1
|
Calzoni E, Cerrotti G, Sagini K, Delo F, Buratta S, Pellegrino RM, Alabed HBR, Fratini F, Emiliani C, Urbanelli L. Evidence of Lysosomal β-Hexosaminidase Enzymatic Activity Associated with Extracellular Vesicles: Potential Applications for the Correction of Sandhoff Disease. J Funct Biomater 2024; 15:153. [PMID: 38921527 PMCID: PMC11204914 DOI: 10.3390/jfb15060153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Extracellular vesicles (EVs) can be isolated from biological fluids and cell culture medium. Their nanometric dimension, relative stability, and biocompatibility have raised considerable interest for their therapeutic use as delivery vehicles of macromolecules, namely nucleic acids and proteins. Deficiency in lysosomal enzymes and associated proteins is at the basis of a group of genetic diseases known as lysosomal storage disorders (LSDs), characterized by the accumulation of undigested substrates into lysosomes. Among them, GM2 gangliosidoses are due to a deficiency in the activity of lysosomal enzyme β-hexosaminidase, leading to the accumulation of the GM2 ganglioside and severe neurological symptoms. Current therapeutic approaches, including enzyme replacement therapy (ERT), have proven unable to significantly treat these conditions. Here, we provide evidence that the lysosomal β-hexosaminidase enzyme is associated with EVs released by HEK cells and that the EV-associated activity can be increased by overexpressing the α-subunit of β-hexosaminidase. The delivery of EVs to β-hexosaminidase-deficient fibroblasts results in a partial cross-correction of the enzymatic defect. Overall findings indicate that EVs could be a source of β-hexosaminidase that is potentially exploitable for developing therapeutic approaches for currently untreatable LSDs.
Collapse
Affiliation(s)
- Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
| | - Giada Cerrotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
| | - Federica Delo
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, 06123 Perugia, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
| | - Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
| | | | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
2
|
Atukorala I, Hannan N, Hui L. Immersed in a reservoir of potential: amniotic fluid-derived extracellular vesicles. J Transl Med 2024; 22:348. [PMID: 38609955 PMCID: PMC11010396 DOI: 10.1186/s12967-024-05154-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
This review aims to encapsulate the current knowledge in extracellular vesicles extracted from amniotic fluid and amniotic fluid derived stem/stromal cells. Amniotic fluid (AF) bathes the developing fetus, providing nutrients and protection from biological and mechanical dangers. In addition to containing a myriad of proteins, immunoglobulins and growth factors, AF is a rich source of extracellular vesicles (EVs). These vesicles originate from cells in the fetoplacental unit. They are biological messengers carrying an active cargo enveloped within the lipid bilayer. EVs in reproduction are known to play key roles in all stages of pregnancy, starting from fertilisation through to parturition. The intriguing biology of AF-derived EVs (AF-EVs) in pregnancy and their untapped potential as biomarkers is currently gaining attention. EV studies in numerous animal and human disease models have raised expectations of their utility as therapeutics. Amniotic fluid stem cell and mesenchymal stromal cell-derived EVs (AFSC-EVs) provide an established supply of laboratory-made EVs. This cell-free mode of therapy is popular as an alternative to stem cell therapy, revealing similar, if not better therapeutic outcomes. Research has demonstrated the successful application of AF-EVs and AFSC-EVs in therapy, harnessing their anti-inflammatory, angiogenic and regenerative properties. This review provides an overview of such studies and discusses concerns in this emerging field of research.
Collapse
Affiliation(s)
- Ishara Atukorala
- Department of Obstetrics, Gynaecology & Newborn Health, Melbourne Medical School, The University of Melbourne, Mercy Hospital for Women, 163 Studley Road, Heidelberg, VIC, 3084, Australia.
- Department of Obstetrics, Gynaecology & Newborn Health, The Northern Centre for Health Education and Research, Northern Health, Epping, VIC, Australia.
| | - Natalie Hannan
- Department of Obstetrics, Gynaecology & Newborn Health, Melbourne Medical School, The University of Melbourne, Mercy Hospital for Women, 163 Studley Road, Heidelberg, VIC, 3084, Australia
- Department of Obstetrics, Gynaecology & Newborn Health, The Northern Centre for Health Education and Research, Northern Health, Epping, VIC, Australia
| | - Lisa Hui
- Department of Obstetrics, Gynaecology & Newborn Health, Melbourne Medical School, The University of Melbourne, Mercy Hospital for Women, 163 Studley Road, Heidelberg, VIC, 3084, Australia
- Department of Obstetrics, Gynaecology & Newborn Health, The Northern Centre for Health Education and Research, Northern Health, Epping, VIC, Australia
- Department of Perinatal Medicine, Mercy Hospital for Women, Mercy Health, Heidelberg, VIC, Australia
- Reproductive Epidemiology Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| |
Collapse
|
3
|
Medaer L, David D, Smits M, Levtchenko E, Sampaolesi M, Gijsbers R. Residual Cystine Transport Activity for Specific Infantile and Juvenile CTNS Mutations in a PTEC-Based Addback Model. Cells 2024; 13:646. [PMID: 38607085 PMCID: PMC11011962 DOI: 10.3390/cells13070646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Cystinosis is a rare, autosomal recessive, lysosomal storage disease caused by mutations in the gene CTNS, leading to cystine accumulation in the lysosomes. While cysteamine lowers the cystine levels, it does not cure the disease, suggesting that CTNS exerts additional functions besides cystine transport. This study investigated the impact of infantile and juvenile CTNS mutations with discrepant genotype/phenotype correlations on CTNS expression, and subcellular localisation and function in clinically relevant cystinosis cell models to better understand the link between genotype and CTNS function. Using CTNS-depleted proximal tubule epithelial cells and patient-derived fibroblasts, we expressed a selection of CTNSmutants under various promoters. EF1a-driven expression led to substantial overexpression, resulting in CTNS protein levels that localised to the lysosomal compartment. All CTNSmutants tested also reversed cystine accumulation, indicating that CTNSmutants still exert transport activity, possibly due to the overexpression conditions. Surprisingly, even CTNSmutants expression driven by the less potent CTNS and EFS promoters reversed the cystine accumulation, contrary to the CTNSG339R missense mutant. Taken together, our findings shed new light on CTNS mutations, highlighting the need for robust assessment methodologies in clinically relevant cellular models and thus paving the way for better stratification of cystinosis patients, and advocating for the development of more personalized therapy.
Collapse
Affiliation(s)
- Louise Medaer
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (L.M.); (M.S.)
| | - Dries David
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (L.M.); (M.S.)
| | - Maxime Smits
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (L.M.); (M.S.)
- Leuven Viral Vector Core, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Elena Levtchenko
- Department of Paediatric Nephrology & Development and Regeneration, University Hospitals Leuven & KU Leuven, 3000 Leuven, Belgium;
- Department of Paediatric Nephrology, Amsterdam University Medical Centre, 1081 Amsterdam, The Netherlands
| | - Maurilio Sampaolesi
- Translational Cardiology Laboratory, Department of Development and Regeneration, Stem Cell Institute, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium;
| | - Rik Gijsbers
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (L.M.); (M.S.)
- Leuven Viral Vector Core, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Zhang F, Zhang L, Yu H. Potential Druggability of Mesenchymal Stem/Stromal Cell-derived Exosomes. Curr Stem Cell Res Ther 2024; 19:1195-1209. [PMID: 38523514 DOI: 10.2174/011574888x311270240319084835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
Exosomes secreted by mesenchymal stem/stromal cells (MSC-Exos) are advantageous candidate sources for novel acellular therapy. Despite the current standards of good manufacturing practice (GMP), the deficiency of suitable quality-control methods and the difficulties in large-scale preparation largely restrict the development of therapeutic products and their clinical applications worldwide. Herein, we mainly focus on three dominating issues commonly encountered in exosomal GMP, including issues upstream of the cell culture process, downstream of the purification process, exosomes quality control, and the drug properties of exosomes and their druggability from a corporate perspective. Collectively, in this review article, we put forward the issues of preparing clinical exosome drugs for the treatment of diverse diseases and provide new references for the clinical application of GMP-grade MSC-Exos.
Collapse
Affiliation(s)
- Fan Zhang
- Faculty of Life Sciences and Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Leisheng Zhang
- Science and Technology Innovation Center, The Fourth People's Hospital of Jinan (The Third Affiliated Hospital of Shandong First Medical University), Jinan, 250031, China
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Hao Yu
- The Postdoctoral Research Station, School of Medicine, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Khan S, Mahgoub S, Fallatah N, Lalor PF, Newsome PN. Liver Disease and Cell Therapy: Advances Made and Remaining Challenges. Stem Cells 2023; 41:739-761. [PMID: 37052348 PMCID: PMC10809282 DOI: 10.1093/stmcls/sxad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 02/27/2023] [Indexed: 04/14/2023]
Abstract
The limited availability of organs for liver transplantation, the ultimate curative treatment for end stage liver disease, has resulted in a growing and unmet need for alternative therapies. Mesenchymal stromal cells (MSCs) with their broad ranging anti-inflammatory and immunomodulatory properties have therefore emerged as a promising therapeutic agent in treating inflammatory liver disease. Significant strides have been made in exploring their biological activity. Clinical application of MSC has shifted the paradigm from using their regenerative potential to one which harnesses their immunomodulatory properties. Reassuringly, MSCs have been extensively investigated for over 30 years with encouraging efficacy and safety data from translational and early phase clinical studies, but questions remain about their utility. Therefore, in this review, we examine the translational and clinical studies using MSCs in various liver diseases and their impact on dampening immune-mediated liver damage. Our key observations include progress made thus far with use of MSCs for clinical use, inconsistency in the literature to allow meaningful comparison between different studies and need for standardized protocols for MSC manufacture and administration. In addition, the emerging role of MSC-derived extracellular vesicles as an alternative to MSC has been reviewed. We have also highlighted some of the remaining clinical challenges that should be addressed before MSC can progress to be considered as therapy for patients with liver disease.
Collapse
Affiliation(s)
- Sheeba Khan
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| | - Sara Mahgoub
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| | - Nada Fallatah
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Patricia F Lalor
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
| | - Philip N Newsome
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
6
|
Endometrial Regenerative Cell-Derived Exosomes Attenuate Experimental Colitis through Downregulation of Intestine Ferroptosis. Stem Cells Int 2022; 2022:3014123. [PMID: 36045952 PMCID: PMC9424030 DOI: 10.1155/2022/3014123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background Endometrial regenerative cells (ERCs) have been identified to ameliorate colitis in mice; however, whether exosomes derived from ERCs (ERC-exos) own similar effects on colitis remains unclear. Ferroptosis, an iron-dependent cell programmed death form, has been reported to promote inflammation in UC. Thus, in this study, whether ERC-exos can treat colitis and regulate intestine ferroptosis will be explored. Methods In this study, iron, malondialdehyde (MDA) production, glutathione (GSH) synthesis, and acyl-CoA synthetase long-chain family member (ACSL) 4 and glutathione peroxidase 4 (GPX4) expressions were measured in colon samples from healthy people and UC patients to explore the effects of ferroptosis. In vitro, ERC-exos were cocultured with ferroptosis inducer erastin-treated NCM460 human intestinal epithelial cell line, and ferroptotic parameters were measured. In vivo, colitis was induced by 3% dextran sulfate sodium (DSS) in BALB/c mice, and animals were randomly assigned to normal, untreated, and ERC-exos-treated groups. The Disease Activity Index (DAI) score, histological features, tissue iron, MDA, GSH, ACSL4, and GPX4 were measured to verify the role of ERC-exos in attenuating UC. Results Compared with healthy people, UC samples exhibited higher levels of iron, MDA, and ACSL4, while less levels of GSH and GPX4. In vitro, the CCK-8 assay showed that ERC-exos rescued erastin-induced cell death, and ERC-exos treatment significantly increased the levels of GSH and expression of GPX4, while markedly decreasing the levels of iron, MDA, and expression of ACSL4. In vivo, ERC-exos treatment effectively reduced DAI score, ameliorated colon pathological damage, and improved disease symptoms. Moreover, ERC-exos treatment further enhanced the levels of GSH and the expression of GPX4 but reduced the levels of iron, MDA, and expression of ACSL4 in the colon of colitis mice. Conclusions Ferroptosis was involved in the pathogenesis of UC, and ERC-exos attenuated DSS-induced colitis through downregulating intestine ferroptosis. This study may provide a novel insight into treating UC in the future.
Collapse
|
7
|
Lu B, Ku J, Flojo R, Olson C, Bengford D, Marriott G. Exosome- and extracellular vesicle-based approaches for the treatment of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 188:114465. [PMID: 35878794 DOI: 10.1016/j.addr.2022.114465] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 12/16/2022]
Abstract
Cell-generated extracellular vesicles (EVs) are being engineered as biologically-inspired vehicles for targeted delivery of therapeutic agents to treat difficult-to-manage human diseases, including lysosomal storage disorders (LSDs). Engineered EVs offer distinct advantages for targeted delivery of therapeutics compared to existing synthetic and semi-synthetic nanoscale systems, for example with regard to their biocompatibility, circulation lifetime, efficiencies in delivery of drugs and biologics to target cells, and clearance from the body. Here, we review literature related to the design and preparation of EVs as therapeutic carriers for targeted delivery and therapy of drugs and biologics with a focus on LSDs. First, we introduce the basic pathophysiology of LDSs and summarize current approaches to diagnose and treat LSDs. Second, we will provide specific details about EVs, including subtypes, biogenesis, biological properties and their potential to treat LSDs. Third, we review state-of-the-art approaches to engineer EVs for treatments of LSDs. Finally, we summarize explorative basic research and applied applications of engineered EVs for LSDs, and highlight current challenges, and new directions in developing EV-based therapies and their potential impact on clinical medicine.
Collapse
Affiliation(s)
- Biao Lu
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Joy Ku
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Renceh Flojo
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Chris Olson
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - David Bengford
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Gerard Marriott
- Department of Bioengineering, University of California at Berkeley, California 94720, USA.
| |
Collapse
|
8
|
Development of a fibrin-mediated gene delivery system for the treatment of cystinosis via design of experiment. Sci Rep 2022; 12:3752. [PMID: 35260693 PMCID: PMC8904479 DOI: 10.1038/s41598-022-07750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
Cystinosis is a rare disease, caused by a mutation in the gene cystinosin and characterised by the accumulation of cystine crystals. Advantages of biomaterial-mediated gene delivery include reduced safety concerns and the possibility to cure organs that are difficult to treat using systemic gene transfer methods. This study developed novel fibrin hydrogels for controlled, localised gene delivery, for the treatment of cystinosis. In the first part, fabrication parameters (i.e., DNA, thrombin, and aprotinin concentrations) were optimised, using a Design of Experiment (DOE) methodology. DOE is a statistical engineering approach to process optimisation, which increases experimental efficiency, reduces the number of experiments, takes into consideration interactions between different parameters, and allows the creation of predictive models. This study demonstrated the utility of DOE to the development of gene delivery constructs. In the second part of the study, primary fibroblasts from a patient with cystinosis were seeded on the biomaterials. Seeded cells expressed the recombinant CTNS and showed a decrease in cystine content. Furthermore, conditioned media contained functional copies of the recombinant CTNS. These were taken up by monolayer cultures of non-transfected cells. This study described a methodology to develop gene delivery constructs by using a DOE approach and ultimately provided new insights into the treatment of cystinosis.
Collapse
|
9
|
Costa A, Quarto R, Bollini S. Small Extracellular Vesicles from Human Amniotic Fluid Samples as Promising Theranostics. Int J Mol Sci 2022; 23:ijms23020590. [PMID: 35054775 PMCID: PMC8775841 DOI: 10.3390/ijms23020590] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Since the first evidence that stem cells can provide pro-resolving effects via paracrine secretion of soluble factors, growing interest has been addressed to define the most ideal cell source for clinical translation. Leftover or clinical waste samples of human amniotic fluid obtained following prenatal screening, clinical intervention, or during scheduled caesarean section (C-section) delivery at term have been recently considered an appealing source of mesenchymal progenitors with peculiar regenerative capacity. Human amniotic fluid stem cells (hAFSC) have been demonstrated to support tissue recovery in several preclinical models of disease by exerting paracrine proliferative, anti-inflammatory and regenerative influence. Small extracellular vesicles (EVs) concentrated from the hAFSC secretome (the total soluble trophic factors secreted in the cell-conditioned medium, hAFSC-CM) recapitulate most of the beneficial cell effects. Independent studies in preclinical models of either adult disorders or severe diseases in newborns have suggested a regenerative role of hAFSC-EVs. EVs can be eventually concentrated from amniotic fluid (hAF) to offer useful prenatal information, as recently suggested. In this review, we focus on the most significant aspects of EVs obtained from either hAFSC and hAF and consider the current challenges for their clinical translation, including isolation, characterization and quantification methods.
Collapse
Affiliation(s)
- Ambra Costa
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
| | - Rodolfo Quarto
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sveva Bollini
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
- Correspondence: ; Tel.: +39-010-555-8394
| |
Collapse
|
10
|
Mosquera-Heredia MI, Morales LC, Vidal OM, Barceló E, Silvera-Redondo C, Vélez JI, Garavito-Galofre P. Exosomes: Potential Disease Biomarkers and New Therapeutic Targets. Biomedicines 2021; 9:1061. [PMID: 34440265 PMCID: PMC8393483 DOI: 10.3390/biomedicines9081061] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are extracellular vesicles released by cells, both constitutively and after cell activation, and are present in different types of biological fluid. Exosomes are involved in the pathogenesis of diseases, such as cancer, neurodegenerative diseases, pregnancy disorders and cardiovascular diseases, and have emerged as potential non-invasive biomarkers for the detection, prognosis and therapeutics of a myriad of diseases. In this review, we describe recent advances related to the regulatory mechanisms of exosome biogenesis, release and molecular composition, as well as their role in health and disease, and their potential use as disease biomarkers and therapeutic targets. In addition, the advantages and disadvantages of their main isolation methods, characterization and cargo analysis, as well as the experimental methods used for exosome-mediated drug delivery, are discussed. Finally, we present potential perspectives for the use of exosomes in future clinical practice.
Collapse
Affiliation(s)
- Maria I. Mosquera-Heredia
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Luis C. Morales
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Oscar M. Vidal
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Ernesto Barceló
- Instituto Colombiano de Neuropedagogía, Barranquilla 080020, Colombia;
| | - Carlos Silvera-Redondo
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Jorge I. Vélez
- Department of Industrial Engineering, Universidad del Norte, Barranquilla 081007, Colombia;
| | - Pilar Garavito-Galofre
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| |
Collapse
|
11
|
Graceffa V. Clinical Development of Cell Therapies to Halt Lysosomal Storage Diseases: Results and Lessons Learned. Curr Gene Ther 2021; 22:191-213. [PMID: 34323185 DOI: 10.2174/1566523221666210728141924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/31/2021] [Accepted: 06/13/2021] [Indexed: 11/22/2022]
Abstract
Although cross-correction was discovered more than 50 years ago, and held the promise of drastically improving disease management, still no cure exists for lysosomal storage diseases (LSDs). Cell therapies hold the potential to halt disease progression: either a subset of autologous cells can be ex vivo/ in vivo transfected with the functional gene or allogenic wild type stem cells can be transplanted. However, majority of cell-based attempts have been ineffective, due to the difficulties in reversing neuronal symptomatology, in finding appropriate gene transfection approaches, in inducing immune tolerance, reducing the risk of graft versus host disease (GVHD) when allogenic cells are used and that of immune response when engineered viruses are administered, coupled with a limited secretion and uptake of some enzymes. In the last decade, due to advances in our understanding of lysosomal biology and mechanisms of cross-correction, coupled with progresses in gene therapy, ongoing pre-clinical and clinical investigations have remarkably increased. Even gene editing approaches are currently under clinical experimentation. This review proposes to critically discuss and compare trends and advances in cell-based and gene therapy for LSDs. Systemic gene delivery and transplantation of allogenic stem cells will be initially discussed, whereas proposed brain targeting methods will be then critically outlined.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland
| |
Collapse
|
12
|
Jamalpoor A, Othman A, Levtchenko EN, Masereeuw R, Janssen MJ. Molecular Mechanisms and Treatment Options of Nephropathic Cystinosis. Trends Mol Med 2021; 27:673-686. [PMID: 33975805 DOI: 10.1016/j.molmed.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/15/2022]
Abstract
Nephropathic cystinosis is a severe, monogenic systemic disorder that presents early in life and leads to progressive organ damage, particularly affecting the kidneys. It is caused by mutations in the CTNS gene, which encodes the lysosomal transporter cystinosin, resulting in intralysosomal accumulation of cystine. Recent studies demonstrated that the loss of cystinosin is associated with disrupted autophagy dynamics, accumulation of distorted mitochondria, and increased oxidative stress, leading to abnormal proliferation and dysfunction of kidney cells. We discuss these molecular mechanisms driving nephropathic cystinosis. Further, we consider how unravelling molecular mechanisms supports the identification and development of new strategies for cystinosis by the use of small molecules, biologicals, and genetic rescue of the disease in vitro and in vivo.
Collapse
Affiliation(s)
- Amer Jamalpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Amr Othman
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Elena N Levtchenko
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven & KU Leuven, Leuven, Belgium
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands.
| | - Manoe J Janssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Flanagan M, Pathak I, Gan Q, Winter L, Emnet R, Akel S, Montaño AM. Umbilical mesenchymal stem cell-derived extracellular vesicles as enzyme delivery vehicle to treat Morquio A fibroblasts. Stem Cell Res Ther 2021; 12:276. [PMID: 33957983 PMCID: PMC8101245 DOI: 10.1186/s13287-021-02355-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mucopolysaccharidosis IVA (Morquio A syndrome) is a lysosomal storage disease caused by the deficiency of enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS), which results in the accumulation of the glycosaminoglycans (GAGs), keratan sulfate, and chondroitin-6-sulfate in the lysosomes of all tissues causing systemic dysfunction. Current treatments include enzyme replacement therapy (ERT) which can treat only certain aspects of the disease such as endurance-related biological endpoints. A key challenge in ERT is ineffective enzyme uptake in avascular tissues, which makes the treatment of the corneal, cartilage, and heart valvular tissue difficult. The aim of this study was to culture human umbilical mesenchymal stem cells (UMSC), demonstrate presence of GALNS enzyme activity within the extracellular vesicles (EVs) derived from these UMSC, and study how these secreted EVs are taken up by GALNS-deficient cells and used by the deficient cell's lysosomes. METHODS We obtained and cultured UMSC from the umbilical cord tissue from anonymous donors from the Saint Louis Cord Blood Bank. We characterized UMSC cell surface markers to confirm phenotype by cell sorting analyses. In addition, we confirmed that UMSC secrete GALNS enzyme creating conditioned media for co-culture experiments with GALNS deficient cells. Lastly, we isolated EVs derived from UMSC by ultracentrifugation to confirm source of GALNS enzyme. RESULTS Co-culture and confocal microscopy experiments indicated that the lysosomal content from UMSC migrated to deficient cells as evidenced by the peak signal intensity occurring at 15 min. EVs released by UMSC were characterized indicating that the EVs contained the active GALNS enzyme. Uptake of GALNS within EVs by deficient fibroblasts was not affected by mannose-6-phosphate (M6P) inhibition, suggesting that EV uptake by these fibroblasts is gradual and might be mediated by a different means than the M6P receptor. CONCLUSIONS UMSC can deliver EVs containing functional GALNS enzyme to deficient cells. This enzyme delivery method, which was unaffected by M6P inhibition, can function as a novel technique for reducing GAG accumulation in cells in avascular tissues, thereby providing a potential treatment option for Morquio A syndrome.
Collapse
Affiliation(s)
- Michael Flanagan
- Department of Pediatrics, School of Medicine, Saint Louis University, 1100 South Grand Blvd., Room 313, St. Louis, MO, 63104, USA
| | - Isha Pathak
- School of Medicine, Saint Louis University, Saint Louis, Missouri, USA
| | - Qi Gan
- Department of Pediatrics, School of Medicine, Saint Louis University, 1100 South Grand Blvd., Room 313, St. Louis, MO, 63104, USA
| | - Linda Winter
- Department of Pediatrics, School of Medicine, Saint Louis University, 1100 South Grand Blvd., Room 313, St. Louis, MO, 63104, USA
| | - Ryan Emnet
- St. Louis Cord Blood Bank, SSM Cardinal Glennon Children's Medical Center, St Louis, MO, USA
| | - Salem Akel
- St. Louis Cord Blood Bank, SSM Cardinal Glennon Children's Medical Center, St Louis, MO, USA
| | - Adriana M Montaño
- Department of Pediatrics, School of Medicine, Saint Louis University, 1100 South Grand Blvd., Room 313, St. Louis, MO, 63104, USA.
- Department of Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, Saint Louis, Missouri, USA.
| |
Collapse
|
14
|
Saadeldin IM, Khalil WA, Alharbi MG, Lee SH. The Current Trends in Using Nanoparticles, Liposomes, and Exosomes for Semen Cryopreservation. Animals (Basel) 2020; 10:E2281. [PMID: 33287256 PMCID: PMC7761754 DOI: 10.3390/ani10122281] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 01/18/2023] Open
Abstract
Cryopreservation is an essential tool to preserve sperm cells for zootechnical management and artificial insemination purposes. Cryopreservation is associated with sperm damage via different levels of plasma membrane injury and oxidative stress. Nanoparticles are often used to defend against free radicals and oxidative stress generated through the entire process of cryopreservation. Recently, artificial or natural nanovesicles including liposomes and exosomes, respectively, have shown regenerative capabilities to repair damaged sperm during the freeze-thaw process. Exosomes possess a potential pleiotropic effect because they contain antioxidants, lipids, and other bioactive molecules regulating and repairing spermatozoa. In this review, we highlight the current strategies of using nanoparticles and nanovesicles (liposomes and exosomes) to combat the cryoinjuries associated with semen cryopreservation.
Collapse
Affiliation(s)
- Islam M. Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Wael A. Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Mona G. Alharbi
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Seok Hee Lee
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
15
|
Wang J, Xia J, Huang R, Hu Y, Fan J, Shu Q, Xu J. Mesenchymal stem cell-derived extracellular vesicles alter disease outcomes via endorsement of macrophage polarization. Stem Cell Res Ther 2020; 11:424. [PMID: 32993783 PMCID: PMC7522905 DOI: 10.1186/s13287-020-01937-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are adult stromal cells that reside in virtually all postnatal tissues. Due to their regenerative and immunomodulatory capacities, MSCs have attracted growing attention during the past two decades. MSC-derived extracellular vesicles (MSC-EVs) are able to duplicate the effects of their parental cells by transferring functional proteins and genetic materials to recipient cells without cell-to-cell contact. MSC-EVs also target macrophages, which play an essential role in innate immunity, adaptive immunity, and homeostasis. Recent studies have demonstrated that MSC-EVs reduce M1 polarization and/or promote M2 polarization in a variety of settings. In this review, we discuss the mechanisms of macrophage polarization and roles of MSC-EV-induced macrophage polarization in the outcomes of cardiovascular, pulmonary, digestive, renal, and central nervous system diseases. In conclusion, MSC-EVs may become a viable alternative to MSCs for the treatment of diseases in which inflammation and immunity play a critical role.
Collapse
Affiliation(s)
- Jiangmei Wang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| | - Jie Xia
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| | - Ruoqiong Huang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| | - Yaoqin Hu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| | - Jiajie Fan
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| | - Qiang Shu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| | - Jianguo Xu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| |
Collapse
|
16
|
Exosomes derived from mesenchymal stem cells repair a Parkinson's disease model by inducing autophagy. Cell Death Dis 2020; 11:288. [PMID: 32341347 PMCID: PMC7184757 DOI: 10.1038/s41419-020-2473-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a progressively debilitating neurodegenerative condition that leads to motor and cognitive dysfunction. At present, clinical treatment can only improve symptoms, but cannot effectively protect dopaminergic neurons. Several reports have demonstrated that human umbilical cord mesenchymal stem cells (hucMSCs) afford neuroprotection, while their application is limited because of their uncontrollable differentiation and other reasons. Stem cells communicate with cells through secreted exosomes (Exos), the present study aimed to explore whether Exos secreted by hucMSCs could function instead of hucMSCs. hucMSCs were successfully isolated and characterized, and shown to contribute to 6-hydroxydopamine (6-OHDA)-stimulated SH-SY5Y cell proliferation; hucMSC-derived Exos were also involved in this process. The Exos were purified and identified, and then labeled with PKH 26, it was found that the Exos could be efficiently taken up by SH-SY5Y cells after 12 h of incubation. Pretreatment with Exos promoted 6-OHDA-stimulated SH-SY5Y cells to proliferate and inhibited apoptosis by inducing autophagy. Furthermore, Exos reached the substantia nigra through the blood-brain barrier (BBB) in vivo, relieved apomorphine-induced asymmetric rotation, reduced substantia nigra dopaminergic neuron loss and apoptosis, and upregulated the level of dopamine in the striatum. These results demonstrate that hucMSCs-Exos have a treatment capability for PD and can traverse the BBB, indicating their potential for the effective treatment of PD.
Collapse
|
17
|
Yoon YM, Lee JH, Song KH, Noh H, Lee SH. Melatonin-stimulated exosomes enhance the regenerative potential of chronic kidney disease-derived mesenchymal stem/stromal cells via cellular prion proteins. J Pineal Res 2020; 68:e12632. [PMID: 31989677 DOI: 10.1111/jpi.12632] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/07/2020] [Accepted: 01/22/2020] [Indexed: 12/21/2022]
Abstract
Chronic kidney disease (CKD) is caused by dysfunctional kidneys, which result in complications like cardiovascular diseases. Chronic kidney disease-induced pathophysiological conditions decrease efficacy of autologous mesenchymal stem/stromal cell (MSC)-based therapy by reducing MSC functionality. To enhance therapeutic potential in patients with CKD, we isolated exosomes derived from melatonin-treated healthy MSCs (MT exosomes) and assessed the biological functions of MT exosome-treated MSCs isolated from patients with CKD (CKD-MSCs). Treatment with melatonin increased the expression of cellular prion protein (PrPC ) in exosomes isolated from MSCs through the upregulation of miR-4516. Treatment with MT exosomes protected mitochondrial function, cellular senescence, and proliferative potential of CKD-MSCs. MT exosomes significantly increased the level of angiogenesis-associated proteins in CKD-MSCs. In a murine hindlimb ischemia model with CKD, MT exosome-treated CKD-MSCs improved functional recovery and vessel repair. These findings elucidate the regenerative potential of MT exosome-treated CKD-MSCs via the miR-4516-PrPC signaling axis. This study suggests that the treatment of CKD-MSCs with MT exosomes might be a powerful strategy for developing autologous MSC-based therapeutics for patients with CKD. Furthermore, miR-4516 and PrPC could be key molecules for enhancing the regenerative potential of MSCs in ischemic diseases.
Collapse
Affiliation(s)
- Yeo Min Yoon
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Jun Hee Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Departments of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Keon-Hyoung Song
- Department of Pharmaceutical Engineering, College of Medical Science, Soonchunhyang University, Asan, Korea
| | - Hyunjin Noh
- Department of Internal Medicine, Soonchunhyang University, Seoul, Korea
- Hyonam Kidney Laboratory, Soonchunhyang University, Seoul, Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Departments of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
18
|
Qiu G, Zheng G, Ge M, Wang J, Huang R, Shu Q, Xu J. Functional proteins of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 2019; 10:359. [PMID: 31779700 PMCID: PMC6883709 DOI: 10.1186/s13287-019-1484-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) contain proteins, microRNAs, mRNAs, long non-coding RNAs, and phospholipids, and are a novel mechanism of intercellular communication. It has been proposed that the immunomodulatory and regenerative effects of mesenchymal stem/stromal cells (MSCs) are mainly mediated by soluble paracrine factors and MSC-derived EVs (MSC-EVs). Recent studies suggest that MSC-EVs may serve as a novel and cell-free alternative to whole-cell therapies. The focus of this review is to discuss the functional proteins which facilitate the effects of MSC-EVs. The first section of the review discusses the general functions of EV proteins. Next, we describe the proteomics of MSC-EVs as compared with their parental cells. Then, the review presents the current knowledge that protein contents of MSC-EVs play an essential role in immunomodulation and treatment of various diseases. In summary, functional protein components are at least partially responsible for disease-modulating capacity of MSC-EVs.
Collapse
Affiliation(s)
- Guanguan Qiu
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, 312000, Zhejiang, China
| | - Guoping Zheng
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, 312000, Zhejiang, China
| | - Menghua Ge
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, 312000, Zhejiang, China
| | - Jiangmei Wang
- The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, 310051, Zhejiang, China
| | - Ruoqiong Huang
- The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, 310051, Zhejiang, China
| | - Qiang Shu
- The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, 310051, Zhejiang, China.
| | - Jianguo Xu
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, 312000, Zhejiang, China. .,The First Affiliated Hospital of Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
19
|
Tancini B, Buratta S, Sagini K, Costanzi E, Delo F, Urbanelli L, Emiliani C. Insight into the Role of Extracellular Vesicles in Lysosomal Storage Disorders. Genes (Basel) 2019; 10:genes10070510. [PMID: 31284546 PMCID: PMC6679199 DOI: 10.3390/genes10070510] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) have received increasing attention over the last two decades. Initially, they were considered as just a garbage disposal tool; however, it has progressively become clear that their protein, nucleic acid (namely miRNA and mRNA), and lipid contents have signaling functions. Besides, it has been established that cells release different types of vesicular structures for which characterization is still in its infancy. Many stress conditions, such as hypoxia, senescence, and oncogene activation have been associated with the release of higher levels of EVs. Further, evidence has shown that autophagic–lysosomal pathway abnormalities also affect EV release. In fact, in neurodegenerative diseases characterized by the accumulation of toxic proteins, although it has not become clear to what extent the intracellular storage of undigested materials itself has beneficial/adverse effects, these proteins have also been shown to be released extracellularly via EVs. Lysosomal storage disorders (LSDs) are characterized by accumulation of undigested substrates within the endosomal–lysosomal system, due either to genetic mutations in lysosomal proteins or to treatment with pharmacological agents. Here, we review studies investigating the role of lysosomal and autophagic dysfunction on the release of EVs, with a focus on studies exploring the release of EVs in LSD models of both genetic and pharmacological origin. A better knowledge of EV-releasing pathways activated in lysosomal stress conditions will provide information on the role of EVs in both alleviating intracellular storage of undigested materials and spreading the pathology to the neighboring tissue.
Collapse
Affiliation(s)
- Brunella Tancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Eva Costanzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Federica Delo
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| |
Collapse
|
20
|
Rocca CJ, Cherqui S. Potential use of stem cells as a therapy for cystinosis. Pediatr Nephrol 2019; 34:965-973. [PMID: 29789935 PMCID: PMC6250595 DOI: 10.1007/s00467-018-3974-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 01/02/2023]
Abstract
Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders (LSDs). Initial symptoms of cystinosis correspond to the renal Fanconi syndrome. Patients then develop chronic kidney disease and multi-organ failure due to accumulation of cystine in all tissue compartments. LSDs are commonly characterized by a defective activity of lysosomal enzymes. Hematopoietic stem and progenitor cell (HSPC) transplantation is a treatment option for several LSDs based on the premise that their progeny will integrate in the affected tissues and secrete the functional enzyme, which will be recaptured by the surrounding deficient cells and restore physiological activity. However, in the case of cystinosis, the defective protein is a transmembrane lysosomal protein, cystinosin. Thus, cystinosin cannot be secreted, and yet, we showed that HSPC transplantation can rescue disease phenotype in the mouse model of cystinosis. In this review, we are describing a different mechanism by which HSPC-derived cells provide cystinosin to diseased cells within tissues, and how HSPC transplantation could be an effective one-time treatment to treat cystinosis but also other LSDs associated with a lysosomal transmembrane protein dysfunction.
Collapse
Affiliation(s)
- Celine J Rocca
- Department of Pediatrics, Division of Genetics, University of California, 9500 Gilman Drive, MC 0734, La Jolla, San Diego, CA, 92093-0734, USA
| | - Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California, 9500 Gilman Drive, MC 0734, La Jolla, San Diego, CA, 92093-0734, USA.
| |
Collapse
|
21
|
Abbaszade Dibavar M, Soleimani M, Atashi A, Rassaei N, Amiri S. The effect of simultaneous administration of arsenic trioxide and microvesicles derived from human bone marrow mesenchymal stem cells on cell proliferation and apoptosis of acute myeloid leukemia cell line. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 46:S138-S146. [DOI: 10.1080/21691401.2018.1489821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Masoud Soleimani
- Department of Hemetology, Faculty of Medical Sciences, Hematology and cell therapy, Tarbiat Modares University, Tehran, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Neda Rassaei
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahin Amiri
- Department of Medical Biotechnology, Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
22
|
Shimizu Y, Yanobu-Takanashi R, Nakano K, Hamase K, Shimizu T, Okamura T. A deletion in the Ctns gene causes renal tubular dysfunction and cystine accumulation in LEA/Tohm rats. Mamm Genome 2018; 30:23-33. [PMID: 30591971 PMCID: PMC6397714 DOI: 10.1007/s00335-018-9790-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/19/2018] [Indexed: 11/21/2022]
Abstract
The Long-Evans Agouti (LEA/Tohm) rat has recently been established as a new rat model of type 2 diabetes. The onset of diabetes mellitus was observed only in male LEA/Tohm rats; however, urinary glucose appeared before the onset of diabetes. To clarify the genetic basis of urinary glucose, we performed genetic linkage analysis using (BN × LEA) F2 intercross progeny. A recessively acting locus responsible for urinary glucose excretion (ugl) was mapped to a 7.9 Mb region of chromosome 10, which contains the cystinosin (Ctns) gene. The Ctns gene encodes the cystine transporter, which transports cystine out of the lysosome and is responsible for nephropathic cystinosis in humans. Sequence analysis identified a 13-bp deletion in the Ctns gene, leading to a truncated and loss-of-function protein, which cause cystine accumulation in various tissues. We also developed a novel congenic rat strain harboring the Ctnsugl mutation on the F344 genetic background. Phenotypic analysis of F344-Ctnsugl rats indicated that the incidence of urinary glucose was 100% in both males and females at around 40 weeks of age, and marked cystine accumulation was observed in the tissues, as well as remarkable renal lesions and cystine crystals in the lysosomes of the renal cortex. Furthermore, treatment with cysteamine depleted the cystine contents in F344-Ctnsugl rat embryonic fibroblasts. These results indicated that the F344-Ctnsugl rat provides a novel rat model of cystinosis, which allows not only a better understanding of the pathogenesis and pathophysiology of cystinosis but will also contribute to the development of new therapies.
Collapse
Affiliation(s)
- Yukiko Shimizu
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), 1-21-1 Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan.,Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Rieko Yanobu-Takanashi
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), 1-21-1 Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), 1-21-1 Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan.,Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), 1-21-1 Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan. .,Section of Animal Models, Department of Infections Diseases, Research Institute, National Center for Global Health and Medicine (NCGM), 1-21-1 Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan.
| |
Collapse
|
23
|
Elmonem MA, Veys K, Oliveira Arcolino F, Van Dyck M, Benedetti MC, Diomedi-Camassei F, De Hertogh G, van den Heuvel LP, Renard M, Levtchenko E. Allogeneic HSCT transfers wild-type cystinosin to nonhematological epithelial cells in cystinosis: First human report. Am J Transplant 2018; 18:2823-2828. [PMID: 30030899 DOI: 10.1111/ajt.15029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/28/2018] [Accepted: 07/12/2018] [Indexed: 01/25/2023]
Abstract
Cystinosis is an autosomal recessive lysosomal storage disorder characterized by the defective transport of the amino acid cystine out of the lysosome due to a deficiency of cystinosin, the lysosomal cystine transporter. Patients have lysosomal cystine accumulation in various tissues, leading to cellular stress and damage, particularly in the kidney, cornea, and other extrarenal tissues. Cysteamine, a cystine-depleting agent, improves survival and delays the progression of disease, but it does not prevent the development of either renal failure or extrarenal complications. Furthermore, the drug has severe adverse effects that significantly reduce patient compliance. Allogeneic hematopoietic stem cell transplantation (HSCT) is currently established as a therapeutic option for many inborn errors of metabolism, where the main pathologic driving factor is an enzyme deficiency. Recent studies in the cystinosis mouse-model suggested that HSCT could be a curative treatment alternative to cysteamine therapy. We treated a 16-year-old boy who had infantile cystinosis and side effects of cysteamine therapy with HSCT. We were able to demonstrate successful transfer of the wild-type cystinosin protein and CTNS mRNA to nonhematological epithelial cells in the recipient, as well as a decrease in the tissue cystine-crystal burden. This is the first report of allogeneic HSCT in a patient with cystinosis, the prototype of lysosomal membrane-transporter disorders.
Collapse
Affiliation(s)
- Mohamed A Elmonem
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Koenraad Veys
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium
| | - Fanny Oliveira Arcolino
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium
| | - Maria Van Dyck
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium
| | - Maria C Benedetti
- Department of Laboratories, Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Gert De Hertogh
- Department of Translational Cell and Tissue Research, KU Leuven - University of Leuven, Leuven, Belgium
| | - Lambertus P van den Heuvel
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marleen Renard
- Department of Pediatric Hematology and Oncology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Elena Levtchenko
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Kusuma GD, Barabadi M, Tan JL, Morton DAV, Frith JE, Lim R. To Protect and to Preserve: Novel Preservation Strategies for Extracellular Vesicles. Front Pharmacol 2018; 9:1199. [PMID: 30420804 PMCID: PMC6215815 DOI: 10.3389/fphar.2018.01199] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs)-based therapeutics are based on the premise that EVs shed by stem cells exert similar therapeutic effects and these have been proposed as an alternative to cell therapies. EV-mediated delivery is an effective and efficient system of cell-to-cell communication which can confer therapeutic benefits to their target cells. EVs have been shown to promote tissue repair and regeneration in various animal models such as, wound healing, cardiac ischemia, diabetes, lung fibrosis, kidney injury, and many others. Given the unique attributes of EVs, considerable thought must be given to the preservation, formulation and cold chain strategies in order to effectively translate exciting preclinical observations to clinical and commercial success. This review summarizes current understanding around EV preservation, challenges in maintaining EV quality, and also bioengineering advances aimed at enhancing the long-term stability of EVs.
Collapse
Affiliation(s)
- Gina D. Kusuma
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Mehri Barabadi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Jean L. Tan
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | | | - Jessica E. Frith
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
25
|
Amniotic fluid stem cell-derived vesicles protect from VEGF-induced endothelial damage. Sci Rep 2017; 7:16875. [PMID: 29203902 PMCID: PMC5715019 DOI: 10.1038/s41598-017-17061-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/21/2017] [Indexed: 11/14/2022] Open
Abstract
Injection of amniotic fluid stem cells (AFSC) delays the course of progression of renal fibrosis in animals with Alport Syndrome, enhancing kidney function and improving survival. The mechanisms responsible for these protective outcomes are still largely unknown. Here, we showed that vascular endothelial growth factor (VEGF) signaling within the glomeruli of Alport mice is strongly elevated early on in the disease, causing glomerular endothelial cell damage. Intraventricular injected AFSC that homed within the glomeruli showed strong modulation of the VEGF activity, particularly in glomerular endothelial cells. To investigate this phenomenon we hypothesized that extracellular vesicles (EVs) produced by the AFSC could be responsible for the observed renoprotection. AFSC derived EVs presented exosomal and stem cell markers on their surface membrane, including VEGFR1 and VEGFR2. EVs were able to modulate VEGF in glomerular endothelial cells by effectively trapping the excess VEGF through VEGFR1-binding preventing cellular damage. In contrast, VEGFR1/sVEGFR1 knockout EVs failed to show similar protection, thus indicating that VEGF trapping is a potentially viable mechanism for AFSC-EV mediated renoprotection. Taken together, our findings establish that EVs secreted by AFSC could target a specific signaling pathway within the glomerulus, thus representing a new potential glomerulus-specific targeted intervention.
Collapse
|
26
|
Herrera Sanchez MB, Previdi S, Bruno S, Fonsato V, Deregibus MC, Kholia S, Petrillo S, Tolosano E, Critelli R, Spada M, Romagnoli R, Salizzoni M, Tetta C, Camussi G. Extracellular vesicles from human liver stem cells restore argininosuccinate synthase deficiency. Stem Cell Res Ther 2017; 8:176. [PMID: 28750687 PMCID: PMC5531104 DOI: 10.1186/s13287-017-0628-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/16/2017] [Accepted: 07/10/2017] [Indexed: 11/25/2022] Open
Abstract
Background Argininosuccinate synthase (ASS)1 is a urea cycle enzyme that catalyzes the conversion of citrulline and aspartate to argininosuccinate. Mutations in the ASS1 gene cause citrullinemia type I, a rare autosomal recessive disorder characterized by neonatal hyperammonemia, elevated citrulline levels, and early neonatal death. Treatment for this disease is currently restricted to liver transplantation; however, due to limited organ availability, substitute therapies are required. Recently, extracellular vesicles (EVs) have been reported to act as intercellular transporters carrying genetic information responsible for cell reprogramming. In previous studies, we isolated a population of stem cell-like cells known as human liver stem cells (HLSCs) from healthy liver tissue. Moreover, EVs derived from HLSCs were reported to exhibit regenerative effects on the liver parenchyma in models of acute liver injury. The aim of this study was to evaluate whether EVs derived from normal HLSCs restored ASS1 enzymatic activity and urea production in hepatocytes differentiated from HLSCs derived from a patient with type I citrullinemia. Methods HLSCs were isolated from the liver of a patient with type I citrullinemia (ASS1-HLSCs) and characterized by fluorescence-activated cell sorting (FACS), immunofluorescence, and DNA sequencing analysis. Furthermore, their differentiation capabilities in vitro were also assessed. Hepatocytes differentiated from ASS1-HLSCs were evaluated by the production of urea and ASS enzymatic activity. EVs derived from normal HLSCs were purified by differential ultracentrifugation followed by floating density gradient. The EV content was analyzed to identify the presence of ASS1 protein, mRNA, and ASS1 gene. In order to obtain ASS1-depleted EVs, a knockdown of the ASS1 gene in HLSCs was performed followed by EV isolation from these cells. Results Treating ASS1-HLSCs with EVs from HLSCs restored both ASS1 activity and urea production mainly through the transfer of ASS1 enzyme and mRNA. In fact, EVs from ASS1-knockdown HLSCs contained low amounts of ASS1 mRNA and protein, and were unable to restore urea production in hepatocytes differentiated from ASS1-HLSCs. Conclusions Collectively, these results suggest that EVs derived from normal HLSCs may compensate the loss of ASS1 enzyme activity in hepatocytes differentiated from ASS1-HLSCs. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0628-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Beatriz Herrera Sanchez
- 2i3T, Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico, Scarl University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | | | - Stefania Bruno
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Valentina Fonsato
- 2i3T, Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico, Scarl University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Maria Chiara Deregibus
- 2i3T, Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico, Scarl University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Sharad Kholia
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Rossana Critelli
- Molecular and Genetic Epidemiology Unit, Human Genetics Foundation, Torino, Italy
| | - Marco Spada
- Department of Pediatrics, Regina Margherita Children's Hospital, University of Torino, Torino, Italy
| | - Renato Romagnoli
- Liver Transplantation Center, University of Torino, Torino, Italy
| | - Mauro Salizzoni
- Liver Transplantation Center, University of Torino, Torino, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Corso Dogliotti 14, I-10126, Torino, Italy.
| |
Collapse
|
27
|
Abstract
Extracellular vesicles are a heterogeneous population of microparticles released by virtually all living cells which have been recently widely investigated in different biological fields. They are typically composed of two primary types (exosomes and microvesicles) and are recently commanding increasing attention as mediators of cellular signaling. Indeed, these vesicles can affect recipient cells by carrying and delivering complex cargos of biomolecules (including proteins, lipids and nucleic acids), protected from enzymatic degradation in the environment. Their importance has been demonstrated in the pathophysiology of several organs, in particular in kidney, where different cell types secrete extracellular vesicles that mediate their communication with downstream urinary tract cells. Over the past few years, evidence has been shown that vesicles participate in kidney development and normal physiology. Moreover, EVs are widely demonstrated to be implicated in cellular signaling during renal regenerative and pathological processes. Although many EV mechanisms are still poorly understood, in particular in kidney, the discovery of their role could help to shed light on renal biological processes which are so far elusive. Lastly, extracellular vesicles secreted by renal cells gather in urine, thus becoming a great resource for disease or recovery markers and a promising non-invasive diagnostic instrument for renal disease. In the present review, we discuss the most recent findings on the role of extracellular vesicles in renal physiopathology and their potential implication in diagnosis and therapy.
Collapse
Affiliation(s)
| | - Chiara Gai
- Stem Cell Laboratory, Department of Medical Sciences, University of TurinTurin, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of TurinTurin, Italy
| | - Giovanni Camussi
- Stem Cell Laboratory, Department of Medical Sciences, University of TurinTurin, Italy
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Over the past few decades, cystinosis, a rare lysosomal storage disorder, has evolved into a treatable metabolic disease. The increasing understanding of its pathophysiology has made cystinosis a prototype disease, delivering new insights into several fundamental biochemical and cellular processes. RECENT FINDINGS In this review, we aim to provide an overview of the latest advances in the pathogenetic, clinical, and therapeutic aspects of cystinosis. SUMMARY The development of alternative therapeutic monitoring strategies and new systemic and ocular cysteamine formulations might improve outcome of cystinosis patients in the near future. With the dawn of stem cell based therapy and new emerging gene-editing technologies, novel tools have become available in the search for a cure for cystinosis.
Collapse
|
29
|
Phinney DG, Pittenger MF. Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells 2017; 35:851-858. [PMID: 28294454 DOI: 10.1002/stem.2575] [Citation(s) in RCA: 1112] [Impact Index Per Article: 158.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/13/2016] [Accepted: 01/02/2017] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cell transplantation is undergoing extensive evaluation as a cellular therapy in human clinical trials. Because MSCs are easily isolated and amenable to culture expansion in vitro there is a natural desire to test MSCs in many diverse clinical indications. This is exemplified by the rapidly expanding literature base that includes many in vivo animal models. More recently, MSC-derived extracellular vesicles (EVs), which include exosomes and microvesicles (MV), are being examined for their role in MSC-based cellular therapy. These vesicles are involved in cell-to-cell communication, cell signaling, and altering cell or tissue metabolism at short or long distances in the body. The exosomes and MVs can influence tissue responses to injury, infection, and disease. MSC-derived exosomes have a content that includes cytokines and growth factors, signaling lipids, mRNAs, and regulatory miRNAs. To the extent that MSC exosomes can be used for cell-free regenerative medicine, much will depend on the quality, reproducibility, and potency of their production, in the same manner that these parameters dictate the development of cell-based MSC therapies. However, the MSC exosome's contents are not static, but rather a product of the MSC tissue origin, its activities and the immediate intercellular neighbors of the MSCs. As such, the exosome content produced by MSCs appears to be altered when MSCs are cultured with tumor cells or in the in vivo tumor microenvironment. Therefore, careful attention to detail in producing MSC exosomes may provide a new therapeutic paradigm for cell-free MSC-based therapies with decreased risk. Stem Cells 2017;35:851-858.
Collapse
Affiliation(s)
- Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, USA
| | | |
Collapse
|
30
|
Balbi C, Piccoli M, Barile L, Papait A, Armirotti A, Principi E, Reverberi D, Pascucci L, Becherini P, Varesio L, Mogni M, Coviello D, Bandiera T, Pozzobon M, Cancedda R, Bollini S. First Characterization of Human Amniotic Fluid Stem Cell Extracellular Vesicles as a Powerful Paracrine Tool Endowed with Regenerative Potential. Stem Cells Transl Med 2017; 6:1340-1355. [PMID: 28271621 PMCID: PMC5442724 DOI: 10.1002/sctm.16-0297] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/08/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022] Open
Abstract
Human amniotic fluid stem cells (hAFS) have shown a distinct secretory profile and significant regenerative potential in several preclinical models of disease. Nevertheless, little is known about the detailed characterization of their secretome. Herein we show for the first time that hAFS actively release extracellular vesicles (EV) endowed with significant paracrine potential and regenerative effect. c‐KIT+ hAFS were isolated from leftover samples of amniotic fluid from prenatal screening and stimulated to enhance EV release (24 hours 20% O2 versus 1% O2 preconditioning). The capacity of the c‐KIT+ hAFS‐derived EV (hAFS‐EV) to induce proliferation, survival, immunomodulation, and angiogenesis were investigated in vitro and in vivo. The hAFS‐EV regenerative potential was also assessed in a model of skeletal muscle atrophy (HSA‐Cre, SmnF7/F7 mice), in which mouse AFS transplantation was previously shown to enhance muscle strength and survival. hAFS secreted EV ranged from 50 up to 1,000 nm in size. In vitro analysis defined their role as biological mediators of regenerative, paracrine effects while their modulatory role in decreasing skeletal muscle inflammation in vivo was shown for the first time. Hypoxic preconditioning significantly induced the enrichment of exosomes endowed with regenerative microRNAs within the hAFS‐EV. In conclusion, this is the first study showing that c‐KIT+ hAFS dynamically release EV endowed with remarkable paracrine potential, thus representing an appealing tool for future regenerative therapy. Stem Cells Translational Medicine2017;6:1340–1355
Collapse
Affiliation(s)
- Carolina Balbi
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Martina Piccoli
- Stem Cells and Regenerative Medicine Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Lucio Barile
- Laboratory of Molecular and Cellular Cardiology, CardioCentro Ticino Foundation_CCT, Lugano Switzerland
| | - Andrea Papait
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Andrea Armirotti
- Drug Discovery and Development Department, IIT-Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Elisa Principi
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Daniele Reverberi
- Molecular Pathology Unit, IRCCS AOU San Martino - IST National Institute for Cancer Research, Genova, Italy
| | - Luisa Pascucci
- Veterinary Medicine Department, University of Perugia, Perugia, Italy
| | - Pamela Becherini
- Molecular Biology Laboratory, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Luigi Varesio
- Molecular Biology Laboratory, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Massimo Mogni
- Human Genetics Laboratory, E.O. Ospedali Galliera, Genova, Italy
| | | | - Tiziano Bandiera
- Drug Discovery and Development Department, IIT-Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,Department of Woman and Child Health, University of Padova, Padova, Italy
| | - Ranieri Cancedda
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Sveva Bollini
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| |
Collapse
|
31
|
Madison MN, Welch JL, Okeoma CM. Isolation of Exosomes from Semen for in vitro Uptake and HIV-1 Infection Assays. Bio Protoc 2017; 7:e2216. [PMID: 28660234 DOI: 10.21769/bioprotoc.2216] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Exosomes are membranous extracellular nanovesicles of endocytic origin. Exosomes are known to carry host and pathogen-derived genomic, proteomic, lipidomic cargos and other extraneous molecules. Exosomes are secreted by diverse cell types into the extracellular milieu and are subsequently internalized by recipient neighboring or distal cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. Exosomes facilitate intercellular communication, modulate cellular phenotype, and regulate microbial pathogenesis. We have previously shown that semen exosomes (SE) inhibit HIV-1 replication in various cell types. Here, we describe detailed protocols for characterizing SE. This protocol can be adapted or modified and used for evaluation of other extracellular vesicles of interest.
Collapse
Affiliation(s)
- Marisa N Madison
- Department of Mathematics and Natural Sciences, Miami Dade College, Homestead, USA
| | - Jennifer L Welch
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Chioma M Okeoma
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, USA.,Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, Iowa City, USA
| |
Collapse
|
32
|
Subcellular Trafficking of Mammalian Lysosomal Proteins: An Extended View. Int J Mol Sci 2016; 18:ijms18010047. [PMID: 28036022 PMCID: PMC5297682 DOI: 10.3390/ijms18010047] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 01/02/2023] Open
Abstract
Lysosomes clear macromolecules, maintain nutrient and cholesterol homeostasis, participate in tissue repair, and in many other cellular functions. To assume these tasks, lysosomes rely on their large arsenal of acid hydrolases, transmembrane proteins and membrane-associated proteins. It is therefore imperative that, post-synthesis, these proteins are specifically recognized as lysosomal components and are correctly sorted to this organelle through the endosomes. Lysosomal transmembrane proteins contain consensus motifs in their cytosolic regions (tyrosine- or dileucine-based) that serve as sorting signals to the endosomes, whereas most lysosomal acid hydrolases acquire mannose 6-phosphate (Man-6-P) moieties that mediate binding to two membrane receptors with endosomal sorting motifs in their cytosolic tails. These tyrosine- and dileucine-based motifs are tickets for boarding in clathrin-coated carriers that transport their cargo from the trans-Golgi network and plasma membrane to the endosomes. However, increasing evidence points to additional mechanisms participating in the biogenesis of lysosomes. In some cell types, for example, there are alternatives to the Man-6-P receptors for the transport of some acid hydrolases. In addition, several “non-consensus” sorting motifs have been identified, and atypical transport routes to endolysosomes have been brought to light. These “unconventional” or “less known” transport mechanisms are the focus of this review.
Collapse
|
33
|
Cherqui S, Courtoy PJ. The renal Fanconi syndrome in cystinosis: pathogenic insights and therapeutic perspectives. Nat Rev Nephrol 2016; 13:115-131. [PMID: 27990015 DOI: 10.1038/nrneph.2016.182] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. It is caused by a defect in the lysosomal cystine transporter, cystinosin, which results in an accumulation of cystine in all organs. Despite the ubiquitous expression of cystinosin, a renal Fanconi syndrome is often the first manifestation of cystinosis, usually presenting within the first year of life and characterized by the early and severe dysfunction of proximal tubule cells, highlighting the unique vulnerability of this cell type. The current therapy for cystinosis, cysteamine, facilitates lysosomal cystine clearance and greatly delays progression to kidney failure but is unable to correct the Fanconi syndrome. This Review summarizes decades of studies that have fostered a better understanding of the pathogenesis of the renal Fanconi syndrome associated with cystinosis. These studies have unraveled some of the early molecular changes that occur before the onset of tubular atrophy and identified a role for cystinosin beyond cystine transport, in endolysosomal trafficking and proteolysis, lysosomal clearance, autophagy and the regulation of energy balance. These studies have also led to the identification of new potential therapeutic targets and here, we outline the potential role of stem cell therapy for cystinosis and provide insights into the mechanism of haematopoietic stem cell-mediated kidney protection.
Collapse
Affiliation(s)
- Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California San Diego, 9500 Gilman Drive, MC 0734, La Jolla, California 92093-0734, USA
| | - Pierre J Courtoy
- Cell biology, de Duve Institute and Université catholique de Louvain, UCL-Brussels, 75 Avenue Hippocrate, B-1200 Brussels, Belgium
| |
Collapse
|
34
|
Eitan E, Suire C, Zhang S, Mattson MP. Impact of lysosome status on extracellular vesicle content and release. Ageing Res Rev 2016; 32:65-74. [PMID: 27238186 DOI: 10.1016/j.arr.2016.05.001] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale size bubble-like membranous structures released from cells. EVs contain RNA, lipids and proteins and are thought to serve various roles including intercellular communication and removal of misfolded proteins. The secretion of misfolded and aggregated proteins in EVs may be a cargo disposal alternative to the autophagy-lysosomal and ubiquitin-proteasome pathways. In this review we will discuss the importance of lysosome functionality for the regulation of EV secretion and content. Exosomes are a subtype of EVs that are released by the fusion of multivesicular bodies (MVB) with the plasma membrane. MVBs can also fuse with lysosomes, and the trafficking pathway of MVBs can therefore determine whether or not exosomes are released from cells. Here we summarize data from studies of the effects of lysosome inhibition on the secretion of EVs and on the possibility that cells compensate for lysosome malfunction by disposal of potentially toxic cargos in EVs. A better understanding of the molecular mechanisms that regulate trafficking of MVBs to lysosomes and the plasma membrane may advance an understanding of diseases in which pathogenic proteins, lipids or infectious agents accumulate within or outside of cells.
Collapse
|
35
|
Gene based therapies for kidney regeneration. Eur J Pharmacol 2016; 790:99-108. [DOI: 10.1016/j.ejphar.2016.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/11/2016] [Accepted: 07/21/2016] [Indexed: 12/16/2022]
|
36
|
Extracellular vesicles in renal tissue damage and regeneration. Eur J Pharmacol 2016; 790:83-91. [PMID: 27375075 DOI: 10.1016/j.ejphar.2016.06.058] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/10/2016] [Accepted: 06/30/2016] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles (EVs) appear as important actors in cell-to-cell communication. EV content is characterized by proteins and RNA species that dynamically reflect cell and tissue state. Urinary EVs in particular may act in inter-nephron communication with possible beneficial or detrimental effects. Increasing interest is addressed to the pharmacological properties of EVs as a cell-free therapy, since several of the effects crAQ/tgqcedited to stem cells have been recapitulated by administration of their EVs. Preclinical data in models of renal damage indicate a general regenerative potential of EVs derived from mesenchymal stromal cells of different sources, including bone marrow, fetal tissues, urine and kidney. In this review we will discuss the results on the effect of EVs in repair of acute and chronic renal injury, and the mechanisms involved. In addition, we will analyse the strategies for EV pharmacological applications in renal regenerative medicine and limits and benefits involved.
Collapse
|
37
|
Controversies and research agenda in nephropathic cystinosis: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int 2016; 89:1192-203. [DOI: 10.1016/j.kint.2016.01.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 01/19/2023]
|
38
|
Bellomo F, Taranta A, Petrini S, Venditti R, Rocchetti MT, Rega LR, Corallini S, Gesualdo L, De Matteis MA, Emma F. Carboxyl-Terminal SSLKG Motif of the Human Cystinosin-LKG Plays an Important Role in Plasma Membrane Sorting. PLoS One 2016; 11:e0154805. [PMID: 27148969 PMCID: PMC4858208 DOI: 10.1371/journal.pone.0154805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/19/2016] [Indexed: 11/18/2022] Open
Abstract
Cystinosin mediates an ATP-dependent cystine efflux from lysosomes and causes, if mutated, nephropathic cystinosis, a rare inherited lysosomal storage disease. Alternative splicing of the last exon of the cystinosin sequence produces the cystinosin-LKG isoform that is characterized by a different C-terminal region causing changes in the subcellular distribution of the protein. We have constructed RFP-tagged proteins and demonstrated by site-directed mutagenesis that the carboxyl-terminal SSLKG sequence of cystinosin-LKG is an important sorting motif that is required for efficient targeting the protein to the plasma membrane, where it can mediate H+ coupled cystine transport. Deletion of the SSLKG sequence reduced cystinosin-LKG expression in the plasma membrane and cystine transport by approximately 30%, and induced significant accumulation of the protein in the Golgi apparatus and in lysosomes. Cystinosin-LKG, unlike the canonical isoform, also moves to the lysosomes by the indirect pathway, after endocytic retrieval from the plasma membrane, mainly by a clathrin-mediated endocytosis. Nevertheless, silencing of AP-2 triggers the clathrin-independent endocytosis, showing the complex adaptability of cystinosin-LKG trafficking.
Collapse
Affiliation(s)
- Francesco Bellomo
- Department of Nephrology-Urology, Division of Nephrology and Dialysis, Bambino Gesù Children’s Hospital and Research Institute, Rome, Italy
- * E-mail:
| | - Anna Taranta
- Department of Nephrology-Urology, Division of Nephrology and Dialysis, Bambino Gesù Children’s Hospital and Research Institute, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Bambino Gesù Children’s Hospital and Research Institute, Rome, Italy
| | - Rossella Venditti
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Maria Teresa Rocchetti
- Department of Emergency and Organ Transplantation (DETO), Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Laura Rita Rega
- Department of Nephrology-Urology, Division of Nephrology and Dialysis, Bambino Gesù Children’s Hospital and Research Institute, Rome, Italy
| | - Serena Corallini
- Department of Nephrology-Urology, Division of Nephrology and Dialysis, Bambino Gesù Children’s Hospital and Research Institute, Rome, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation (DETO), Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | | | - Francesco Emma
- Department of Nephrology-Urology, Division of Nephrology and Dialysis, Bambino Gesù Children’s Hospital and Research Institute, Rome, Italy
| |
Collapse
|
39
|
Nicolescu MI. Regenerative Perspective in Modern Dentistry. Dent J (Basel) 2016; 4:dj4020010. [PMID: 29563452 PMCID: PMC5851266 DOI: 10.3390/dj4020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/16/2016] [Accepted: 04/21/2016] [Indexed: 12/02/2022] Open
Abstract
This review aims to trace the contour lines of regenerative dentistry, to offer an introductory overview on this emerging field to both dental students and practitioners. The crystallized depiction of the concept is a translational approach, connecting dental academics to scientific research and clinical utility. Therefore, this review begins by presenting the general features of regenerative medicine, and then gradually introduces the specific aspects of major dental subdomains, highlighting the progress achieved during the last years by scientific research and, in some cases, which has already been translated into clinical results. The distinct characteristics of stem cells and their microenvironment, together with their diversity in the oral cavity, are put into the context of research and clinical use. Examples of regenerative studies regarding endodontic and periodontal compartments, as well as hard (alveolar bone) and soft (salivary glands) related tissues, are presented to make the reader further acquainted with the topic. Instead of providing a conclusion, we will emphasize the importance for all dental community members, from young students to experienced dentists, of an early awareness rising regarding biomedical research progress in general and regenerative dentistry in particular.
Collapse
Affiliation(s)
- Mihnea Ioan Nicolescu
- Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Histology and Cytology Division, Bucharest, 8 Eroilor Sanitari Blvd., RO-050474, Romania.
- Victor Babeș National Institute of Pathology, Radiobiology Laboratory, Bucharest, Romania.
| |
Collapse
|
40
|
Abreu SC, Weiss DJ, Rocco PRM. Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases? Stem Cell Res Ther 2016; 7:53. [PMID: 27075363 PMCID: PMC4831172 DOI: 10.1186/s13287-016-0317-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are plasma membrane-bound fragments released from several cell types, including mesenchymal stromal cells (MSCs), constitutively or under stimulation. EVs derived from MSCs and other cell types transfer molecules (such as DNA, proteins/peptides, mRNA, microRNA, and lipids) and/or organelles with reparative and anti-inflammatory properties to recipient cells. The paracrine anti-inflammatory effects promoted by MSC-derived EVs have attracted significant interest in the regenerative medicine field, including for potential use in lung injuries. In the present review, we describe the characteristics, biological activities, and mechanisms of action of MSC-derived EVs. We also review the therapeutic potential of EVs as reported in relevant preclinical models of acute and chronic respiratory diseases, such as pneumonia, acute respiratory distress syndrome, asthma, and pulmonary arterial hypertension. Finally, we discuss possible approaches for potentiating the therapeutic effects of MSC-derived EVs so as to enable use of this therapy in clinical practice.
Collapse
Affiliation(s)
- Soraia C Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Daniel J Weiss
- Department of Medicine, Vermont Lung Center, College of Medicine, University of Vermont, 89 Beaumont Ave Given, Burlington, VT, 05405, USA
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
41
|
Monsel A, Zhu YG, Gudapati V, Lim H, Lee JW. Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opin Biol Ther 2016; 16:859-71. [PMID: 27011289 DOI: 10.1517/14712598.2016.1170804] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Acute respiratory distress syndrome is a major cause of respiratory failure in critically ill patients. Despite extensive research into its pathophysiology, mortality remains high. No effective pharmacotherapy exists. Based largely on numerous preclinical studies, administration of mesenchymal stem or stromal cell (MSC) as a therapeutic for acute lung injury holds great promise, and clinical trials are currently underway. However, concern for the use of stem cells, specifically the risk of iatrogenic tumor formation, remains unresolved. Accumulating evidence now suggest that novel cell-free therapies including MSC-derived conditioned medium and extracellular vesicles released from MSCs might constitute compelling alternatives. AREAS COVERED The current review summarizes the preclinical studies testing MSC conditioned medium and/or MSC extracellular vesicles as treatment for acute lung injury and other inflammatory lung diseases. EXPERT OPINION While certain logistical obstacles limit the clinical applications of MSC conditioned medium such as the volume required for treatment, the therapeutic application of MSC extracellular vesicles remains promising, primarily due to ability of extracellular vesicles to maintain the functional phenotype of the parent cell. However, utilization of MSC extracellular vesicles will require large-scale production and standardization concerning identification, characterization and quantification.
Collapse
Affiliation(s)
- Antoine Monsel
- a Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care , La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, University Pierre and Marie Curie (UPMC) Univ Paris 06 , Paris , France
| | - Ying-Gang Zhu
- b Department of Pulmonary Disease , Huadong Hospital, Fudan University , Shanghai , China
| | - Varun Gudapati
- c Department of Anesthesiology , University of California San Francisco , San Francisco , CA , USA
| | - Hyungsun Lim
- c Department of Anesthesiology , University of California San Francisco , San Francisco , CA , USA
| | - Jae W Lee
- c Department of Anesthesiology , University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
42
|
Rocca CJ, Kreymerman A, Ur SN, Frizzi KE, Naphade S, Lau A, Tran T, Calcutt NA, Goldberg JL, Cherqui S. Treatment of Inherited Eye Defects by Systemic Hematopoietic Stem Cell Transplantation. Invest Ophthalmol Vis Sci 2016; 56:7214-23. [PMID: 26540660 DOI: 10.1167/iovs.15-17107] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Cystinosis is caused by a deficiency in the lysosomal cystine transporter, cystinosin (CTNS gene), resulting in cystine crystal accumulation in tissues. In eyes, crystals accumulate in the cornea causing photophobia and eventually blindness. Hematopoietic stem progenitor cells (HSPCs) rescue the kidney in a mouse model of cystinosis. We investigated the potential for HSPC transplantation to treat corneal defects in cystinosis. METHODS We isolated HSPCs from transgenic DsRed mice and systemically transplanted irradiated Ctns-/- mice. A year posttransplantation, we investigated the fate and function of HSPCs by in vivo confocal and fluorescence microscopy (IVCM), quantitative RT-PCR (RT-qPCR), mass spectrometry, histology, and by measuring the IOP. To determine the mechanism by which HSPCs may rescue disease cells, we transplanted Ctns-/- mice with Ctns-/- DsRed HSPCs virally transduced to express functional CTNS-eGFP fusion protein. RESULTS We found that a single systemic transplantation of wild-type HSPCs prevented ocular pathology in the Ctns-/- mice. Engraftment-derived HSPCs were detected within the cornea, and also in the sclera, ciliary body, retina, choroid, and lens. Transplantation of HSPC led to substantial decreases in corneal cystine crystals, restoration of normal corneal thickness, and lowered IOP in mice with high levels of donor-derived cell engraftment. Finally, we found that HSPC-derived progeny differentiated into macrophages, which displayed tunneling nanotubes capable of transferring cystinosin-bearing lysosomes to diseased cells. CONCLUSIONS To our knowledge, this is the first demonstration that HSPCs can rescue hereditary corneal defects, and supports a new potential therapeutic strategy for treating ocular pathologies.
Collapse
Affiliation(s)
- Celine J Rocca
- Department of Pediatrics Division of Genetics, University of California, San Diego, La Jolla, California, United States
| | - Alexander Kreymerman
- Shiley Eye Center, University of California, San Diego, California, United States
| | - Sarah N Ur
- Department of Pediatrics Division of Genetics, University of California, San Diego, La Jolla, California, United States
| | - Katie E Frizzi
- Department of Pathology, University of California, San Diego, California, United States
| | - Swati Naphade
- Department of Pediatrics Division of Genetics, University of California, San Diego, La Jolla, California, United States
| | - Athena Lau
- Department of Pediatrics Division of Genetics, University of California, San Diego, La Jolla, California, United States
| | - Tammy Tran
- Shiley Eye Center, University of California, San Diego, California, United States
| | - Nigel A Calcutt
- Department of Pathology, University of California, San Diego, California, United States
| | - Jeffrey L Goldberg
- Shiley Eye Center, University of California, San Diego, California, United States 4Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Stephanie Cherqui
- Department of Pediatrics Division of Genetics, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
43
|
Naphade S, Sharma J, Gaide Chevronnay HP, Shook MA, Yeagy BA, Rocca CJ, Ur SN, Lau AJ, Courtoy PJ, Cherqui S. Brief reports: Lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes. Stem Cells 2015; 33:301-9. [PMID: 25186209 DOI: 10.1002/stem.1835] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/23/2014] [Indexed: 12/26/2022]
Abstract
Despite controversies on the potential of hematopoietic stem cells (HSCs) to promote tissue repair, we previously showed that HSC transplantation could correct cystinosis, a multisystemic lysosomal storage disease, caused by a defective lysosomal membrane cystine transporter, cystinosin (CTNS gene). Addressing the cellular mechanisms, we here report vesicular cross-correction after HSC differentiation into macrophages. Upon coculture with cystinotic fibroblasts, macrophages produced tunneling nanotubes (TNTs) allowing transfer of cystinosin-bearing lysosomes into Ctns-deficient cells, which exploited the same route to retrogradely transfer cystine-loaded lysosomes to macrophages, providing a bidirectional correction mechanism. TNT formation was enhanced by contact with diseased cells. In vivo, HSCs grafted to cystinotic kidneys also generated nanotubular extensions resembling invadopodia that crossed the dense basement membranes and delivered cystinosin into diseased proximal tubular cells. This is the first report of correction of a genetic lysosomal defect by bidirectional vesicular exchange via TNTs and suggests broader potential for HSC transplantation for other disorders due to defective vesicular proteins.
Collapse
Affiliation(s)
- Swati Naphade
- Division of Genetics, Department of Pediatrics, University of California, La Jolla, San Diego, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
WNT/β-Catenin Signaling Is Required for Integration of CD24+ Renal Progenitor Cells into Glycerol-Damaged Adult Renal Tubules. Stem Cells Int 2015; 2015:391043. [PMID: 26089915 PMCID: PMC4452100 DOI: 10.1155/2015/391043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/05/2015] [Indexed: 11/24/2022] Open
Abstract
During development, nephron progenitor cells (NPC) are induced to differentiate by WNT9b signals from the ureteric bud. Although nephrogenesis ends in the perinatal period, acute kidney injury (AKI) elicits repopulation of damaged nephrons. Interestingly, embryonic NPC infused into adult mice with AKI are incorporated into regenerating tubules. Since WNT/β-catenin signaling is crucial for primary nephrogenesis, we reasoned that it might also be needed for the endogenous repair mechanism and for integration of exogenous NPC. When we examined glycerol-induced AKI in adult mice bearing a β-catenin/TCF reporter transgene, endogenous tubular cells reexpressed the NPC marker, CD24, and showed widespread β-catenin/TCF signaling. We isolated CD24+ cells from E15 kidneys of mice with the canonical WNT signaling reporter. 40% of cells responded to WNT3a in vitro and when infused into glycerol-injured adult, the cells exhibited β-catenin/TCF reporter activity when integrated into damaged tubules. When embryonic CD24+ cells were treated with a β-catenin/TCF pathway inhibitor (IWR-1) prior to infusion into glycerol-injured mice, tubular integration of cells was sharply reduced. Thus, the endogenous canonical β-catenin/TCF pathway is reactivated during recovery from AKI and is required for integration of exogenous embryonic renal progenitor cells into damaged tubules. These events appear to recapitulate the WNT-dependent inductive process which drives primary nephrogenesis.
Collapse
|
45
|
Yamamoto S, Niida S, Azuma E, Yanagibashi T, Muramatsu M, Huang TT, Sagara H, Higaki S, Ikutani M, Nagai Y, Takatsu K, Miyazaki K, Hamashima T, Mori H, Matsuda N, Ishii Y, Sasahara M. Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes. Sci Rep 2015; 5:8505. [PMID: 25687367 PMCID: PMC4330530 DOI: 10.1038/srep08505] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/22/2015] [Indexed: 12/19/2022] Open
Abstract
Emerging lines of evidence have shown that extracellular vesicles (EVs) mediate cell-to-cell communication by exporting encapsulated materials, such as microRNAs (miRNAs), to target cells. Endothelial cell-derived EVs (E-EVs) are upregulated in circulating blood in different pathological conditions; however, the characteristics and the role of these E-EVs are not yet well understood. In vitro studies were conducted to determine the role of inflammation-induced E-EVs in the cell-to-cell communication between vascular endothelial cells and pericytes/vSMCs. Stimulation with inflammatory cytokines and endotoxin immediately induced release of shedding type E-EVs from the vascular endothelial cells, and flow cytometry showed that the induction was dose dependent. MiRNA array analyses revealed that group of miRNAs were specifically increased in the inflammation-induced E-EVs. E-EVs added to the culture media of cerebrovascular pericytes were incorporated into the cells. The E-EV-supplemented cells showed highly induced mRNA and protein expression of VEGF-B, which was assumed to be a downstream target of the miRNA that was increased within the E-EVs after inflammatory stimulation. The results suggest that E-EVs mediate inflammation-induced endothelial cell-pericyte/vSMC communication, and the miRNAs encapsulated within the E-EVs may play a role in regulating target cell function. E-EVs may be new therapeutic targets for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Seiji Yamamoto
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shumpei Niida
- Bio Bank Omics Unit, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Erika Azuma
- 1] Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan [2] Manufacturing &Engineering Lab., Astellas Pharma Inc., Tsukuba, Japan
| | - Tsutomu Yanagibashi
- 1] Toyama Prefectural Institute for Pharmaceutical Research, Toyama, Japan [2] Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Masashi Muramatsu
- 1] Bio Bank Omics Unit, National Center for Geriatrics and Gerontology, Aichi, Japan [2] Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Ting Ting Huang
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroshi Sagara
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sayuri Higaki
- Bio Bank Omics Unit, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Masashi Ikutani
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshinori Nagai
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kiyoshi Takatsu
- 1] Toyama Prefectural Institute for Pharmaceutical Research, Toyama, Japan [2] Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kenji Miyazaki
- The Center for Graduate Medical Education, Jichi Medical University, Tochigi, Japan
| | - Takeru Hamashima
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University, Nagoya, Japan
| | - Yoko Ishii
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Masakiyo Sasahara
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
46
|
Ranghino A, Dimuccio V, Papadimitriou E, Bussolati B. Extracellular vesicles in the urine: markers and mediators of tissue damage and regeneration. Clin Kidney J 2014; 8:23-30. [PMID: 25713706 PMCID: PMC4310438 DOI: 10.1093/ckj/sfu136] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/05/2014] [Indexed: 01/08/2023] Open
Abstract
As in several body fluids, urine is a rich reservoir of extracellular vesicles (EVs) directly originating from cells facing the urinary lumen, including differentiated tubular cells, progenitor cells and infiltrating inflammatory cells. Several markers of glomerular and tubular damage, such as WT-1, ATF3 and NGAL, as well as of renal regeneration, such as CD133, have been identified representing an incredible source of information for diagnostic purposes. In addition, urinary extracellular vesicles (uEVs) appear to be involved in the cell-to-cell communication along the nephron, although this aspect needs further elucidation. Finally, uEVs emerge as potential amplifying or limiting factors in renal damage. Vesicles from injured cells may favour fibrosis and disease progression whereas those from cells with regenerative potential appear to promote cell survival. Here, we will discuss the most recent findings of the literature, on the light of the role of EVs in diagnosis and therapy for damage and repair of the renal tissue.
Collapse
Affiliation(s)
- Andrea Ranghino
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy ; Department of Medical Sciences , University of Torino , Torino , Italy
| | - Veronica Dimuccio
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Elli Papadimitriou
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| |
Collapse
|
47
|
Emma F, Nesterova G, Langman C, Labbé A, Cherqui S, Goodyer P, Janssen MC, Greco M, Topaloglu R, Elenberg E, Dohil R, Trauner D, Antignac C, Cochat P, Kaskel F, Servais A, Wühl E, Niaudet P, Van't Hoff W, Gahl W, Levtchenko E. Nephropathic cystinosis: an international consensus document. Nephrol Dial Transplant 2014; 29 Suppl 4:iv87-94. [PMID: 25165189 DOI: 10.1093/ndt/gfu090] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cystinosis is caused by mutations in the CTNS gene (17p13.2), which encodes for a lysosomal cystine/proton symporter termed cystinosin. It is the most common cause of inherited renal Fanconi syndrome in young children. Because of its rarity, the diagnosis and specific treatment of cystinosis are frequently delayed, which has a significant impact on the overall prognosis. In this document, we have summarized expert opinions on several aspects of the disease to improve knowledge and provide guidance for diagnosis and treatment.
Collapse
Affiliation(s)
- Francesco Emma
- Division of Nephrology and Dialysis, Bambino Gesu` Children's Hospital - IRCCS, Rome, Italy
| | - Galina Nesterova
- Section on Human Biochemical Genetics, Human Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-1851, USA
| | - Craig Langman
- Kidney Diseases, Feinberg School of Medicine, Northwestern University and the Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Antoine Labbé
- Quinze-Vingts National Ophthalmology Hospital, Paris and Versailles Saint-Quentin-en-Yvelines University, Versailles, France Clinical Investigations Center, INSERM 503, Quinze-Vingts National Ophthalmology Hospital, Paris, France
| | - Stephanie Cherqui
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Paul Goodyer
- Department of Pediatrics, McGill University, Montreal Children's Hospital, Montreal, Québec, Canada
| | - Mirian C Janssen
- Department of Internal Medicine, Radboud University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | - Marcella Greco
- Division of Nephrology and Dialysis, Bambino Gesu` Children's Hospital - IRCCS, Rome, Italy
| | - Rezan Topaloglu
- Division of Pediatric Nephrology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ewa Elenberg
- Renal Service, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Ranjan Dohil
- Department of Pediatrics, Rady Children's Hospital, San Diego, University of California San Diego, San Diego, CA, USA
| | - Doris Trauner
- Department of Neurosciences, University of California, San Diego, School of Medicine, San Diego, CA, USA
| | - Corinne Antignac
- Laboratory of Inherited Kidney Diseases, Inserm UMR 1163, Paris, France Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France APHP, Department of Genetics, Necker Hospital, Paris, France
| | - Pierre Cochat
- Centre de référence des maladies rénales rares, Hospices Civils de Lyon and Université Claude-Bernard Lyon 1, Lyon, France
| | - Frederick Kaskel
- Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, NY, USA
| | - Aude Servais
- Department of Adult Nephrology, Hôpital Necker-Enfants Malades, APHP, Paris Descartes University, Paris, France
| | - Elke Wühl
- Division of Pediatric Nephrology, Center of Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Patrick Niaudet
- Université Paris Descartes, Hôpital Necker-Enfants Malades, Paris 75015, France
| | | | - William Gahl
- Section on Human Biochemical Genetics, Human Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-1851, USA
| | - Elena Levtchenko
- Department of Pediatric Nephrology and Growth and Regeneration, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
48
|
Akpa MM, Iglesias DM, Chu LL, Cybulsky M, Bravi C, Goodyer PR. Wilms tumor suppressor, WT1, suppresses epigenetic silencing of the β-catenin gene. J Biol Chem 2014; 290:2279-88. [PMID: 25331950 DOI: 10.1074/jbc.m114.573576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian kidney is derived from progenitor cells in intermediate mesoderm. During embryogenesis, progenitor cells expressing the Wilms tumor suppressor gene, WT1, are induced to differentiate in response to WNT signals from the ureteric bud. In hereditary Wilms tumors, clonal loss of WT1 precludes the β-catenin pathway response and leads to precancerous nephrogenic rests. We hypothesized that WT1 normally primes progenitor cells for differentiation by suppressing the enhancer of zeste2 gene (EZH2), involved in epigenetic silencing of differentiation genes. In human amniotic fluid-derived mesenchymal stem cells, we show that exogenous WT1B represses EZH2 transcription. This leads to a dramatic decrease in the repressive lysine 27 trimethylation mark on histone H3 that silences β-catenin gene expression. As a result, amniotic fluid mesenchymal stem cells acquire responsiveness to WNT9b and increase expression of genes that mark the onset of nephron differentiation. Our observations suggest that biallelic loss of WT1 sustains the inhibitory histone methylation state that characterizes Wilms tumors.
Collapse
Affiliation(s)
- Murielle M Akpa
- From the Department of Human Genetics, McGill University, Montréal, Québec H3A 1B1 and
| | - Diana M Iglesias
- the Department of Paediatrics, Montreal Children's Hospital Research Institute, Montréal, Québec H3Z 2Z3, Canada
| | - Lee Lee Chu
- the Department of Paediatrics, Montreal Children's Hospital Research Institute, Montréal, Québec H3Z 2Z3, Canada
| | - Marta Cybulsky
- the Department of Paediatrics, Montreal Children's Hospital Research Institute, Montréal, Québec H3Z 2Z3, Canada
| | - Cristina Bravi
- the Department of Paediatrics, Montreal Children's Hospital Research Institute, Montréal, Québec H3Z 2Z3, Canada
| | - Paul R Goodyer
- From the Department of Human Genetics, McGill University, Montréal, Québec H3A 1B1 and the Department of Paediatrics, Montreal Children's Hospital Research Institute, Montréal, Québec H3Z 2Z3, Canada
| |
Collapse
|
49
|
Shams F, Livingstone I, Oladiwura D, Ramaesh K. Treatment of corneal cystine crystal accumulation in patients with cystinosis. Clin Ophthalmol 2014; 8:2077-84. [PMID: 25336909 PMCID: PMC4199850 DOI: 10.2147/opth.s36626] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cystinosis is a rare autosomal recessive disorder characterized by the accumulation of cystine within the cells of different organs. Infantile nephropathic cystinosis is the most common and severe phenotype. With the success of renal transplantation, these patients are now living longer and thus more long-term complications within different organs are becoming apparent. Ophthalmic manifestations range from corneal deposits of cystine crystals to pigmentary retinopathy. With increasing age, more severe ocular complications have been reported. Photophobia is a prominent symptom for patients. With prolonged survival and increasing age, this symptom, along with corneal erosions and blepharospasm, can become debilitating. This review revisits the basic pathogenesis of cystinosis, the ocular manifestations of the disease, and the treatment of corneal crystals.
Collapse
Affiliation(s)
- Fatemeh Shams
- Department of Ophthalmology, Gartnavel General Hospital, Glasgow, Scotland
| | - Iain Livingstone
- Department of Ophthalmology, Gartnavel General Hospital, Glasgow, Scotland
| | - Dilys Oladiwura
- Department of Ophthalmology, Gartnavel General Hospital, Glasgow, Scotland
| | - Kanna Ramaesh
- Department of Ophthalmology, Gartnavel General Hospital, Glasgow, Scotland
| |
Collapse
|
50
|
Fransson M, Piras E, Wang H, Burman J, Duprez I, Harris RA, LeBlanc K, Magnusson PU, Brittebo E, Loskog ASI. Intranasal delivery of central nervous system-retargeted human mesenchymal stromal cells prolongs treatment efficacy of experimental autoimmune encephalomyelitis. Immunology 2014; 142:431-41. [PMID: 24588452 DOI: 10.1111/imm.12275] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 12/17/2022] Open
Abstract
Treatment with mesenchymal stromal cells (MSCs) is currently of interest for a number of diseases including multiple sclerosis. MSCs are known to target inflamed tissues, but in a therapeutic setting their systemic administration will lead to few cells reaching the brain. We hypothesized that MSCs may target the brain upon intranasal administration and persist in central nervous system (CNS) tissue if expressing a CNS-targeting receptor. To demonstrate proof of concept, MSCs were genetically engineered to express a myelin oligodendrocyte glycoprotein-specific receptor. Engineered MSCs retained their immunosuppressive capacity, infiltrated into the brain upon intranasal cell administration, and were able to significantly reduce disease symptoms of experimental autoimmune encephalomyelitis (EAE). Mice treated with CNS-targeting MSCs were resistant to further EAE induction whereas non-targeted MSCs did not give such persistent effects. Histological analysis revealed increased brain restoration in engineered MSC-treated mice. In conclusion, MSCs can be genetically engineered to target the brain and prolong therapeutic efficacy in an EAE model.
Collapse
Affiliation(s)
- Moa Fransson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|