1
|
Coulombeau R, Selck C, Giang N, Al-Mohammad A, Ng N, Maher AK, Argüello R, Scalfari A, Varley J, Nicholas R, Dominguez-Villar M. Sphingosine-1-Phosphate Signalling Inhibition Suppresses Th1-Like Treg Generation by Reversing Mitochondrial Uncoupling. Immunology 2025; 174:153-166. [PMID: 39444366 DOI: 10.1111/imm.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Inflammatory environments induce the generation of dysfunctional IFNγ+T-bet+FOXP3+ Th1-like Tregs, which show defective function and are found in autoimmune conditions including multiple sclerosis (MS). The pathways that control the generation of Th1-like Tregs are not well understood. Sphingosine-1-phosphate (S1P) signalling molecules are upregulated in Th1-like Tregs, and in vivo S1P inhibition with Fingolimod (FTY720) inhibits the expression of genes responsible for Treg plasticity in MS patients. However, the underlying mechanisms are unknown. Here we show that S1P signalling inhibition by FTY720 inhibits the generation of Th1-like Tregs and rescues their suppressive function. These effects are mediated by a decrease in mTORC1 signalling and reversal of the mitochondrial uncoupling that Tregs undergo during their reprogramming into Th1-like Tregs in vitro. Finally, these results are validated in in vivo-generated Th1-like Tregs, as Tregs from MS patients treated with FTY720 display decreased Th1-like Treg frequency, increased suppressive function and mitochondrial metabolism rebalance. These results highlight the involvement of mitochondrial uncoupling in Treg reprogramming and identify S1P signalling inhibition as a target to suppress the generation of dysfunctional Th1-like Tregs.
Collapse
Affiliation(s)
- Rachel Coulombeau
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Claudia Selck
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Nicolas Giang
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | | | - Natalie Ng
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Allison K Maher
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Rafael Argüello
- Immunometabolism and Translation, Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Charing Cross Hospital, London, UK
| | - James Varley
- Centre of Neuroscience, Imperial College Healthcare NHS Trust, London, UK
| | - Richard Nicholas
- Centre of Neuroscience, Imperial College Healthcare NHS Trust, London, UK
| | | |
Collapse
|
2
|
Beikbaghban T, Proietti L, Ebner J, Sango R, Rattei T, Weichhart T, Grebien F, Sternberg F, Pohl EE. Differential regulation of mitochondrial uncoupling protein 2 in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149486. [PMID: 38986826 DOI: 10.1016/j.bbabio.2024.149486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
The persistent growth of cancer cells is underscored by complex metabolic reprogramming, with mitochondria playing a key role in the transition to aerobic glycolysis and representing new therapeutic targets. Mitochondrial uncoupling protein 2 (UCP2) has attracted interest because of its abundance in rapidly proliferating cells, including cancer cells, and its involvement in cellular metabolism. However, the specific contributions of UCP2 to cancer biology remain poorly defined. Our investigation of UCP2 expression in various human and mouse cancer cell lines aimed to elucidate its links to metabolic states, proliferation, and adaptation to environmental stresses such as hypoxia and nutrient deprivation. We observed significant variability in UCP2 expression across cancer types, with no direct correlation to their metabolic activity or proliferation rates. UCP2 abundance was also differentially affected by nutrient availability in different cancer cells, but UCP2 was generally downregulated under hypoxia. These findings challenge the notion that UCP2 is a marker of malignant potential and suggest its more complex involvement in the metabolic landscape of cancer.
Collapse
Affiliation(s)
- Taraneh Beikbaghban
- Physiology and Biophysics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Ludovica Proietti
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Jessica Ebner
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Roko Sango
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria; Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Felix Sternberg
- Physiology and Biophysics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria; Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Austria.
| | - Elena E Pohl
- Physiology and Biophysics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
3
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Gureev AP, Alimova AA, Silachev DN, Plotnikov EY. Noncoupled Mitochondrial Respiration as Therapeutic Approach for the Treatment of Metabolic Diseases: Focus on Transgenic Animal Models. Int J Mol Sci 2023; 24:16491. [PMID: 38003681 PMCID: PMC10671337 DOI: 10.3390/ijms242216491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial dysfunction contributes to numerous chronic diseases, and mitochondria are targets for various toxins and xenobiotics. Therefore, the development of drugs or therapeutic strategies targeting mitochondria is an important task in modern medicine. It is well known that the primary, although not the sole, function of mitochondria is ATP generation, which is achieved by coupled respiration. However, a high membrane potential can lead to uncontrolled reactive oxygen species (ROS) production and associated dysfunction. For over 50 years, scientists have been studying various synthetic uncouplers, and for more than 30 years, uncoupling proteins that are responsible for uncoupled respiration in mitochondria. Additionally, the proteins of the mitochondrial alternative respiratory pathway exist in plant mitochondria, allowing noncoupled respiration, in which electron flow is not associated with membrane potential formation. Over the past two decades, advances in genetic engineering have facilitated the creation of various cellular and animal models that simulate the effects of uncoupled and noncoupled respiration in different tissues under various disease conditions. In this review, we summarize and discuss the findings obtained from these transgenic models. We focus on the advantages and limitations of transgenic organisms, the observed physiological and biochemical changes, and the therapeutic potential of uncoupled and noncoupled respiration.
Collapse
Affiliation(s)
- Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.); (A.A.A.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Alina A. Alimova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.); (A.A.A.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
5
|
Maes ME, Colombo G, Schoot Uiterkamp FE, Sternberg F, Venturino A, Pohl EE, Siegert S. Mitochondrial network adaptations of microglia reveal sex-specific stress response after injury and UCP2 knockout. iScience 2023; 26:107780. [PMID: 37731609 PMCID: PMC10507162 DOI: 10.1016/j.isci.2023.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023] Open
Abstract
Mitochondrial networks remodel their connectivity, content, and subcellular localization to support optimized energy production in conditions of increased environmental or cellular stress. Microglia rely on mitochondria to respond to these stressors, however our knowledge about mitochondrial networks and their adaptations in microglia in vivo is limited. Here, we generate a mouse model that selectively labels mitochondria in microglia. We identify that mitochondrial networks are more fragmented with increased content and perinuclear localization in vitro vs. in vivo. Mitochondrial networks adapt similarly in microglia closest to the injury site after optic nerve crush. Preventing microglial UCP2 increase after injury by selective knockout induces cellular stress. This results in mitochondrial hyperfusion in male microglia, a phenotype absent in females due to circulating estrogens. Our results establish the foundation for mitochondrial network analysis of microglia in vivo, emphasizing the importance of mitochondrial-based sex effects of microglia in other pathologies.
Collapse
Affiliation(s)
- Margaret E. Maes
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Gloria Colombo
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | | | - Felix Sternberg
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Alessandro Venturino
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Elena E. Pohl
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Sandra Siegert
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
6
|
Schulz R, Schlüter KD. Importance of Mitochondria in Cardiac Pathologies: Focus on Uncoupling Proteins and Monoamine Oxidases. Int J Mol Sci 2023; 24:ijms24076459. [PMID: 37047436 PMCID: PMC10095304 DOI: 10.3390/ijms24076459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
On the one hand, reactive oxygen species (ROS) are involved in the onset and progression of a wide array of diseases. On the other hand, these are a part of signaling pathways related to cell metabolism, growth and survival. While ROS are produced at various cellular sites, in cardiomyocytes the largest amount of ROS is generated by mitochondria. Apart from the electron transport chain and various other proteins, uncoupling protein (UCP) and monoamine oxidases (MAO) have been proposed to modify mitochondrial ROS formation. Here, we review the recent information on UCP and MAO in cardiac injuries induced by ischemia-reperfusion (I/R) as well as protection from I/R and heart failure secondary to I/R injury or pressure overload. The current data in the literature suggest that I/R will preferentially upregulate UCP2 in cardiac tissue but not UCP3. Studies addressing the consequences of such induction are currently inconclusive because the precise function of UCP2 in cardiac tissue is not well understood, and tissue- and species-specific aspects complicate the situation. In general, UCP2 may reduce oxidative stress by mild uncoupling and both UCP2 and UCP3 affect substrate utilization in cardiac tissue, thereby modifying post-ischemic remodeling. MAOs are important for the physiological regulation of substrate concentrations. Upon increased expression and or activity of MAOs, however, the increased production of ROS and reactive aldehydes contribute to cardiac alterations such as hypertrophy, inflammation, irreversible cardiomyocyte injury, and failure.
Collapse
|
7
|
Verma K, Croft W, Pearce H, Zuo J, Stephens C, Nunnick J, Kinsella FA, Malladi R, Moss P. Early expression of CD94 and loss of CD96 on CD8+ T cells after allogeneic stem cell tranplantation is predictive of subsequent relapse and survival. Haematologica 2023; 108:433-443. [PMID: 35924575 PMCID: PMC9890008 DOI: 10.3324/haematol.2021.280497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/25/2022] [Indexed: 02/03/2023] Open
Abstract
Allogeneic stem cell transplantation is used widely in the treatment of hematopoietic malignancy. However, relapse of malignant disease is the primary cause of treatment failure and reflects loss of immunological graft-versus-leukemia effect. We studied the transcriptional and phenotypic profile of CD8+ T cells in the first month following transplantation and related this to risk of subsequent relapse. Single cell transcriptional profiling identified five discrete CD8+ T-cell clusters. High levels of T-cell activation and acquisition of a regulatory transcriptome were apparent in patients who went on to suffer disease relapse. A relapse-associated gene signature of 47 genes was then assessed in a confirmation cohort of 34 patients. High expression of the inhibitory receptor CD94/NKG2A on CD8+ T cells within the first month was associated with 4.8 fold increased risk of relapse and 2.7 fold reduction in survival. Furthermore, reduced expression of the activatory molecule CD96 was associated with 2.2 fold increased risk of relapse and 1.9 fold reduction in survival. This work identifies CD94 and CD96 as potential targets for CD8-directed immunotherapy in the very early phase following allogeneic transplantation with the potential to reduce long term relapse rates and improve patient survival.
Collapse
Affiliation(s)
- Kriti Verma
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham
| | - Wayne Croft
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom; Centre for Computational Biology, University of Birmingham, Birmingham
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham
| | - Christine Stephens
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham
| | - Jane Nunnick
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham
| | - Francesca Am Kinsella
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom; Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham
| | - Ram Malladi
- Addenbrookes Hospital, Cambridge University Hospitals
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom; Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham.
| |
Collapse
|
8
|
Luby A, Alves-Guerra MC. UCP2 as a Cancer Target through Energy Metabolism and Oxidative Stress Control. Int J Mol Sci 2022; 23:ijms232315077. [PMID: 36499405 PMCID: PMC9735768 DOI: 10.3390/ijms232315077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Despite numerous therapies, cancer remains one of the leading causes of death worldwide due to the lack of markers for early detection and response to treatment in many patients. Technological advances in tumor screening and renewed interest in energy metabolism have allowed us to identify new cellular players in order to develop personalized treatments. Among the metabolic actors, the mitochondrial transporter uncoupling protein 2 (UCP2), whose expression is increased in many cancers, has been identified as an interesting target in tumor metabolic reprogramming. Over the past decade, a better understanding of its biochemical and physiological functions has established a role for UCP2 in (1) protecting cells from oxidative stress, (2) regulating tumor progression through changes in glycolytic, oxidative and calcium metabolism, and (3) increasing antitumor immunity in the tumor microenvironment to limit cancer development. With these pleiotropic roles, UCP2 can be considered as a potential tumor biomarker that may be interesting to target positively or negatively, depending on the type, metabolic status and stage of tumors, in combination with conventional chemotherapy or immunotherapy to control tumor development and increase response to treatment. This review provides an overview of the latest published science linking mitochondrial UCP2 activity to the tumor context.
Collapse
|
9
|
Rigaud VO, Zarka C, Kurian J, Harlamova D, Elia A, Kasatkin N, Johnson J, Behanan M, Kraus L, Pepper H, Snyder NW, Mohsin S, Houser S, Khan M. UCP2 modulates cardiomyocyte cell cycle activity, acetyl-CoA and histone acetylation in response to moderate hypoxia. JCI Insight 2022; 7:155475. [PMID: 35771638 PMCID: PMC9462500 DOI: 10.1172/jci.insight.155475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Developmental cardiac tissue is regenerative while operating under low oxygen. After birth, ambient oxygen is associated with cardiomyocyte cell cycle exit and regeneration. Likewise, cardiac metabolism undergoes a shift with cardiac maturation. Whether there are common regulators of cardiomyocyte cell cycle linking metabolism to oxygen tension remains unknown. The objective of the study is to determine whether mitochondrial UCP2 is a metabolic oxygen sensor regulating cardiomyocyte cell cycle. Neonatal rat ventricular myocytes (NRVMs) under moderate hypoxia showed increased cell cycle activity and UCP2 expression. NRVMs exhibited a metabolic shift towards glycolysis, reduced citrate synthase, mtDNA, ΔΨm and DNA damage/oxidative stress while loss of UCP2 reversed this phenotype. Next, WT and UCP2KO mice kept under hypoxia for 4 weeks showed significant decline in cardiac function that was more pronounced in UCP2KO animals. Cardiomyocyte cell cycle activity was reduced while fibrosis and DNA damage was significantly increased in UCP2KO animals compared to WT under hypoxia. Mechanistically, UCP2 increased acetyl-CoA levels, histone acetylation and altered chromatin modifiers linking metabolism to cardiomyocyte cell cycle under hypoxia. Here, we show a novel role for mitochondrial UCP2 as an oxygen sensor regulating cardiomyocyte cell cycle activity, acetyl-CoA levels and histone acetylation in response to moderate hypoxia.
Collapse
Affiliation(s)
- Vagner Oc Rigaud
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Clare Zarka
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Justin Kurian
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Daria Harlamova
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Andrea Elia
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Nicole Kasatkin
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Jaslyn Johnson
- Cardiovascular Research Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Michael Behanan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Lindsay Kraus
- Cardiovascular Research Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Hannah Pepper
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Sadia Mohsin
- Cardiovascular Research Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Steven Houser
- Cardiovascular Research Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Mohsin Khan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| |
Collapse
|
10
|
Annesley SJ, Allan CY, Sanislav O, Evans A, Fisher PR. Dysregulated Gene Expression in Lymphoblasts from Parkinson’s Disease. Proteomes 2022; 10:proteomes10020020. [PMID: 35736800 PMCID: PMC9230639 DOI: 10.3390/proteomes10020020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Parkinson’s disease is the second largest neurodegenerative disease worldwide and is caused by a combination of genetics and environment. It is characterized by the death of neurons in the substantia nigra of the brain but is not solely a disease of the brain, as it affects multiple tissues and organs. Studying Parkinson’s disease in accessible tissues such as skin and blood has increased our understanding of the disease’s pathogenesis. Here, we used lymphoblast cell lines generated from Parkinson’s disease patient and healthy age- and sex-matched control groups and obtained their whole-cell transcriptomes and proteomes. Our analysis revealed, in both the transcriptomes and the proteomes of PD cells, a global downregulation of genes involved in protein synthesis, as well as the upregulation of immune processes and sphingolipid metabolism. In contrast, we discovered an uncoupling of mRNA and protein expression in processes associated with mitochondrial respiration in the form of a general downregulation in associated transcripts and an upregulation in proteins. Complex V was different to the other oxidative phosphorylation complexes in that the levels of its associated transcripts were also lower, but the levels of their encoded polypeptides were not elevated. This may suggest that further layers of regulation specific to Complex V are in play.
Collapse
Affiliation(s)
- Sarah Jane Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC 3086, Australia; (C.Y.A.); (O.S.); (P.R.F.)
- Correspondence: ; Tel.: +61-394791412
| | - Claire Yvonne Allan
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC 3086, Australia; (C.Y.A.); (O.S.); (P.R.F.)
| | - Oana Sanislav
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC 3086, Australia; (C.Y.A.); (O.S.); (P.R.F.)
| | - Andrew Evans
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC 3052, Australia;
| | - Paul Robert Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC 3086, Australia; (C.Y.A.); (O.S.); (P.R.F.)
| |
Collapse
|
11
|
Nguyen NT, Nguyen TT, Park KS. Oxidative Stress Related to Plasmalemmal and Mitochondrial Phosphate Transporters in Vascular Calcification. Antioxidants (Basel) 2022; 11:antiox11030494. [PMID: 35326144 PMCID: PMC8944874 DOI: 10.3390/antiox11030494] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
Inorganic phosphate (Pi) is essential for maintaining cellular function but excess of Pi leads to serious complications, including vascular calcification. Accumulating evidence suggests that oxidative stress contributes to the pathogenic progression of calcific changes. However, the molecular mechanism underlying Pi-induced reactive oxygen species (ROS) generation and its detrimental consequences remain unclear. Type III Na+-dependent Pi cotransporter, PiT-1/-2, play a significant role in Pi uptake of vascular smooth muscle cells. Pi influx via PiT-1/-2 increases the abundance of PiT-1/-2 and depolarization-activated Ca2+ entry due to its electrogenic properties, which may lead to Ca2+ and Pi overload and oxidative stress. At least four mitochondrial Pi transporters are suggested, among which the phosphate carrier (PiC) is known to be mainly involved in mitochondrial Pi uptake. Pi transport via PiC may induce hyperpolarization and superoxide generation, which may lead to mitochondrial dysfunction and endoplasmic reticulum stress, together with generation of cytosolic ROS. Increase in net influx of Ca2+ and Pi and their accumulation in the cytosol and mitochondrial matrix synergistically increases oxidative stress and osteogenic differentiation, which could be prevented by suppressing either Ca2+ or Pi overload. Therapeutic strategies targeting plasmalemmal and mitochondrial Pi transports can protect against Pi-induced oxidative stress and vascular calcification.
Collapse
Affiliation(s)
- Nhung Thi Nguyen
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
- Medical Doctor Program, College of Health Sciences, VinUniversity, Hanoi 12406, Vietnam
| | - Tuyet Thi Nguyen
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
- Internal Medicine Residency Program, College of Health Sciences, VinUniversity, Hanoi 12406, Vietnam
- Correspondence: (T.T.N.); (K.-S.P.); Tel.: +84-247-108-9779 (T.T.N.); +82-33-741-0294 (K.-S.P.)
| | - Kyu-Sang Park
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
- Correspondence: (T.T.N.); (K.-S.P.); Tel.: +84-247-108-9779 (T.T.N.); +82-33-741-0294 (K.-S.P.)
| |
Collapse
|
12
|
Hass DT, Barnstable CJ. Uncoupling proteins in the mitochondrial defense against oxidative stress. Prog Retin Eye Res 2021; 83:100941. [PMID: 33422637 DOI: 10.1016/j.preteyeres.2021.100941] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a major component of most major retinal diseases. Many extrinsic anti-oxidative strategies have been insufficient at counteracting one of the predominant intrinsic sources of reactive oxygen species (ROS), mitochondria. The proton gradient across the inner mitochondrial membrane is a key driving force for mitochondrial ROS production, and this gradient can be modulated by members of the mitochondrial uncoupling protein (UCP) family. Of the UCPs, UCP2 shows a widespread distribution and has been shown to uncouple oxidative phosphorylation, with concomitant decreases in ROS production. Genetic studies using transgenic and knockout mice have documented the ability of increased UCP2 activity to provide neuroprotection in models of a number of diseases, including retinal diseases, indicating that it is a strong candidate for a therapeutic target. Molecular studies have identified the structural mechanism of action of UCP2 and have detailed the ways in which its expression and activity can be controlled at the transcriptional, translational and posttranslational levels. These studies suggest a number of ways in control of UCP2 expression and activity can be used therapeutically for both acute and chronic conditions. The development of such therapeutic approaches will greatly increase the tools available to combat a broad range of serious retinal diseases.
Collapse
Affiliation(s)
- Daniel T Hass
- Department of Biochemistry, The University of Washington, Seattle, WA, 98109, USA
| | - Colin J Barnstable
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA.
| |
Collapse
|
13
|
Esfandiary A, Kutsche HS, Schreckenberg R, Weber M, Pak O, Kojonazarov B, Sydykov A, Hirschhäuser C, Wolf A, Haag D, Hecker M, Fink L, Seeger W, Ghofrani HA, Schermuly RT, Weißmann N, Schulz R, Rohrbach S, Li L, Sommer N, Schlüter KD. Protection against pressure overload-induced right heart failure by uncoupling protein 2 silencing. Cardiovasc Res 2020; 115:1217-1227. [PMID: 30850841 PMCID: PMC6529920 DOI: 10.1093/cvr/cvz049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/31/2019] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
Aims The role of uncoupling protein 2 (UCP2) in cardiac adaptation to pressure overload remains unclear. In a classical model of left ventricular pressure overload genetic deletion of UCP2 (UCP2−/−) protected against cardiac hypertrophy and failure. However, in UCP2−/− mice increased proliferation of pulmonary arterial smooth muscle cells induces mild pulmonary hypertension, right ventricular (RV) hypertrophy, and reduced cardiac output. This suggests a different role for UCP2 in RV and left ventricular adaptation to pressure overload. To clarify this situation in more detail UCP2−/− and wild-type mice were exposed to pulmonary arterial banding (PAB). Methods and results Mice were analysed (haemodynamics, morphometry, and echocardiography) 3 weeks after PAB or sham surgery. Myocytes and non-myocytes were isolated and analysed separately. Cell shortening of myocytes and fura-2 loading of cardiomyocytes were used to characterize their function. Brd assay was performed to study fibroblast proliferation. Isolated mitochondria were analysed to investigate the role of UCP2 for reactive oxygen species (ROS) production. UCP2 mRNA was 2.7-fold stronger expressed in RV myocytes than in left ventricular myocytes and stronger expressed in non-myocytes compared with myocytes. Three weeks after PAB, cardiac output was reduced in wild type but preserved in UCP2−/− mice. UCP2−/− had increased RV wall thickness, but lower RV internal diameters and displayed a significant stronger fibrosis. Cardiac fibroblasts from UCP2−/− had reduced proliferation rates but higher collagen-1 expression. Myocytes isolated from mice after PAB banding showed preserved function that was further improved by UCP2−/−. Mitochondrial ROS production and respiration was similar between UCP2−/− or wild-type hearts. Conclusion Despite a mild pulmonary hypertension in UCP2−/− mice, hearts from these mice are well preserved against additional pressure overload (severe pulmonary hypertension). This—at least in part—depends on different behaviour of non-myocytes (fibroblasts).
Collapse
Affiliation(s)
| | - Hanna S Kutsche
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Rolf Schreckenberg
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Martin Weber
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Oleg Pak
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | | | - Akylbek Sydykov
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | | | - Annemarie Wolf
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Daniela Haag
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | - Matthias Hecker
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | - Ludger Fink
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | - Werner Seeger
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | | | | | - Norbert Weißmann
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | - Rainer Schulz
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Susanne Rohrbach
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Ling Li
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Natascha Sommer
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | - Klaus-Dieter Schlüter
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| |
Collapse
|
14
|
Kaabi YA, Mansor AS, Alfagih AS, Hakami AM, Summ MA, Mjery YA, Alzughbi MN, Habibullah MM. Frequency of UCP2 45-bp Ins/Del polymorphism in Saudi population from Jazan area and its association with autoimmune hypothyroidism UCP2 45-bp Ins/Del frequency in hypothyroidism. Int J Health Sci (Qassim) 2020; 14:11-16. [PMID: 32694967 PMCID: PMC7346973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Autoimmune hypothyroidism (AHT) is a common endocrine disorder. Although the exact cause of AHT is not yet understood, genetic factors may play a major role. Uncoupling protein 2 (UCP2) is a member of mitochondrial protein family involved in the regulation of cellular metabolism. An important functional polymorphism in the UCP2 gene, 45-bp insertion/deletion (ins/del) polymorphism, has been linked to certain clinical conditions. However, an association between the 45-bp ins/del polymorphism and AHT has not yet been established. METHODS In this study, about 259 blood samples were collected from, patients with AHT and age-matched healthy control subjects. DNA was extracted for UCP2 45-bp ins/del polymorphisms genotyping, using a standard polymerase chain reaction technique. The distribution of different genotypes was determined in both groups and possible association with AHT was also assessed by logistic regression analysis using the Del/Del variant as a reference genotype. RESULTS The frequency of the UCP2 45-bp ins/del polymorphism in the total study population was 49.04%, 40.15%, and 10.81% for Del/Del, Ins/Del, and Ins/Ins genotypes, respectively. The logistic regression analysis showed crude odds ratios (ORs), respectively, with their 95% confidence intervals (CIs) and P-values in codominant (Del/Ins) (OR = 1.53, CI = 0.89-2.60, P = 0.17), codominant (Ins/Ins) (OR = 0.75, CI = 0.34-1.74, P = 0.53), dominant (OR = 1.30, CI = 0.79-2.16, P = 0.37), and recessive (OR = 0.62, CI = 0.29-1.36, P = 0.30) inheritance models tested, where none of which were statistically significant. CONCLUSION Our data revealed the distribution of the UCP2 45-bp ins/del polymorphisms in Jazan area and confirmed the lack of association between these genetic variants and the development of AHT.
Collapse
Affiliation(s)
- Yahia A. Kaabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Abdullah S. Mansor
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Ashwag S. Alfagih
- Endocrinology and Diabetes Center, King Fahad Central Hospital, Jazan, Kingdom of Saudi Arabia
| | - Alhussain M. Hakami
- Endocrinology and Diabetes Center, King Fahad Central Hospital, Jazan, Kingdom of Saudi Arabia
| | - Mohammed A. Summ
- Endocrinology and Diabetes Center, King Fahad Central Hospital, Jazan, Kingdom of Saudi Arabia
| | - Yahia A. Mjery
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia,Address for correspondence: Yahia A. Kaabi, Department of Clinical Chemistry, Faculty of Applied Medical Sciences, Jazan University, Kingdom of Saudi Arabia. Mobile: +966 549918001. E-mail:
| | - Mona N. Alzughbi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Mahmoud M. Habibullah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Moschinger M, Hilse KE, Rupprecht A, Zeitz U, Erben RG, Rülicke T, Pohl EE. Age-related sex differences in the expression of important disease-linked mitochondrial proteins in mice. Biol Sex Differ 2019; 10:56. [PMID: 31806023 PMCID: PMC6896328 DOI: 10.1186/s13293-019-0267-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022] Open
Abstract
The prevalence and progression of many illnesses, such as neurodegenerative and cardiovascular diseases, obesity, and cancer, vary between women and men, often in an age-dependent manner. A joint hallmark of these diseases is some type of mitochondrial dysfunction. While several mitochondrial proteins are known to be regulated by sex hormones, the levels of those proteins have not been systematically analyzed with regard to sex and age, and studies that consider sex and/or age differences in the protein expression are very rare. In this study, we compared the expression patterns of physiologically important mitochondrial proteins in female and male C57BL/6N mice of age cohorts frequently used in experiments. We found that sex-related differences in the expression of uncoupling proteins 1 and 3 (UCP1 and UCP3) occur in an age-dependent manner. The sex-specific expression of UCP1 and UCP3 in brown adipose tissue (BAT) was inversely correlated with differences in body weight. Expression of UCP4 in the brain, Complex I in the spleen, and Complex II in the brain and BAT was least affected by the sex of the mouse. We further demonstrated that there are serious limitations in using VDAC1 and actin as markers in western blot analyses, due to their sex- and age-specific fluctuations. Our results confirm that sex and age are important parameters and should be taken into account by researchers who examine the mechanistic aspects of diseases. HIGHLIGHTS: I.The levels of UCP1 and UCP3 protein expression differ between females and males in an age-dependent manner.II.Pre-pubertal expression of almost all proteins tested in this study does not depend on the sex of the mouse.III.Expression of VDAC1 and actin, which are often used as loading control proteins in western blot analysis, is tissue-specifically influenced by sex and age.
Collapse
Affiliation(s)
- Michael Moschinger
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Karolina E Hilse
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Anne Rupprecht
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.,Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Ute Zeitz
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Reinhold G Erben
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
16
|
Dang C, Han B, Li Q, Han R, Hao J. Up-regulation of PGC-1α in neurons protects against experimental autoimmune encephalomyelitis. FASEB J 2019; 33:14811-14824. [PMID: 31718280 DOI: 10.1096/fj.201901149rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) generation and mitochondrial dysfunction are related to neuron loss in multiple sclerosis (MS). Although peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) appears to play a key role in modulating levels of mitochondrial ROS, antioxidants, and uncoupling proteins (UCPs), and PGC-1α expression is reduced in the neocortex of patients with MS, it is unclear what its role is in neurons and in the manifestation of clinical symptoms of MS. Here, we show in wild-type (WT) experimental autoimmune encephalomyelitis (EAE) mice that PGC-1α is decreased 13 d after EAE induction followed by a steady decline up to 20 d. These changes were accompanied by parallel alterations in levels of superoxide dismutase 2, peroxiredoxin 3, thioredoxin 2, UCP4, and UCP5. In transgenic (TG) mice with neuron-specific overexpression of PGC-1α (PGC-1αf/fEno2-Cre), clinical symptoms after EAE induction were delayed and less severe than in WT mice. The degrees of apoptotic neuron loss and demyelination were also less severe in PGC-1α-TG mice. Overexpression of PGC-1α in neuronal neuroblastoma spinal cord 34 cells subjected to EAE inflammatory conditions showed similar results to those obtained in vivo. RNA sequencing analysis showed that apoptotic processes were significantly enriched in the top 10 significant gene ontology (GO) terms of differentially expressed genes, and the apoptotic pathway was significantly enriched in Kyoto Encyclopedia of Genes and Genomes pathway analysis. Our findings indicate that up-regulation of neuronal PGC-1α protected neurons from apoptosis in EAE. Manipulating PGC-1α levels in MS may help stave off this devastating disease.-Dang, C., Han, B., Li, Q., Han, R., Hao, J. Up-regulation of PGC-1α in neurons protects against experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Chun Dang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Han
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ranran Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Junwei Hao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
17
|
Kreiter J, Rupprecht A, Zimmermann L, Moschinger M, Rokitskaya TI, Antonenko YN, Gille L, Fedorova M, Pohl EE. Molecular Mechanisms Responsible for Pharmacological Effects of Genipin on Mitochondrial Proteins. Biophys J 2019; 117:1845-1857. [PMID: 31706565 PMCID: PMC7031773 DOI: 10.1016/j.bpj.2019.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/26/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Genipin, a natural compound from Gardenia jasminoides, is a well-known compound in Chinese medicine that is used for the treatment of cancer, inflammation, and diabetes. The use of genipin in classical medicine is hindered because of its unknown molecular mechanisms of action apart from its strong cross-linking ability. Genipin is increasingly applied as a specific inhibitor of proton transport mediated by mitochondrial uncoupling protein 2 (UCP2). However, its specificity for UCP2 is questionable, and the underlying mechanism behind its action is unknown. Here, we investigated the effect of genipin in different systems, including neuroblastoma cells, isolated mitochondria, isolated mitochondrial proteins, and planar lipid bilayer membranes reconstituted with recombinant proteins. We revealed that genipin activated dicarboxylate carrier and decreased the activity of UCP1, UCP3, and complex III of the respiratory chain alongside with UCP2 inhibition. Based on competitive inhibition experiments, the use of amino acid blockers, and site-directed mutagenesis of UCP1, we propose a mechanism of genipin’s action on UCPs. At low concentrations, genipin binds to arginine residues located in the UCP funnel, which leads to a decrease in UCP’s proton transporting function in the presence of long chain fatty acids. At concentrations above 200 μM, the inhibitory action of genipin on UCPs is overlaid by increased nonspecific membrane conductance due to the formation of protein-genipin aggregates. Understanding the concentration-dependent mechanism of genipin action in cells will allow its targeted application as a drug in the above-mentioned diseases.
Collapse
Affiliation(s)
- Jürgen Kreiter
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Anne Rupprecht
- Rostock University Medical Center, Rostock, Mecklenburg-Vorpommern, Germany
| | - Lars Zimmermann
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Michael Moschinger
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Lars Gille
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
18
|
Nold V, Sweatman C, Karabatsiakis A, Böck C, Bretschneider T, Lawless N, Fundel-Clemens K, Kolassa IT, Allers KA. Activation of the kynurenine pathway and mitochondrial respiration to face allostatic load in a double-hit model of stress. Psychoneuroendocrinology 2019; 107:148-159. [PMID: 31129488 DOI: 10.1016/j.psyneuen.2019.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 12/24/2022]
Abstract
Allostasis is the process by which the body's physiological systems adapt to environmental changes. Chronic stress increases the allostatic load to the body, producing wear and tear that could, over time, become pathological. In this study, young adult male Wistar Kyoto rats were exposed to an unpredictable chronic mild stress (uCMS) protocol to increase allostatic load. First, physiological systems which may be affected by extended uCMS exposure were assessed. Secondly, 5 weeks of uCMS were used to investigate early adaptations in the previously selected systems. Adverse experiences during developmentally sensitive periods like adolescence are known to severely alter the individual stress vulnerability with long-lasting effects. To elucidate how early life adversity impacts stress reactivity in adulthood, an additional group with juvenile single-housing (JSH) prior to uCMS was included in the second cohort. The aim of this work was to assess the impact of chronic stress with or without adversity during adolescence on two domains known to be impacted in numerous stress-related disorders: mitochondrial energy metabolism and the immune system. Both, uCMS and adolescence stress increased kynurenine and kynurenic acid in plasma, suggesting a protective, anti-oxidant response from the kynurenine pathway. Furthermore, uCMS resulted in a down-regulation of immediate early gene expression in the prefrontal cortex and hippocampus, while only rats with the double-hit of adolescent stress and uCMS demonstrated increased mitochondrial activity in the hippocampus. These results suggest that early life adversity may impact on allostatic load by increasing energetic requirements in the brain.
Collapse
Affiliation(s)
- V Nold
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, Ulm, Germany; Central Nervous System Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, Biberach a. d. Riss, Germany
| | - C Sweatman
- Central Nervous System Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, Biberach a. d. Riss, Germany
| | - A Karabatsiakis
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, Ulm, Germany
| | - C Böck
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, Ulm, Germany
| | - T Bretschneider
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, Biberach a. d. Riss, Germany
| | - N Lawless
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorferstraße 65, Biberach a.d. Riss, Germany
| | - K Fundel-Clemens
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorferstraße 65, Biberach a.d. Riss, Germany
| | - I-T Kolassa
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, Ulm, Germany
| | - K A Allers
- Central Nervous System Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, Biberach a. d. Riss, Germany.
| |
Collapse
|
19
|
Cheng WC, Ho PC. Firing Up Cold Tumors. Trends Cancer 2019; 5:528-530. [PMID: 31474357 DOI: 10.1016/j.trecan.2019.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/02/2019] [Accepted: 06/21/2019] [Indexed: 01/01/2023]
Abstract
Elucidating how tumor-intrinsic pathways regulate T cell infiltration in tumors is crucial for developing new therapeutic strategies for immune checkpoint blockade therapy. Here, we review recent progress on how these pathways orchestrate immune status in tumors and discuss the potential interventions for reprogramming the tumor microenvironment for cancer treatment.
Collapse
Affiliation(s)
- Wan-Chen Cheng
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Cancer Research, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
20
|
Pohl EE, Rupprecht A, Macher G, Hilse KE. Important Trends in UCP3 Investigation. Front Physiol 2019; 10:470. [PMID: 31133866 PMCID: PMC6524716 DOI: 10.3389/fphys.2019.00470] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/04/2019] [Indexed: 11/13/2022] Open
Abstract
Membrane uncoupling protein 3 (UCP3), a member of the mitochondrial uncoupling protein family, was discovered in 1997. UCP3's properties, such as its high homology to other mitochondrial carriers, especially to UCP2, its short lifetime and low specificity of UCP3 antibodies, have hindered progress in understanding its biological function and transport mechanism over decades. The abundance of UCP3 is highest in murine brown adipose tissue (BAT, 15.0 pmol/mg protein), compared to heart (2.7 pmol/mg protein) and the gastrocnemius muscle (1.7 pmol/mg protein), but it is still 400-fold lower than the abundance of UCP1, a biomarker for BAT. Investigation of UCP3 reconstituted in planar bilayer membranes revealed that it transports protons only when activated by fatty acids (FA). Although purine nucleotides (PN) inhibit UCP3-mediated transport, the molecular mechanism differs from that of UCP1. It remains a conundrum that two homologous proton-transporting proteins exist within the same tissue. Recently, we proposed that UCP3 abundance directly correlates with the degree of FA β-oxidation in cell metabolism. Further development in this field implies that UCP3 may have dual function in transporting substrates, which have yet to be identified, alongside protons. Evaluation of the literature with respect to UCP3 is a complex task because (i) UCP3 features are often extrapolated from its "twin" UCP2 without additional proof, and (ii) the specificity of antibodies against UCP3 used in studies is rarely evaluated. In this review, we primarily focus on recent findings obtained for UCP3 in biological and biomimetic systems.
Collapse
Affiliation(s)
- Elena E. Pohl
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Anne Rupprecht
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Gabriel Macher
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Karolina E. Hilse
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
21
|
Upregulation of UCP2 Expression Protects against LPS-Induced Oxidative Stress and Apoptosis in Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2758262. [PMID: 31182990 PMCID: PMC6512061 DOI: 10.1155/2019/2758262] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/21/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
Abstract
Uncoupling protein 2 (UCP2) has a cardioprotective role under septic conditions, but the underlying mechanism remains unclear. This study aimed at investigating the effects of UCP2 on the oxidative stress and apoptosis of cardiomyocytes induced by lipopolysaccharide (LPS). First, LPS increased UCP2 expression in cardiomyocytes in a time-dependent manner. LPS increased the production of lactate dehydrogenase (LDH), reactive oxygen species (ROS), and malondialdehyde (MDA) and decreased the level of superoxide dismutase (SOD). However, UCP2 knockdown increased the LPS-induced cardiac injury and oxidative stress. In addition, LPS damaged the mitochondrial ultrastructure and led to the disruption of mitochondrial membrane potential (MMP), as well as the release of mitochondrial cytochrome c. UCP2 knockdown aggravated mitochondrial injury and the release of mitochondrial cytochrome c. LPS increased the protein levels of Bax and cleaved-caspase-3, decreased the protein level of Bcl-2, and upregulated the protein level of mitogen-activated protein kinase. However, upon UCP2 knockdown, the protein levels of Bax and cleaved-caspase-3 increased even further, and the protein level of Bcl-2 was further decreased. The protein level of phosphorylated p38 was also further enhanced. Thus, UCP2 protects against LPS-induced oxidative stress and apoptosis in cardiomyocytes.
Collapse
|
22
|
Rupprecht A, Moldzio R, Mödl B, Pohl EE. Glutamine regulates mitochondrial uncoupling protein 2 to promote glutaminolysis in neuroblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:391-401. [PMID: 30885735 DOI: 10.1016/j.bbabio.2019.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/30/2018] [Accepted: 03/14/2019] [Indexed: 01/26/2023]
Abstract
Mitochondrial uncoupling protein 2 (UCP2) is highly abundant in rapidly proliferating cells that utilize aerobic glycolysis, such as stem cells, cancer cells, and cells of the immune system. However, the function of UCP2 has been a longstanding conundrum. Considering the strict regulation and unusually short life time of the protein, we propose that UCP2 acts as a "signaling protein" under nutrient shortage in cancer cells. We reveal that glutamine shortage induces the rapid and reversible downregulation of UCP2, decrease of the metabolic activity and proliferation of neuroblastoma cells, that are regulated by glutamine per se but not by glutamine metabolism. Our findings indicate a very rapid (within 1 h) metabolic adaptation that allows the cell to survive by either shifting its metabolism to the use of the alternative fuel glutamine or going into a reversible, more quiescent state. The results imply that UCP2 facilitates glutamine utilization as an energetic fuel source, thereby providing metabolic flexibility during glucose shortage. The targeting UCP2 by drugs to intervene with cancer cell metabolism may represent a new strategy for treatment of cancers resistant to other therapies.
Collapse
Affiliation(s)
- Anne Rupprecht
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria; Institute of Pharmacology and Toxicology, Rostock University Medical Center, Germany.
| | - Rudolf Moldzio
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Bernadette Mödl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
23
|
Hass DT, Barnstable CJ. Cell Autonomous Neuroprotection by the Mitochondrial Uncoupling Protein 2 in a Mouse Model of Glaucoma. Front Neurosci 2019; 13:201. [PMID: 30906248 PMCID: PMC6418046 DOI: 10.3389/fnins.2019.00201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/20/2019] [Indexed: 12/20/2022] Open
Abstract
Glaucoma is a group of disorders associated with retinal ganglion cell (RGC) degeneration and death. There is a clear contribution of mitochondrial dysfunction and oxidative stress toward glaucomatous RGC death. Mitochondrial uncoupling protein 2 (Ucp2) is a well-known regulator of oxidative stress that increases cell survival in acute models of oxidative damage. The impact of Ucp2 on cell survival during sub-acute and chronic neurodegenerative conditions, however, is not yet clear. Herein, we test the hypothesis that increased Ucp2 expression will improve RGC survival in a mouse model of glaucoma. We show that increasing RGC but not glial Ucp2 expression in transgenic animals decreases glaucomatous RGC death, but also that the PPAR-γ agonist rosiglitazone (RSG), an endogenous transcriptional activator of Ucp2, does not significantly alter RGC loss during glaucoma. Together, these data support a model whereby increased Ucp2 expression mediates neuroprotection during a long-term oxidative stressor, but that transcriptional activation alone is insufficient to elicit a neuroprotective effect, motivating further research in to the post-transcriptional regulation of Ucp2.
Collapse
Affiliation(s)
- Daniel T Hass
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Colin J Barnstable
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
24
|
Ježek P, Jabůrek M, Porter RK. Uncoupling mechanism and redox regulation of mitochondrial uncoupling protein 1 (UCP1). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:259-269. [DOI: 10.1016/j.bbabio.2018.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 01/11/2023]
|
25
|
Chen M, Wang X, Hu BO, Zhou J, Wang X, Wei W, Zhou H. Ursolic acid stimulates UCP2 expression and protects H9c2 cells from hypoxia-reoxygenation injury via p38 signaling. J Biosci 2018; 43:857-865. [PMID: 30541946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Oxidative stress and apoptosis is involved in hypoxia-reoxygenation (H/R) induced myocardial injury. Increased expression of uncoupling protein 2 (UCP2), a cationic carrier protein, has protective effect against H/R injury. The present study aimed to find candidate drugs for H/R induced cardiac damage by identifying compounds regulating UCP2 expression. Here, among six natural compounds, ursolic acid (UA) had the most significant induction effect on UCP2 expression in H9c2 cells under H/R conditions. Subsequently, we found that UA significantly attenuated cell apoptosis and Caspase 3 activity, but increased nitric oxide (NO) release under H/R conditions. Additionally, UA pretreatment also decreased reactive oxygen species (ROS) production and malondialdehyde (MDA) content, but increased superoxide dismutase (SOD) activity. H/R caused a notable increase in the phosphorylation of p38, which was weakened by UA pretreatment. Moreover, p38 inhibitor (SB203580) showed the similar effects on H/R cells as UA pretreatment, while UCP2 knockdown had the reverse biological effects. More importantly, the effects of UA or p38 inhibitor exposure were partially rescued by UCP2 knockdown. Collectively, our data suggested the functions of UA on UCP2 expression and on the protection of H/Rstimulated H9c2 cells may be attributed to p38 signaling pathway.
Collapse
Affiliation(s)
- Min Chen
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Echtay KS, Bienengraeber M, Mayinger P, Heimpel S, Winkler E, Druhmann D, Frischmuth K, Kamp F, Huang SG. Uncoupling proteins: Martin Klingenberg's contributions for 40 years. Arch Biochem Biophys 2018; 657:41-55. [PMID: 30217511 DOI: 10.1016/j.abb.2018.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022]
Abstract
The uncoupling protein (UCP1) is a proton (H+) transporter in the mitochondrial inner membrane. By dissipating the electrochemical H+ gradient, UCP1 uncouples respiration from ATP synthesis, which drives an increase in substrate oxidation via the TCA cycle flux that generates more heat. The mitochondrial uncoupling-mediated non-shivering thermogenesis in brown adipose tissue is vital primarily to mammals, such as rodents and new-born humans, but more recently additional functions in adult humans have been described. UCP1 is regulated by β-adrenergic receptors through the sympathetic nervous system and at the molecular activity level by nucleotides and fatty acid to meet thermogenesis needs. The discovery of novel UCP homologs has greatly contributed to the understanding of human diseases, such as obesity and diabetes. In this article, we review the progress made towards the molecular mechanism and function of the UCPs, in particular focusing on the influential contributions from Martin Klingenberg's laboratory. Because all members of the UCP family are potentially promising drug targets, we also present and discuss possible approaches and methods for UCP-related drug discovery.
Collapse
Affiliation(s)
- Karim S Echtay
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, P.O. Box: 100, Tripoli, Lebanon
| | - Martin Bienengraeber
- Departments of Anesthesiology and Pharmacology, Medical College of Wisconsin, Milwaukee, USA
| | - Peter Mayinger
- Division of Nephrology & Hypertension and Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR, 97201, USA
| | - Simone Heimpel
- Campus of Applied Science, University of Applied Sciences Würzburg-Schweinfurt, Münzstraße 12, D-97070, Würzburg, Germany
| | - Edith Winkler
- Institute of Physical Biochemistry, University of Munich, Schillerstrasse 44, D-80336, Munich, Germany
| | - Doerthe Druhmann
- Institute of Physical Biochemistry, University of Munich, Schillerstrasse 44, D-80336, Munich, Germany
| | - Karina Frischmuth
- Institute of Physical Biochemistry, University of Munich, Schillerstrasse 44, D-80336, Munich, Germany
| | - Frits Kamp
- Institute of Physical Biochemistry, University of Munich, Schillerstrasse 44, D-80336, Munich, Germany
| | - Shu-Gui Huang
- BioAssay Systems, 3191 Corporate Place, Hayward, CA, 94545, USA.
| |
Collapse
|
27
|
Chen M, Wang X, Hu B, Zhou J, Wang X, Wei W, Zhou H. Ursolic acid stimulates UCP2 expression and protects H9c2 cells from hypoxia-reoxygenation injury via p38 signaling. J Biosci 2018. [DOI: 10.1007/s12038-018-9801-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Ježek P, Holendová B, Garlid KD, Jabůrek M. Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling. Antioxid Redox Signal 2018; 29:667-714. [PMID: 29351723 PMCID: PMC6071544 DOI: 10.1089/ars.2017.7225] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Mitochondria are the energetic, metabolic, redox, and information signaling centers of the cell. Substrate pressure, mitochondrial network dynamics, and cristae morphology state are integrated by the protonmotive force Δp or its potential component, ΔΨ, which are attenuated by proton backflux into the matrix, termed uncoupling. The mitochondrial uncoupling proteins (UCP1-5) play an eminent role in the regulation of each of the mentioned aspects, being involved in numerous physiological events including redox signaling. Recent Advances: UCP2 structure, including purine nucleotide and fatty acid (FA) binding sites, strongly support the FA cycling mechanism: UCP2 expels FA anions, whereas uncoupling is achieved by the membrane backflux of protonated FA. Nascent FAs, cleaved by phospholipases, are preferential. The resulting Δp dissipation decreases superoxide formation dependent on Δp. UCP-mediated antioxidant protection and its impairment are expected to play a major role in cell physiology and pathology. Moreover, UCP2-mediated aspartate, oxaloacetate, and malate antiport with phosphate is expected to alter metabolism of cancer cells. CRITICAL ISSUES A wide range of UCP antioxidant effects and participations in redox signaling have been reported; however, mechanisms of UCP activation are still debated. Switching off/on the UCP2 protonophoretic function might serve as redox signaling either by employing/releasing the extra capacity of cell antioxidant systems or by directly increasing/decreasing mitochondrial superoxide sources. Rapid UCP2 degradation, FA levels, elevation of purine nucleotides, decreased Mg2+, or increased pyruvate accumulation may initiate UCP-mediated redox signaling. FUTURE DIRECTIONS Issues such as UCP2 participation in glucose sensing, neuronal (synaptic) function, and immune cell activation should be elucidated. Antioxid. Redox Signal. 29, 667-714.
Collapse
Affiliation(s)
- Petr Ježek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Blanka Holendová
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Keith D Garlid
- 2 UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Martin Jabůrek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| |
Collapse
|
29
|
Hilse KE, Rupprecht A, Egerbacher M, Bardakji S, Zimmermann L, Wulczyn AEMS, Pohl EE. The Expression of Uncoupling Protein 3 Coincides With the Fatty Acid Oxidation Type of Metabolism in Adult Murine Heart. Front Physiol 2018; 9:747. [PMID: 29988383 PMCID: PMC6024016 DOI: 10.3389/fphys.2018.00747] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/28/2018] [Indexed: 01/07/2023] Open
Abstract
The involvement of mitochondrial uncoupling proteins 2 and 3 in the pathogenesis of cardiovascular diseases is widely acknowledged. However, contradictory reports show that the functions of UCP2/UCP3 are still disputed. We have previously described that UCP2 is highly abundant in cells that rely on glycolysis, such as stem, cancer and activated immune cells. In contrast, high amounts of UCP3 are present in brown adipose tissue, followed by heart and skeletal muscles - all known to metabolize fatty acids (FA) to a high extent. Using two different models - mouse embryonic stem cell (mESC) differentiation to cardiomyocytes (CM) and murine heart at different developmental stages - we now tested the concept that the expression ratio between UCP2 and UCP3 indicates the metabolism type in CM. Our results revealed the tight correlation between UCP3 abundance, expression of mitochondrial fatty acid oxidation (FAO) markers and presence of multiple connections between mitochondria and lipid droplets. We further demonstrated that the time course of UCP3 expression neither coincided with the onset of the electrical activity in CM, derived from mESC, nor with the expression of respiratory chain proteins, the observation which rendered protein participation in ROS regulation unlikely. The present data imply that UCP3 may facilitate FAO by transporting FAs into mitochondria. In contrast, UCP2 was highly abundant at early stages of heart development and in mESC. Understanding, that the expression patterns of UCP3 and UCP2 in heart during development reflect the type of the cell metabolism is key to the uncovering their different functions. Their expression ratio may be an important diagnostic criterion for the degree of CM differentiation and/or severity of a heart failure.
Collapse
Affiliation(s)
- Karolina E Hilse
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anne Rupprecht
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Monika Egerbacher
- Histology and Embryology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sarah Bardakji
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lars Zimmermann
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andrea E M Seiler Wulczyn
- German Centre for the Protection of Laboratory Animals (Bf3R), Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Elena E Pohl
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
30
|
Berry BJ, Trewin AJ, Amitrano AM, Kim M, Wojtovich AP. Use the Protonmotive Force: Mitochondrial Uncoupling and Reactive Oxygen Species. J Mol Biol 2018; 430:3873-3891. [PMID: 29626541 DOI: 10.1016/j.jmb.2018.03.025] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
Abstract
Mitochondrial respiration results in an electrochemical proton gradient, or protonmotive force (pmf), across the mitochondrial inner membrane. The pmf is a form of potential energy consisting of charge (∆ψm) and chemical (∆pH) components, that together drive ATP production. In a process called uncoupling, proton leak into the mitochondrial matrix independent of ATP production dissipates the pmf and energy is lost as heat. Other events can directly dissipate the pmf independent of ATP production as well, such as chemical exposure or mechanisms involving regulated mitochondrial membrane electrolyte transport. Uncoupling has defined roles in metabolic plasticity and can be linked through signal transduction to physiologic events. In the latter case, the pmf impacts mitochondrial reactive oxygen species (ROS) production. Although capable of molecular damage, ROS also have signaling properties that depend on the timing, location, and quantity of their production. In this review, we provide a general overview of mitochondrial ROS production, mechanisms of uncoupling, and how these work in tandem to affect physiology and pathologies, including obesity, cardiovascular disease, and immunity. Overall, we highlight that isolated bioenergetic models-mitochondria and cells-only partially recapitulate the complex link between the pmf and ROS signaling that occurs in vivo.
Collapse
Affiliation(s)
- Brandon J Berry
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA.
| | - Adam J Trewin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA.
| | - Andrea M Amitrano
- Department of Pathology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA; Department of Microbiology and Immunology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA.
| | - Minsoo Kim
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA; Department of Pathology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA; Department of Microbiology and Immunology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA.
| | - Andrew P Wojtovich
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA; Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA.
| |
Collapse
|
31
|
Kuksal N, Chalker J, Mailloux RJ. Progress in understanding the molecular oxygen paradox - function of mitochondrial reactive oxygen species in cell signaling. Biol Chem 2017; 398:1209-1227. [PMID: 28675747 DOI: 10.1515/hsz-2017-0160] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/27/2017] [Indexed: 11/15/2022]
Abstract
The molecular oxygen (O2) paradox was coined to describe its essential nature and toxicity. The latter characteristic of O2 is associated with the formation of reactive oxygen species (ROS), which can damage structures vital for cellular function. Mammals are equipped with antioxidant systems to fend off the potentially damaging effects of ROS. However, under certain circumstances antioxidant systems can become overwhelmed leading to oxidative stress and damage. Over the past few decades, it has become evident that ROS, specifically H2O2, are integral signaling molecules complicating the previous logos that oxyradicals were unfortunate by-products of oxygen metabolism that indiscriminately damage cell structures. To avoid its potential toxicity whilst taking advantage of its signaling properties, it is vital for mitochondria to control ROS production and degradation. H2O2 elimination pathways are well characterized in mitochondria. However, less is known about how H2O2 production is controlled. The present review examines the importance of mitochondrial H2O2 in controlling various cellular programs and emerging evidence for how production is regulated. Recently published studies showing how mitochondrial H2O2 can be used as a secondary messenger will be discussed in detail. This will be followed with a description of how mitochondria use S-glutathionylation to control H2O2 production.
Collapse
|
32
|
Smorodchenko A, Schneider S, Rupprecht A, Hilse K, Sasgary S, Zeitz U, Erben RG, Pohl EE. UCP2 up-regulation within the course of autoimmune encephalomyelitis correlates with T-lymphocyte activation. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1002-1012. [PMID: 28130201 DOI: 10.1016/j.bbadis.2017.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/07/2017] [Accepted: 01/23/2017] [Indexed: 01/20/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating autoimmune disorder of the central nervous system (CNS) associated with severe neurological disability. Reactive oxygen species (ROS) and mitochondrial dysfunction play a pivotal role in the pathogenesis of this disease. Several members of the mitochondrial uncoupling protein subfamily (UCP2-UCP5) were suggested to regulate ROS by diminishing the mitochondrial membrane potential and constitute therefore a promising pharmacological target for MS. To evaluate the role of different uncoupling proteins in neuroinflammation, we have investigated their expression patterns in murine brain and spinal cord (SC) during different stages of experimental autoimmune encephalomyelitis (EAE), an animal model for MS. At mRNA and protein levels we found that only UCP2 is up-regulated in the SC, but not in brain. The increase in UCP2 expression was antigen-independent, reached its maximum between 14 and 21days in both OVA and MOG immunized animals and correlated with an augmented number of CD3+ T-lymphocytes in SC parenchyma. The decrease in abundance of UCP4 was due to neuronal injury and was only detected in CNS of MOG-induced EAE animals. The results provide evidence that the involvement of mitochondrial UCP2 in CNS inflammation during EAE may be mainly explained by the invasion of activated T-lymphocytes. This conclusion coincides with our previous observation that UCP2 is up-regulated in activated and rapidly proliferating T-cells and participates in fast metabolic re-programming of cells during proliferation.
Collapse
Affiliation(s)
- Alina Smorodchenko
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria; Institute of Vegetative Anatomy, Charité - Universitätsmedizin Berlin, Germany.
| | - Stephanie Schneider
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Anne Rupprecht
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Karoline Hilse
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Soleman Sasgary
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Ute Zeitz
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Reinhold G Erben
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
33
|
Uncoupling protein 2 deficiency results in higher neutrophil counts and lower B-cell counts during aging in mice. Exp Hematol 2016; 44:1085-1091.e2. [PMID: 27544660 DOI: 10.1016/j.exphem.2016.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/23/2016] [Accepted: 08/08/2016] [Indexed: 02/07/2023]
Abstract
Progress of age-related hematopoietic diseases such as myelodysplastic syndrome has previously been linked to enhanced levels of reactive oxygen species (ROS). Uncoupling protein 2 (UCP2) was found to reduce mitochondrial ROS production through uncoupling of the respiratory chain. The impact of UCP2 loss and elevated ROS on hematopoiesis during aging has not yet been investigated. In this study, UCP2 knockout mice were analyzed at aging stages of 3, 12, and 24 months with respect to oxidative and energy status of bone marrow cells. Further, the cellular bone marrow subpopulation composition was characterized, as were the differential blood counts at all time points. UCP2 knockout mice revealed enhanced levels of mitochondrial superoxide in elderly animals. Following oxidative stress, adenosine triphosphate (ATP) levels decreased more in the knockout mice than in the wild type. Investigation of bone marrow and blood counts of the knockout mice revealed an enhanced amount of monocytes and neutrophils, as well as a decreased amount of B cells and impaired erythropoiesis throughout aging. In summary, UCP2 induces protective effects on ROS and ATP levels during aging. Additionally, the results suggest an imbalance in hematopoiesis because of the lack of UCP2.
Collapse
|
34
|
Gill KS, Fernandes P, O'Donovan TR, McKenna SL, Doddakula KK, Power DG, Soden DM, Forde PF. Glycolysis inhibition as a cancer treatment and its role in an anti-tumour immune response. Biochim Biophys Acta Rev Cancer 2016; 1866:87-105. [PMID: 27373814 DOI: 10.1016/j.bbcan.2016.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 12/23/2022]
Abstract
Increased glycolysis is the main source of energy supply in cancer cells that use this metabolic pathway for ATP generation. Altered energy metabolism is a biochemical fingerprint of cancer cells that represents one of the "hallmarks of cancer". The immune system can prevent tumour growth by eliminating cancer cells but this editing process ultimately results in poorly immunogenic cells remaining allowing for unchallenged tumour growth. In this review we look at the glycolysis pathway as a target for cancer treatments. We also examine the interplay between the glycolysis modulation and the immune response as an anti-cancer therapy.
Collapse
Affiliation(s)
- Kheshwant S Gill
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland; Cardiothoracic Surgery Department, Cork University Hospital, Cork, Ireland
| | - Philana Fernandes
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland
| | - Tracey R O'Donovan
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland
| | - Sharon L McKenna
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland
| | | | - Derek G Power
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland; Department of Medical Oncology, Mercy University Hospital, Grenville Place, Cork, Ireland
| | - Declan M Soden
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland
| | - Patrick F Forde
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland.
| |
Collapse
|
35
|
Chaudhuri L, Srivastava RK, Kos F, Shrikant PA. Uncoupling protein 2 regulates metabolic reprogramming and fate of antigen-stimulated CD8+ T cells. Cancer Immunol Immunother 2016; 65:869-74. [PMID: 27271549 PMCID: PMC4919150 DOI: 10.1007/s00262-016-1851-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 05/23/2016] [Indexed: 01/21/2023]
Abstract
Adoptive cell therapy (ACT) employing ex vivo-generated tumor antigen-specific CD8+ T cells shows tumor efficacy when the transferred cells possess both effector and memory functions. New strategies based on understanding of mechanisms that balance CD8+ T cell differentiation toward effector and memory responses are highly desirable. Emerging information confirms a central role for antigen-induced metabolic reprogramming in CD8+ T cell differentiation and clonal expansion. The mitochondrial protein uncoupling protein 2 (UCP2) is induced by antigen stimulation of CD8+ T cells; however, its role in metabolic reprogramming underlying differentiation and clonal expansion has not been reported. Employing genetic (siRNA) and pharmacologic (Genipin) approaches, we note that antigen-induced UCP2 expression reduces glycolysis, fatty acid synthesis and production of reactive oxygen species to balance differentiation with survival of effector CD8+ T cells. Inhibition of UCP2 promotes CD8+ T cell terminal differentiation into short-lived effector cells (CD62L(lo)KLRG1(Hi)IFNγ(Hi)) that undergo clonal contraction. These findings are the first to reveal a role for antigen-induced UCP2 expression in balancing CD8+ T cell differentiation and survival. Targeting UCP2 to regulate metabolic reprogramming of CD8+ T cells is an attractive new approach to augment efficacy of tumor therapy by ACT.
Collapse
Affiliation(s)
- Leena Chaudhuri
- Departments of Immunology, Molecular Pharmacology/Experimental Therapeutics and Research, Mayo Clinic Arizona, JRB 3-356, E. Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Rupesh K Srivastava
- Departments of Immunology, Molecular Pharmacology/Experimental Therapeutics and Research, Mayo Clinic Arizona, JRB 3-356, E. Shea Blvd, Scottsdale, AZ, 85259, USA
- Department of Zoology, School of Biological Sciences, Dr. Hari Singh Gour University, Sagar, MP, 470003, India
| | - Ferdynand Kos
- Departments of Immunology, Molecular Pharmacology/Experimental Therapeutics and Research, Mayo Clinic Arizona, JRB 3-356, E. Shea Blvd, Scottsdale, AZ, 85259, USA
- Department of Experimental Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Protul A Shrikant
- Departments of Immunology, Molecular Pharmacology/Experimental Therapeutics and Research, Mayo Clinic Arizona, JRB 3-356, E. Shea Blvd, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
36
|
Fallahi AA, Shekarfroush S, Rahimi M, Jalali A, Khoshbaten A. Alteration in cardiac uncoupling proteins and eNOS gene expression following high-intensity interval training in favor of increasing mechanical efficiency. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:258-64. [PMID: 27114795 PMCID: PMC4834115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES High-intensity interval training (HIIT) increases energy expenditure and mechanical energy efficiency. Although both uncoupling proteins (UCPs) and endothelial nitric oxide synthase (eNOS) affect the mechanical efficiency and antioxidant capacity, their effects are inverse. The aim of this study was to determine whether the alterations of cardiac UCP2, UCP3, and eNOS mRNA expression following HIIT are in favor of increased mechanical efficiency or decreased oxidative stress. MATERIALS AND METHODS Wistar rats were divided into five groups: control group (n=12), HIIT for an acute bout (AT1), short term HIIT for 3 and 5 sessions (ST3 and ST5), long-term training for 8 weeks (LT) (6 in each group). The rats of the training groups were made to run on a treadmill for 60 min in three stages: 6 min running for warm-up, 7 intervals of 7 min running on treadmill with a slope of 5° to 20° (4 min with an intensity of 80-110% VO2max and 3 min at 50-60% VO2max), and 5-min running for cool-down. The control group did not participate in any exercise program. Rats were sacrificed and the hearts were extracted to analyze the levels of UCP2, UCP3 and eNOS mRNA by RT-PCR. RESULTS UCP3 expression was increased significantly following an acute training bout. Repeated HIIT for 8 weeks resulted in a significant decrease in UCPs mRNA and a significant increase in eNOS expression in cardiac muscle. CONCLUSION This study indicates that Long term HIIT through decreasing UCPs mRNA and increasing eNOS mRNA expression may enhance energy efficiency and physical performance.
Collapse
Affiliation(s)
| | - Shahnaz Shekarfroush
- Department of Physiology, Arsanjan Branch, Islamic Azad University, Fars, Iran,Corresponding author: Shahnaz Shekarforoush. Islamic Azad University, Arsanjan, Iran, Fars. Tel: 09173376859; Fax 071-43522483; ;
| | - Mostafa Rahimi
- Department of Physical Education, University of Kashan, Iran
| | - Amirhossain Jalali
- Institute of Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, Iran
| | - Ali Khoshbaten
- Sport Physiology Research Center, Baghiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Hilse KE, Kalinovich AV, Rupprecht A, Smorodchenko A, Zeitz U, Staniek K, Erben RG, Pohl EE. The expression of UCP3 directly correlates to UCP1 abundance in brown adipose tissue. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:72-78. [PMID: 26518386 PMCID: PMC7115856 DOI: 10.1016/j.bbabio.2015.10.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/16/2015] [Accepted: 10/25/2015] [Indexed: 01/14/2023]
Abstract
UCP1 and UCP3 are members of the uncoupling protein (UCP) subfamily and are localized in the inner mitochondrial membrane. Whereas UCP1's central role in non-shivering thermogenesis is acknowledged, the function and even tissue expression pattern of UCP3 are still under dispute. Because UCP3 properties regarding transport of protons are qualitatively identical to those of UCP1, its expression in brown adipose tissue (BAT) alongside UCP1 requires justification. In this work, we tested whether any correlation exists between the expression of UCP1 and UCP3 in BAT by quantification of protein amounts in mouse tissues at physiological conditions, in cold-acclimated and UCP1 knockout mice. Quantification using recombinant UCP3 revealed that the UCP3 amount in BAT (0.51ng/(μg total tissue protein)) was nearly one order of magnitude higher than that in muscles and heart. Cold-acclimated mice showed an approximate three-fold increase in UCP3 abundance in BAT in comparison to mice in thermoneutral conditions. Surprisingly, we found a significant decrease of UCP3 in BAT of UCP1 knockout mice, whereas the protein amount in skeletal and heart muscles remained constant. UCP3 abundance decreased even more in cold-acclimated UCP1 knockout mice. Protein quantification in UCP3 knockout mice revealed no compensatory increase in UCP1 or UCP2 expression. Our results do not support the participation of UCP3 in thermogenesis in the absence of UCP1 in BAT, but clearly demonstrate the correlation in abundance between both proteins. The latter is important for understanding UCP3's function in BAT.
Collapse
Affiliation(s)
- Karolina E Hilse
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Anastasia V Kalinovich
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anne Rupprecht
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Alina Smorodchenko
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Ute Zeitz
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Katrin Staniek
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Reinhold G Erben
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
38
|
Graw JA, von Haefen C, Poyraz D, Möbius N, Sifringer M, Spies CD. Chronic Alcohol Consumption Leads to a Tissue Specific Expression of Uncoupling Protein-2. Int J Med Sci 2015; 12:995-9. [PMID: 26664262 PMCID: PMC4661299 DOI: 10.7150/ijms.13193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/11/2015] [Indexed: 01/06/2023] Open
Abstract
Uncoupling proteins (UCPs) are anion channels that can decouple the mitochondrial respiratory chain. "Mild uncoupling" of internal respiration reduces free radical production and oxidative cell stress. Chronic alcohol consumption is a potent inducer of oxidative stress in multiple tissues and regulates UCP-2 and -4 expression in the brain. To analyse the impact of chronic alcohol intake on UCP-2 expression in tissues with high endogenous UCP-2 contents, male Wistar rats (n=34) were treated with a 12-week 5% alcohol diet. In the lungs and the spleen of rats with a chronic alcohol diet cytochrome c release from mitochondria was significantly increased. Both organs did not show any altered gene and protein expression of UCP-2. Different to cerebral tissue chronic alcohol consumption has no regulatory effect on UCP-2 gene and protein expression in organs with a high endogenous UCP-2 content. Therefore, chronic alcohol consumption leads to a tissue specific expression of UCP-2.
Collapse
Affiliation(s)
- Jan A Graw
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Deniz Poyraz
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Nadine Möbius
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Marco Sifringer
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Claudia D Spies
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| |
Collapse
|
39
|
Abdelhamid RE, Kovács KJ, Nunez MG, Larson AA. After a cold conditioning swim, UCP2-deficient mice are more able to defend against the cold than wild type mice. Physiol Behav 2014; 135:168-73. [PMID: 24952267 DOI: 10.1016/j.physbeh.2014.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 11/25/2022]
Abstract
Uncoupling protein 2 (UCP2) is widely distributed throughout the body including the brain, adipose tissue and skeletal muscles. In contrast to UCP1, UCP2 does not influence resting body temperature and UCP2-deficient (-/-) mice have normal thermoregulatory responses to a single exposure to cold ambient temperatures. Instead, UCP2-deficient mice are more anxious, exhibit anhedonia and have higher circulating corticosterone than wild type mice. To test the possible role of UCP2 in depressive behavior we exposed UCP2-deficient and wild type mice to a cold (26°C) forced swim and simultaneously measured rectal temperatures during and after the swim. The time that UCP2-deficient mice spent immobile did not differ from wild type mice and all mice floated more on day 2. However, UCP2-deficient mice were more able to defend against the decrease in body temperature during a second daily swim at 26°C than wild type mice (area under the curve for wild type mice: 247.0±6.4; for UCP2-deficient mice: 284.4±3.8, P<0.0001, Student's t test). The improved thermoregulation of wild type mice during a second swim at 26°C correlated with their greater immobility whereas defense against the warmth during a swim at 41°C correlated better with greater immobility of UCP2-deficient mice. Together these data indicate that while the lack of UCP2 has no acute effect on body temperature, UCP2 may inhibit rapid improvements in defense against cold, in contrast to UCP1, whose main function is to promote thermogenesis.
Collapse
Affiliation(s)
- Ramy E Abdelhamid
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Katalin J Kovács
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Myra G Nunez
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Alice A Larson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
40
|
Bermejo-Nogales A, Calduch-Giner JA, Pérez-Sánchez J. Tissue-specific gene expression and functional regulation of uncoupling protein 2 (UCP2) by hypoxia and nutrient availability in gilthead sea bream (Sparus aurata): implications on the physiological significance of UCP1-3 variants. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:751-762. [PMID: 24154671 DOI: 10.1007/s10695-013-9882-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/12/2013] [Indexed: 06/02/2023]
Abstract
The aim of this study was to assess in an integrative manner the physiological regulation of uncoupling protein 2 (UCP2) in gilthead sea bream. A contig of 1,325 nucleotides in length with an open reading frame of 307 amino acids was recognized as UCP2 after searches in our transcriptome reference database ( http://www.nutrigroup-iats.org/seabreamdb ). Gene expression mapping by quantitative real-time PCR revealed a ubiquitous profile that clearly differs from that of UCP1 and UCP3 variants with the greatest abundance in liver and white skeletal muscle, respectively. The greatest abundance of UCP2 transcripts was found in the heart, with a relatively high expression level in blood cells, where UCP1 and UCP3 transcripts were practically undetectable. Functional studies revealed that UCP2 mRNA expression remains either unaltered or up-regulated upon feed restriction in glycolytic (white skeletal muscle) and highly oxidative muscle tissues (heart and red skeletal muscle), respectively. In contrast, exposure to hypoxic conditions (18-19% oxygen saturation) markedly down-regulated the UCP2 mRNA expression in blood cells in a cellular environment with increased haematocrit, blood haemoglobin content, and circulating levels of glucose and lactate, and total plasma antioxidant activity. These findings demonstrated that UCP2 expression is highly regulated at the transcriptional level, arising this UCP variant as an important piece of the complex trade-off between metabolic and redox sensors. This feature would avoid the activation of futile cycles of energy wastage if changes in tissue oxidative and antioxidant metabolic capabilities are able to maintain the production of reactive oxygen species at a low regulated level.
Collapse
Affiliation(s)
- Azucena Bermejo-Nogales
- Nutrigenomics and Fish Growth Endocrinology Group, Department of Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal, CSIC, 12595, Ribera de Cabanes, Castellón, Spain
| | | | | |
Collapse
|
41
|
Donadelli M, Dando I, Fiorini C, Palmieri M. UCP2, a mitochondrial protein regulated at multiple levels. Cell Mol Life Sci 2014; 71:1171-90. [PMID: 23807210 PMCID: PMC11114077 DOI: 10.1007/s00018-013-1407-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/16/2013] [Accepted: 06/10/2013] [Indexed: 12/11/2022]
Abstract
An ever-increasing number of studies highlight the role of uncoupling protein 2 (UCP2) in a broad range of physiological and pathological processes. The knowledge of the molecular mechanisms of UCP2 regulation is becoming fundamental in both the comprehension of UCP2-related physiological events and the identification of novel therapeutic strategies based on UCP2 modulation. The study of UCP2 regulation is a fast-moving field. Recently, several research groups have made a great effort to thoroughly understand the various molecular mechanisms at the basis of UCP2 regulation. In this review, we describe novel findings concerning events that can occur in a concerted manner at various levels: Ucp2 gene mutation (single nucleotide polymorphisms), UCP2 mRNA and protein expression (transcriptional, translational, and protein turn-over regulation), UCP2 proton conductance (ligands and post-transcriptional modifications), and nutritional and pharmacological regulation of UCP2.
Collapse
Affiliation(s)
- Massimo Donadelli
- Section of Biochemistry, Deparment of Life and Reproduction Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy,
| | | | | | | |
Collapse
|
42
|
Uncoupling protein 2 and 4 expression pattern during stem cell differentiation provides new insight into their putative function. PLoS One 2014; 9:e88474. [PMID: 24523901 PMCID: PMC3921169 DOI: 10.1371/journal.pone.0088474] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022] Open
Abstract
Apart from the first family member, uncoupling protein 1 (UCP1), the functions of other UCPs (UCP2-UCP5) are still unknown. In analyzing our own results and those previously published by others, we have assumed that UCP's cellular expression pattern coincides with a specific cell metabolism and changes if the latter is altered. To verify this hypothesis, we analyzed the expression of UCP1-5 in mouse embryonic stem cells before and after their differentiation to neurons. We have shown that only UCP2 is present in undifferentiated stem cells and it disappears simultaneously with the initiation of neuronal differentiation. In contrast, UCP4 is simultaneously up-regulated together with typical neuronal marker proteins TUJ-1 and NeuN during mESC differentiation in vitro as well as during murine brain development in vivo. Notably, several tested cell lines express UCP2, but not UCP4. In line with this finding, neuroblastoma cells that display metabolic features of tumor cells express UCP2, but not UCP4. UCP2's occurrence in cancer, immunological and stem cells indicates that UCP2 is present in cells with highly proliferative potential, which have a glycolytic type of metabolism as a common feature, whereas UCP4 is strongly associated with non-proliferative highly differentiated neuronal cells.
Collapse
|
43
|
Cao T, Dong Y, Tang R, Chen J, Zhang CY, Zen K. Mitochondrial uncoupling protein 2 protects splenocytes from oxidative stress-induced apoptosis during pathogen activation. Cell Immunol 2013; 286:39-44. [PMID: 24291389 DOI: 10.1016/j.cellimm.2013.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/30/2013] [Accepted: 10/10/2013] [Indexed: 11/27/2022]
Abstract
Accumulating evidences suggested that mitochondrial uncoupling protein 2 (UCP2) is involved in host defense in parasite infection, inflammation, and autoimmune responses. However, it remains unknown whether UCP2 is participated in the modulation of humoral immune response. Here we used quantitative PCR, ELISA, TUNEL assay, flow cytometry, etc. to study the role of UCP2 in spleen B lymphocytes during pathogen activation and obtained following results. First, UCP2 is highly expressed in splenocytes and its expression level in splenocytes is rapidly increased when the cells are activated by lipopolysaccharide (LPS) in vivo or by LPS plus cytokines in vitro. Second, in contrast to the wild type (WT) littermates, the UCP2 knockout (UCP2-KO) mice show an impaired humoral immune response when they are challenged by pathogen. Although UCP2-KO mice produce a normal level of IgM, the levels of IgGs are significantly less than those of WT littermates. Third, splenocytes from UCP2-KO mice are more susceptible to pathogen activation-induced apoptosis, and the high level of reactive oxygen species (ROS) in UCP2-KO mice may be the cause for the apoptosis. In conclusion, our study demonstrates that mitochondrial UCP2 plays a critical role in protecting splenocytes from oxidative stress-induced apoptosis during pathogen activation.
Collapse
Affiliation(s)
- Ting Cao
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Jiangsu 210093, China; Marine Biology Lab, School of Life Sciences, Nanjing University, Jiangsu 210093, China
| | - Yeyan Dong
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Jiangsu 210093, China
| | - Rui Tang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Jiangsu 210093, China; Marine Biology Lab, School of Life Sciences, Nanjing University, Jiangsu 210093, China
| | - Junyuan Chen
- Marine Biology Lab, School of Life Sciences, Nanjing University, Jiangsu 210093, China
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Jiangsu 210093, China
| | - Ke Zen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Jiangsu 210093, China.
| |
Collapse
|
44
|
Delmastro-Greenwood MM, Piganelli JD. Changing the energy of an immune response. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2013; 2:30-54. [PMID: 23885324 PMCID: PMC3714201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/17/2013] [Indexed: 06/02/2023]
Abstract
The breakdown of nutrients into the critical energy source ATP is the general purpose of cellular metabolism and is essential for sustaining life. Similarly, the immune system is composed of different cell subsets that are indispensable for defending the host against pathogens and disease. The interplay between metabolic pathways and immune cells leads to a plethora of different signaling pathways as well as cellular activities. The activation of T cells via glycolysis-mediated upregulation of surface markers, for example, is necessary for an appropriate effector response against an infection. However, tight regulation of immune cell metabolism is required for protecting the host and resuming homeostasis. An imbalance of immunological metabolic function and/or metabolic byproducts (reactive oxygen species) can oftentimes lead to diseases. In the case of cancer, overactive glucose metabolism can lead to hyperproliferation of cells and subsequent decreases in cytotoxic T cell activity, which attack and destroy the tumor. For this reason and many more, targeting metabolism in immune cells may be a novel therapeutic strategy for treatment of disease. The metabolic pathways of immune cells and the possibilities of immunometabolic therapies will be discussed.
Collapse
Affiliation(s)
- Meghan M Delmastro-Greenwood
- Diabetes Institute, Division of Immunogenetics, Department of Pediatrics, Rangos Research Center, Children’s Hospital of Pittsburgh of UPMC4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Department of Immunology, University of Pittsburgh School of MedicinePittsburgh, PA 15260, USA
| | - Jon D Piganelli
- Diabetes Institute, Division of Immunogenetics, Department of Pediatrics, Rangos Research Center, Children’s Hospital of Pittsburgh of UPMC4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Department of Immunology, University of Pittsburgh School of MedicinePittsburgh, PA 15260, USA
| |
Collapse
|
45
|
Reduced expression of PGC-1α partly underlies mitochondrial changes and correlates with neuronal loss in multiple sclerosis cortex. Acta Neuropathol 2013; 125:231-43. [PMID: 23073717 DOI: 10.1007/s00401-012-1052-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 01/03/2023]
Abstract
There is growing evidence that mitochondrial dysfunction and associated reactive oxygen species (ROS) formation contribute to neurodegenerative processes in multiple sclerosis (MS). Here, we investigated whether alterations in transcriptional regulators of key mitochondrial proteins underlie mitochondrial dysfunction in MS cortex and contribute to neuronal loss. Hereto, we analyzed the expression of mitochondrial transcriptional (co-)factors and proteins involved in mitochondrial redox balance regulation in normal-appearing grey matter (NAGM) samples of cingulate gyrus and/or frontal cortex from 15 MS patients and nine controls matched for age, gender and post-mortem interval. PGC-1α, a transcriptional co-activator and master regulator of mitochondrial function, was consistently and significantly decreased in pyramidal neurons in the deeper layers of MS cortex. Reduced PGC-1α levels coincided with reduced expression of oxidative phosphorylation subunits and a decrease in gene and protein expression of various mitochondrial antioxidants and uncoupling proteins (UCPs) 4 and 5. Short-hairpin RNA-mediated silencing of PGC-1α in a neuronal cell line confirmed that reduced levels of PGC-1α resulted in a decrease in transcription of OxPhos subunits, mitochondrial antioxidants and UCPs. Moreover, PGC-1α silencing resulted in a decreased mitochondrial membrane potential, increased ROS formation and enhanced susceptibility to ROS-induced cell death. Importantly, we found extensive neuronal loss in NAGM from cingulate gyrus and frontal cortex of MS patients, which significantly correlated with the extent of PGC-1α decrease. Taken together, our data indicate that reduced neuronal PGC-1α expression in MS cortex partly underlies mitochondrial dysfunction in MS grey matter and thereby contributes to neurodegeneration in MS cortex.
Collapse
|