1
|
Rosenbaum SR, Hughes CJ, Fields KM, Purdy SC, Gustafson A, Wolin A, Hampton D, Turner N, Ebmeier C, Costello JC, Ford HL. An EYA3/NF-κB/CCL2 signaling axis suppresses cytotoxic NK cells in the pre-metastatic niche to promote triple negative breast cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606072. [PMID: 39211066 PMCID: PMC11360953 DOI: 10.1101/2024.07.31.606072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Patients with Triple Negative Breast Cancer (TNBC) exhibit high rates of metastases and poor prognoses. The Eyes absent (EYA) family of proteins are developmental transcriptional cofactors/phosphatases that are re-expressed and/or upregulated in numerous cancers. Herein, we demonstrate that EYA3 correlates with decreased survival in breast cancer, and that it strongly, and specifically, regulates metastasis via a novel mechanism that involves NF-kB signaling and an altered innate immune profile at the pre-metastatic niche (PMN). Remarkably, restoration of NF-kB signaling downstream of Eya3 knockdown (KD) restores metastasis without restoring primary tumor growth, isolating EYA3/NF-kB effects to the metastatic site. We show that secreted CCL2, regulated downstream of EYA3/NF-kB, specifically decreases cytotoxic NK cells in the PMN and that re-expression of Ccl2 in Eya3 -KD cells is sufficient to rescue activation/levels of cytotoxic NK cells in vitro and at the PMN, where EYA3-mediated decreases in cytotoxic NK cells are required for metastatic outgrowth. Importantly, analysis of public breast cancer datasets uncovers a significant correlation of EYA3 with NF-kB/CCL2, underscoring the relevance of EYA3/NF-kB/CCL2 to human disease. Our findings suggest that inhibition of EYA3 could be a powerful means to re-activate the innate immune response at the PMN, inhibiting TNBC metastasis. Significance EYA3 promotes metastasis of TNBC cells by promoting NF-kB-mediated CCL2 expression and inhibiting cytotoxic NK cells at the pre-metastatic niche, highlighting a potential therapeutic target in this subset of breast cancer.
Collapse
|
2
|
Carter SWD, Neubronner S, Su LL, Dashraath P, Mattar C, Illanes SE, Choolani MA, Kemp MW. Chorioamnionitis: An Update on Diagnostic Evaluation. Biomedicines 2023; 11:2922. [PMID: 38001923 PMCID: PMC10669668 DOI: 10.3390/biomedicines11112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Chorioamnionitis remains a major cause of preterm birth and maternal and neonatal morbidity. We reviewed the current evidence for the diagnostic tests of chorioamnionitis and how this relates to clinical practice today. A comprehensive literature search and review was conducted on chorioamnionitis and intra-uterine inflammation. Data from randomized control trials and systematic reviews were prioritized. This review highlights that sterile inflammation plays an important role in chorioamnionitis and that the current tests for chorioamnionitis including clinical criteria, maternal plasma and vaginal biomarkers lack diagnostic accuracy. Concerningly, these tests often rely on detecting an inflammatory response after damage has occurred to the fetus. Care should be taken when interpreting current investigations for the diagnosis of chorioamnionitis and how they guide obstetric/neonatal management. There is an urgent need for further validation of current diagnostic tests and the development of novel, accurate, minimally invasive tests that detect subclinical intra-uterine inflammation.
Collapse
Affiliation(s)
- Sean W D Carter
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Samantha Neubronner
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore 117597, Singapore
| | - Lin Lin Su
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore 117597, Singapore
| | - Pradip Dashraath
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore 117597, Singapore
| | - Citra Mattar
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore 117597, Singapore
| | - Sebastián E Illanes
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Center for Biomedical Research and Innovation, Reproductive Biology Program, Universidad de los Andes, Santiago 111711, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 8331150, Chile
| | - Mahesh A Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore 117597, Singapore
| | - Matthew W Kemp
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Women and Infants Research Foundation, King Edward Memorial Hospital, Perth, WA 6008, Australia
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| |
Collapse
|
3
|
Ma X, Tian Y, Zhang W, Zhang R, Xu X, Han J, Jiang Y, Wang X, Man C. Stress-induced immunosuppression inhibits immune response to infectious bursal disease virus vaccine partially by miR-27b-3p/SOCS3 regulatory gene network in chicken. Poult Sci 2023; 102:103164. [PMID: 39492374 PMCID: PMC10628791 DOI: 10.1016/j.psj.2023.103164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 11/05/2024] Open
Abstract
Stress-induced immunosuppression (SIIS) is one of the common problems in intensive poultry production, which often reduces the prevention and control effects of various vaccines, including infectious bursal disease virus (IBDV) vaccine, and brings enormous economic losses to the poultry industry. However, the molecular mechanisms of SIIS inhibiting immune response to IBDV vaccine remain unclear. In this study, suppressor of cytokine signaling 3 (SOCS3) gene was selected and stress-induced immunosuppressed chickens were simulated using dexamethasone (Dex). Quantitative real-time PCR (qRT-PCR) was conducted to analyze its expression characteristics and game relationships between SOCS3 gene and miR-27b-3p (it could target SOCS3 gene) in the process of SIIS inhibiting immune response to IBDV vaccine in chicken, and the potential application value of circulating miR-27b-3p as a biomarker was also identified. The results showed that SOCS3 gene and miR-27b-3p were significantly differentially expressed in the candidate tissues during SIIS inhibiting the immune response to IBDV (P < 0.05), respectively, which were key factors involved in the process. Moreover, miR-27b-3p and SOCS3 gene showed game regulation relationships in several tissues during the process, so the miR-27b-3p/SOCS3 regulatory network was one of the key mechanisms of SOCS3 gene participating in the process. Circulating miR-27b-3p was differentially expressed in serum at 10 time points (1, 2, 3, 4, 5, 7, 14, 21, 28, and 35 days postimmunization (dpi)) in the process (P < 0.05), showing that circulating miR-27b-3p was a valid candidate target as a molecular marker for detecting SIIS inhibiting the IBDV immune response. This study can provide references for further studying molecular mechanisms of stress affecting immune response.
Collapse
Affiliation(s)
- Xiaoli Ma
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yufei Tian
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Wei Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Rui Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xinxin Xu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Jianwei Han
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xiangnan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China.
| |
Collapse
|
4
|
Shah NK, Xu P, Shan Y, Chen C, Xie M, Li Y, Meng Y, Shu C, Dong S, He J. MDSCs in pregnancy and pregnancy-related complications: an update†. Biol Reprod 2023; 108:382-392. [PMID: 36504233 DOI: 10.1093/biolre/ioac213] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Maternal-fetal immune tolerance is a process that involves complex interactions of the immune system, and myeloid-derived suppressor cells have emerged as one of the novel immunomodulator in the maintenance of maternal-fetal immune tolerance. Myeloid-derived suppressor cells are myeloid progenitor cells with immunosuppressive activities on both innate and adaptive cells through various mechanisms. Emerging evidence demonstrates the accumulation of myeloid-derived suppressor cells during healthy pregnancy to establish maternal-fetal immune tolerance, placentation, and fetal-growth process. By contrast, the absence or decreased myeloid-derived suppressor cells in pregnancy complications like preeclampsia, preterm birth, stillbirth, and recurrent spontaneous abortion have been reported. Here, we have summarized the origin, mechanisms, and functions of myeloid-derived suppressor cells during pregnancy along with the recent advancements in this dynamic field. We also shed light on the immunomodulatory activity of myeloid-derived suppressor cells, which can be a foundation for potential therapeutic manipulation in immunological pregnancy complications.
Collapse
Affiliation(s)
- Neelam Kumari Shah
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Peng Xu
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yanhong Shan
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Chen Chen
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Min Xie
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yan Li
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yizi Meng
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Chang Shu
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shuai Dong
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jin He
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
5
|
Lin Z, Shi JL, Chen M, Zheng ZM, Li MQ, Shao J. CCL2: An important cytokine in normal and pathological pregnancies: A review. Front Immunol 2023; 13:1053457. [PMID: 36685497 PMCID: PMC9852914 DOI: 10.3389/fimmu.2022.1053457] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
C-C motif ligand 2 (CCL2), also known as monocytic chemotactic protein 1 (MCP-1), is an integral chemotactic factor which recruits macrophages for the immune response. Together with its receptors (e.g., CCR2, ACKR1, and ACKR2), they exert noticeable influences on various diseases of different systems. At the maternal-fetal interface, CCL2 is detected to be expressed in trophoblasts, decidual tissue, the myometrium, and others. Meanwhile, existing reports have determined a series of physiological regulators of CCL2, which functions in maintaining normal recruitment of immunocytes, tissue remodeling, and angiogenesis. However, abnormal levels of CCL2 have also been reported to be associated with adverse pregnancy outcomes such as spontaneous abortion, preeclampsia and preterm labor. In this review, we concentrate on CCL2 expression at the maternal-fetal interface, as well as its precise regulatory mechanisms and classic signaling pathways, to reveal the multidimensional aspects of CCL2 in pregnancy.
Collapse
Affiliation(s)
- Zhi Lin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jia-Lu Shi
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Min Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Zi-Meng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- National Health Commision (NHC) Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Jun Shao
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Menkhorst E, So T, Rainczuk K, Barton S, Zhou W, Edgell T, Dimitriadis E. Endometrial stromal cell miR-19b-3p release is reduced during decidualization implying a role in decidual-trophoblast cross-talk. Front Endocrinol (Lausanne) 2023; 14:1149786. [PMID: 37008948 PMCID: PMC10061138 DOI: 10.3389/fendo.2023.1149786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
INTRODUCTION A healthy pregnancy requires successful blastocyst implantation into an adequately prepared or 'receptive' endometrium. Decidualization of uterine endometrial stromal fibroblast cells (hESF) is critical for the establishment of a healthy pregnancy. microRNAs (miRs) are critical regulators of cellular function that can be released by a donor cell to influence the physiological state of recipient cells. We aimed to determine how decidualization affects hESF miR release and investigated the function of one decidualization regulated miR, miR-19b-3p, previously shown to be associated with recurrent pregnancy loss. METHOD miR release by hESF was determined by miR microarray on culture media from hESF decidualized in vitro for 3 and 14 days by treatment with oestradiol and medroxyprogesterone acetate. Cellular and whole endometrial/decidual tissue miR expression was quantified by qPCR and localized by in situ hybridization. The function of miR-19b-3p in HTR8/Svneo trophoblast cells was investigated using real time cell analysis (xCELLigence) and gene expression qPCR. RESULTS From our miR screen we found that essentially all hESF miR release was reduced following in vitro decidualization, significantly so for miR-17-5p, miR-21-3p, miR-34c-3p, miR-106b-5p, miR-138-5p, miR-296-5p, miR-323a-3p, miR-342-3p, miR-491-5p, miR-503-5p and miR-542-5p. qPCR demonstrated that miR-19b-3p, 181a-2-3p and miR-409-5p likewise showed a significant reduction in culture media following decidualization but no change was found in cellular miR expression following decidualization. In situ hybridization localized miR-19b-3p to epithelial and stromal cells in the endometrium and qPCR identified that miR-19b-3p was significantly elevated in the cycling endometrium of patients with a history of early pregnancy loss compared to normally fertile controls. Functionally, overexpression of miR-19b-3p significantly reduced HTR8/Svneo trophoblast proliferation and increased HOXA9 expression. DISCUSSION Our data demonstrates that decidualization represses miR release by hESFs and overexpression of miR-19b-3p was found in endometrial tissue from patients with a history of early pregnancy loss. miR-19b-3p impaired HTR8/Svneo proliferation implying a role in trophoblast function. Overall we speculate that miR release by hESF may regulate other cell types within the decidua and that appropriate release of miRs by decidualized hESF is essential for healthy implantation and placentation.
Collapse
Affiliation(s)
- Ellen Menkhorst
- Embryo Implantation Laboratory, Department of Obstetrics and Gynecology, The University of Melbourne, Parkville, VIC, Australia
- Gynecology Research Centre, The Royal Women’s Hospital, Parkville, VIC, Australia
- *Correspondence: Ellen Menkhorst,
| | - Teresa So
- Embryo Implantation Laboratory, Department of Obstetrics and Gynecology, The University of Melbourne, Parkville, VIC, Australia
- Gynecology Research Centre, The Royal Women’s Hospital, Parkville, VIC, Australia
| | - Kate Rainczuk
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Siena Barton
- Embryo Implantation Laboratory, Department of Obstetrics and Gynecology, The University of Melbourne, Parkville, VIC, Australia
- Gynecology Research Centre, The Royal Women’s Hospital, Parkville, VIC, Australia
| | - Wei Zhou
- Embryo Implantation Laboratory, Department of Obstetrics and Gynecology, The University of Melbourne, Parkville, VIC, Australia
- Gynecology Research Centre, The Royal Women’s Hospital, Parkville, VIC, Australia
| | - Tracey Edgell
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Evdokia Dimitriadis
- Embryo Implantation Laboratory, Department of Obstetrics and Gynecology, The University of Melbourne, Parkville, VIC, Australia
- Gynecology Research Centre, The Royal Women’s Hospital, Parkville, VIC, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| |
Collapse
|
7
|
Zhang Y, Zhong Y, Zou L, Liu X. Significance of Placental Mesenchymal Stem Cell in Placenta Development and Implications for Preeclampsia. Front Pharmacol 2022; 13:896531. [PMID: 35721156 PMCID: PMC9198303 DOI: 10.3389/fphar.2022.896531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/16/2022] [Indexed: 12/29/2022] Open
Abstract
The well-developed placentation is fundamental for the reproductive pregnancy while the defective placental development is the pathogenetic basis of preeclampsia (PE), a dangerous complication of pregnancy comprising the leading causes of maternal and perinatal morbidity and mortality. Placenta-derived mesenchymal stem cells (PMSCs) are a group of multipotent stem cells that own a potent capacity of differentiating into constitutive cells of vessel walls. Additionally, with the paracrine secretion of various factors, PMSCs inextricably link and interact with other component cells in the placenta, collectively improving the placental vasculature, uterine spiral artery remolding, and uteroplacental interface immunoregulation. Recent studies have further indicated that preeclamptic PMSCs, closely implicated in the abnormal crosstalk between other ambient cells, disturb the homeostasis and development in the placenta. Nevertheless, PMSCs transplantation or PMSCs exosome therapies tend to improve the placental vascular network and trophoblastic functions in the PE model, suggesting PMSCs may be a novel and putative therapeutic strategy for PE. Herein, we provide an overview of the multifaceted contributions of PMSCs in early placental development. Thereinto, the intensive interactions between PMSCs and other component cells in the placenta were particularly highlighted and further extended to the implications in the pathogenesis and therapeutic strategies of PE.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqi Zhong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Ghanim M, Amer J, Salhab A, Jaradat N. Ecballium elaterium improved stimulatory effects of tissue-resident NK cells and ameliorated liver fibrosis in a thioacetamide mice model. Biomed Pharmacother 2022; 150:112942. [PMID: 35429743 DOI: 10.1016/j.biopha.2022.112942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Ecballium elaterium (EE), widely used plant in Mediterranean medicine, showed anticancer activity. This study aimed to investigate EE effects on liver fibrosis in an animal model of thioacetamide (TAA). Intraperitoneal administration of TAA was performed twice weekly for four weeks in C57BL6J mice. Livers were extracted and serum were evaluated for inflammatory markers (H&E staining, ALT, AST, ALP), pro-inflammatory cytokines, fibrosis (Sirius red staining, Masson's trichrome, α-smooth muscle actin and collagen III), and metabolic (cholesterol, triglyceride, C-peptide, and fasting-blood-sugar) profiles. Glutathione, glutathione peroxidase, and catalase liver antioxidant markers were assessed. Tissue-resident NK cells from mice livers were functionally assessed for activating receptors and cytotoxicity. Compared to vehicle-treated mice, the TAA-induced liver injury showed attenuation in the histopathology outcome following EE treatment. In addition, EE-treated mice resulted in decreased serum levels of ALT, AST, and ALP, associated with a decrease in IL-20, TGF-β, IL-17, IL-22 and MCP-1 concentrations. Moreover, EE-treated mice exhibited improved lipid profile of cholesterol, triglycerides, C-peptide, and FBS. EE treatment maintained GSH, GPX, and CAT liver antioxidant activity and led to elevated counts of tissue-resident NK (trNK) cells in the TAA-mice. Consequently, trNK demonstrated an increase in CD107a and IFN-γ with improved potentials to kill activated hepatic-stellate cells in an in vitro assay. EE exhibited antifibrotic and antioxidative effects, increased the number of trNK cells, and improved metabolic outcomes. This plant extract could be a targeted therapy for patients with advanced liver injury.
Collapse
Affiliation(s)
- Mustafa Ghanim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine.
| | - Johnny Amer
- Department of Allied and Applied Medical Sciences, Division of Anatomy Biochemistry and Genetics, An-Najah National University, P.O. Box 7, Nablus, Palestine.
| | - Ahmad Salhab
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| |
Collapse
|
9
|
Megli CJ, Coyne CB. Infections at the maternal-fetal interface: an overview of pathogenesis and defence. Nat Rev Microbiol 2022; 20:67-82. [PMID: 34433930 PMCID: PMC8386341 DOI: 10.1038/s41579-021-00610-y] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 02/08/2023]
Abstract
Infections are a major threat to human reproductive health, and infections in pregnancy can cause prematurity or stillbirth, or can be vertically transmitted to the fetus leading to congenital infection and severe disease. The acronym 'TORCH' (Toxoplasma gondii, other, rubella virus, cytomegalovirus, herpes simplex virus) refers to pathogens directly associated with the development of congenital disease and includes diverse bacteria, viruses and parasites. The placenta restricts vertical transmission during pregnancy and has evolved robust mechanisms of microbial defence. However, microorganisms that cause congenital disease have likely evolved diverse mechanisms to bypass these defences. In this Review, we discuss how TORCH pathogens access the intra-amniotic space and overcome the placental defences that protect against microbial vertical transmission.
Collapse
Affiliation(s)
- Christina J Megli
- Division of Maternal-Fetal Medicine, Division of Reproductive Infectious Disease, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and the Magee Womens Research Institute, Pittsburgh, PA, USA.
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology and the Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
10
|
Zheng J, Li Y, Sang Y, Xu L, Jin X, Tao Y, Li D, Du M. Pigment epithelium-derived factor, a novel decidual natural killer cells-derived factor, protects decidual stromal cells via anti-inflammation and anti-apoptosis in early pregnancy. Hum Reprod 2021; 35:1537-1552. [PMID: 32544239 DOI: 10.1093/humrep/deaa118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
STUDY QUESTION What is the role of pigment epithelium-derived factor (PEDF) from decidual natural killer (dNK) cells during early pregnancy? SUMMARY ANSWER PEDF from dNK cells limits the lipopolysaccharide (LPS)-induced apoptosis and inflammation of decidual stromal cells (DSCs) to maintain DSCs homoeostasis and immune balance at the maternal-foetal interface during early pregnancy. WHAT IS KNOWN ALREADY dNK cells, which secrete PEDF, play critical roles during pregnancy via a series of key regulators. PEDF, a multifunctional endogenous glycoprotein, exhibits a wide range of biological actions upon angiogenesis, inflammation, metabolic homoeostasis, immunomodulation etc., providing potential clinical applications. STUDY DESIGN, SIZE, DURATION Natural killer (NK) cells from decidua and peripheral blood as well as DSCs isolated from normal pregnancy (NP) during the first trimester (6-10 weeks) and the matched patients suffering recurrent miscarriage (RM) were studied. RNA-sequencing analysis of dNK cells was performed to screen for potential key genes involved in RM. The expression of PEDF in dNK cells in NP and RM was examined. A coculture system with LPS-stimulated DSCs and NK cell supernatants derived from NP or RM was established to explore the regulatory mechanisms of PEDF at the maternal-foetal interface. PARTICIPANTS/MATERIALS, SETTING, METHODS Peripheral blood and decidual tissues were obtained from women with NP (n = 61) and RM (n = 21). The expression levels of PEDF in NK cells and its receptor (PEDFR) on DSCs were analysed using flow cytometry, western blot and immunohistochemistry. Purified peripheral natural killer (pNK) cells were cocultured with DSCs or trophoblast cells or a combination of both cell types, and PEDF expression in pNK cells was then examined by flow cytometry. DSCs were treated with LPS, an outer-membrane component of Gram-negative bacteria, thereby mimicking an enhanced inflammatory status within decidua, and were cocultured with dNK cell supernatants from NP or RM. In the coculture system, plasmids expressing short hairpin RNA were used to silence PEDFR on DSCs and block the PEDF/PEDFR interaction. Inflammatory cytokines and apoptosis of DSCs treated as described above were assessed by flow cytometry. Western blotting was performed, and the specific signal pathway inhibitors were used to determine downstream PEDF/PEDFR signalling in early decidua. MAIN RESULTS AND THE ROLE OF CHANCE Markedly higher RNA (P < 0.001) and protein expression of PEDF (P < 0.01) was detected in normal dNK cells when compared with pNK cells. Compared with pNK cells cultured alone, PEDF expression in pNK cells was elevated after coculture with DSCs (P < 0.01) or trophoblast cells (P < 0.001). The increased pro-inflammatory cytokine, tumour necrosis factor-α and apoptosis of DSCs following LPS stimulation were suppressed by recombinant human PEDF (P < 0.001) or the supernatant of dNK cells derived from NP (P < 0.001). However, these effects were somewhat abrogated when the PEDF/PEDFR interaction was blocked with PEDFR short hairpin sRNA (P < 0.01). Furthermore, dNK cell-derived PEDF protected DSCs from LPS-induced inflammation via inhibition of nuclear factor kappa-B activation, while also protecting DSCs from LPS-induced apoptosis via promotion of extracellular signal-regulated kinase expression. Compared with NP, both significantly decreased PEDF RNA (P < 0.001) and protein expression (P < 0.001) in dNK cells, but not in pNK cells (P > 0.05), were detected in women with RM. PEDFR on DSCs was also decreased within RM compared with that within NP (P < 0.001). As a result, dNK cell-mediated anti-inflammation (P < 0.01) and anti-apoptosis (P < 0.05) for protection of LPS-treated DSCs was attenuated in patients suffering from RM. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION We cannot exclude the possibility that the differences in amounts of PEDF and its receptor in tissue from NP versus RM women could be caused by the miscarriage event in women with RM. Our experiments only involved human samples investigated in vitro. Experiments in animal models and human study cohorts are still needed to confirm these findings and further clarify the role of PEDF-PEDFR in NP and/or RM. WIDER IMPLICATIONS OF THE FINDINGS To the best of our knowledge, this is the first study to demonstrate PEDF expression and function at the maternal-foetal interface in the first trimester, providing further evidence that PEDF exhibits functional diversity and has great potential for clinical application(s). The findings of selectively high expression of PEDF in normal dNK cells and the PEDF-mediated role of dNK cells during NP and RM help to further elucidate the immune mechanisms behind RM. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Basic Research Programme of China (2017YFC1001403 and 2015CB943300), Nature Science Foundation from National Nature Science Foundation of China (NSFC; 31970859, 81630036, 81501334, 91542116, 31570920, 81490744 and 31171437), the Innovation-oriented Science and Technology Grant from NHC Key Laboratory of Reproduction Regulation (CX2017-2), the Programme of Shanghai Academic/Technology Research Leader (17XD1400900) and the Key Project of Shanghai Basic Research from Shanghai Municipal Science and Technology Commission (STCSM; 12JC1401600). None of the authors has any conflict of interest to declare.
Collapse
Affiliation(s)
- Ji Zheng
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Department of Immunology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yanhong Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yifei Sang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Ling Xu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xueling Jin
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yu Tao
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Dajin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meirong Du
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
11
|
Chang RQ, Zhou WJ, Li DJ, Li MQ. Innate Lymphoid Cells at the Maternal-Fetal Interface in Human Pregnancy. Int J Biol Sci 2020; 16:957-969. [PMID: 32140065 PMCID: PMC7053337 DOI: 10.7150/ijbs.38264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnancy constitutes a major challenge to the maternal immune system, which must tolerate fetal alloantigen encoded by paternal genes. In addition to their role in inducing maternal-fetal immune tolerance, accumulating evidence indicates that decidual immune cells are involved in several processes required for a successful pregnancy, including trophoblast invasion as well as tissue and spiral artery remodeling. Innate lymphoid cells (ILCs), an important branch of the innate immune system, which has expanded rapidly in recent years, are strong actors in mucosal immunity, tissue homeostasis and metabolism regulation. With the recent identification of ILCs in the human decidua, the role of ILCs at the maternal-fetal interface raises concern. Herein, we review the presence and characterization of ILCs in the human decidua, as well as their function in normal pregnancy and pathological pregnancy, including reproductive failure, preeclampsia and others.
Collapse
Affiliation(s)
- Rui-Qi Chang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200082, People's Republic of China
| | - Wen-Jie Zhou
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200082, People's Republic of China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200082, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200082, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China
| |
Collapse
|
12
|
Magatti M, Stefani FR, Papait A, Cargnoni A, Masserdotti A, Silini AR, Parolini O. Perinatal Mesenchymal Stromal Cells and Their Possible Contribution to Fetal-Maternal Tolerance. Cells 2019; 8:E1401. [PMID: 31703272 PMCID: PMC6912620 DOI: 10.3390/cells8111401] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 12/11/2022] Open
Abstract
During pregnancy, a successful coexistence between the mother and the semi-allogenic fetus occurs which requires a dynamic immune system to guarantee an efficient immune protection against possible infections and tolerance toward fetal antigens. The mechanism of fetal-maternal tolerance is still an open question. There is growing in vitro and in vivo evidence that mesenchymal stromal cells (MSC) which are present in perinatal tissues have a prominent role in generating a functional microenvironment critical to a successful pregnancy. This review highlights the immunomodulatory properties of perinatal MSC and their impact on the major immune cell subsets present in the uterus during pregnancy, such as natural killer cells, antigen-presenting cells (macrophages and dendritic cells), and T cells. Here, we discuss the current understanding and the possible contribution of perinatal MSC in the establishment of fetal-maternal tolerance, providing a new perspective on the physiology of gestation.
Collapse
Affiliation(s)
- Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Francesca Romana Stefani
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Alice Masserdotti
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Ornella Parolini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| |
Collapse
|
13
|
Shokri MR, Bozorgmehr M, Ghanavatinejad A, Falak R, Aleahmad M, Kazemnejad S, Shokri F, Zarnani AH. Human menstrual blood-derived stromal/stem cells modulate functional features of natural killer cells. Sci Rep 2019; 9:10007. [PMID: 31292483 PMCID: PMC6620360 DOI: 10.1038/s41598-019-46316-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Although natural killer (NK) cells play a crucial role in the maintenance of a successful pregnancy, their cytotoxic activity should be tightly controlled. We hypothesized that endometrial mesenchymal stromal/stem cells (eMSCs) could potentially attenuate the functional features of NK cells. Herein, we assessed immunomodulatory effects of menstrual blood-derived stromal/stem cells (MenSCs), as a surrogate for eMSCs, on NK cells function. Our results showed that MenSCs induced proliferation of NK cells. However, IFN-γ/IL-1β pretreated MenSCs significantly inhibited NK cell proliferation. Of 41 growth factors tested, MenSCs produced lower levels of insulin-like growth factor binding proteins (IGFBPs) 1-4, VEGF-A, β-NGF, and M-CSF compared to bone marrow-derived mesenchymal stem cells (BMSCs). MenSCs displayed high activity of IDO upon IFN-γ treatment. The antiproliferative potential of IFN-γ/IL-1β-pretreated MenSCs was mediated through IL-6 and TGF-β. MenSCs impaired the cytotoxic activity of NK cells on K562 cells, consistent with the lower expression of perforin, granzymes A, and B. We also observed that in vitro decidualization of MenSCs in the presence of IFN-γ reduced the inhibitory effect of MenSCs on NK cell cytotoxicity against K562 target cells. Additionally, MenSCs were found to be prone to NK cell-mediated lysis in an MHC-independent manner. Our findings imply that dysregulation of NK cells in such pregnancy-related disorders as miscarriage may stem from dysfunctioning of eMSCs.
Collapse
Affiliation(s)
- Mohammad-Reza Shokri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Alireza Ghanavatinejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Aleahmad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Moustafa S, Joseph DN, Taylor RN, Whirledge S. New models of lipopolysaccharide-induced implantation loss reveal insights into the inflammatory response. Am J Reprod Immunol 2019; 81:e13082. [PMID: 30604526 DOI: 10.1111/aji.13082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
PROBLEM Chronic endometritis, inflammation of the uterizzvvne lining caused by common gram-negative bacterial strains or mycoplasma, has been associated with unexplained implantation failure and infertility. However, limited models of bacteria-induced implantation loss exist to study the molecular changes that occur in vivo. The goal of this study was to provide a new resource to study the process of bacteria-induced inflammation and implantation loss utilizing common experimental models: C57Bl/6 mice and primary human endometrial stromal cells. METHOD OF STUDY Prior to implantation, mated C57Bl/6 females were administered vehicle (saline) or gram-negative bacterial lipopolysaccharide (LPS) at a range of concentrations by intraperitoneal injection. Implantation sites were counted, and uteri were harvested to evaluate the molecular changes that accompany LPS-mediated implantation loss. Primary human endometrial stromal cells were decidualized in vitro in the presence and absence of LPS. Total RNA and conditioned media were harvested to evaluate the expression of known decidualization-associated genes and various cytokines and chemokines. RESULTS Lipopolysaccharide treatment resulted in fewer implantation sites in mice, decreased expression of decidualization-associated genes, and altered expression and release of cytokines and chemokines. Immunohistological analysis of the uterus from LPS-exposed mice demonstrated increased apoptosis and decreased proliferation during decidualization. CONCLUSION Lipopolysaccharide exposure disrupted implantation and decidualization in mice and human endometrial stromal cells. This model could be used to study the pathophysiology of implantation failure in patients with chronic endometritis or to test potential therapeutic interventions.
Collapse
Affiliation(s)
- Sarah Moustafa
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Dana N Joseph
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Robert N Taylor
- Utah Center for Reproductive Health, University of Utah Health, Salt Lake City, Utah
| | - Shannon Whirledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
15
|
Borges M, Magalhães Silva T, Brito C, Teixeira N, Roberts CW. How does toxoplasmosis affect the maternal-foetal immune interface and pregnancy? Parasite Immunol 2018; 41:e12606. [PMID: 30471137 DOI: 10.1111/pim.12606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Toxoplasma gondii is a zoonotic parasite which, depending on the geographical location, can infect between 10% and 90% of humans. Infection during pregnancy may result in congenital toxoplasmosis. The effects on the foetus vary depending on the stage of gestation in which primary maternal infection arises. A large body of research has focused on understanding immune response to toxoplasmosis, although few studies have addressed how it is affected by pregnancy or the pathological consequences of infection at the maternal-foetal interface. There is a lack of knowledge about how maternal immune cells, specifically macrophages, are modulated during infection and the resulting consequences for parasite control and pathology. Herein, we discuss the potential of T. gondii infection to affect the maternal-foetal interface and the potential of pregnancy to disrupt maternal immunity to T. gondii infection.
Collapse
Affiliation(s)
- Margarida Borges
- UCIBIO/REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Tânia Magalhães Silva
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Carina Brito
- UCIBIO/REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Natércia Teixeira
- UCIBIO/REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Craig W Roberts
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
16
|
Rogers LM, Anders AP, Doster RS, Gill EA, Gnecco JS, Holley JM, Randis TM, Ratner AJ, Gaddy JA, Osteen K, Aronoff DM. Decidual stromal cell-derived PGE 2 regulates macrophage responses to microbial threat. Am J Reprod Immunol 2018; 80:e13032. [PMID: 30084522 DOI: 10.1111/aji.13032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/16/2018] [Indexed: 12/30/2022] Open
Abstract
PROBLEM Bacterial chorioamnionitis causes adverse pregnancy outcomes, yet host-microbial interactions are not well characterized within gestational membranes. The decidua, the outermost region of the membranes, is a potential point of entry for bacteria ascending from the vagina to cause chorioamnionitis. We sought to determine whether paracrine communication between decidual stromal cells and macrophages shaped immune responses to microbial sensing. METHOD OF STUDY Decidual cell-macrophage interactions were modeled in vitro utilizing decidualized, telomerase-immortalized human endometrial stromal cells (dTHESCs) and phorbol ester-differentiated THP-1 macrophage-like cells. The production of inflammatory mediators in response to LPS was monitored by ELISA for both cell types, while phagocytosis of bacterial pathogens (Escherichia coli and Group B Streptococcus (GBS)) was measured in THP-1 cells or primary human placental macrophages. Diclofenac, a non-selective cyclooxygenase inhibitor, and prostaglandin E2 (PGE2 ) were utilized to interrogate prostaglandins as decidual cell-derived paracrine immunomodulators. A mouse model of ascending chorioamnionitis caused by GBS was utilized to assess the colocalization of bacteria and macrophages in vivo and assess PGE2 production. RESULTS In response to LPS, dTHESC and THP-1 coculture demonstrated enhancement of most inflammatory mediators, but a potent suppression of macrophage TNF-α generation was observed. This appeared to reflect a paracrine-mediated effect of decidual cell-derived PGE2 . In mice with GBS chorioamnionitis, macrophages accumulated at sites of bacterial invasion with increased PGE2 in amniotic fluid, suggesting such paracrine effects might hold relevance in vivo. CONCLUSION These data suggest key roles for decidual stromal cells in modulating tissue responses to microbial threat through release of PGE2 .
Collapse
Affiliation(s)
- Lisa M Rogers
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anjali P Anders
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Ryan S Doster
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Juan S Gnecco
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jacob M Holley
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tara M Randis
- Department of Pediatrics, New York University School of Medicine, New York, New York.,Department of Microbiology, New York University School of Medicine, New York, New York
| | - Adam J Ratner
- Department of Pediatrics, New York University School of Medicine, New York, New York.,Department of Microbiology, New York University School of Medicine, New York, New York
| | - Jennifer A Gaddy
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Veteran Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee
| | - Kevin Osteen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Veteran Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee
| | - David M Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
17
|
Hazin-Costa MF, da Silva Aráujo A, Guerra GL, da Matta MC, Torres LC, Souza AI. Chemokines in pregnant women with sickle cell disease. Cytokine 2018; 113:195-199. [PMID: 30006250 DOI: 10.1016/j.cyto.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022]
Abstract
Pregnancy in sickle cell disease is a problem due to the adverse outcomes related to the disease. Research into the role of chemokines in sickle cell disease is available, but studies investigating the disease in pregnancy are scarce. Our data show the chemokine profiles of pregnant women with sickle cell disease compared with control groups. There were no differences in MCP-1 level among the groups, but IL-8 and MIG were likely related with disease activity. In addition, levels of IP-10 were higher in pregnant women with sickle cell disease and, interestingly, RANTES levels were higher in normal pregnancy when compared to pregnancy in sickle cell disease. More studies should be encouraged to fully elucidate chemokine activity during pregnancy in sickle cell disease.
Collapse
Affiliation(s)
- Manuela Freire Hazin-Costa
- Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Rua dos Coelhos, 300, Boa Vista, 50.070-550 Recife, Pernambuco, Brazil; Fundação de Hematologia e Hemoterapia de Pernambuco HEMOPE, Rua Joaquim Nabuco, 171, Graças, 52.011-000 Recife, Pernambuco, Brazil; Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50.670-90 Recife, Pernambuco, Brazil.
| | - Aderson da Silva Aráujo
- Fundação de Hematologia e Hemoterapia de Pernambuco HEMOPE, Rua Joaquim Nabuco, 171, Graças, 52.011-000 Recife, Pernambuco, Brazil
| | - Glaucia Lins Guerra
- Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Rua dos Coelhos, 300, Boa Vista, 50.070-550 Recife, Pernambuco, Brazil
| | - Marina Cadena da Matta
- Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Rua dos Coelhos, 300, Boa Vista, 50.070-550 Recife, Pernambuco, Brazil
| | - Leuridan Cavalcante Torres
- Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Rua dos Coelhos, 300, Boa Vista, 50.070-550 Recife, Pernambuco, Brazil
| | - Ariani Impieri Souza
- Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Rua dos Coelhos, 300, Boa Vista, 50.070-550 Recife, Pernambuco, Brazil; Faculdade Pernambucana de Saúde (FPS), Av. Mal. Mascarenhas de Morais, 4861, Imbiribeira, 51.180-001 Recife, Pernambuco, Brazil
| |
Collapse
|
18
|
Downmodulation of Effector Functions in NK Cells upon Toxoplasma gondii Infection. Infect Immun 2017; 85:IAI.00069-17. [PMID: 28760930 DOI: 10.1128/iai.00069-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/15/2017] [Indexed: 12/29/2022] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii can actively infect any nucleated cell type, including cells from the immune system. The rapid transfer of T. gondii from infected dendritic cells to effector natural killer (NK) cells may contribute to the parasite's sequestration and shielding from immune recognition shortly after infection. However, subversion of NK cell functions, such as cytotoxicity or production of proinflammatory cytokines, such as gamma interferon (IFN-γ), upon parasite infection might also be beneficial to the parasite. In the present study, we investigated the effects of T. gondii infection on NK cells. In vitro, infected NK cells were found to be poor at killing target cells and had reduced levels of IFN-γ production. This could be attributed in part to the inability of infected cells to form conjugates with their target cells. However, even upon NK1.1 cross-linking of NK cells, the infected NK cells also exhibited poor degranulation and IFN-γ production. Similarly, NK cells infected in vivo were also poor at killing target cells and producing IFN-γ. Increased levels of transforming growth factor β production, as well as increased levels of expression of SHP-1 in the cytosol of infected NK cells upon infection, were observed in infected NK cells. However, the phosphorylation of STAT4 was not altered in infected NK cells, suggesting that transcriptional regulation mediates the reduced IFN-γ production, which was confirmed by quantitative PCR. These data suggest that infection of NK cells by T. gondii impairs NK cell recognition of target cells and cytokine release, two mechanisms that independently could enhance T. gondii survival.
Collapse
|
19
|
Liu Q, Jin WN, Liu Y, Shi K, Sun H, Zhang F, Zhang C, Gonzales RJ, Sheth KN, La Cava A, Shi FD. Brain Ischemia Suppresses Immunity in the Periphery and Brain via Different Neurogenic Innervations. Immunity 2017; 46:474-487. [DOI: 10.1016/j.immuni.2017.02.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/12/2016] [Accepted: 01/17/2017] [Indexed: 11/26/2022]
|
20
|
Ghaebi M, Nouri M, Ghasemzadeh A, Farzadi L, Jadidi-Niaragh F, Ahmadi M, Yousefi M. Immune regulatory network in successful pregnancy and reproductive failures. Biomed Pharmacother 2017; 88:61-73. [PMID: 28095355 DOI: 10.1016/j.biopha.2017.01.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/27/2016] [Accepted: 01/02/2017] [Indexed: 12/23/2022] Open
Abstract
Maternal immune system must tolerate semiallogenic fetus to establish and maintain a successful pregnancy. Despite the existence of several strategies of trophoblast to avoid recognition by maternal leukocytes, maternal immune system may react against paternal alloantigenes. Leukocytes are important components in decidua. Not only T helper (Th)1/Th2 balance, but also regulatory T (Treg) cells play an important role in pregnancy. Although the frequency of Tregs is elevated during normal pregnancies, their frequency and function are reduced in reproductive defects such as recurrent miscarriage and preeclampsia. Tregs are not the sole population of suppressive cells in the decidua. It has recently been shown that regulatory B10 (Breg) cells participate in pregnancy through secretion of IL-10 cytokine. Myeloid derived suppressor cells (MDSCs) are immature developing precursors of innate myeloid cells that are increased in pregnant women, implying their possible function in pregnancy. Natural killer T (NKT) cells are also detected in mouse and human decidua. They can also affect the fetomaternal tolerance. In this review, we will discuss on the role of different immune regulatory cells including Treg, γd T cell, Breg, MDSC, and NKT cells in pregnancy outcome.
Collapse
Affiliation(s)
- Mahnaz Ghaebi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliyeh Ghasemzadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laya Farzadi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Anders AP, Gaddy JA, Doster RS, Aronoff DM. Current concepts in maternal-fetal immunology: Recognition and response to microbial pathogens by decidual stromal cells. Am J Reprod Immunol 2017; 77. [PMID: 28044385 DOI: 10.1111/aji.12623] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/21/2016] [Indexed: 12/29/2022] Open
Abstract
Chorioamnionitis is an acute inflammation of the gestational (extraplacental) membranes, most commonly caused by ascending microbial infection. It is associated with adverse neonatal outcomes including preterm birth, neonatal sepsis, and cerebral palsy. The decidua is the outermost layer of the gestational membranes and is likely an important initial site of contact with microbes during ascending infection. However, little is known about how decidual stromal cells (DSCs) respond to microbial threat. Defining the contributions of individual cell types to the complex medley of inflammatory signals during chorioamnionitis could lead to improved interventions aimed at halting this disease. We review available published data supporting the role for DSCs in responding to microbial infection, with a special focus on their expression of pattern recognition receptors and evidence of their responsiveness to pathogen sensing. While DSCs likely play an important role in sensing and responding to infection during the pathogenesis of chorioamnionitis, important knowledge gaps and areas for future research are highlighted.
Collapse
Affiliation(s)
- Anjali P Anders
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer A Gaddy
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, TN, USA.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ryan S Doster
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David M Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
22
|
Cui R, Rekasi H, Hepner-Schefczyk M, Fessmann K, Petri RM, Bruderek K, Brandau S, Jäger M, Flohé SB. Human mesenchymal stromal/stem cells acquire immunostimulatory capacity upon cross-talk with natural killer cells and might improve the NK cell function of immunocompromised patients. Stem Cell Res Ther 2016; 7:88. [PMID: 27388156 PMCID: PMC4937587 DOI: 10.1186/s13287-016-0353-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/11/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The suppressive effect of mesenchymal stromal/stem cells (MSCs) on diverse immune cells is well known, but it is unclear whether MSCs additionally possess immunostimulatory properties. We investigated the impact of human MSCs on the responsiveness of primary natural killer (NK) cells in terms of cytokine secretion. METHODS Human MSCs were generated from bone marrow and nasal mucosa. NK cells were isolated from peripheral blood of healthy volunteers or of immunocompromised patients after severe injury. NK cells were cultured with MSCs or with MSC-derived conditioned media in the absence or presence of IL-12 and IL-18. C-C chemokine receptor (CCR) 2, C-C chemokine ligand (CCL) 2, and the interferon (IFN)-γ receptor was blocked by specific inhibitors or antibodies. The synthesis of IFN-γ and CCL2 was determined. RESULTS In the absence of exogenous cytokines, trace amounts of NK cell-derived IFN-γ licensed MSCs for enhanced synthesis of CCL2. In turn, MSCs primed NK cells for increased release of IFN-γ in response to IL-12 and IL-18. Priming of NK cells by MSCs occurred in a cell-cell contact-independent manner and was impaired by inhibition of the CCR2, the receptor of CCL2, on NK cells. CD56(bright) NK cells expressed higher levels of CCR2 and were more sensitive to CCL2-mediated priming by MSCs and by recombinant CCR2 ligands than cytotoxic CD56(dim) NK cells. NK cells from severely injured patients were impaired in cytokine-induced IFN-γ synthesis. Co-culture with MSCs or with conditioned media from MSCs and MSC/NK cell co-cultures from healthy donors improved the IFN-γ production of the patients' NK cells in a CCR2-dependent manner. CONCLUSIONS A positive feedback loop driven by NK cell-derived IFN-γ and MSC-derived CCL2 increases the inflammatory response of cytokine-stimulated NK cells not only from healthy donors but also from immunocompromised patients. Therapeutic application of MSCs or their soluble factors might thus improve the NK function after severe injury.
Collapse
Affiliation(s)
- Rongtao Cui
- />Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 171, D-45147 Essen, Germany
| | - Heike Rekasi
- />Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 171, D-45147 Essen, Germany
| | - Monika Hepner-Schefczyk
- />Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 171, D-45147 Essen, Germany
| | - Kai Fessmann
- />Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 171, D-45147 Essen, Germany
| | - Robert M. Petri
- />Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kirsten Bruderek
- />Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- />Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marcus Jäger
- />Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 171, D-45147 Essen, Germany
| | - Stefanie B. Flohé
- />Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 171, D-45147 Essen, Germany
| |
Collapse
|
23
|
Cacalano NA. Regulation of Natural Killer Cell Function by STAT3. Front Immunol 2016; 7:128. [PMID: 27148255 PMCID: PMC4827001 DOI: 10.3389/fimmu.2016.00128] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 03/21/2016] [Indexed: 01/05/2023] Open
Abstract
Natural killer (NK) cells, key members of a distinct hematopoietic lineage, innate lymphoid cells, are not only critical effectors that mediate cytotoxicity toward tumor and virally infected cells but also regulate inflammation, antigen presentation, and the adaptive immune response. It has been shown that NK cells can regulate the development and activation of many other components of the immune response, such as dendritic cells, which in turn, modulate the function of NK cells in multiple synergistic feed back loops driven by cell–cell contact, and the secretion of cytokines and chemokines that control effector function and migration of cells to sites of immune activation. The signal transducer and activator of transcription (STAT)-3 is involved in driving almost all of the pathways that control NK cytolytic activity as well as the reciprocal regulatory interactions between NK cells and other components of the immune system. In the context of tumor immunology, NK cells are a first line of defense that eliminates pre-cancerous and transformed cells early in the process of carcinogenesis, through a mechanism of “immune surveillance.” Even after tumors become established, NK cells are critical components of anticancer immunity: dysfunctional NK cells are often found in the peripheral blood of cancer patients, and the lack of NK cells in the tumor microenvironment often correlates to poor prognosis. The pathways and soluble factors activated in tumor-associated NK cells, cancer cells, and regulatory myeloid cells, which determine the outcome of cancer immunity, are all critically regulated by STAT3. Using the tumor microenvironment as a paradigm, we present here an overview of the research that has revealed fundamental mechanisms through which STAT3 regulates all aspects of NK cell biology, including NK development, activation, target cell killing, and fine tuning of the innate and adaptive immune responses.
Collapse
Affiliation(s)
- Nicholas A Cacalano
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA
| |
Collapse
|
24
|
Bartmann C, Junker M, Segerer SE, Häusler SF, Krockenberger M, Kämmerer U. CD33(+) /HLA-DR(neg) and CD33(+) /HLA-DR(+/-) Cells: Rare Populations in the Human Decidua with Characteristics of MDSC. Am J Reprod Immunol 2016; 75:539-56. [PMID: 26840716 DOI: 10.1111/aji.12492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/28/2015] [Indexed: 12/31/2022] Open
Abstract
PROBLEM Human pregnancy needs a remarkable local immune tolerance toward the conceptus. Myeloid-derived suppressor cells (MDSC) are important players promoting cancer initiation and progression by suppressing T-cell functions and thus inducing immune tolerance. Therefore, MDSC were expected within decidua. METHODS Subpopulations of CD33(+) immune cells were isolated from human early pregnancy decidua and characterized phenotypically and functionally by microscopy, FACS analysis, RT-PCR, Western blotting and in the coculture with T cells. RESULTS Decidua harbors CD33(+) /HLA-DR(neg) and CD33(+) /HLA-DR(+/-) cells which both express arginase, iNOS and IDO and a typical cytokine profile. Both subtypes potently suppress T-cell proliferation and therefore fulfill the criteria of MDSC. CONCLUSION We characterized a new population of CD33(+) /HLA-DR(neg) and CD33(+) /HLA-DR(+/-) cells in human early pregnancy decidua with properties of classical MDSC and thus potentially being an important player in immune tolerance in pregnancy.
Collapse
Affiliation(s)
- Catharina Bartmann
- Department of OB/Gyn, University Hospital of Würzburg, Würzburg, Germany
| | - Markus Junker
- Department of OB/Gyn, University Hospital of Würzburg, Würzburg, Germany
| | | | | | | | - Ulrike Kämmerer
- Department of OB/Gyn, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
25
|
Montaldo E, Vacca P, Chiossone L, Croxatto D, Loiacono F, Martini S, Ferrero S, Walzer T, Moretta L, Mingari MC. Unique Eomes(+) NK Cell Subsets Are Present in Uterus and Decidua During Early Pregnancy. Front Immunol 2016; 6:646. [PMID: 27004067 PMCID: PMC4794975 DOI: 10.3389/fimmu.2015.00646] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/11/2015] [Indexed: 12/22/2022] Open
Abstract
Decidual and uterine natural killer (NK) cells have been shown to contribute to the successful pregnancy both in humans and mice. NK cells represent “cytotoxic” group 1 innate lymphoid cells (ILCs) and are distinct from the recently described “helper” ILC1. Here, we show that both in humans and mice the majority of group 1 ILC in endometrium/uterus and decidua express Eomesodermin (Eomes), thus suggesting that they are developmentally related to conventional NK cells. However, they differ from peripheral NK cells. In humans, Eomes+ decidual NK (dNK) cells express CD49a and other markers of tissue residency, including CD103, integrin β7, CD9, and CD69. The expression of CD103 allows the identification of different subsets of IFNγ-producing Eomes+ NK cells. We show that TGFβ can sustain/induce CD103 and CD9 expression in dNK cells and decidual CD34-derived NK cells, indicating that the decidual microenvironment can instruct the phenotype of Eomes+ NK cells. In murine decidua and uterus, Eomes+ cells include CD49a−CD49b+ conventional NK cells and CD49a+ cells. Notably, Eomes+CD49a+ cells are absent in spleen and liver. Decidual and uterine Eomes+CD49a+ cells can be dissected in two peculiar cell subsets according to CD49b expression. CD49a+CD49b− and CD49a+CD49b+ cells are enriched in immature CD11blowCD27high cells, while CD49a−CD49b+ cells contain higher percentages of mature CD11bhighCD27low cells, both in uterus and decidua. Moreover, Eomes+CD49a+CD49b− cells decrease during gestation, thus suggesting that this peculiar subset may be required in early pregnancy rather than on later phases. Conversely, a minor Eomes−CD49a+ ILC1 population present in decidua and uterus increases during pregnancy. CD49b−Eomes± cells produce mainly TNF, while CD49a−CD49b+ conventional NK cells and CD49a+CD49b+ cells produce both IFNγ and TNF. Thus, human and murine decidua contains unique subsets of group 1 ILCs, including Eomes+ and Eomes− cells, with peculiar phenotypic and functional features. Our study contributes to re-examination of the complexity of uterine and decidual ILC subsets in humans and mice and highlights the role of the decidual microenvironment in shaping the features of these cells.
Collapse
Affiliation(s)
| | - Paola Vacca
- Department of Experimental Medicine (DIMES), Università degli Studi di Genova , Genoa , Italy
| | | | - Daniele Croxatto
- Department of Experimental Medicine (DIMES), Università degli Studi di Genova , Genoa , Italy
| | | | | | - Simone Ferrero
- IRCCS AOU San Martino-IST, Genoa, Italy; Department of Neurosciences Rehabilitation Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), Università degli Studi di Genova, Genoa, Italy
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie - INSERM, Ecole Normale Supérieure de Lyon, Université Lyon 1 , CNRS, Lyon , France
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DIMES), Università degli Studi di Genova, Genoa, Italy; IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
26
|
Hu WT, Huang LL, Li MQ, Jin LP, Li DJ, Zhu XY. Decidual stromal cell-derived IL-33 contributes to Th2 bias and inhibits decidual NK cell cytotoxicity through NF-κB signaling in human early pregnancy. J Reprod Immunol 2015; 109:52-65. [DOI: 10.1016/j.jri.2015.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/20/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
|
27
|
Vacca P, Montaldo E, Vitale C, Croxatto D, Moretta L, Mingari MC. MSC and innate immune cell interactions: A lesson from human decidua. Immunol Lett 2015; 168:170-4. [PMID: 25986011 DOI: 10.1016/j.imlet.2015.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 12/22/2022]
Abstract
Both experimental and clinical studies revealed that stromal cells (SC) are present in decidua (DSC) and placenta (PSC) at the early and late phase of pregnancy, respectively, and they may contribute to the induction of an anti-inflammatory/tolerogenic microenvironment crucial for the establishment/maintenance of successful pregnancy. These cells share common features with mesenchymal SC. In the present contribution, we provide an overall view on DSC features and on their ability to recruit NK cells and to regulate both differentiation and function not only of NK cells but also of CD14(+) myeloid cells. NK cells represent the large majority of leukocytes populating decidual tissues during the first trimester of pregnancy. Their cross-talk with DSC is thought to play a key role in the establishment of feto-maternal tolerance. We also discuss recent data suggesting that DSC may contribute to tissue remodeling, placentation, and recruitment of leukocytes also through their interaction with innate lymphoid cells (ILC) such as ILC3, that have recently been shown to be present in decidual tissue.
Collapse
Affiliation(s)
- Paola Vacca
- Department of Experimental Medicine, University of Genova, Via L.B. Alberti 2, 16132 Genova, Italy
| | - Elisa Montaldo
- Giannina Gaslini Institute, Via G. Gaslini 5, 16147 Genova, Italy
| | - Chiara Vitale
- Department of Experimental Medicine, University of Genova, Via L.B. Alberti 2, 16132 Genova, Italy; IRCCS-AOU-San Martino-IST, L.go R. Benzi 10, 16132 Genova, Italy
| | - Daniele Croxatto
- Department of Experimental Medicine, University of Genova, Via L.B. Alberti 2, 16132 Genova, Italy
| | - Lorenzo Moretta
- Giannina Gaslini Institute, Via G. Gaslini 5, 16147 Genova, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine, University of Genova, Via L.B. Alberti 2, 16132 Genova, Italy; IRCCS-AOU-San Martino-IST, L.go R. Benzi 10, 16132 Genova, Italy.
| |
Collapse
|
28
|
Du MR, Wang SC, Li DJ. The integrative roles of chemokines at the maternal-fetal interface in early pregnancy. Cell Mol Immunol 2014; 11:438-48. [PMID: 25109684 DOI: 10.1038/cmi.2014.68] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/29/2014] [Accepted: 07/01/2014] [Indexed: 12/14/2022] Open
Abstract
Embryos express paternal antigens that are foreign to the mother, but the mother provides a special immune milieu at the fetal-maternal interface to permit rather than reject the embryo growth in the uterus until parturition by establishing precise crosstalk between the mother and the fetus. There are unanswered questions in the maintenance of pregnancy, including the poorly understood phenomenon of maternal tolerance to the allogeneic conceptus, and the remarkable biological roles of placental trophoblasts that invade the uterine wall. Chemokines are multifunctional molecules initially described as having a role in leukocyte trafficking and later found to participate in developmental processes such as differentiation and directed migration. It is increasingly evident that the gestational uterine microenvironment is characterized, at least in part, by the differential expression and secretion of chemokines that induce selective trafficking of leukocyte subsets to the maternal-fetal interface and regulate multiple events that are closely associated with normal pregnancy. Here, we review the expression and function of chemokines and their receptors at the maternal-fetal interface, with a special focus on chemokine as a key component in trophoblast invasiveness and placental angiogenesis, recruitment and instruction of immune cells so as to form a fetus-supporting milieu during pregnancy. The chemokine network is also involved in pregnancy complications.
Collapse
|
29
|
Pfalzer AC, Choi SW, Tammen SA, Park LK, Bottiglieri T, Parnell LD, Lamon-Fava S. S-adenosylmethionine mediates inhibition of inflammatory response and changes in DNA methylation in human macrophages. Physiol Genomics 2014; 46:617-23. [PMID: 25180283 DOI: 10.1152/physiolgenomics.00056.2014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
S-adenosylmethionine (SAM), the unique methyl donor in DNA methylation, has been shown to lower lipopolysaccharide (LPS)-induced expression of the proinflammatory cytokine TNF-α and increase the expression of the anti-inflammatory cytokine IL-10 in macrophages. The aim of this study was to assess whether epigenetic mechanisms mediate the anti-inflammatory effects of SAM. Human monocytic THP1 cells were differentiated into macrophages and treated with 0, 500, or 1,000 μmol/l SAM for 24 h, followed by stimulation with LPS. TNFα and IL-10 expression levels were measured by real-time PCR, cellular concentrations of SAM and S-adenosylhomocysteine (SAH), a metabolite of SAM, were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and DNA methylation was measured with LC-MS/MS and microarrays. Relative to control (0 μmol/l SAM), treatment with 500 μmol/l SAM caused a significant decrease in TNF-α expression (-45%, P < 0.05) and increase in IL-10 expression (+77%, P < 0.05). Treatment with 1,000 μmol/l SAM yielded no significant additional benefits. Relative to control, 500 μmol/l SAM increased cellular SAM concentrations twofold without changes in SAH, and 1,000 μmol/l SAM increased cellular SAM sixfold and SAH fourfold. Global DNA methylation increased 7% with 500 μmol/l SAM compared with control. Following treatment with 500 μmol/l SAM, DNA methylation microarray analysis identified 765 differentially methylated regions associated with 918 genes. Pathway analysis of these genes identified a biological network associated with cardiovascular disease, including a subset of genes that were differentially hypomethylated and whose expression levels were altered by SAM. Our data indicate that SAM modulates the expression of inflammatory genes in association with changes in specific gene promoter DNA methylation.
Collapse
Affiliation(s)
- Anna C Pfalzer
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts; and Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, and
| | - Sang-Woon Choi
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts; and Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, and
| | - Stephanie A Tammen
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts; and Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, and
| | - Lara K Park
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts; and Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, and
| | | | - Laurence D Parnell
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts; and
| | - Stefania Lamon-Fava
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts; and Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, and
| |
Collapse
|
30
|
Ozkan ZS, Deveci D, Kumbak B, Simsek M, Ilhan F, Sekercioglu S, Sapmaz E. What is the impact of Th1/Th2 ratio, SOCS3, IL17, and IL35 levels in unexplained infertility? J Reprod Immunol 2014; 103:53-8. [DOI: 10.1016/j.jri.2013.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/10/2013] [Accepted: 11/14/2013] [Indexed: 12/15/2022]
|
31
|
Ozkan ZS, Deveci D, Simsek M, Ilhan F, Risvanli A, Sapmaz E. What is the impact of SOCS3, IL-35 and IL17 in immune pathogenesis of recurrent pregnancy loss? J Matern Fetal Neonatal Med 2014; 28:324-8. [PMID: 24762139 DOI: 10.3109/14767058.2014.916676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the plasma levels of interleukin-4 (IL-4), IL-6, IL-10, tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), transforming growth factor-beta (TGF-beta), IL-17, IL-35 and suppressor of cytokine signaling 3 (SOCS3) in the women with history of idiopathic recurrent pregnancy loss (RPL) and in the fertile controls. METHODS This study was conducted with 60 idiopathic RPL cases and 40 age-matched fertile controls. Mid-follicular plasma levels of IL-17, IFN-gamma, TNF-alpha, TGF-beta, IL-6, IL-4, IL-10, SOCS3 and IL-35 were assayed by an enzyme linked immunosorbent assay. RESULTS The mean age of RPL and control cases were 31.6 ± 0.6 and 32.1 ± 0.7 years, respectively. While plasma IL-35 and SOCS3 levels of RPL group were significantly lower than that of the control group; IFN-gamma, TNF-alpha, IL-4, IL-6, IL-10, IL-17 and TGF-beta levels of RPL group were significantly higher than that of the control group. The comparison of cytokine ratios between RPL and control groups indicated significantly high TNF-alpha/IL-10, TNF-alpha/IL-4, IFN-gamma/IL-10, IFN-gamma/IL-6 and IFN-gamma/IL-4 ratios in the RPL group. IL-35/IL-17 ratio was significantly low in the RPL group compared to that in the control group. Overstimulation of TNF-alpha presented moderate influence on recurrent miscarriage risk. CONCLUSION Decreased SOCS3 and IL-35 plasma levels and increased Th1/Th2 cytokine ratios in RPL cases pointed out the supression of anti-inflammatory process and this supression might play an important role in the pathogenesis of idiopathic RPL.
Collapse
Affiliation(s)
- Zehra Sema Ozkan
- Department of Obstetrics and Gynecology, Firat University School of Medicine , Elazig , Turkey
| | | | | | | | | | | |
Collapse
|
32
|
Croxatto D, Vacca P, Canegallo F, Conte R, Venturini PL, Moretta L, Mingari MC. Stromal cells from human decidua exert a strong inhibitory effect on NK cell function and dendritic cell differentiation. PLoS One 2014; 9:e89006. [PMID: 24586479 PMCID: PMC3930605 DOI: 10.1371/journal.pone.0089006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/14/2014] [Indexed: 01/14/2023] Open
Abstract
Stromal cells (SC) are an important component of decidual tissues where they are in strict proximity with both NK and CD14+ myelomonocytic cells that play a role in the maintenance of pregnancy. In this study we analyzed whether decidual SC (DSC) could exert a regulatory role on NK and CD14+ cells that migrate from peripheral blood (PB) to decidua during pregnancy. We show that DSCs inhibit the IL15-mediated up-regulation of major activating NK receptors in PB-derived NK cells. In addition, the IL15-induced NK cell proliferation, cytolytic activity and IFN-γ production were severely impaired. DSCs sharply inhibited dendritic cells differentiation and their ability to induce allogeneic T cell proliferation. Indoleamine 2,3-dioxygenase (IDO) and prostaglandin E2 (PGE2) mediated the inhibitory effect of DSCs. Our results strongly suggest an important role of DSCs in preventing potentially dangerous immune response, thus contributing to maintenance of pregnancy.
Collapse
Affiliation(s)
- Daniele Croxatto
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Paola Vacca
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | - Romana Conte
- IRCCS AOU San Martino-IST (National Institute for Cancer Research), Genoa, Italy
| | - Pier Luigi Venturini
- IRCCS AOU San Martino-IST (National Institute for Cancer Research), Genoa, Italy
- DINOGMI, University of Genoa, Genoa, Italy
| | | | - Maria Cristina Mingari
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino-IST (National Institute for Cancer Research), Genoa, Italy
| |
Collapse
|
33
|
Dong Z, Fu S, Xu X, Yang Y, Du L, Li W, Kan S, Li Z, Zhang X, Wang L, Li J, Liu H, Qu X, Wang C. Leptin-mediated regulation of ICAM-1 is Rho/ROCK dependent and enhances gastric cancer cell migration. Br J Cancer 2014; 110:1801-10. [PMID: 24548863 PMCID: PMC3974087 DOI: 10.1038/bjc.2014.70] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/19/2013] [Accepted: 01/21/2014] [Indexed: 01/06/2023] Open
Abstract
Background: Our previous study indicates that leptin enhances gastric cancer (GC) invasion. However, the exact effect of leptin on GC metastasis and its underlying mechanism remain unclear. Intercellular adhesion molecule-1 (ICAM-1), a major molecule in stabilising cell–cell and cell–extracellular matrix interactions, is overexpressed and has crucial roles in tumour metastasis. Methods: Here, we investigated leptin and ICAM-1 expression in GC tissues. Furthermore, we characterised the influence of leptin on ICAM-1 expression in GC cells and elucidated the underlying mechanism. Results: Leptin and ICAM-1 were overexpressed in GC tissues, and a strong positive correlation was observed. They were also related with clinical stage or lymph node metastasis. Furthermore, leptin induced GC cell (AGS and MKN-45) migration by upregulating ICAM-1, and knockdown of ICAM-1 by small interference RNA (siRNA) blocked this process. Cell surface ICAM-1, as well as soluble ICAM-1 (sICAM-1), was also enhanced by leptin. Moreover, leptin increased ICAM-1 expression through Rho/ROCK pathway, which was attenuated by pharmacological inhibition of Rho (C3 transferase) or its downstream effector kinase Rho-associated protein kinase (ROCK) (Y-27632). Conclusions: Our findings indicate that leptin enhances GC cell migration by increasing ICAM-1 through Rho/ROCK pathway, which might provide new insight into the significance of leptin in GC.
Collapse
Affiliation(s)
- Z Dong
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - S Fu
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - X Xu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - Y Yang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - L Du
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - W Li
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - S Kan
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - Z Li
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - X Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - L Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - J Li
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - H Liu
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - X Qu
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - C Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| |
Collapse
|
34
|
Differentiated miRNA expression and validation of signaling pathways in apoE gene knockout mice by cross-verification microarray platform. Exp Mol Med 2013; 45:e13. [PMID: 23470715 PMCID: PMC3641397 DOI: 10.1038/emm.2013.31] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The microRNA (miRNA) regulation mechanisms associated with atherosclerosis are largely undocumented. Specific selection and efficient validation of miRNA regulation pathways involved in atherosclerosis development may be better assessed by contemporary microarray platforms applying cross-verification methodology. A screening platform was established using both miRNA and genomic microarrays. Microarray analysis was then simultaneously performed on pooled atherosclerotic aortic tissues from 10 Apolipoprotein E (apoE) knockout mice (apoE−/−) and 10 healthy C57BL/6 (B6) mice. Differentiated miRNAs were screened and cross-verified against an mRNA screen database to explore integrative mRNA–miRNA regulation. Gene set enrichment analysis was conducted to describe the potential pathways regulated by these mRNA–miRNA interactions. High-throughput data analysis of miRNA and genomic microarrays of knockout and healthy control mice revealed 75 differentially expressed miRNAs in apoE−/− mice at a threshold value of 2. The six miRNAs with the greatest differentiation expression were confirmed by real-time quantitative reverse-transcription PCR (qRT–PCR) in atherosclerotic tissues. Significantly enriched pathways, such as the type 2 diabetes mellitus pathway, were observed by a gene-set enrichment analysis. The enriched molecular pathways were confirmed through qRT–PCR evaluation by observing the presence of suppressor of cytokine signaling 3 (SOCS3) and SOCS3-related miRNAs, miR-30a, miR-30e and miR-19b. Cross-verified high-throughput microarrays are optimally accurate and effective screening methods for miRNA regulation profiles associated with atherosclerosis. The identified SOCS3 pathway is a potentially valuable target for future development of targeted miRNA therapies to control atherosclerosis development and progression.
Collapse
|
35
|
Xu X, Dong Z, Li Y, Yang Y, Yuan Z, Qu X, Kong B. The upregulation of signal transducer and activator of transcription 5-dependent microRNA-182 and microRNA-96 promotes ovarian cancer cell proliferation by targeting forkhead box O3 upon leptin stimulation. Int J Biochem Cell Biol 2012; 45:536-45. [PMID: 23262295 DOI: 10.1016/j.biocel.2012.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 12/28/2022]
Abstract
Leptin overexpression contributes to the tumorigenesis of ovarian cancer. However, the functional mechanism and effects remain unclear. The aberrant expression of tumor-related microRNAs may play an important role in the development of cancer. In this report, we demonstrate that crosstalk between leptin and microRNA-182 and microRNA-96 affects the transformation and proliferation of ovarian cancer cells. Our results showed that leptin enhanced the colony formation of ovarian cancer cells in soft agar. A water-soluble tetrazolium salts assay revealed that leptin promoted ovarian cancer cell (SKOV3 and A2780 cells) proliferation in a time- and dose-dependent manner. The growth effects of leptin on ovarian cancer cells were mediated via the reduced expression of forkhead box O3 and its downstream targets p27 and Bim. We demonstrated that leptin upregulated miRNAs that target forkhead box O3 via luciferase reporter assay. Further examination indicated that only the inhibition of microRNA-182 and/or microRNA-96 rescued the expression of forkhead box O3 inhibited by leptin, and their mimics promoted the proliferation of ovarian cancer cells. Moreover, the signal transducer and activator of transcription 5 pathway, but not the signal transducer and activator of transcription 3 pathway, was implicated in the leptin-mediated expression of microRNA-182 and microRNA-96. In conclusion, our findings suggest that the upregulation of microRNA-182 and microRNA-96 targeting forkhead box O3 plays a significant role in the pro-proliferation effect of leptin on ovarian cancer cells, which might provide preliminary experimental clues for the development of new therapies against ovarian cancer.
Collapse
Affiliation(s)
- Xiaofei Xu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | | | | | | | | | | | | |
Collapse
|