importance of the consideration of platelets in the search for ALI interventional targets.
Collapse
Affiliation(s)
- Yuan Xin
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Jiang Peng
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Yu Yun Hong
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Qiao Cong Chao
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Su Na
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Sun Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Lin Fang Zhao
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| |
Collapse
|
7
|
Association of Inflammatory Markers/Cytokines with Cardiovascular Risk Manifestation in Patients with Endometriosis. Mediators Inflamm 2021; 2021:3425560. [PMID: 34754275 PMCID: PMC8572614 DOI: 10.1155/2021/3425560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
This study is aimed at determining the association of inflammatory markers and proinflammatory cytokines with cardiovascular risk manifestation in women with endometriosis as compared to healthy controls. A total of 181 females of reproductive age with the absence of other inflammatory or autoimmune disorders and a lack of hormonal therapy for at least 6 months voluntarily participated in this investigation. Patients were 81 females, laparoscopically diagnosed with endometriosis, while the control group comprised 80 healthy females without any pelvic pathology. All subjects were 20-40 years of age. Exclusion criteria were diabetes, obesity, hypertension, metabolic diseases, cardiovascular, and renal disorders. C-reactive protein, fibrinogen, homocysteine, interleukin-17, and interleukin-33 were analyzed using commercially available ELISA kits. For statistical interpretation, the unpaired Student “t” test was used. All inflammatory markers and cytokines demonstrated elevated levels (P < 0.001) in endometriosis patients as compared to healthy controls. The results of the study revealed that the patients with endometriosis demonstrate a hypercoagulable status due to inflammation, which initiates atherosclerosis and associated complications. Hence, endometriosis can cause a risk of cardiovascular disorders in these patients.
Collapse
|
8
|
Page MJ, Pretorius E. Platelet Behavior Contributes to Neuropathologies: A Focus on Alzheimer's and Parkinson's Disease. Semin Thromb Hemost 2021; 48:382-404. [PMID: 34624913 DOI: 10.1055/s-0041-1733960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The functions of platelets are broad. Platelets function in hemostasis and thrombosis, inflammation and immune responses, vascular regulation, and host defense against invading pathogens, among others. These actions are achieved through the release of a wide set of coagulative, vascular, inflammatory, and other factors as well as diverse cell surface receptors involved in the same activities. As active participants in these physiological processes, platelets become involved in signaling pathways and pathological reactions that contribute to diseases that are defined by inflammation (including by pathogen-derived stimuli), vascular dysfunction, and coagulation. These diseases include Alzheimer's and Parkinson's disease, the two most common neurodegenerative diseases. Despite their unique pathological and clinical features, significant shared pathological processes exist between these two conditions, particularly relating to a central inflammatory mechanism involving both neuroinflammation and inflammation in the systemic environment, but also neurovascular dysfunction and coagulopathy, processes which also share initiation factors and receptors. This triad of dysfunction-(neuro)inflammation, neurovascular dysfunction, and hypercoagulation-illustrates the important roles platelets play in neuropathology. Although some mechanisms are understudied in Alzheimer's and Parkinson's disease, a strong case can be made for the relevance of platelets in neurodegeneration-related processes.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| |
Collapse
|
9
|
Visser MJE, Tarr G, Pretorius E. Thrombosis in Psoriasis: Cutaneous Cytokine Production as a Potential Driving Force of Haemostatic Dysregulation and Subsequent Cardiovascular Risk. Front Immunol 2021; 12:688861. [PMID: 34335591 PMCID: PMC8324086 DOI: 10.3389/fimmu.2021.688861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
Psoriasis (PsO) is a common T cell-mediated inflammatory disorder of the skin with an estimated prevalence of 2%. The condition manifests most commonly as erythematous plaques covered with scales. The aetiology of PsO is multifactorial and disease initiation involves interactions between environmental factors, susceptibility genes, and innate and adaptive immune responses. The underlying pathology is mainly driven by interleukin-17. In addition, various inflammatory mediators from specific T helper (TH) cell subsets, namely TH1, TH17, and TH22, are overexpressed in cutaneous lesions and may also be detected in the peripheral blood of psoriatic patients. Moreover, these individuals are also at greater risk, compared to the general population, of developing multiple comorbid conditions. Cardiovascular disease (CVD) has been recognised as a prominent comorbidity of PsO. A potential mechanism contributing to this association may be the presence of a hypercoagulable state in these individuals. Inflammation and coagulation are closely related. The presence of chronic, low-grade systemic inflammation may promote thrombosis – one of the major determinants of CVD. A pro-inflammatory milieu may induce the expression of tissue factor, augment platelet activity, and perturb the vascular endothelium. Altogether, these changes will result in a prothrombotic state. In this review, we describe the aetiology of PsO, as well as the pathophysiology of the condition. We also consider its relationship to CVD. Given the systemic inflammatory nature of PsO, we evaluate the potential contribution of prominent inflammatory mediators (implicated in PsO pathogenesis) to establishing a prothrombotic state in psoriatic patients.
Collapse
Affiliation(s)
- Maria J E Visser
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Gareth Tarr
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Division of Rheumatology, Institute of Orthopaedics and Rheumatology, Winelands Mediclinic Orthopaedic Hospital, Stellenbosch, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
10
|
Zhao Y, Zhang J, Zhang W, Xu Y. A myriad of roles of dendritic cells in atherosclerosis. Clin Exp Immunol 2021; 206:12-27. [PMID: 34109619 DOI: 10.1111/cei.13634] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
Atherosclerosis is an inflammatory disease with break-down of homeostatic immune regulation of vascular tissues. As a critical initiator of host immunity, dendritic cells (DCs) have also been identified in the aorta of healthy individuals and atherosclerotic patients, whose roles in regulating arterial inflammation aroused great interest. Accumulating evidence has now pointed to the fundamental roles for DCs in every developmental stage of atherosclerosis due to their myriad of functions in immunity and tolerance induction, ranging from lipid uptake, efferocytosis and antigen presentation to pro- and anti-inflammatory cytokine or chemokine secretion. In this study we provide a timely summary of the published works in this field, and comprehensively discuss both the direct and indirect roles of DCs in atherogenesis. Understanding the pathogenic roles of DCs during the development of atherosclerosis in vascular tissues would certainly help to open therapeutic avenue to the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yanfang Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, China
| | - Jing Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
11
|
Naderi N, Farshidi N, Farshidi H, Montazerghaem H, Rahimzadeh M. Lack of association between serum IL-25 levels and acute coronary syndrome: a preliminary study. ACTA ACUST UNITED AC 2021; 61:60-65. [PMID: 33998410 DOI: 10.18087/cardio.2021.4.n1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/24/2021] [Accepted: 03/06/2021] [Indexed: 11/18/2022]
Abstract
Purpose Here, for the first time, the possible association between IL-25 and the risk of acute coronary syndrome (ACS) in Iranian patients was investigated.Material and methods In this study, serum IL-25 concentrations were measured with an enzyme-linked immunosorbent assay in 88 ACS patients, 40 stable angina pectoris (SAP) patients, and 50 healthy control subjects.Results No significant differences in IL-25 concentrations were observed between SAP (340±168 ng / l), ACS (330±151 ng / l), and control (302±135 ng / l) groups (p=0.5), nor was there a difference among patients with 1, 2, or 3 vessel disease in the SAP and ACS groups. Linear regression analyses revealed that IL-25 was not correlated with coronary artery disease risk factors. Biochemical and demographic variables did not differ significantly among IL-25 quartiles.Conclusion Despite previous murine and human studies showing a protective role of IL-25 in atherosclerosis, our results revealed that IL-25 does not have potential implications for atherosclerosis development and management in humans.
Collapse
Affiliation(s)
- Nadereh Naderi
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Narges Farshidi
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Farshidi
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Montazerghaem
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahsa Rahimzadeh
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
12
|
Kotyla PJ, Engelmann M, Giemza-Stokłosa J, Wnuk B, Islam MA. Thromboembolic Adverse Drug Reactions in Janus Kinase (JAK) Inhibitors: Does the Inhibitor Specificity Play a Role? Int J Mol Sci 2021; 22:2449. [PMID: 33671049 PMCID: PMC7957632 DOI: 10.3390/ijms22052449] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Recent advances in immunology enabled the characterization of several signal transmitting pathways responsible for proper cytokine and chemokine signaling. Among them, Janus kinases (JAKs) are essential components of receptor activation systems. The discovery of JAK kinases enabled the synthesis of JAK kinase inhibitors (JAKi or Jakinibs), which have proven to be efficacious in the treatment of hematologic malignancies and several rheumatological disorders and continue to be investigated in many clinical indications. Blocking multiple cytokines belonging to several cytokine families with a single small molecule may, however, create a potential risk for the patients. Recently, a higher risk of thromboembolic complications, namely, deep vein thrombosis and pulmonary embolism, has been recognized as the main concern during treatment with Jakinibs. At present, it is not entirely clear whether this increased risk is related to direct cytokine blockade, the presence of concomitant diseases in treated patients or other unknown circumstances that work together to increase the risk of this side effect. In this review, we discuss data on the risk of thromboembolic side effects, with special emphasis on the mechanism that may be responsible for this increased risk. Many indirect data indicate that higher thromboembolic risk may be related to the specificity of JAK inhibitor action, such that preferentially blocking one signaling pathway upsets the balance between pro and anti-thrombotic activities.
Collapse
Affiliation(s)
- Przemysław J. Kotyla
- Department of Internal Medicine, Rheumatology and Clinical Immunology, Faculty in Katowice, Medical University of Silesia, 40-635 Katowice, Poland
| | - Małgorzata Engelmann
- Department of Physiotherapy in Internal Medicine, Academy of Physical Education in Katowice, 40-065 Katowice, Poland;
| | | | - Bartosz Wnuk
- Department of Rehabilitation, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-635 Katowice, Poland;
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
13
|
Scarpa R, Caso F, Costa L, Passavanti S, Vitale MG, Trojaniello C, Del Puente A, Ascierto PA. May the analysis of 1918 influenza pandemic give hints to imagine the possible magnitude of Corona Virus Disease-2019 (COVID-19)? J Transl Med 2020; 18:489. [PMID: 33353549 PMCID: PMC7753514 DOI: 10.1186/s12967-020-02673-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In 1918 an unknown infectious agent spread around the world infecting over one-third of the general population and killing almost 50 million people. Many countries were at war, the First World War. Since Spain was a neutral country and Spanish press could report about the infection without censorship, this condition is commonly remembered as "Spanish influenza". This review examines several aspects during the 1918 influenza pandemic to bring out evidences which might be useful to imagine the possible magnitude of the present coronavirus disease 2019 (COVID-19). METHODS In the first part of this review we will examine the origin of the SARS-Coronavirus-2 and 1918 Spanish Influenza Virus and the role played by host and environment in its diffusion. We will also include in our analysis an evaluation of different approaches utilized to restrain the spread of pandemic and to treat infected patients. In the second part, we will try to imagine the magnitude of the present COVID-19 pandemic and the possible measures able to restrain in the present environment its spread. RESULTS Several factors characterize the outcome in a viral pandemic infection. They include the complete knowledge of the virus, the complete knowledge of the host and of the environment where the host lives and the pandemic develops. CONCLUSION By comparing the situation seen in 1918 with the current one, we are now in a more favourable position. The experience of the past teaches us that their success is linked to a rapid, constant and lasting application. Then, rather than coercion, awareness of the need to observe such prevention measures works better.
Collapse
Affiliation(s)
- Raffaele Scarpa
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio, Pansini 5, 80131, Naples, Italy.
| | - Francesco Caso
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio, Pansini 5, 80131, Naples, Italy
| | - Luisa Costa
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio, Pansini 5, 80131, Naples, Italy
| | - Saverio Passavanti
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio, Pansini 5, 80131, Naples, Italy
| | - Maria Grazia Vitale
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Claudia Trojaniello
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Antonio Del Puente
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio, Pansini 5, 80131, Naples, Italy
| | - Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| |
Collapse
|
14
|
Jiang H, Zhang H, Yang Y, Yang X. Associations of myeloperoxidase, interleukin-17A and heparin-binding EGF-like growth factor levels with in-stent restenosis after percutaneous coronary intervention: a single-centre case-control study in China. BMJ Open 2020; 10:e039405. [PMID: 33158827 PMCID: PMC7651712 DOI: 10.1136/bmjopen-2020-039405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES To investigate the changes in serum myeloperoxidase (MPO), interleukin (IL)-17A and heparin-binding EGF-like growth factor (HB-EGF) levels before and after percutaneous coronary intervention (PCI), and to evaluate the associations of MPO, IL-17A and HB-EGF levels with the 1-year restenosis rate. DESIGN Case-control study. SETTINGS Xiangyang Central Hospital between January 2012 and December 2017. PARTICIPANTS Patients with coronary heart disease who underwent PCI. INTERVENTIONS Not applicable. PRIMARY AND SECONDARY OUTCOME MEASURES Not applicable. RESULTS Finally, 407 and 132 patients were included in the control and in-stent restenosis (ISR) groups, respectively. The general clinical characteristics of the patients were not significantly different between the two groups. The MPO, IL-17A and HB-EGF levels were not significantly different between the two groups at baseline but significantly increased after PCI. The ISR group showed higher levels of MPO, IL-17A and HB-EGF compared with the control group at all postoperative time points. Multivariable analysis showed that MPO, IL-17A and HB-EGF were associated with increased ISR [MPO (OR=1.003; 95% CI: 1.001 to 1.005; p=0.002), IL-17A (OR=1.015; 95% CI: 1.009 to 1.020; p<0.0001) and HB-EGF (OR=2.256; 95% CI: 1.103 to 4.009; p=0.002)]. All three factors had sensitivity and specificity ≥68% for ISR. CONCLUSIONS HB-EGF could be used for the detection of ISR after PCI and could be of use for the prediction of ISR, but the value of MPO and IL-17A might be more limited. This will have to be validated in future studies.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Medical Examination, Xiangyang Central Hospital, Xiangyang, Hubei, China
| | - Hongmei Zhang
- Department of Clinical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yang
- Department of Endocrinology, Xiangyang Central Hospital, Xiangyang, Hubei, China
| | - Xuezhou Yang
- Reproductive Medicine Center, Xiangyang Central Hospital, Xiangyang, Hubei, China
| |
Collapse
|
15
|
Zhang R, Song B, Hong X, Shen Z, Sui L, Wang S. microRNA-9 Inhibits Vulnerable Plaque Formation and Vascular Remodeling via Suppression of the SDC2-Dependent FAK/ERK Signaling Pathway in Mice With Atherosclerosis. Front Physiol 2020; 11:804. [PMID: 32765295 PMCID: PMC7378740 DOI: 10.3389/fphys.2020.00804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
microRNAs (miRNAs or miRs) play important roles in modulating the occurrence and progression of atherosclerosis and acute coronary syndrome (ACS). Herein, this study aimed to investigate the possible role of miR-9 in the development of atherosclerosis. Initially, the differentially expressed genes associated with ACS were screened and miRNAs that regulate syndecan-2 (SDC2) were predicted using microarray analysis. Furthermore, the biological functions of miR-9 and SDC2 on aortic plaque area, proliferation of collagen fibers, Mac-3-labeled macrophages, inflammatory response, and levels of the focal adhesion kinase/extracellular signal-regulated kinase (FAK/ERK) signaling pathway-related proteins in atherosclerosis were evaluated after ectopic miR-9 expression or SDC2 depletion in ACS mice using oil red O staining, Masson’s trichrome staining, immunohistochemistry, and Western blot analysis, respectively. SDC2 was highly-expressed, while miR-9 was poorly-expressed in atherosclerosis. Additionally, miR-9 targeted SDC2 and negatively-regulated its expression. Up-regulation of miR-9 reduced aortic plaque area, the proliferation of collagen fibers, Mac-3-labeled macrophages and levels of IL-6, IL-1β, and TNF-α by suppressing SDC2 and the FAK/ERK signaling pathway, thereby ameliorating atherosclerosis in ACS mice. In conclusion, the current study provides evidence that miR-9 retards atherosclerosis by repressing SDC2 and the FAK/ERK signaling pathway, highlighting a new theoretical basis for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ruihong Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Beibei Song
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaojian Hong
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiyuan Shen
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Sui
- Department of Emergency, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Siyu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Raucci F, Mansour AA, Casillo GM, Saviano A, Caso F, Scarpa R, Mascolo N, Iqbal AJ, Maione F. Interleukin-17A (IL-17A), a key molecule of innate and adaptive immunity, and its potential involvement in COVID-19-related thrombotic and vascular mechanisms. Autoimmun Rev 2020; 19:102572. [PMID: 32376393 PMCID: PMC7252120 DOI: 10.1016/j.autrev.2020.102572] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Federica Raucci
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Adel Abo Mansour
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | - Gian Marco Casillo
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Anella Saviano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Francesco Caso
- Rheumatology Research Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Raffaele Scarpa
- Rheumatology Research Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Nicola Mascolo
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Asif Jilani Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
17
|
Najem MY, Couturaud F, Lemarié CA. Cytokine and chemokine regulation of venous thromboembolism. J Thromb Haemost 2020; 18:1009-1019. [PMID: 32020753 DOI: 10.1111/jth.14759] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/15/2020] [Accepted: 02/03/2020] [Indexed: 12/27/2022]
Abstract
Morbidity and mortality from venous thromboembolism (VTE), which refers to deep vein thrombosis and pulmonary embolism, have a substantial effect on the global burden of disease. The field of venous thrombosis research has been dramatically changed over the past 10 years with the improvement of animal models that shed some light on the interaction between inflammation and thrombosis. Important recent advances provided evidence of the implication of the innate immune system in venous thrombosis. In this review, we highlighted the cytokines and chemokines that regulate mechanisms of thrombus formation and resolution. Cytokines are pleiotropic, redundant, and multifunctional endogenous mediators orchestrating the inflammatory responses leading to thrombus formation or resolution. The use of experimental models has revealed the pro-thrombotic activity of some cytokines including interferon-γ, interleukin (IL)-6, chemokine ligand 2, IL-17A, IL-9, IL-1β, and transforming growth factor-β. Other cytokines such as IL-10, tumor necrosis factor-α, and IL-8 appear to promote thrombus resolution in late phase of venous thromboembolism. The purpose of this review is to bring together the current knowledge regarding the cytokines and chemokines that have been involved in thrombosis formation and resolution. We postulate that an imbalance between pro-thrombotic and anti-thrombotic cytokines/chemokines may be involved in the pathophysiology of VTE. However, in-depth basic and clinical research in venous thrombosis is still require to fully understand the precise mechanism of action of these cytokines.
Collapse
Affiliation(s)
- Maria Y Najem
- EA3878 (GETBO), Brest Hospital, Univ Brest, Brest, France
| | | | - Catherine A Lemarié
- EA3878 (GETBO), Brest Hospital, Univ Brest, Brest, France
- INSERM 1078, Brest, France
| |
Collapse
|
18
|
Zhang H, Zhang S, Zhang J, Zhou R, Nie Y, Ren S, Li J, Feng K, Ji F, Kong G, Li Z. Improvement of human platelet aggregation post-splenectomy with paraesophagogastric devascularization in chronic hepatitis B patients with cirrhotic hypersplenism. Platelets 2019; 31:1019-1027. [PMID: 31851564 DOI: 10.1080/09537104.2019.1704715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thrombocytopenia is a common hematological abnormality in patients with cirrhotic hypersplenism. Splenectomy with paraesophagogastric devascularization (SPD) is a conventional surgical therapy which can reverse pancytopenia in these patients. Platelets are traditionally recognized for their central role in hemostasis. However, the status of platelet aggregation in chronic hepatitis B patients with cirrhotic hypersplenism before and after SPD has not been reported yet. A total of 41 cirrhotic patients and 31 healthy controls were included in this study. Platelet aggregation was detected by AggRAM® Advanced Modular System (Helena Laboratories, USA). ELISA was used to detect the cytokines closely related to platelet aggregation. Expressions of platelet membrane glycoproteins (GPs) were evaluated by flow cytometric analysis. Platelet aggregation was found to be decreased distinctly in the cirrhotic patients, and to be restored to normal level after SPD. The cirrhotic patients showed higher plasma levels of the cytokines HMGB1, PEDF, vWF, cAMP and cGMP, which also improved partially after SPD. Moreover, the cirrhotic patients had much lower expression of GPIIb/IIIa, GPIbα and P-selectin than either the healthy controls or SPD patients at basal or activated level. Generally, SPD benefits cirrhotic patients with bleeding tendencies by improving platelet counts and aggregation. GPIIb/IIIa may be the key membrane protein responsible for the change in platelet aggregation before and after SPD.
Collapse
Affiliation(s)
- Hui Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China.,Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, Xi'an, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China.,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China
| | - Shaoying Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China.,Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, Xi'an, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China
| | - Jian Zhang
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, Xi'an, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China.,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China
| | - Rui Zhou
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, Xi'an, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China.,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Disease and Xijing Hospital of Digestive Diseases, Fourth Military Medical University , Xi'an, Shaanxi Province, People's Republic of China
| | - Song Ren
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, Xi'an, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China.,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China
| | - Jun Li
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China.,Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, Xi'an, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China
| | - Keping Feng
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China.,Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, Xi'an, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China
| | - Fanpu Ji
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China.,Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, Xi'an, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China.,Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Ministry of Education of China , Xi'an, Shaanxi Province, People's Republic of China
| | - Guangyao Kong
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China.,Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, Xi'an, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Ministry of Education of China , Xi'an, Shaanxi Province, People's Republic of China
| | - Zongfang Li
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China.,Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, Xi'an, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China.,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Ministry of Education of China , Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
19
|
Adams B, Nunes JM, Page MJ, Roberts T, Carr J, Nell TA, Kell DB, Pretorius E. Parkinson's Disease: A Systemic Inflammatory Disease Accompanied by Bacterial Inflammagens. Front Aging Neurosci 2019; 11:210. [PMID: 31507404 PMCID: PMC6718721 DOI: 10.3389/fnagi.2019.00210] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
Parkinson’s disease (PD) is a well-known neurodegenerative disease with a strong association established with systemic inflammation. Recently, the role of the gingipain protease group from Porphyromonas gingivalis was implicated in Alzheimer’s disease and here we present evidence, using a fluorescent antibody to detect gingipain R1 (RgpA), of its presence in a PD population. To further elucidate the action of this gingipain, as well as the action of the lipopolysaccharide (LPS) from P. gingivalis, low concentrations of recombinant RgpA and LPS were added to purified fluorescent fibrinogen. We also substantiate previous findings regarding PD by emphasizing the presence of systemic inflammation via multiplex cytokine analysis, and demonstrate hypercoagulation using thromboelastography (TEG), confocal and electron microscopy. Biomarker analysis confirmed significantly increased levels of circulating proinflammatory cytokines. In our PD and control blood analysis, our results show increased hypercoagulation, the presence of amyloid formation in plasma, and profound ultrastructural changes to platelets. Our laboratory analysis of purified fibrinogen with added RgpA, and/or LPS, showed preliminary data with regards to the actions of the protease and the bacterial membrane inflammagen on plasma proteins, to better understand the nature of established PD.
Collapse
Affiliation(s)
- Büin Adams
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - J Massimo Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Timothy Roberts
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Theo A Nell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
20
|
Evidence for the important role of inflammation in xenotransplantation. JOURNAL OF INFLAMMATION-LONDON 2019; 16:10. [PMID: 31148951 PMCID: PMC6537172 DOI: 10.1186/s12950-019-0213-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Abstract
There is increasing evidence of a sustained state of systemic inflammation after pig-to-nonhuman primate (NHP) xenotransplantation (that has been termed systemic inflammation in xenograft recipients [SIXR]). Increases in inflammatory markers, e.g., C-reactive protein, histones, serum amyloid A, D-dimer, cytokines, chemokines, and a decrease in free triiodothyronine, have been demonstrated in the recipient NHPs. The complex interactions between inflammation, coagulation, and the immune response are well-recognized, but the role of inflammation in xenograft recipients is not fully understood. The evidence suggests that inflammation can promote the activation of coagulation and the adaptive immune response, but the exact mechanisms remain uncertain. If prolonged xenograft survival is to be achieved, anti-inflammatory strategies (e.g., the administration of anti-inflammatory agents, and/or the generation of genetically-engineered organ-source pigs that are protected from the effect of inflammation) may be necessary to prevent, control, or negate the effect of the systemic inflammation that develops in xenograft recipients. This may allow for a reduction in the intensity of exogenous immunosuppressive therapy. If immunological tolerance to a xenograft is to be obtained, then control of inflammation may be essential.
Collapse
|
21
|
Quadri JA, Sarwar S, Pinky, Kar P, Singh S, Mallick SR, Arava S, Nag TC, Roy TS, Shariff A. Fluoride induced tissue hypercalcemia, IL-17 mediated inflammation and apoptosis lead to cardiomyopathy: Ultrastructural and biochemical findings. Toxicology 2018; 406-407:44-57. [PMID: 29800585 DOI: 10.1016/j.tox.2018.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 02/09/2023]
Abstract
An increased prevalence of cardiac complications has been observed in residents of fluorosis endemic areas chronically exposed to fluoride. Fluoride induces soft tissue injury due to oxidative stress, lipid peroxidation (LPO) and mitochondriopathy. It was hypothesized that chronic fluoride exposure induces apoptosis in cardiomyocytes due to inflammation, lysis of extra cellular matrix and altered calcium metabolism. This study was planned to evaluate the effects of chronic fluoride exposure and the mechanism of action in the cardiac muscle. Fifteen week old male Wistar rats were administered a human equivalent dose of fluoride (50 and 100 ppm ad-libitum, HED = 5 & 10 ppm in human) for 75-days. After 75-days of fluoride exposure, the animals were euthanized and fluoride, oxidative stress (SOD, GPX, Catalase activities) and LPO were measured. Histopathological and ultrastructural pathological examinations were conducted on the cardiac tissues using light, atomic force and electron microscopies. The cardiac tissues were also assessed for apoptosis (TUNEL/Caspase assays), and tissue calcium levels (Alizarin-assay and SEM-EDX). Tissue inflammation and expression of IL-17, MMP-9, Caspase-3 and Bcl-2 were evaluated. In the fluoride exposed groups, a significant (≤0.05) increase in levels of oxidative stress, LPO and apoptosis were observed. The IL-17, MMP-9 and Caspase-3 were significantly (≤0.05) higher in the cardiac muscle after chronic fluoride exposure. The fluoride seems to have induced inflammation in the cardiac tissues, as well as an increase in tissue calcium (≤0.05). There was significant damage to cardiac muscle fibres including, thinning, distortion and neo-vasculogenesis following chronic fluoride exposure. Mitochondriopathy, lysis of ground substance, oedema, and hyper-vacuolation was seen in fluoride treated groups. Remarkable levels of distortion and bending in Z band were observed under the AFM. Many of these observed changes mimic those occurring in cardiomegaly, cardiac hypertrophy and cardiomyopathies.
Collapse
Affiliation(s)
| | - Saba Sarwar
- Department of Anatomy, AIIMS, New Delhi, India
| | - Pinky
- Department of Anatomy, AIIMS, New Delhi, India
| | - Parmita Kar
- Department of Endocrinology and Metabolism, AIIMS, New Delhi, India
| | - Seema Singh
- Department of Anatomy, AIIMS, New Delhi, India
| | | | | | | | | | - A Shariff
- Department of Anatomy, AIIMS, New Delhi, India
| |
Collapse
|
22
|
Interleukin 17, inflammation, and cardiovascular risk in patients with psoriasis. J Am Acad Dermatol 2018; 79:345-352. [PMID: 29477740 DOI: 10.1016/j.jaad.2018.02.040] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/23/2022]
Abstract
In addition to being recognized as a chronic inflammatory disease that manifests in the skin, psoriasis is increasingly understood to be a systemic disease that causes immune dysregulation throughout the body. The systemic nature of psoriasis is evidenced by the higher burden of comorbidities and shorter life expectancies of patients with psoriasis, particularly those with early-onset and severe disease. Notably, psoriasis is associated with an increased risk for cardiovascular disease, which is the most common cause of morbidity and mortality in patients with psoriasis. In this review, we examine the association between psoriasis and cardiovascular disease and specifically focus on the role of interleukin 17-mediated inflammation as a potential mechanistic link between psoriasis and cardiovascular disease. Moreover, we describe potential treatment approaches to reduce the burden of cardiovascular disease in patients with psoriasis and discuss the clinical importance of the association of these 2 diseases with respect to patient management and education.
Collapse
|
23
|
|
24
|
Damien P, Cognasse F, Payrastre B, Spinelli SL, Blumberg N, Arthaud CA, Eyraud MA, Phipps RP, McNicol A, Pozzetto B, Garraud O, Hamzeh-Cognasse H. NF-κB Links TLR2 and PAR1 to Soluble Immunomodulator Factor Secretion in Human Platelets. Front Immunol 2017; 8:85. [PMID: 28220122 PMCID: PMC5292648 DOI: 10.3389/fimmu.2017.00085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/18/2017] [Indexed: 12/13/2022] Open
Abstract
The primary toll-like receptor (TLR)-mediated immune cell response pathway common for all TLRs is MyD88-dependent activation of NF-κB, a seminal transcription factor for many chemokines and cytokines. Remarkably, anucleate platelets express the NF-κB machinery, whose role in platelets remains poorly understood. Here, we investigated the contribution of NF-κB in the release of cytokines and serotonin by human platelets, following selective stimulation of TLR2 and protease activated receptor 1 (PAR1), a classical and non-classical pattern-recognition receptor, respectively, able to participate to the innate immune system. We discovered that platelet PAR1 activation drives the process of NF-κB phosphorylation, in contrast to TLR2 activation, which induces a slower phosphorylation process. Conversely, platelet PAR1 and TLR2 activation induces similar ERK1/2, p38, and AKT phosphorylation. Moreover, we found that engagement of platelet TLR2 with its ligand, Pam3CSK4, significantly increases the release of sCD62P, RANTES, and sCD40L; this effect was attenuated by incubating platelets with a blocking anti-TLR2 antibody. This effect appeared selective since no modulation of serotonin secretion was observed following platelet TLR2 activation. Platelet release of sCD62P, RANTES, and sCD40L following TLR2 or PAR1 triggering was abolished in the presence of the NF-κB inhibitor Bay11-7082, while serotonin release following PAR1 activation was significantly decreased. These new findings support the concept that NF-κB is an important player in platelet immunoregulations and functions.
Collapse
Affiliation(s)
- Pauline Damien
- GIMAP-EA3064, Université de Lyon , Saint-Étienne , France
| | - Fabrice Cognasse
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France; Etablissement Français du Sang Rhône-Alpes-Auvergne, Saint-Etienne, France
| | - Bernard Payrastre
- Inserm, U1048 and Université Toulouse 3, I2MC, CHU de Toulouse, Laboratoire d'Hématologie , Toulouse , France
| | - Sherry L Spinelli
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Neil Blumberg
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | | | - Marie-Ange Eyraud
- Etablissement Français du Sang Rhône-Alpes-Auvergne , Saint-Etienne , France
| | - Richard P Phipps
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | | | - Bruno Pozzetto
- GIMAP-EA3064, Université de Lyon , Saint-Étienne , France
| | - Olivier Garraud
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France; Institut National de Transfusion Sanguine (INTS), Paris, France
| | | |
Collapse
|
25
|
Papadavid E, Diamanti K, Spathis A, Varoudi M, Andreadou I, Gravanis K, Theodoropoulos K, Karakitsos P, Lekakis J, Rigopoulos D, Ikonomidis I. Increased levels of circulating platelet-derived microparticles in psoriasis: Possible implications for the associated cardiovascular risk. World J Cardiol 2016; 8:667-675. [PMID: 27957253 PMCID: PMC5124725 DOI: 10.4330/wjc.v8.i11.667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/20/2016] [Accepted: 09/08/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate platelet activation markers in psoriasis patients, compared to controls, and investigate their association with the inflammatory burden of psoriasis.
METHODS Forty psoriatic patients without cardiovascular disease, and 12 healthy controls were subjected to measurement of baseline platelet CD62P, CD63 and CD42b expression, platelet-leukocyte complexes, i.e., platelet-monocyte complexes (PMC), platelet-neutrophil complexes (PNC) and platelet-lymphocyte complexes, and concentrations of platelet-derived microparticles (PMPs) using flow cytometry. Both larger-size (0.5-0.9 μm) and smaller-size (< 0.5 μm) PMPs were determined. Serum interleukin (IL)-12 and IL-17 levels were also measured by enzyme-linked immunosorbent assay. The severity of psoriasis was evaluated by the Psoriasis Area Severity Index (PASI).
RESULTS PMP concentrations were significantly higher in psoriasis patients than controls [mean ± standard error of mean (SEM): 22 ± 5/μL vs 11 ± 6/μL; P = 0.018), for both smaller-size (10 ± 2/μL vs 4 ± 2/μL; P = 0.033) and larger-size (12 ± 3/μL vs 6 ± 4/μL; P = 0.014) PMPs. Platelet CD62P, CD63 and CD42b expression and circulating PMC and PNC were similar between the two groups. Lower circulating PLC were observed in psoriasis patients compared to controls (mean ± SEM: 16% ± 3% vs 23% ± 6%; P = 0.047). Larger-size PMPs were related with IL-12 levels (P < 0.001) and smaller-size PMPs with both IL-12 and IL-17 levels (P < 0.001). Total PMPs also correlated with IL-12 (P < 0.001). CD63 expression was positively correlated with both IL-12 and IL-17 (P < 0.05). Increased PASI score was associated with increased levels of larger-size PMPs (r = 0.45; P = 0.011) and increased CD63 expression (r = 0.47; P < 0.01).
CONCLUSION PMPs, known to be predictive of cardiovascular outcomes, are increased in psoriasis patients, and associated with high inflammatory disease burden. Enhanced platelet activation may be the missing link leading to cardiovascular events in psoriatic patients.
Collapse
|
26
|
Maione F. Commentary: IL-17 in Chronic Inflammation: From Discovery to Targeting. Front Pharmacol 2016; 7:250. [PMID: 27561214 PMCID: PMC4980561 DOI: 10.3389/fphar.2016.00250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 07/28/2016] [Indexed: 11/14/2022] Open
Affiliation(s)
- Francesco Maione
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| |
Collapse
|
27
|
Significant Modules and Biological Processes between Active Components of Salvia miltiorrhiza Depside Salt and Aspirin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:3439521. [PMID: 27069488 PMCID: PMC4812280 DOI: 10.1155/2016/3439521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/08/2015] [Accepted: 01/12/2016] [Indexed: 12/22/2022]
Abstract
The aim of this study is to examine and compare the similarities and differences between active components of S. miltiorrhiza depside salt and aspirin using perspective of pharmacological molecular networks. Active components of S. miltiorrhiza depside salt and aspirin's related genes were identified via the STITCH4.0 and GeneCards Database. A text search engine (Agilent Literature Search 2.71) and MCODE software were applied to construct network and divide modules, respectively. Finally, 32, 2, and 28 overlapping genes, modules, and pathways were identified between active components of S. miltiorrhiza depside salt and aspirin. A multidimensional framework of drug network showed that two networks reflected commonly in human aortic endothelial cells and atherosclerosis process. Aspirin plays a more important role in metabolism, such as the well-known AA metabolism pathway and other lipid or carbohydrate metabolism pathways. S. miltiorrhiza depside salt still plays a regulatory role in type II diabetes mellitus, insulin resistance, and adipocytokine signaling pathway. Therefore, this study suggests that aspirin combined with S. miltiorrhiza depside salt may be more efficient in treatment of CHD patients, especially those with diabetes mellitus or hyperlipidemia. Further clinical trials to confirm this hypothesis are still needed.
Collapse
|
28
|
IL-17 Induces MPTP opening through ERK2 and P53 signaling pathway in human platelets. ACTA ACUST UNITED AC 2015; 35:679-683. [PMID: 26489621 DOI: 10.1007/s11596-015-1489-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/09/2015] [Indexed: 02/02/2023]
Abstract
The opening of mitochondrial permeability transition pore (MPTP) plays a critical role in platelet activation. However, the potential trigger of the MPTP opening in platelet activation remains unknown. Inflammation is the crucial trigger of platelet activation. In this study, we aimed to explore whether and how the important inflammatory cytokine IL-17 is associated with MPTP opening in platelets activation by using MPTP inhibitor cyclosporine-A (CsA). The mitochondrial membrane potential (ΔΨm) was detected to reflect MPTP opening levels. And the platelet aggregation, activation, and the primary signaling pathway were also tested. The results showed that the MPTP opening levels were increased and Δψm reduced in platelets administrated with IL-17. Moreover, the levels of aggregation, CD62P, PAC-1, P53 and the phosphorylation of ERK2 were enhanced along with the MPTP opening in platelets pre-stimulated with IL-17. However, CsA attenuated these effects triggered by IL-17. It was suggested that IL-17 could induce MPTP opening through ERK2 and P53 signaling pathway in platelet activation and aggregation.
Collapse
|
29
|
Reduced IL-35 levels are associated with increased platelet aggregation and activation in patients with acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Ann Hematol 2014; 94:837-45. [PMID: 25512184 DOI: 10.1007/s00277-014-2278-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/07/2014] [Indexed: 01/30/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a major complication associated with allogeneic hematopoietic stem cell transplantation (allo-HSCT). Interleukin (IL)-35 is a novel anti-inflammatory cytokine that suppresses the immune response. This prospective study explored IL-35 plasma levels in 65 patients after HSCT. The results revealed that the peripheral blood of patients with grades III-IV aGVHD (23.46 ng/ml) had reduced IL-35 compared to transplanted patients with grades I-II aGVHD (40.26 ng/ml, p < 0.01) or patients without aGVHD (41.40 ng/ml, p < 0.05). Allografts, including granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood progenitor cell (PBPC) and G-CSF-primed bone marrow (GBM), from 38 patients were analyzed for IL-35 levels with respect to aGVHD. The patients who received lower levels of IL-35 cells in the GBM (28.0 ng/ml, p = 0.551) or lower levels of IL-35 in PBPC (53.46 ng/ml, p = 0.03) exhibited a higher incidence of aGVHD. Patients with aGVHD have increased platelet aggregation. IL-35 was added to patient blood in vitro, and platelet aggregation was inhibited by IL-35 in a dose-dependent manner. The markers of platelet activation (CD62P/PAC-1) can also be inhibited by IL-35. The results indicate that IL-35 may affect the development of aGVHD by inhibiting platelet activation and aggregation. Our data suggests that IL-35 represents a potentially effective therapeutic agent against aGVHD after allo-HSCT.
Collapse
|
30
|
Abstract
Background Platelets participate in tissue repair and innate immune responses. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are well-characterized I-type lectins, which control apoptosis. Methodology/Principal Findings We characterized the expression of Siglec-7 in human platelets isolated from healthy volunteers using flow cytometry and confocal microscopy. Siglec-7 is primarily expressed on α granular membranes and colocalized with CD62P. Siglec-7 expression was increased upon platelet activation and correlated closely with CD62P expression. Cross-linking Siglec-7 with its ligand, ganglioside, resulted in platelet apoptosis without any significant effects on activation, aggregation, cell morphology by electron microscopy analysis or secretion. We show that ganglioside triggered four key pathways leading to apoptosis in human platelets: (i) mitochondrial inner transmembrane potential (ΔΨm) depolarization; (ii) elevated expression of pro-apoptotic Bax and Bak proteins with reduced expression of anti-apoptotic Bcl-2 protein; (iii) phosphatidylserine exposure and (iv), microparticle formation. Inhibition of NAPDH oxidase, PI3K, or PKC rescued platelets from apoptosis induced by Siglec-7 recruitment, suggesting that the platelet receptors P2Y1 and GPIIbIIIa are essential for ganglioside-induced platelet apoptosis. Conclusions/Significance The present work characterizes the role of Siglec-7 and platelet receptors in regulating apoptosis and death. Because some platelet pathology involves apoptosis (idiopathic thrombocytopenic purpura and possibly storage lesions), Siglec-7 might be a molecular target for therapeutic intervention/prevention.
Collapse
|
31
|
|
32
|
Su SA, Ma H, Shen L, Xiang MX, Wang JA. Interleukin-17 and acute coronary syndrome. J Zhejiang Univ Sci B 2014; 14:664-9. [PMID: 23897784 DOI: 10.1631/jzus.bqicc701] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Inflammation plays an important role in atherosclerosis, which is also crucial for acute coronary syndrome (ACS). Recent studies have revealed that interleukin (IL)-17, which was regarded as a pro-inflammatory cytokine, has a dual function in the progress of ACS. In this review, we sum up both experimental and clinical studies on the relevance of IL-17 to atherosclerosis and its complications, and summarize the research progress on the effect of IL-17 on the atherosclerotic plaque stability and ACS onset. Although the studies are controversial and the mechanism remains unclear, we highlight the knowledge of the role of IL-17 in ACS and elucidate its potential mechanism.
Collapse
Affiliation(s)
- Sheng-an Su
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | | | | | | | | |
Collapse
|
33
|
Shi G, Field DJ, Ko KA, Ture S, Srivastava K, Levy S, Kowalska MA, Poncz M, Fowell DJ, Morrell CN. Platelet factor 4 limits Th17 differentiation and cardiac allograft rejection. J Clin Invest 2014; 124:543-52. [PMID: 24463452 DOI: 10.1172/jci71858] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/07/2013] [Indexed: 01/12/2023] Open
Abstract
Th cells are the major effector cells in transplant rejection and can be divided into Th1, Th2, Th17, and Treg subsets. Th differentiation is controlled by transcription factor expression, which is driven by positive and negative cytokine and chemokine stimuli at the time of T cell activation. Here we discovered that chemokine platelet factor 4 (PF4) is a negative regulator of Th17 differentiation. PF4-deficient and platelet-deficient mice had exaggerated immune responses to cardiac transplantation, including increased numbers of infiltrating Th17 cells and increased plasma IL-17. Although PF4 has been described as a platelet-specific molecule, we found that activated T cells also express PF4. Furthermore, bone marrow transplantation experiments revealed that T cell-derived PF4 contributes to a restriction in Th17 differentiation. Taken together, the results of this study demonstrate that PF4 is a key regulator of Th cell development that is necessary to limit Th17 differentiation. These data likely will impact our understanding of platelet-dependent regulation of T cell development, which is important in many diseases, in addition to transplantation.
Collapse
|
34
|
The molecular and electrophysiological mechanism of buyanghuanwu decoction in learning and memory ability of vascular dementia rats. Brain Res Bull 2013; 99:13-8. [PMID: 24070657 DOI: 10.1016/j.brainresbull.2013.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/06/2013] [Accepted: 09/07/2013] [Indexed: 12/29/2022]
Abstract
Buyanghuanwu Decoction (BYHWD), as a traditional Chinese medicine, has been developed to treat vascular dementia for hundreds of years, but the underlying mechanisms remain unknown. In this research, the protective effects of BYHWD on hippocampal neuron were examined in the rats of ischemia-reperfusion. Ischemia-reperfusion injury was induced by the four-vessel occlusion method and continued for 30 days. BYHWD (per 6.25g/kg/d) was orally given to rats twice each day for 30 days after ischemia-reperfusion, Nimodipine (per 10mg/kg/d) was orally given to rats twice each day for 30 days. In VD+BYHWD group rats, the neuronal injury in the hippocampal CA1 region was significantly less than that of VD group's. BYHWD of intragastric administration also markedly increased the expression of Extracellular signal-regulated kinase 2 (ERK2) and Calcium/calmodulin-dependent protein kinaseII (CaMKIIIy)in the CA1 region. Our results suggested that increased ERK2 and CaMKIIIy due to BYHWD may partially account for its effect of neuroprotection standing against ischemic injury in the hippocampal CA1 region, and participated in the rebuilding of synapse, strengthened the expression of LTP, promoted the ability recover of learning and memory in VD rats.
Collapse
|
35
|
Berthet J, Damien P, Hamzeh-Cognasse H, Arthaud CA, Eyraud MA, Zéni F, Pozzetto B, McNicol A, Garraud O, Cognasse F. Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling and differential cytokine secretion. Clin Immunol 2012; 145:189-200. [PMID: 23108090 DOI: 10.1016/j.clim.2012.09.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 12/15/2022]
Abstract
Platelets are currently acknowledged as cells of innate immunity and inflammation and play a complex role in sepsis. We examined whether different types of LPS have different effects on the release of soluble signaling/effective molecules from platelets. We used platelet-rich plasma from healthy volunteers and LPS from two strains of gram-negative bacteria with disparate LPS structures. We combined LPS-stimulated platelet supernatants with reporter cells and measured the PBMC cytokine secretion profiles. Upon stimulation of platelets with both Escherichia coli O111 and Salmonella minnesota LPS, the platelet LPS::TLR4 interaction activated pathways to trigger the production of a large number of molecules. The different platelet supernatants caused differential PBMC secretion of IL-6, TNFα, and IL-8. Our data demonstrate that platelets have the capacity to sense external signals differentially through a single type of pathogen recognition receptor and adjust the innate immune response appropriately for pathogens exhibiting different types of 'danger' signals.
Collapse
Affiliation(s)
- Julien Berthet
- Université de Lyon, F-42023, GIMAP, EA3064, Saint-Etienne, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|