1
|
Dickerson F, Vaidya D, Liu Y, Yolken R. Levels of Matrix Metalloproteinase 9 Are Elevated in Persons With Schizophrenia or Bipolar Disorder: The Role of Modifiable Factors. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:766-772. [PMID: 37881562 PMCID: PMC10593883 DOI: 10.1016/j.bpsgos.2023.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) are a diverse set of enzymes associated with inflammation. MMP-9 is of particular interest because it has been associated with autoimmune and cardiopulmonary disorders, tobacco smoking, and obesity, prevalent in psychiatric populations. Methods Sensitive enzyme immunoassays measured MMP-9 in blood samples from 1121 individuals (mean age = 35.6 [SD = 13.0] years; 47.7% male; 440 with schizophrenia, 399 with bipolar disorder, and 282 without a psychiatric disorder). We estimated the odds of diagnosis associated with MMP-9, demographic variables, tobacco smoking, and obesity, and also the partial explained variance using regression methods. We also determined the association between psychiatric medications and MMP-9 levels. Results Individuals with elevated MMP-9 levels had higher odds of schizophrenia or bipolar disorder compared with the nonpsychiatric group adjusted for demographic variables. Partial correlation analyses indicated the demographic-adjusted variance associated with MMP-9, smoking, obesity, and their interaction explained 59.6% for schizophrenia and 39.9% for bipolar disorder. Levels of MMP-9 were substantially lower in individuals receiving valproate, particularly relatively high doses. Conclusions Individuals with higher levels of MMP-9 have significantly higher odds of schizophrenia or bipolar disorder. Individuals receiving valproate had substantially lower levels of MMP-9, possibly related to its ability to inhibit histone deacetylation. A substantial portion of the variance in clinical disorders associated with MMP-9 can be attributed to smoking or obesity. Interventions to reduce smoking and obesity might reduce the morbidity and mortality associated with elevated MMP-9 levels and improve the health outcomes of individuals with these disorders.
Collapse
Affiliation(s)
- Faith Dickerson
- Stanley Research Program, Sheppard Pratt, Baltimore, Maryland
| | - Dhananjay Vaidya
- Department of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yisi Liu
- Department of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
The Role of MMPs in the Era of CFTR Modulators: An Additional Target for Cystic Fibrosis Patients? Biomolecules 2023; 13:biom13020350. [PMID: 36830719 PMCID: PMC9952876 DOI: 10.3390/biom13020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Cystic fibrosis (CF) is a high-prevalence disease characterized by significant lung remodeling, responsible for high morbidity and mortality worldwide. The lung structural changes are partly due to proteolytic activity associated with inflammatory cells such as neutrophils and macrophages. Matrix metalloproteases (MMPs) are the major proteases involved in CF, and recent literature data focused on their potential role in the pathogenesis of the disease. In fact, an imbalance of proteases and antiproteases was observed in CF patients, resulting in dysfunction of protease activity and loss of lung homeostasis. Currently, many steps forward have been moved in the field of pharmacological treatment with the recent introduction of triple-combination therapy targeting the CFTR channel. Despite CFTR modulator therapy potentially being effective in up to 90% of patients with CF, there are still patients who are not eligible for the available therapies. Here, we introduce experimental drugs to provide updates on therapy evolution regarding a proportion of CF non-responder patients to current treatment, and we summarize the role of MMPs in pathogenesis and as future therapeutic targets of CF.
Collapse
|
3
|
Ma H, Wu X, Li Y, Xia Y. Research Progress in the Molecular Mechanisms, Therapeutic Targets, and Drug Development of Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:963054. [PMID: 35935869 PMCID: PMC9349351 DOI: 10.3389/fphar.2022.963054] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Recent studies have identified the key role of crosstalk between dysregulated epithelial cells, mesenchymal, immune, and endothelial cells in IPF. In addition, genetic mutations and environmental factors (e.g., smoking) have also been associated with the development of IPF. With the recent development of sequencing technology, epigenetics, as an intermediate link between gene expression and environmental impacts, has also been reported to be implicated in pulmonary fibrosis. Although the etiology of IPF is unknown, many novel therapeutic targets and agents have emerged from clinical trials for IPF treatment in the past years, and the successful launch of pirfenidone and nintedanib has demonstrated the promising future of anti-IPF therapy. Therefore, we aimed to gain an in-depth understanding of the underlying molecular mechanisms and pathogenic factors of IPF, which would be helpful for the diagnosis of IPF, the development of anti-fibrotic drugs, and improving the prognosis of patients with IPF. In this study, we summarized the pathogenic mechanism, therapeutic targets and clinical trials from the perspective of multiple cell types, gene mutations, epigenetic and environmental factors.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
- *Correspondence: Yong Xia,
| |
Collapse
|
4
|
Nie F, Zhang J, Li M, Chang X, Duan H, Li H, Zhou J, Ji Y, Guo L. Transcriptome analysis of thymic tissues from Chinese Partridge Shank chickens with or without Newcastle disease virus LaSota vaccine injection via high-throughput RNA sequencing. Bioengineered 2022; 13:9131-9144. [PMID: 35403571 PMCID: PMC9161911 DOI: 10.1080/21655979.2021.2008737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Furong Nie
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Jingfeng Zhang
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Mengyun Li
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xuanniu Chang
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Haitao Duan
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Haoyan Li
- Henan Chenxia Biomedical Co., Ltd, Zhengzhou, China
| | - Jia Zhou
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yudan Ji
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Liangxing Guo
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
5
|
Yue L, Shi Y, Su X, Ouyang L, Wang G, Ye T. Matrix metalloproteinases inhibitors in idiopathic pulmonary fibrosis: Medicinal chemistry perspectives. Eur J Med Chem 2021; 224:113714. [PMID: 34315043 DOI: 10.1016/j.ejmech.2021.113714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/05/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal disease with limited therapeutic options and a particularly poor prognosis. Matrix metalloproteinases (MMPs), promising targets for the treatment of IPF, have been identified as playing a pivotal role in IPF. Although the pathological processes of MMPs and IPF have been verified, there are no MMP inhibitors for the treatment of IPF in the clinic. In this review, we will present the latest developments in MMP inhibitors, including pharmacophores, binding modes, selectivity and optimization strategies. In addition, we will also discuss the future development direction of MMP inhibitors based on emerging tools and techniques.
Collapse
Affiliation(s)
- Lin Yue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaojie Shi
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xingping Su
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liang Ouyang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guan Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
6
|
Majka G, Mazurek H, Strus M, Ciszek-Lenda M, Szatanek R, Pac A, Golińska E, Marcinkiewicz J. Chronic bacterial pulmonary infections in advanced cystic fibrosis differently affect the level of sputum neutrophil elastase, IL-8 and IL-6. Clin Exp Immunol 2021; 205:391-405. [PMID: 34031873 DOI: 10.1111/cei.13624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Advanced cystic fibrosis (CF) lung disease is commonly characterized by a chronic Pseudomonas aeruginosa infection and destructive inflammation caused by neutrophils. However, the lack of convincing evidence from most informative biomarkers of severe lung dysfunction (SLD-CF) has hampered the formulation of a conclusive, targeted diagnosis of CF. The aim of this study was to determine whether SLD-CF is related to the high concentration of sputum inflammatory mediators and the presence of biofilm-forming bacterial strains. Forty-one patients with advanced CF lung disease were studied. The severity of pulmonary dysfunction was defined by forced expiratory volume in 1 second (FEV1) < 40%. C-reactive protein (CRP) and NLR (neutrophil-lymphocyte ratio) were examined as representative blood-based markers of inflammation. Expectorated sputum was collected and analysed for cytokines and neutrophil-derived defence proteins. Isolated sputum bacteria were identified and their biofilm-forming capacity was determined. There was no association between FEV1% and total number of sputum bacteria. However, in the high biofilm-forming group the median FEV1 was < 40%. Importantly, high density of sputum bacteria was associated with increased concentrations of neutrophil elastase and interleukin (IL)-8 and low concentrations of IL-6 and IL-10. The low concentration of sputum IL-6 is unique for CF and distinct from that observed in other chronic pulmonary inflammatory diseases. These findings strongly suggest that expectorated sputum is an informative source of pulmonary biomarkers representative for advanced CF and may replace more invasive bronchoalveolar lavage analysis to monitor the disease. We recommend to use of the following inflammatory biomarkers: blood CRP, NLR and sputum elastase, IL-6, IL-8 and IL-10.
Collapse
Affiliation(s)
- Grzegorz Majka
- Faculty of Medicine, Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Henryk Mazurek
- Department of Pneumonology and Cystic Fibrosis, Institute of Tuberculosis and Lung Disorders, Rabka-Zdrój, Poland
| | - Magdalena Strus
- Faculty of Medicine, Department of Microbiology, Jagiellonian University Medical College, Kraków, Poland
| | - Marta Ciszek-Lenda
- Faculty of Medicine, Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Rafał Szatanek
- Faculty of Medicine, Institute of Pediatrics, Department of Clinical Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Pac
- Faculty of Medicine, Chair of Epidemiology and Preventive Medicine, Department of Epidemiology, Jagiellonian University Medical College, Kraków, Poland
| | - Edyta Golińska
- Faculty of Medicine, Department of Microbiology, Jagiellonian University Medical College, Kraków, Poland
| | - Janusz Marcinkiewicz
- Faculty of Medicine, Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
7
|
McKelvey MC, Brown R, Ryan S, Mall MA, Weldon S, Taggart CC. Proteases, Mucus, and Mucosal Immunity in Chronic Lung Disease. Int J Mol Sci 2021; 22:5018. [PMID: 34065111 PMCID: PMC8125985 DOI: 10.3390/ijms22095018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulated protease activity has long been implicated in the pathogenesis of chronic lung diseases and especially in conditions that display mucus obstruction, such as chronic obstructive pulmonary disease, cystic fibrosis, and non-cystic fibrosis bronchiectasis. However, our appreciation of the roles of proteases in various aspects of such diseases continues to grow. Patients with muco-obstructive lung disease experience progressive spirals of inflammation, mucostasis, airway infection and lung function decline. Some therapies exist for the treatment of these symptoms, but they are unable to halt disease progression and patients may benefit from novel adjunct therapies. In this review, we highlight how proteases act as multifunctional enzymes that are vital for normal airway homeostasis but, when their activity becomes immoderate, also directly contribute to airway dysfunction, and impair the processes that could resolve disease. We focus on how proteases regulate the state of mucus at the airway surface, impair mucociliary clearance and ultimately, promote mucostasis. We discuss how, in parallel, proteases are able to promote an inflammatory environment in the airways by mediating proinflammatory signalling, compromising host defence mechanisms and perpetuating their own proteolytic activity causing structural lung damage. Finally, we discuss some possible reasons for the clinical inefficacy of protease inhibitors to date and propose that, especially in a combination therapy approach, proteases represent attractive therapeutic targets for muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Michael C. McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| |
Collapse
|
8
|
Matrix metalloproteinase: An upcoming therapeutic approach for idiopathic pulmonary fibrosis. Pharmacol Res 2020; 152:104591. [PMID: 31837390 DOI: 10.1016/j.phrs.2019.104591] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
|
9
|
Increased Ratio of Matrix Metalloproteinase-9 (MMP-9)/Tissue Inhibitor Metalloproteinase-1 from Alveolar Macrophages in Chronic Asthma with a Fast Decline in FEV 1 at 5-Year Follow-up. J Clin Med 2019; 8:jcm8091451. [PMID: 31547356 PMCID: PMC6780991 DOI: 10.3390/jcm8091451] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic asthma is associated with progressive airway remodeling, which may contribute to declining lung function. An increase in matrix metalloproteinases-9 (MMP-9)/tissue inhibitor metalloproteinase-1 (TIMP-1) may indicate airway inflammation and bronchial injury. Bronchial biopsy specimens and alveolar macrophages (AMs) were obtained from patients with asthma under regular treatment with inhaled corticosteroids or combination therapy and normal subjects (n = 10). Asthmatics included those with a slow forced expiratory volume in one second (FEV1) decline (<30 mL/year, n = 13) and those with a fast FEV1 decline (≥30 mL/year, n = 8) in 5-year follow-up. Immunostaining expression of MMP-9 and TIMP-1 was detected in airway tissues. MMP-9 and TIMP-1 was measured from AMs cultured for 24 h. After the 5-year treatment, the methacholine airway hyperresponsiveness of the slow FEV1 decline group was decreased, but that of the fast FEV1 decline group was increased (PC20, provocative concentration causing a 20% decrease in FEV1, 3.12 ± 1.10 to 1.14 ± 0.34 mg/dL, p < 0.05). AMs of asthma with a fast FEV1 decline released a higher level of MMP-9 (8.52 ± 3.53 pg/mL, p < 0.05) than those of a slow FEV1 decline (0.99 ± 0.20 pg/mL). The MMP-9/TIMP ratio in the fast FEV1 decline group (0.089 ± 0.032) was higher than that of the slow FEV1 decline group (0.007 ± 0.001, p < 0.01). The annual FEV1 decline in 5 years was proportional to the level of MMP-9 (r = 57, p < 0.01) and MMP-9/TIMP-1 ratio (r = 0.58, p < 0.01). The airways of asthma with greater yearly decline in FEV1 showed an increased thickness of submucosa and strong expression of MMP-9. An increase in MMP-9 and MMP-9/TIMP-1 in airways or AMs could be indicators of chronic airway inflammation and contribute to a greater decline in lung function of patients with chronic asthma.
Collapse
|
10
|
Lopes MP, Cruz ÁA, Xavier MT, Stöcker A, Carvalho-Filho P, Miranda PM, Meyer RJ, Soledade KR, Gomes-Filho IS, Trindade SC. Prevotella intermedia and periodontitis are associated with severe asthma. J Periodontol 2019; 91:46-54. [PMID: 31342509 DOI: 10.1002/jper.19-0065] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Periodontitis, an inflammatory disease of multibacterial etiology that affects the protective and supporting tissues surrounding teeth, can influence the course of respiratory diseases, such as asthma, due to epithelial alterations arising from inflammatory and immunological processes, bronchial remodeling, or by the aspiration of pathogenic colonizers found in periodontal pockets. This study evaluated the levels of periodontal pathogens Prevotella intermedia, Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Aggregatibacter actinomycetemcomitans in the subgingival biofilm of individuals with and without severe asthma. METHODS A case-control study enrolling 457 individuals (220 with asthma and 237 without asthma) was conducted at the Program for Control of Asthma in Bahia (ProAR) Clinic located in Salvador, Bahia, Brazil. A structured questionnaire was used to obtain data on sociodemographic, health status, and lifestyle habits. A clinical periodontal assessment was performed, including bleeding on probing, probing depth, and clinical attachment level. Subgingival biofilm was collected at the deepest site of each sextant, and bacterial DNA was extracted. Quantitative real-time PCR analysis was performed to detect and relatively quantify periodontopathogens in the biofilm. RESULTS Statistically significant positive associations were found between periodontitis and severe asthma, (odds ratio [OR]adjusted] : 4.00; 95% confidence interval [CI]: 2.26 to 7.10). High levels of P. intermedia were found in association with the presence of severe asthma (ORadjusted : 2.64; 95% CI: 1.62 to 4.39; P < 0.01). CONCLUSIONS The present results suggest that periodontitis and P. intermedia are associated with severe asthma. However, the functional consequences of this dysbiosis upon asthma susceptibility and its phenotypes remain unclear.
Collapse
Affiliation(s)
- Mabel P Lopes
- Post-Graduation Program, Federal University of Bahia, Salvador, Brazil
| | - Álvaro A Cruz
- Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Márcia T Xavier
- Department of Biointeraction, Federal University of Bahia, Salvador, Brazil
| | - Andreas Stöcker
- Universitary Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Brazil
| | | | | | - Roberto J Meyer
- Department of Biointeraction, Federal University of Bahia, Salvador, Brazil
| | - Kaliane R Soledade
- Department of Biointeraction, Federal University of Bahia, Salvador, Brazil
| | - Isaac S Gomes-Filho
- Department of Health, Feira de Santana State University, Feira de Santana, Brazil
| | - Soraya C Trindade
- Post-Graduation Program, Federal University of Bahia, Salvador, Brazil.,Department of Health, Feira de Santana State University, Feira de Santana, Brazil
| |
Collapse
|
11
|
Sudevan S, Takiura M, Kubota Y, Higashitani N, Cooke M, Ellwood RA, Etheridge T, Szewczyk NJ, Higashitani A. Mitochondrial dysfunction causes Ca 2+ overload and ECM degradation-mediated muscle damage in C. elegans. FASEB J 2019; 33:9540-9550. [PMID: 31162948 PMCID: PMC6662967 DOI: 10.1096/fj.201802298r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/29/2019] [Indexed: 01/14/2023]
Abstract
Mitochondrial dysfunction impairs muscle health and causes subsequent muscle wasting. This study explores the role of mitochondrial dysfunction as an intramuscular signal for the extracellular matrix (ECM)-based proteolysis and, consequentially, muscle cell dystrophy. We found that inhibition of the mitochondrial electron transport chain causes paralysis as well as muscle structural damage in the nematode Caenorhabditis elegans. This was associated with a significant decline in collagen content. Both paralysis and muscle damage could be rescued with collagen IV overexpression, matrix metalloproteinase (MMP), and Furin inhibitors in Antimycin A-treated animal as well as in the C. elegans Duchenne muscular dystrophy model. Additionally, muscle cytosolic calcium increased in the Antimycin A-treated worms, and its down-regulation rescued the muscle damage, suggesting that calcium overload acts as one of the early triggers and activates Furin and MMPs for collagen degradation. In conclusion, we have established ECM degradation as an important pathway of muscle damage.-Sudevan, S., Takiura, M., Kubota, Y., Higashitani, N., Cooke, M., Ellwood, R. A., Etheridge, T., Szewczyk, N. J., Higashitani, A. Mitochondrial dysfunction causes Ca2+ overload and ECM degradation-mediated muscle damage in C. elegans.
Collapse
Affiliation(s)
- Surabhi Sudevan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mai Takiura
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yukihiko Kubota
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Michael Cooke
- College of Life and Environmental Science, University of Exeter, Exeter, United Kingdom
- Medical Research Council (MRC) and Arthritis Research United Kingdom (ARUK) Centre of Musculoskeletal Ageing Research and National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Rebecca A. Ellwood
- Medical Research Council (MRC) and Arthritis Research United Kingdom (ARUK) Centre of Musculoskeletal Ageing Research and National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Timothy Etheridge
- College of Life and Environmental Science, University of Exeter, Exeter, United Kingdom
| | - Nathaniel J. Szewczyk
- Medical Research Council (MRC) and Arthritis Research United Kingdom (ARUK) Centre of Musculoskeletal Ageing Research and National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
12
|
|
13
|
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5:18. [PMID: 29473039 PMCID: PMC5809447 DOI: 10.3389/fmed.2018.00018] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases is summarized. Perspectives on the development of SP-D therapy are addressed.
Collapse
Affiliation(s)
- Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Weiss G, Lai C, Fife ME, Grabiec AM, Tildy B, Snelgrove RJ, Xin G, Lloyd CM, Hussell T. Reversal of TREM-1 ectodomain shedding and improved bacterial clearance by intranasal metalloproteinase inhibitors. Mucosal Immunol 2017; 10:1021-1030. [PMID: 27966555 DOI: 10.1038/mi.2016.104] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 10/07/2016] [Indexed: 02/04/2023]
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) is expressed on neutrophils and monocyte/macrophages and amplifies Toll-like receptor-mediated inflammation during infection. TREM-1 also exists in an antagonistic soluble form (sTREM-1) that has been used as a peripheral biomarker in sepsis, though the mechanisms of its release are not entirely clear. The requirement of TREM-1 in single microbial infections is controversial, with some studies showing a protective role and others a contribution to immunopathology. Furthermore, the role of membrane-bound and sTREM-1 in polygenic infections is currently unknown. In a mouse co-infection model where preceding viral infection greatly enhances bacteria co-infection, we now determine a mechanisms for the striking increase in sTREM-1 and the loss of TREM-1 on surface of neutrophils. We identified a matrix metalloproteinase (MMP)-9 cleavage site in TREM-1 and that the increase of MMP-9 in bronchoalveolar lavage fluid mirrors sTREM-1 release. In vitro studies with neutrophils and MMP-9 and the reduction of sTREM-1 in vivo after MMP-9 inhibition verifies that this enzyme cleaves TREM-1. Intriguingly, MMP-9 inhibition significantly reduces bacterial load and ensuing immunopathology in a co-infection model. This highlights MMP-9 inhibition as a potential therapeutic via blocking cleavage of TREM-1.
Collapse
Affiliation(s)
- G Weiss
- National Heart and Lung Institute, Department of Inflammation, Development &Repair, Imperial College London, London, UK
| | - C Lai
- National Heart and Lung Institute, Department of Inflammation, Development &Repair, Imperial College London, London, UK
| | - M E Fife
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Manchester, UK
| | - A M Grabiec
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Manchester, UK
| | - B Tildy
- National Heart and Lung Institute, Department of Inflammation, Development &Repair, Imperial College London, London, UK
| | - R J Snelgrove
- National Heart and Lung Institute, Department of Inflammation, Development &Repair, Imperial College London, London, UK
| | - G Xin
- National Heart and Lung Institute, Department of Inflammation, Development &Repair, Imperial College London, London, UK
| | - C M Lloyd
- National Heart and Lung Institute, Department of Inflammation, Development &Repair, Imperial College London, London, UK
| | - T Hussell
- National Heart and Lung Institute, Department of Inflammation, Development &Repair, Imperial College London, London, UK
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Manchester, UK
| |
Collapse
|
15
|
Xu L, Cai Z, Yang F, Chen M. Activation‑induced upregulation of MMP9 in mast cells is a positive feedback mediator for mast cell activation. Mol Med Rep 2017; 15:1759-1764. [PMID: 28259919 DOI: 10.3892/mmr.2017.6215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/15/2016] [Indexed: 11/05/2022] Open
Abstract
Activated mast cells are involved in the pathogenesis of allergic rhinitis (AR). As a member of the matrix metalloproteinase (MMP) family, MMP9 has been previously demonstrated act in a pro‑inflammatory manner. Mast cells regulate the activity of MMP9, and mast cells themselves have been reported to produce MMP9. However, to the best of our knowledge, the involvement of MMP9 in mast cell activation remains to be elucidated. The present study demonstrated an upregulation of MMP9 protein and mRNA expression levels in mast cells activated by phorbol ester and ionomycin. Phosphorylated ERK and AKT protein levels also markedly increased in activated mast cells, and inhibition of the ERK and AKT signaling pathways prevented the increase of MMP9 in activated mast cells. MMP9 was demonstrated to be involved in mast cell activation, since inhibition of MMP9 activity or expression inhibited mast cell activation. Furthermore, IL‑4 treatment reduced MMP9 upregulation in activated mast cells, and interference with IL‑4 signaling with an IL‑4 neutralizing antibody promoted MMP9 upregulation in activated mast cells. These results revealed a novel MMP9‑mediated mechanism underlying mast cell activation, thus providing novel ideas for AR therapy.
Collapse
Affiliation(s)
- Lin Xu
- Department of Otolaryngology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhijian Cai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Fei Yang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Ming Chen
- Department of Otolaryngology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
16
|
Nichols DP, Chmiel JF. Inflammation and its genesis in cystic fibrosis. Pediatr Pulmonol 2015; 50 Suppl 40:S39-56. [PMID: 26335954 DOI: 10.1002/ppul.23242] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/07/2015] [Accepted: 06/16/2015] [Indexed: 12/17/2022]
Abstract
The host inflammatory response in cystic fibrosis (CF) lung disease has long been recognized as a central pathological feature and an important therapeutic target. Indeed, many believe that bronchiectasis results largely from the oxidative and proteolytic damage comprised within an exuberant airway inflammatory response that is dominated by neutrophils. In this review, we address the longstanding argument of whether or not the inflammatory response is directly attributable to impairment of the cystic fibrosis transmembrane conductance regulator or only secondary to airway obstruction and chronic bacterial infection and challenge the importance of this distinction in the context of therapy. We also review the centrality of neutrophils in CF lung pathophysiology and highlight more recent data that suggest the importance of other cell types and signaling beyond NF-κB activation. We discuss how protease and redox imbalance are critical factors in CF airway inflammation and end by reviewing some of the more promising therapeutic approaches now under development.
Collapse
Affiliation(s)
- David P Nichols
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,National Jewish Health, Denver, Colorado
| | - James F Chmiel
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| |
Collapse
|
17
|
Lecaille F, Lalmanach G, Andrault PM. Antimicrobial proteins and peptides in human lung diseases: A friend and foe partnership with host proteases. Biochimie 2015; 122:151-68. [PMID: 26341472 DOI: 10.1016/j.biochi.2015.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Lung antimicrobial proteins and peptides (AMPs) are major sentinels of innate immunity by preventing microbial colonization and infection. Nevertheless bactericidal activity of AMPs against Gram-positive and Gram-negative bacteria is compromised in patients with chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) and asthma. Evidence is accumulating that expression of harmful human serine proteases, matrix metalloproteases and cysteine cathepsins is markedely increased in these chronic lung diseases. The local imbalance between proteases and protease inhibitors compromises lung tissue integrity and function, by not only degrading extracellular matrix components, but also non-matrix proteins. Despite the fact that AMPs are somewhat resistant to proteolytic degradation, some human proteases cleave them efficiently and impair their antimicrobial potency. By contrast, certain AMPs may be effective as antiproteases. Host proteases participate in concert with bacterial proteases in the degradation of key innate immunity peptides/proteins and thus may play immunomodulatory activities during chronic lung diseases. In this context, the present review highlights the current knowledge and recent discoveries on the ability of host enzymes to interact with AMPs, providing a better understanding of the role of human proteases in innate host defense.
Collapse
Affiliation(s)
- Fabien Lecaille
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France.
| | - Gilles Lalmanach
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France
| | - Pierre-Marie Andrault
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France
| |
Collapse
|
18
|
Choi CH, Poroyko V, Watanabe S, Jiang D, Lane J, deTineo M, Baroody FM, Naclerio RM, Pinto JM. Seasonal allergic rhinitis affects sinonasal microbiota. Am J Rhinol Allergy 2015; 28:281-6. [PMID: 25197913 DOI: 10.2500/ajra.2014.28.4050] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Microbes and allergens can stimulate the nasal mucosa, potentially leading to the development of acute bacterial rhinosinusitis (ABRS). This study was designed to determine if allergen exposure alters the sinonasal microbiome. METHODS We performed a parallel observational study of healthy adults with seasonal allergic rhinitis (SAR; grass or tree, n = 20) or nonallergic subjects (n = 19). Microbiota specimens were obtained by endoscopy from the middle meatus and vestibule before and during the relevant season and were analyzed by terminal restriction fragment length polymorphism analysis. Differences in bacterial microbiota were assessed by standard ecological measures of bacterial diversity. Quality of life and symptom scores were recorded, and nasal lavages for eosinophils were performed. RESULTS SAR subjects had increased nasal symptoms in season, impaired disease-specific quality of life, and increased nasal eosinophils, compared with no changes in nonallergic subjects. During the season, SAR subjects had a significantly greater variety of organisms in the middle meatus compared with nonallergic subjects (p < 0.036) and increased bacterial diversity (Shannon index, p < 0.013). We found a significant positive correlation between bacterial diversity in the middle meatus during the season and the nasal lavage eosinophil count of SAR subjects. There were no significant changes in the nasal vestibule (p > 0.05, all comparisons). CONCLUSION The interaction of allergy and microbiota may affect the sinonasal physiology, with broad implications for several airway diseases. Characterization of the specific organisms involved using next-generation sequencing may clarify the relationship between allergic inflammation and ABRS. This finding may help explain why allergic inflammation predisposes to ABRS.
Collapse
Affiliation(s)
- Chris H Choi
- Section of Otolaryngologty-Head and Neck Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Free DNA in cystic fibrosis airway fluids correlates with airflow obstruction. Mediators Inflamm 2015; 2015:408935. [PMID: 25918476 PMCID: PMC4397025 DOI: 10.1155/2015/408935] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive lung disease determines morbidity and mortality of patients with cystic fibrosis (CF). CF airways are characterized by a nonresolving neutrophilic inflammation. After pathogen contact or prolonged activation, neutrophils release DNA fibres decorated with antimicrobial proteins, forming neutrophil extracellular traps (NETs). NETs have been described to act in a beneficial way for innate host defense by bactericidal, fungicidal, and virucidal actions. On the other hand, excessive NET formation has been linked to the pathogenesis of autoinflammatory and autoimmune disease conditions. We quantified free DNA structures characteristic of NETs in airway fluids of CF patients and a mouse model with CF-like lung disease. Free DNA levels correlated with airflow obstruction, fungal colonization, and CXC chemokine levels in CF patients and CF-like mice. When viewed in combination, our results demonstrate that neutrophilic inflammation in CF airways is associated with abundant free DNA characteristic for NETosis, and suggest that free DNA may be implicated in lung function decline in patients with CF.
Collapse
|
20
|
Ledford JG, Addison KJ, Foster MW, Que LG. Eosinophil-associated lung diseases. A cry for surfactant proteins A and D help? Am J Respir Cell Mol Biol 2015; 51:604-14. [PMID: 24960334 DOI: 10.1165/rcmb.2014-0095tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Surfactant proteins (SP)-A and SP-D (SP-A/-D) play important roles in numerous eosinophil-dominated diseases, including asthma, allergic bronchopulmonary aspergillosis, and allergic rhinitis. In these settings, SP-A/-D have been shown to modulate eosinophil chemotaxis, inhibit eosinophil mediator release, and mediate macrophage clearance of apoptotic eosinophils. Dysregulation of SP-A/-D function in eosinophil-dominated diseases is also not uncommon. Alterations in serum SP-A/-D levels are associated with disease severity in allergic rhinitis and chronic obstructive pulmonary disease. Furthermore, oligimerization of SP-A/-D, necessary for their proper function, can be perturbed by reactive nitrogen species, which are increased in eosinophilic disease. In this review, we highlight the associations of eosinophilic lung diseases with SP-A and SP-D levels and functions.
Collapse
Affiliation(s)
- Julie G Ledford
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care, and
| | | | | | | |
Collapse
|
21
|
Yadav AK, Chaudhari H, Warke H, Shah PK, Dodagatta-Marri E, Kishore U, Madan T. Differential expression of collectins in human placenta and role in inflammation during spontaneous labor. PLoS One 2014; 9:e108815. [PMID: 25303045 PMCID: PMC4193748 DOI: 10.1371/journal.pone.0108815] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/01/2014] [Indexed: 12/15/2022] Open
Abstract
Collectins, collagen-containing Ca2+ dependent C-type lectins and a class of secretory proteins including SP-A, SP-D and MBL, are integral to immunomodulation and innate immune defense. In the present study, we aimed to investigate their placental transcript synthesis, labor associated differential expression and localization at feto-maternal interface, and their functional implication in spontaneous labor. The study involved using feto-maternal interface (placental/decidual tissues) from two groups of healthy pregnant women at term (≥37 weeks of gestation), undergoing either elective C-section with no labor (‘NLc’ group, n = 5), or normal vaginal delivery with spontaneous labor (‘SLv’ group, n = 5). The immune function of SP-D, on term placental explants, was analyzed for cytokine profile using multiplexed cytokine array. SP-A, SP-D and MBL transcripts were observed in the term placenta. The ‘SLv’ group showed significant up-regulation of SP-D (p = 0.001), and down-regulation of SP-A (p = 0.005), transcripts and protein compared to the ‘NLc’ group. Significant increase in 43 kDa and 50 kDa SP-D forms in placental and decidual tissues was associated with the spontaneous labor (p<0.05). In addition, the MMP-9-cleaved form of SP-D (25 kDa) was significantly higher in the placentae of ‘SLv’ group compared to the ‘NLc’ group (p = 0.002). Labor associated cytokines IL-1α, IL-1β, IL-6, IL-8, IL-10, TNF-α and MCP-1 showed significant increase (p<0.05) in a dose dependent manner in the placental explants treated with nSP-D and rhSP-D. In conclusion, the study emphasizes that SP-A and SP-D proteins associate with the spontaneous labor and SP-D plausibly contributes to the pro-inflammatory immune milieu of feto-maternal tissues.
Collapse
Affiliation(s)
- Ajit Kumar Yadav
- Department of Innate Immunity, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Mumbai, Maharashtra, India
| | - Hemangi Chaudhari
- Department of Obstetrics and Gynecology, Seth Gordhandas Sunderdas Medical College and King Edward Medical (KEM) Hospital, Mumbai, Maharashtra, India
| | - Himangi Warke
- Department of Obstetrics and Gynecology, Seth Gordhandas Sunderdas Medical College and King Edward Medical (KEM) Hospital, Mumbai, Maharashtra, India
| | - Premanand Keshavlal Shah
- Department of Obstetrics and Gynecology, Seth Gordhandas Sunderdas Medical College and King Edward Medical (KEM) Hospital, Mumbai, Maharashtra, India
| | - Eswari Dodagatta-Marri
- Centre for Infection, Immunity and Disease Mechanisms, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Uday Kishore
- Centre for Infection, Immunity and Disease Mechanisms, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Taruna Madan
- Department of Innate Immunity, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Mumbai, Maharashtra, India
- * E-mail:
| |
Collapse
|
22
|
Ma HP, Li W, Liu XM. Matrix metalloproteinase 9 is involved in airway inflammation in cough variant asthma. Exp Ther Med 2014; 8:1197-1200. [PMID: 25187823 PMCID: PMC4151709 DOI: 10.3892/etm.2014.1903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/16/2014] [Indexed: 01/02/2023] Open
Abstract
Previous studies have revealed the role of matrix metalloproteinase 9 (MMP9) in asthma and chronic obstructive pulmonary disease (COPD). However, its role in airway inflammation in cough variant asthma (CVA) remains unknown. In the present study, variations in the levels of MMP9 and interleukin (IL)-5 in the induced sputum of patients with CVA prior to and following therapy with inhaled corticosteroid and long-acting β2-agonist (ICS/LABA), were detected. The levels of IL-5 and percentage of eosinophils (EOS) in the induced sputum from patients with CVA were significantly higher than those in the control group of healthy individuals. The levels of MMP9 in the induced sputum from patients with CVA were also significantly higher than those in the control group. Following treatment with ICS/LABA for 6-9 months, the levels of MMP9 and IL-5, as well as the percentage of EOS, in the induced sputum from patients with CVA had significantly decreased. Thus, MMP9 may be an important biomarker in the airway inflammation of CVA.
Collapse
Affiliation(s)
- Hui-Ping Ma
- Department of Respiratory Medicine, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Wei Li
- Department of Otorhinolaryngology, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Xiao-Min Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
23
|
Farina AR, Mackay AR. Gelatinase B/MMP-9 in Tumour Pathogenesis and Progression. Cancers (Basel) 2014; 6:240-96. [PMID: 24473089 PMCID: PMC3980597 DOI: 10.3390/cancers6010240] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/14/2022] Open
Abstract
Since its original identification as a leukocyte gelatinase/type V collagenase and tumour type IV collagenase, gelatinase B/matrix metalloproteinase (MMP)-9 is now recognised as playing a central role in many aspects of tumour progression. In this review, we relate current concepts concerning the many ways in which gelatinase B/MMP-9 influences tumour biology. Following a brief outline of the gelatinase B/MMP-9 gene and protein, we analyse the role(s) of gelatinase B/MMP-9 in different phases of the tumorigenic process, and compare the importance of gelatinase B/MMP-9 source in the carcinogenic process. What becomes apparent is the importance of inflammatory cell-derived gelatinase B/MMP-9 in tumour promotion, early progression and triggering of the "angiogenic switch", the integral relationship between inflammatory, stromal and tumour components with respect to gelatinase B/MMP-9 production and activation, and the fundamental role for gelatinase B/MMP-9 in the formation and maintenance of tumour stem cell and metastatic niches. It is also apparent that gelatinase B/MMP-9 plays important tumour suppressing functions, producing endogenous angiogenesis inhibitors, promoting inflammatory anti-tumour activity, and inducing apoptosis. The fundamental roles of gelatinase B/MMP-9 in cancer biology underpins the need for specific therapeutic inhibitors of gelatinase B/MMP-9 function, the use of which must take into account and substitute for tumour-suppressing gelatinase B/MMP-9 activity and also limit inhibition of physiological gelatinase B/MMP-9 function.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila 67100, Italy.
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila 67100, Italy.
| |
Collapse
|
24
|
Characterization and prevention of the adsorption of surfactant protein D to polypropylene. PLoS One 2013; 8:e73467. [PMID: 24039953 PMCID: PMC3770593 DOI: 10.1371/journal.pone.0073467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022] Open
Abstract
Surfactant Protein D (SP-D) is a multifunctional protein present in the lung and in respiratory secretions. In the process of developing new experimental approaches to examine SP-D function, we observed that SP-D adsorbs to polypropylene tubes to a great extent, thereby depleting SP-D from the solution. Although it is well known that proteins adsorb nonspecifically to plastic, this effect is usually diminished by treatments to make the plastic “low-retention” or “low-binding”. However, these treatments actually increased the binding of SP-D to the plastic. In addition, this adsorption affected the results of several assays, including proteolytic cleavage assays. In order to block SP-D from adsorbing to polypropylene and the effects caused by this adsorption, we coated the tubes with bovine serum albumin (BSA), as is commonly performed for ELISAs. This coating greatly diminished the amount of SP-D sticking to the plastic, providing an inexpensive and effective method for preventing adsorption and the artifacts resulting from this adsorption.
Collapse
|
25
|
Jiménez-Morales S, Martínez-Aguilar N, Gamboa-Becerra R, Jiménez-Ruíz JL, López-Ley D, Lou H, Saldaña-Alvarez Y, Dean M, Orozco L. Polymorphisms in metalloproteinase-9 are associated with the risk for asthma in Mexican pediatric patients. Hum Immunol 2013; 74:998-1002. [PMID: 23639553 DOI: 10.1016/j.humimm.2013.04.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/18/2013] [Accepted: 04/10/2013] [Indexed: 12/27/2022]
Abstract
Asthma is characterized by chronic airway inflammation, which induces airway remodelling of the extracellular matrix over time. Matrix metalloproteinases (MMPs) are involved in this process, and single-nucleotide polymorphisms (SNPs) in MMP genes may influence their mRNA expression levels or abilities to bind substrates and inhibitors, thereby contributing to asthma predisposition and severity. MMP-9 is highly expressed in airways and many studies support its involvement in asthma pathogenesis; however the contribution of MMP-9 SNPs is controversial. To investigate whether MMP-9 SNPs are associated with childhood-onset asthma in Mexican patients we conducted a case-control study including 403 children with clinical asthma diagnoses and 426 healthy controls from Mexico. The cases and controls were matched by ethnicity and gender. We found that the SNPs rs2274755, rs17577, and rs3918249 were associated with asthma risk. The most significant associations were with rs2274755 (OR=2.10, 95% CI 1.31-3.39, P=0.001) and rs17577 (OR=2.07, 95% CI 1.29-3.30, P=0.001); which were in strong linkage disequilibrium. Both SNPs were also associated with atopic asthma (OR=2.38, 95% CI 1.44-3 · 96, P=0.0005). The SNP rs3918249 exhibited a female gender-dependent association with asthma (OR=1.66, 95% CI 1.14-2.43, P=0.007). Our results suggest that MMP-9 polymorphisms could play a role in the susceptibility to childhood-onset asthma.
Collapse
Affiliation(s)
- Silvia Jiménez-Morales
- Laboratorio de Inmunogenómica y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, SS, Mexico City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|