1
|
Schroth SL, Jones RTL, Thorp EB. Alloantigen Infusion Activates the Transcriptome of Type 2 Conventional Dendritic Cells. Immunohorizons 2023; 7:683-693. [PMID: 37855737 PMCID: PMC10615655 DOI: 10.4049/immunohorizons.2300067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023] Open
Abstract
Recent studies have revealed novel molecular mechanisms by which innate monocytic cells acutely recognize and respond to alloantigen with significance to allograft rejection and tolerance. What remains unclear is the single-cell heterogeneity of the innate alloresponse, particularly the contribution of dendritic cell (DC) subsets. To investigate the response of these cells to exposure of alloantigen, C57BL/6J mice were administered live allogenic BALB/cJ splenic murine cells versus isogenic cells. In parallel, we infused apoptotic allogenic and isogenic cells, which have been reported to modulate immunity. Forty-eight hours after injection, recipient spleens were harvested, enriched for DCs, and subjected to single-cell mRNA sequencing. Injection of live cells induced a greater transcriptional change across DC subsets compared with apoptotic cells. In the setting of live cell infusion, type 2 conventional DCs (cDC2s) were most transcriptionally responsive with a Ccr2+ cDC2 subcluster uniquely responding to the presence of alloantigen compared with the isogenic control. In vitro experimentation confirmed unique activation of CCR2+ cDC2s following alloantigen exposure. Candidate receptors of allorecognition in other innate populations were interrogated and A type paired Ig-like receptors were found to be increased in the cDC2 population following alloexposure. These results illuminate previously unclear distinctions between therapeutic infusions of live versus apoptotic allogenic cells and suggest a role for cDC2s in innate allorecognition. More critically, these studies allow for future interrogation of the transcriptional response of immune cells in the setting of alloantigen exposure in vivo, encouraging assessment of novel pathways and previously unexamined receptors in this setting.
Collapse
Affiliation(s)
- Samantha L. Schroth
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rebecca T. L. Jones
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Edward B. Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
2
|
Zhang L, Long W, Xu W, Chen X, Zhao X, Wu B. Digital Cell Atlas of Mouse Uterus: From Regenerative Stage to Maturational Stage. Front Genet 2022; 13:847646. [PMID: 35669188 PMCID: PMC9163836 DOI: 10.3389/fgene.2022.847646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/03/2022] [Indexed: 11/23/2022] Open
Abstract
Endometrium undergoes repeated repair and regeneration during the menstrual cycle. Previous attempts using gene expression data to define the menstrual cycle failed to come to an agreement. Here we used single-cell RNA sequencing data of C57BL/6J mice uteri to construct a novel integrated cell atlas of mice uteri from the regenerative endometrium to the maturational endometrium at the single-cell level, providing a more accurate cytological-based elucidation for the changes that occurred in the endometrium during the estrus cycle. Based on the expression levels of proliferating cell nuclear antigen, differentially expressed genes, and gene ontology terms, we delineated in detail the transitions of epithelial cells, stromal cells, and immune cells that happened during the estrus cycle. The transcription factors that shaped the differentiation of the mononuclear phagocyte system had been proposed, being Mafb, Irf7, and Nr4a1. The amounts and functions of immune cells varied sharply in two stages, especially NK cells and macrophages. We also found putative uterus tissue-resident macrophages and identified potential endometrial mesenchymal stem cells (high expression of Cd34, Pdgfrb, Aldh1a2) in vivo. The cell atlas of mice uteri presented here would improve our understanding of the transitions that occurred in the endometrium from the regenerative endometrium to the maturational endometrium. With the assistance of a normal cell atlas as a reference, we may identify morphologically unaffected abnormalities in future clinical practice. Cautions would be needed when adopting our conclusions, for the limited number of mice that participated in this study may affect the strength of our conclusions.
Collapse
Affiliation(s)
- Leyi Zhang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenying Long
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Wanwan Xu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xiuying Chen
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xiaofeng Zhao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Bingbing Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- *Correspondence: Bingbing Wu,
| |
Collapse
|
3
|
Sanchez-Gonzalez R, Koupourtidou C, Lepko T, Zambusi A, Novoselc KT, Durovic T, Aschenbroich S, Schwarz V, Breunig CT, Straka H, Huttner HB, Irmler M, Beckers J, Wurst W, Zwergal A, Schauer T, Straub T, Czopka T, Trümbach D, Götz M, Stricker SH, Ninkovic J. Innate Immune Pathways Promote Oligodendrocyte Progenitor Cell Recruitment to the Injury Site in Adult Zebrafish Brain. Cells 2022; 11:520. [PMID: 35159329 PMCID: PMC8834209 DOI: 10.3390/cells11030520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 01/13/2023] Open
Abstract
The oligodendrocyte progenitors (OPCs) are at the front of the glial reaction to the traumatic brain injury. However, regulatory pathways steering the OPC reaction as well as the role of reactive OPCs remain largely unknown. Here, we compared a long-lasting, exacerbated reaction of OPCs to the adult zebrafish brain injury with a timely restricted OPC activation to identify the specific molecular mechanisms regulating OPC reactivity and their contribution to regeneration. We demonstrated that the influx of the cerebrospinal fluid into the brain parenchyma after injury simultaneously activates the toll-like receptor 2 (Tlr2) and the chemokine receptor 3 (Cxcr3) innate immunity pathways, leading to increased OPC proliferation and thereby exacerbated glial reactivity. These pathways were critical for long-lasting OPC accumulation even after the ablation of microglia and infiltrating monocytes. Importantly, interference with the Tlr1/2 and Cxcr3 pathways after injury alleviated reactive gliosis, increased new neuron recruitment, and improved tissue restoration.
Collapse
Affiliation(s)
- Rosario Sanchez-Gonzalez
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Department Biology II, University of Munich, 80539 München, Germany;
| | - Christina Koupourtidou
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Tjasa Lepko
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Alessandro Zambusi
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Klara Tereza Novoselc
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Tamara Durovic
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Sven Aschenbroich
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Veronika Schwarz
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Christopher T. Breunig
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, 80539 München, Germany; (C.T.B.); (S.H.S.)
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany
| | - Hans Straka
- Department Biology II, University of Munich, 80539 München, Germany;
| | - Hagen B. Huttner
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392 Giessen, Germany;
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (M.I.); (J.B.)
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (M.I.); (J.B.)
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Sciences Weihenstephan, Technical University Munich, 80333 München, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (W.W.); (D.T.)
- Munich Cluster for Systems Neurology SYNERGY, LMU, 80539 Munich, Germany
- Chair of Developmental Genetics c/o Helmholtz Zentrum München, School of Life Sciences Weihenstephan, Technical University Munich, 80333 München, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Munich, 80539 Munich, Germany
| | - Andreas Zwergal
- Department of Neurology, Ludwig-Maximilians University, Campus Grosshadern, 81377 Munich, Germany;
| | - Tamas Schauer
- Biomedical Center (BMC), Bioinformatic Core Facility, Faculty of Medicine, LMU Munich, 80539 München, Germany; (T.S.); (T.S.)
| | - Tobias Straub
- Biomedical Center (BMC), Bioinformatic Core Facility, Faculty of Medicine, LMU Munich, 80539 München, Germany; (T.S.); (T.S.)
| | - Tim Czopka
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH8 9YL, UK;
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (W.W.); (D.T.)
| | - Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Munich Cluster for Systems Neurology SYNERGY, LMU, 80539 Munich, Germany
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, 80539 München, Germany
| | - Stefan H. Stricker
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, 80539 München, Germany; (C.T.B.); (S.H.S.)
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Munich Cluster for Systems Neurology SYNERGY, LMU, 80539 Munich, Germany
| |
Collapse
|
4
|
Coppola A, Capuani B, Pacifici F, Pastore D, Arriga R, Bellia A, Andreadi A, Di Daniele N, Lauro R, Della-Morte D, Sconocchia G, Lauro D. Activation of Peripheral Blood Mononuclear Cells and Leptin Secretion: New Potential Role of Interleukin-2 and High Mobility Group Box (HMGB)1. Int J Mol Sci 2021; 22:ijms22157988. [PMID: 34360753 PMCID: PMC8347813 DOI: 10.3390/ijms22157988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/18/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
Activation of innate immunity and low-grade inflammation contributes to hyperglycemia and an onset of Type 2 Diabetes Mellitus (T2DM). Interleukin-2 (IL-2), leptin, High Mobility Group Box-1 (HMGB-1), and increased glucose concentrations are mediators of these processes also by modulating peripheral blood mononuclear cells (PBMCs) response. The aim of this study was to investigate if HMGB-1 and IL-2 turn on PBMCs and their leptin secretion. In isolated human PBMCs and their subpopulations from healthy individuals and naïve T2DM patients, leptin release, pro-inflammatory response and Toll-like Receptors (TLRs) activation was measured. After treatment with IL-2 and HMGB1, NK (Natural Killer) have the highest amount of leptin secretion, whilst NK-T have the maximal release in basal conditions. TLR4 (TAK242) and/or TLR2 (TLR2-IgA) inhibitors decreased leptin secretion after IL-2 and HMGB1 treatment. A further non-significant increase in leptin secretion was reported in PBMCs of naive T2DM patients in response to IL-2 and HMGB-1 stimulation. Finally, hyperglycemia or hyperinsulinemia might stimulate leptin secretion from PBMCs. The amount of leptin released from PBMCs after the different treatments was enough to stimulate the secretion of IL-1β from monocytes. Targeting leptin sera levels and secretion from PBMCs could represent a new therapeutic strategy to counteract metabolic diseases such as T2DM.
Collapse
Affiliation(s)
- Andrea Coppola
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
| | - Barbara Capuani
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
| | - Donatella Pastore
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
| | - Roberto Arriga
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
| | - Alfonso Bellia
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Aikaterini Andreadi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Renato Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
| | - David Della-Morte
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Rome Open University, 00166 Rome, Italy
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council Rome, 00133 Rome, Italy;
| | - Davide Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-(06)-2090-4666 or +39-(33)-773-5770; Fax: +39-(06)-20904668
| |
Collapse
|
5
|
Cytokines and splenic remodelling during Leishmania donovani infection. Cytokine X 2020; 2:100036. [PMID: 33604560 PMCID: PMC7885873 DOI: 10.1016/j.cytox.2020.100036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Visceral leishmaniasis leads to extensive remodelling of splenic microarchitecture. Splenomegaly is associated with compartmentalised vascular remodelling. Alterations in white pulp stromal cells affects leucocyte segregation. Splenic remodelling involves multiple cytokines from diverse cellular sources. Understanding splenic remodelling may lead to new therapeutic interventions.
Visceral leishmaniasis (VL) causes extensive splenic pathology that contributes to dysfunctional immune responses, in part through displacement and destruction of cell populations involved in maintaining splenic structural integrity. The expression of pro and anti-inflammatory cytokines and chemokines is crucial in orchestrating the delicate balance that exists between host resistance and tissue pathology. In an effort to restore homeostatic balance to the local microenvironment, remodelling of the splenic architecture occurs in a compartmentalised manner to retain some level of functionality, despite persistent inflammatory pressures. Animal models of VL as well as human studies have significantly contributed to our understanding of the architectural changes that occur in the spleen during VL. Here, we review the role of cytokines in mediating microarchitectural changes associated with the development of splenomegaly during VL.
Collapse
|
6
|
Rodriguez SE, McAuley AJ, Gargili A, Bente DA. Interactions of Human Dermal Dendritic Cells and Langerhans Cells Treated with Hyalomma Tick Saliva with Crimean-Congo Hemorrhagic Fever Virus. Viruses 2018; 10:v10070381. [PMID: 30036960 PMCID: PMC6070959 DOI: 10.3390/v10070381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus is one the most important and wide spread tick-borne viruses. Very little is known about the transmission from the tick and the early aspects of pathogenesis. Here, we generate human cutaneous antigen presenting cells-dermal dendritic cells and Langerhans cells-from umbilical cord progenitor cells. In order to mimic the environment created during tick feeding, tick salivary gland extract was generated from semi-engorged Hyalomma marginatum ticks. Our findings indicate that human dermal dendritic cells and Langerhans cells are susceptible and permissive to Crimean-Congo hemorrhagic fever virus infection, however, to different degrees. Infection leads to cell activation and cytokine/chemokine secretion, although these responses vary between the different cell types. Hyalomma marginatum salivary gland extract had minimal effect on cell responses, with some synergy with viral infection with respect to cytokine secretion. However, salivary gland extract appeared to inhibit antigen presenting cells (APCs) migration. Based on the findings here we hypothesize that human dermal dendritic cells and Langerhans cells serve as early target cells. Rather affecting Crimean-Congo hemorrhagic fever virus replication, tick saliva likely immunomodulates and inhibits migration of these APCs from the feeding site.
Collapse
Affiliation(s)
- Sergio E Rodriguez
- Department of Microbiology & Immunology, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555-0610, USA.
| | - Alexander J McAuley
- Department of Microbiology & Immunology, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555-0610, USA.
| | - Aysen Gargili
- Department of Microbiology & Immunology, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555-0610, USA.
- Department of Basic Medical Sciences, Marmara University, 34722 Kadiköy/Istanbul, Turkey.
| | - Dennis A Bente
- Department of Microbiology & Immunology, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555-0610, USA.
| |
Collapse
|
7
|
House dust mite induced allergic airway disease is attenuated in CD11c creIL-4Rα -/l° x mice. Sci Rep 2018; 8:885. [PMID: 29343807 PMCID: PMC5772663 DOI: 10.1038/s41598-017-19060-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
The precise mechanisms leading to development of T helper type (Th)2-driven allergic responses are unknown. We aimed to determine how IL-4 receptor alpha (IL-4Rα) signaling on CD11c+ cells influences allergen-induced Th2 responses in mice. CD11ccreIL-4Rα−/l°x mice, deficient in IL-4Rα on dendritic cells and alveolar macrophages, were compared to IL-4Rα−/l°x littermate controls in models of allergic airway disease induced by OVA/alum, OVA alone or house dust mite. Cytokine responses, eosinophil and neutrophil infiltration into the lungs, airway hyperreactivity and mucus hypersecretion were evaluated after allergen challenge. In the OVA/alum model, CD11ccreIL-4Rα−/lox mice had similar airway hyperreactivity, eosinophil infiltration, Th2-type cytokine production and mucus hypersecretion to littermate controls. When alum was omitted during sensitization, CD11ccreIL-4Rα−/lox mice had similar airway hyperreactivity and mucus secretion but reduced Th2-type cytokine production and eosinophils, suggesting alum overrides the requirement for IL-4Rα signaling on CD11c+ cells in enhancing Th2-type responses. In the house dust mite model, CD11ccreIL-4Rα−/lox mice showed similar mucus secretion, but reduced Th2 responses, eosinophils, neutrophils and airway hyperreactivity, unlike previously tested LysMcreIL-4Rα−/lox mice, which lack IL-4Rα on alveolar macrophages but not on dendritic cells. Therefore, our results indicate that IL-4Rα signaling on dendritic cells promotes allergen-induced Th2 responses and eosinophil infiltration into the lung.
Collapse
|
8
|
Nelwan SC, Nugraha RA, Endaryanto A, Retno I. Modulating toll-like receptor-mediated inflammatory responses following exposure of whole cell and lipopolysaccharide component from Porphyromonas gingivalis in wistar rat models. Eur J Dent 2017; 11:422-426. [PMID: 29279665 PMCID: PMC5727724 DOI: 10.4103/ejd.ejd_147_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: To explore host innate inflammatory response and the signal pathway induced by Porphyromonas gingivalis by measuring level of toll-like receptor 2 (TLR2) and TLR4 activity. Materials and Methods: Animal experimental study with pretest-posttest controlled group design were done between January 1 and December 10, 2016.. Total of 28 wistar rats had been used, randomized into 7 groups, each were given various dose of intra-sulcural injection of Porphyromonas gingivalis lipopolysaccharide. Statistical Analysis: Normality were measured by Shapiro–Wilk test, while statistical analysis made by ANOVA, t test, Pearson, and linear regression model.. Results: At day 0, no significant difference TLR2 and TLR4 level were measured. At day 4, there is a slight difference between TLR2 and TLR4 level in each group. At day 11, there is a significant difference between TLR2 and TLR4 level in each group. Group with exposure of whole cell will develop greater TLR2 but lower TLR4 level. In the contrary, group with exposure of LPS will develop greater TLR4 but lower TLR2 level. Conclusion: Our data supported that P. gingivalis played a vital role in the pathogenesis of pathogen-induced inflammatory responses in which TLR2 and TLR4 have different molecular mechanisms following recognition of pathogens and inflammatory response.
Collapse
Affiliation(s)
- Sindy Cornelia Nelwan
- Department of Pediatric Dentistry, Faculty of Dentistry, Universitas Airlangga, Surabaya, Indonesia
| | | | - Anang Endaryanto
- Department of Child Health, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Indrawati Retno
- Department of Oral Biology, Faculty of Dentistry, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
9
|
Bandoła J, Richter C, Ryser M, Jamal A, Ashton MP, von Bonin M, Kuhn M, Dorschner B, Alexopoulou D, Navratiel K, Roeder I, Dahl A, Hedrich CM, Bonifacio E, Brenner S, Thieme S. Neurotrophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells. Front Immunol 2017; 8:981. [PMID: 28861085 PMCID: PMC5562693 DOI: 10.3389/fimmu.2017.00981] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/31/2017] [Indexed: 11/16/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR) by the antigen-presenting pDCs, mediated by toll-like receptor (TLR) 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders.
Collapse
Affiliation(s)
- Joanna Bandoła
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany
| | - Cornelia Richter
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany
| | - Martin Ryser
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany
| | - Arshad Jamal
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany.,Department of Medical Laboratory Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Michelle P Ashton
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universitaet Dresden, Dresden, Germany
| | - Malte von Bonin
- Medical Clinic I, University Clinic Dresden, Dresden, Germany.,DKTK-German Cancer Consortium, Partner Site Dresden, University Clinic Dresden, Dresden, Germany.,DKFZ-German Cancer Research Center, Heidelberg, Germany
| | - Matthias Kuhn
- Faculty of Medicine, Institute for Medical Informatics and Biometry, Technische Universitaet Dresden, Dresden, Germany
| | | | - Dimitra Alexopoulou
- BIOTEChnology Center/DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universitaet Dresden, Dresden, Germany
| | - Katrin Navratiel
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany
| | - Ingo Roeder
- Faculty of Medicine, Institute for Medical Informatics and Biometry, Technische Universitaet Dresden, Dresden, Germany
| | - Andreas Dahl
- BIOTEChnology Center/DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universitaet Dresden, Dresden, Germany
| | | | - Ezio Bonifacio
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universitaet Dresden, Dresden, Germany
| | - Sebastian Brenner
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany.,DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universitaet Dresden, Dresden, Germany
| | - Sebastian Thieme
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany
| |
Collapse
|
10
|
Dekita M, Wu Z, Ni J, Zhang X, Liu Y, Yan X, Nakanishi H, Takahashi I. Cathepsin S Is Involved in Th17 Differentiation Through the Upregulation of IL-6 by Activating PAR-2 after Systemic Exposure to Lipopolysaccharide from Porphyromonas gingivalis. Front Pharmacol 2017; 8:470. [PMID: 28769800 PMCID: PMC5511830 DOI: 10.3389/fphar.2017.00470] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
Positive links have been found between periodontitis and numerous diseases in humans via persistent inflammation throughout the body. However, the main factors responsible for maintaining this pro-inflammatory condition are poorly understood. The spleen, the largest secondary immune organ, is a central hub regulating the immune response/inflammation due to the dendritic cell (DC) response to CD4+ T cell subtype differentiation, and lysosomal proteinase cathepsin S (CatS) is known to be involved in DC functions. In the present study, we found that CatS-induced IL-6 production by splenic DCs subsequently promotes Th17 differentiation, in response to systemic exposure to lipopolysaccharide derived from Porphyromonas gingivalis (PgLPS). The population of CD11c+ DCs was significantly increased in the splenic marginal zone (MZ) locally of wild-type (DBA/2) mice with splenomegaly but not in that of CatS deficient (CatS-/-) mice after systemic exposure to PgLPS for 7 consecutive days (5 mg/kg/day, intraperitoneal). Similarly, the population of Th17+CD4+ T cells was also significantly increased in the splenic MZ of wild-type mice but not in that of CatS-/- mice after PgLPS exposure. Furthermore, the increase in the Th17+ CD4+ T cell population paralleled increases in the levels of CatS and IL-6 in CD11c+ cells in the splenic MZ. In isolated primary splenic CD11c+ cells, the mRNA expression and the production of IL-6 was dramatically increased in wild-type mice but not in CatS-/- mice after direct stimulation with PgLPS (1 μg/ml), and this PgLPS-induced increase in the IL-6 expression was completely abolished by pre-treatment with Z-Phe-Leu-COCHO (Z-FL), the specific inhibitor of CatS. The PgLPS activated protease-activated receptor (PAR) 2 in the isolated splenic CD11c+ cells was also significantly inhibited by CatS deficiently. In addition, the PgLPS-induced increase in the IL-6 production by splenic CD11c+ cells was completely abolished by pre-treatment with FSLLRY-NH2, a PAR2 antagonist, as well as Akti, a specific inhibitor of Akt. These findings indicate that CatS plays a critical role in driving splenic DC-dependent Th17 differentiation through the upregulation of IL-6 by activating PAR2 after exposure to components of periodontal bacteria. Therefore, CatS-specific inhibitors may be effective in alleviating periodontitis-related immune/inflammation.
Collapse
Affiliation(s)
- Masato Dekita
- Section of Orthodontics and Dentofacial Orthopedics, Kyushu UniversityFukuoka, Japan
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan.,OBT Research Center, Faculty of Dental Science, Kyushu UniversityFukuoka, Japan
| | - Junjun Ni
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan
| | - Xinwen Zhang
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan.,Center of Implant Dentistry, School of Stomatology, China Medical UniversityShenyang, China
| | - Yicong Liu
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan
| | - Xu Yan
- The VIP Department, School of Stomatology, China Medical UniversityShenyang, China
| | - Hiroshi Nakanishi
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Kyushu UniversityFukuoka, Japan
| |
Collapse
|
11
|
Pinilla-Vera M, Xiong Z, Zhao Y, Zhao J, Donahoe MP, Barge S, Horne WT, Kolls JK, McVerry BJ, Birukova A, Tighe RM, Foster WM, Hollingsworth J, Ray A, Mallampalli R, Ray P, Lee JS. Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling. PLoS One 2016; 11:e0159329. [PMID: 27434537 PMCID: PMC4951018 DOI: 10.1371/journal.pone.0159329] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/30/2016] [Indexed: 12/22/2022] Open
Abstract
Despite recent advances in understanding macrophage activation, little is known regarding how human alveolar macrophages in health calibrate its transcriptional response to canonical TLR4 activation. In this study, we examined the full spectrum of LPS activation and determined whether the transcriptomic profile of human alveolar macrophages is distinguished by a TIR-domain-containing adapter-inducing interferon-β (TRIF)-dominant type I interferon signature. Bronchoalveolar lavage macrophages were obtained from healthy volunteers, stimulated in the presence or absence of ultrapure LPS in vitro, and whole transcriptomic profiling was performed by RNA sequencing (RNA-Seq). LPS induced a robust type I interferon transcriptional response and Ingenuity Pathway Analysis predicted interferon regulatory factor (IRF)7 as the top upstream regulator of 89 known gene targets. Ubiquitin-specific peptidase (USP)-18, a negative regulator of interferon α/β responses, was among the top up-regulated genes in addition to IL10 and USP41, a novel gene with no known biological function but with high sequence homology to USP18. We determined whether IRF-7 and USP-18 can influence downstream macrophage effector cytokine production such as IL-10. We show that IRF-7 siRNA knockdown enhanced LPS-induced IL-10 production in human monocyte-derived macrophages, and USP-18 overexpression attenuated LPS-induced production of IL-10 in RAW264.7 cells. Quantitative PCR confirmed upregulation of USP18, USP41, IL10, and IRF7. An independent cohort confirmed LPS induction of USP41 and IL10 genes. These results suggest that IRF-7 and predicted downstream target USP18, both elements of a type I interferon gene signature identified by RNA-Seq, may serve to fine-tune early cytokine response by calibrating IL-10 production in human alveolar macrophages.
Collapse
Affiliation(s)
- Miguel Pinilla-Vera
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Zeyu Xiong
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yutong Zhao
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jing Zhao
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael P. Donahoe
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Suchitra Barge
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William T. Horne
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jay K. Kolls
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bryan J. McVerry
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anastasiya Birukova
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Robert M. Tighe
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - W. Michael Foster
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - John Hollingsworth
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Anuradha Ray
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rama Mallampalli
- The Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
| | - Prabir Ray
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Janet S. Lee
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
12
|
Kim SJ, Diamond B. Modulation of tolerogenic dendritic cells and autoimmunity. Semin Cell Dev Biol 2015; 41:49-58. [PMID: 24747368 PMCID: PMC9973561 DOI: 10.1016/j.semcdb.2014.04.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 12/23/2022]
Abstract
A key function of dendritic cells (DCs) is to induce either immune tolerance or immune activation. Many new DC subsets are being recognized, and it is now clear that each DC subset has a specialized function. For example, different DC subsets may express different cell surface molecules and respond differently to activation by secretion of a unique cytokine profile. Apart from intrinsic differences among DC subsets, various immune modulators in the microenvironment may influence DC function; inappropriate DC function is closely related to the development of immune disorders. The most exciting recent advance in DC biology is appreciation of human DC subsets. In this review, we discuss functionally different mouse and human DC subsets both in lymphoid organs and non-lymphoid organs, the molecules that regulate DC function, and the emerging understanding of the contribution of DCs to autoimmune diseases.
Collapse
Affiliation(s)
| | - Betty Diamond
- The Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, United States.
| |
Collapse
|
13
|
Guo R, Li Y, Ning J, Sun D, Lin L, Liu X. HnRNP A1/A2 and SF2/ASF regulate alternative splicing of interferon regulatory factor-3 and affect immunomodulatory functions in human non-small cell lung cancer cells. PLoS One 2013; 8:e62729. [PMID: 23658645 PMCID: PMC3639176 DOI: 10.1371/journal.pone.0062729] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/25/2013] [Indexed: 12/19/2022] Open
Abstract
Heterogeneous nuclear ribonucleoparticule A1/A2 (hnRNP A1/A2) and splicing factor 2/alternative splicing factor (SF2/ASF) are pivotal for precursor messenger RNA (pre-mRNA) splicing. Interferon regulatory factor-3 (IRF-3) plays critical roles in host defense against viral and microbial infection. Truncated IRF-3 proteins resulting from alternative splicing have been identified and characterized as functional antagonists to full-length IRF-3. In this study, we examined the molecular mechanism for splicing regulation of IRF-3 pre-mRNA and first reported the regulatory effect of hnRNP A1/A2 and SF2/ASF on IRF-3 splicing and activation. RNA interference-mediated depletion of hnRNP A1/A2 or SF2/ASF in human non-small cell lung cancer (NSCLC) cells increased exclusion of exons 2 and 3 of IRF-3 gene and reduced expression levels of IRF-3 protein and IRF-3 downstream effector molecules interferon-beta and CXCL10/IP-10. In addition, direct binding of hnRNP A1 and SF2/ASF to specific binding motifs in IRF-3 intron 1 was confirmed by RNA electrophoretic mobility shift assay. Subsequent minigene splicing assay showed that IRF-3 minigenes with mutated hnRNPA 1/A2 or SF2/ASF binding motifs increased exclusion of exons 2 and 3. Moreover, knockdown of hnRNP A1/A2 or SF2/ASF in NSCLC cells reinforced phytohemagglutinin-induced tumor necrosis factor-alpha release by peripheral blood mononuclear cells (PBMC) but suppressed that of interleukin-10 in NSCLC/PBMC co-cultures. Taken together, our results suggest that specific knockdown for hnRNP A1/A2 or SF2/ASF increase exclusion of exons 2 and 3 of IRF-3 pre-mRNA and influence immunomodulatory functions of human NSCLC cells.
Collapse
Affiliation(s)
- Rong Guo
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Yong Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Laboratory Animal, Peking University Cancer Hospital, Beijing Cancer Hospital, Beijing Institute for Cancer Research, Beijing, China
| | - Jinying Ning
- Department of Cell Biology, Crown Bioscience Incorporation (Beijing), Beijing, China
| | - Dan Sun
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Lianjun Lin
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Xinmin Liu
- Department of Geriatrics, Peking University First Hospital, Beijing, China
- * E-mail:
| |
Collapse
|
14
|
Regulatory actions of Toll-like receptor 2 (TLR2) and TLR4 in Leishmania donovani infection in the liver. Infect Immun 2013; 81:2318-26. [PMID: 23589575 DOI: 10.1128/iai.01468-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In livers of susceptible but self-curing C57BL/6 mice, intracellular Leishmania donovani infection enhanced Toll-like receptor 4 (TLR4) and TLR2 gene expression. In the liver, infected TLR4(-/-) mice showed reduced gamma interferon (IFN-γ), tumor necrosis factor (TNF), and inducible nitric oxide synthase (iNOS) mRNA expression, higher-level and slowly resolving infection, delayed granuloma formation, and little response to low-dose chemotherapy; in serum, the ratio of IFN-γ to interleukin 10 (IL-10) activity was decreased by 50%. In contrast, in TLR2(-/-) mice, control of liver infection, parasite killing, and granuloma assembly were accelerated and chemotherapy's efficacy enhanced. In livers of infected TLR2(-/-) mice, mRNA expression was not increased for inflammatory cytokines or iNOS or decreased for IL-10; however, the serum IFN-γ/IL-10 ratio was increased 6.5-fold and minimal responses to IL-10 receptor blockade suggested downregulated IL-10. In established infection in wild-type mice, blockading TLR2 induced parasite killing and triggering TLR4 strengthened resistance and promoted chemotherapy's effect. Thus, in experimental L. donovani infection in the liver, TLR4 signaling upregulates and TLR2 signaling downregulates macrophage antileishmanial activity, making both receptors potential therapeutic targets in visceral leishmaniasis for engagement (TLR4) or blockade (TLR2).
Collapse
|