1
|
Mitchell MI, Ben‐Dov IZ, Ye K, Liu C, Shi M, Sadoughi A, Shah C, Siddiqui T, Okorozo A, Gutierrez M, Unawane R, Biamonte L, Parikh K, Spivack S, Loudig O. Exhaled breath condensate contains extracellular vesicles (EVs) that carry miRNA cargos of lung tissue origin that can be selectively purified and analyzed. J Extracell Vesicles 2024; 13:e12440. [PMID: 38659349 PMCID: PMC11043690 DOI: 10.1002/jev2.12440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/24/2024] [Indexed: 04/26/2024] Open
Abstract
Lung diseases, including lung cancer, are rising causes of global mortality. Despite novel imaging technologies and the development of biomarker assays, the detection of lung cancer remains a significant challenge. However, the lung communicates directly with the external environment and releases aerosolized droplets during normal tidal respiration, which can be collected, stored and analzsed as exhaled breath condensate (EBC). A few studies have suggested that EBC contains extracellular vesicles (EVs) whose microRNA (miRNA) cargos may be useful for evaluating different lung conditions, but the cellular origin of these EVs remains unknown. In this study, we used nanoparticle tracking, transmission electron microscopy, Western blot analyses and super resolution nanoimaging (ONi) to detect and validate the identity of exhaled EVs (exh-EVs). Using our customizable antibody-purification assay, EV-CATCHER, we initially determined that exh-EVs can be selectively enriched from EBC using antibodies against three tetraspanins (CD9, CD63 and CD81). Using ONi we also revealed that some exh-EVs harbour lung-specific proteins expressed in bronchiolar Clara cells (Clara Cell Secretory Protein [CCSP]) and Alveolar Type II cells (Surfactant protein C [SFTPC]). When conducting miRNA next generation sequencing (NGS) of airway samples collected at five different anatomic levels (i.e., mouth rinse, mouth wash, bronchial brush, bronchoalveolar lavage [BAL] and EBC) from 18 subjects, we determined that miRNA profiles of exh-EVs clustered closely to those of BAL EVs but not to those of other airway samples. When comparing the miRNA profiles of EVs purified from matched BAL and EBC samples with our three tetraspanins EV-CATCHER assay, we captured significant miRNA expression differences associated with smoking, asthma and lung tumor status of our subjects, which were also reproducibly detected in EVs selectively purified with our anti-CCSP/SFTPC EV-CATCHER assay from the same samples, but that confirmed their lung tissue origin. Our findings underscore that enriching exh-EV subpopulations from EBC allows non-invasive sampling of EVs produced by lung tissues.
Collapse
Affiliation(s)
- Megan I. Mitchell
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Iddo Z. Ben‐Dov
- Laboratory of Medical Transcriptomics, Internal Medicine BHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Kenny Ye
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Christina Liu
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Miao Shi
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Ali Sadoughi
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Chirag Shah
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Taha Siddiqui
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Aham Okorozo
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Martin Gutierrez
- Department of Thoracic OncologyHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Rashmi Unawane
- Department of Thoracic OncologyHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Lisa Biamonte
- Department of Thoracic OncologyHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Kaushal Parikh
- Department of Thoracic OncologyThe Mayo ClinicRochesterMinnesotaUSA
| | - Simon Spivack
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Olivier Loudig
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| |
Collapse
|
2
|
Liu D, Xu C, Jiang L, Zhu X. Pulmonary endogenous progenitor stem cell subpopulation: Physiology, pathogenesis, and progress. JOURNAL OF INTENSIVE MEDICINE 2023; 3:38-51. [PMID: 36789358 PMCID: PMC9924023 DOI: 10.1016/j.jointm.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/09/2022] [Accepted: 08/13/2022] [Indexed: 06/18/2023]
Abstract
Lungs are structurally and functionally complex organs consisting of diverse cell types from the proximal to distal axis. They have direct contact with the external environment and are constantly at risk of various injuries. Capable to proliferate and differentiate, pulmonary endogenous progenitor stem cells contribute to the maintenance of lung structure and function both under homeostasis and following injuries. Discovering candidate pulmonary endogenous progenitor stem cell types and underlying regenerative mechanisms provide insights into therapeutic strategy development for lung diseases. In this review, we reveal their compositions, roles in lung disease pathogenesis and injury repair, and the underlying mechanisms. We further underline the advanced progress in research approach and potential therapy for lung regeneration. We also demonstrate the feasibility and prospects of pulmonary endogenous stem cell transplantation for lung disease treatment.
Collapse
Affiliation(s)
- Di Liu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Chufan Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, 800 Xiangyin Road, Shanghai 200433, China
| |
Collapse
|
3
|
Yamada T, Lake BG, Cohen SM. Evaluation of the human hazard of the liver and lung tumors in mice treated with permethrin based on mode of action. Crit Rev Toxicol 2022; 52:1-31. [PMID: 35275035 DOI: 10.1080/10408444.2022.2035316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The non-genotoxic synthetic pyrethroid insecticide permethrin produced hepatocellular adenomas and bronchiolo-alveolar adenomas in female CD-1 mice, but not in male CD-1 mice or in female or male Wistar rats. Studies were performed to evaluate possible modes of action (MOAs) for permethrin-induced female CD-1 mouse liver and lung tumor formation. The MOA for liver tumor formation by permethrin involves activation of the peroxisome proliferator-activated receptor alpha (PPARα), increased hepatocellular proliferation, development of altered hepatic foci, and ultimately liver tumors. This MOA is similar to that established for other PPARα activators and is considered to be qualitatively not plausible for humans. The MOA for lung tumor formation by permethrin involves interaction with Club cells, followed by a mitogenic effect resulting in Club cell proliferation, with prolonged administration producing Club cell hyperplasia and subsequently formation of bronchiolo-alveolar adenomas. Although the possibility that permethrin exposure may potentially result in enhancement of Club cell proliferation in humans cannot be completely excluded, there is sufficient information on differences in basic lung anatomy, physiology, metabolism, and biologic behavior of tumors in the general literature to conclude that humans are quantitatively less sensitive to agents that increase Club cell proliferation and lead to tumor formation in mice. The evidence strongly indicates that Club cell mitogens are not likely to lead to increased susceptibility to lung tumor development in humans. Overall, based on MOA evaluation it is concluded that permethrin does not pose a tumorigenic hazard for humans, this conclusion being supported by negative data from permethrin epidemiological studies.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., Osaka, Japan
| | - Brian G Lake
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
4
|
Ogata K, Liu Y, Ohara A, Kawamoto K, Kondo M, Kobayashi K, Fukuda T, Asano H, Kitamoto S, Lake BG, Cohen SM, Yamada T. Club Cells Are the Primary Target for Permethrin-Induced Mouse Lung Tumor Formation. Toxicol Sci 2021; 184:15-32. [PMID: 34427685 DOI: 10.1093/toxsci/kfab103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Permethrin has been shown to increase lung adenomas in female CD-1 mice, but not in male mice or Wistar rats. The proposed mode of action (MOA) for permethrin-induced female mouse lung tumor formation involves morphological changes in Club cells; increased Club cell proliferation; increased Club cell hyperplasia, and lung tumor formation. In this study, the treatment of female CD-1 mice with tumorigenic doses (2500 and 5000 ppm) of permethrin, but not with a nontumorigenic dose (20 ppm), for 14 and/or 28 days increased Club cell replicative DNA synthesis. Global gene expression analysis of female mouse lung samples demonstrated that permethrin treatment up-regulated 3 genes associated with cell proliferation, namely aldehyde dehydrogenase 3a1 (Aldh3a1), oxidative stress-induced growth inhibitor 1, and thioredoxin reductase 1. Treatment with 2500 and 5000 ppm, but not 20 ppm, permethrin for 7 days produced significant increases in mRNA levels of these 3 genes. Immunohistochemical analysis demonstrated that Club cell secretory protein, CYP2F2, and ALDH3A1 colocalized in Club cells; confirmed by flow cytometry analysis of lung cells employing KI67 as a cell proliferation marker. Overall, the present data extend the proposed MOA by demonstrating that Club cells are the primary initial target of permethrin administration in female mouse lungs. As humans are quantitatively much less sensitive to agents that increase Club cell proliferation and lung tumor formation in mice, it is most likely that permethrin could not produce lung tumors in humans. This conclusion is supported by available negative epidemiological data from several studies.
Collapse
Affiliation(s)
- Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Yang Liu
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Ayako Ohara
- Bioscience Research Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Kensuke Kawamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Miwa Kondo
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Kumiko Kobayashi
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Takako Fukuda
- Bioscience Research Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Hiroyuki Asano
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Sachiko Kitamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, Nebraska 68198-3135, USA
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| |
Collapse
|
5
|
Hu T, Sun F, Yu X, Li Q, Zhao L, Hao W, Han W. CC16-TNF-α negative feedback loop formed between Clara cells and normal airway epithelial cells protects against diesel exhaust particles exposure-induced inflammation. Aging (Albany NY) 2021; 13:19442-19459. [PMID: 34339391 PMCID: PMC8386526 DOI: 10.18632/aging.203356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022]
Abstract
CC16 is almost exclusively expressed in non-ciliated epithelial Clara cells, and widely used as a Clara cell marker. Diesel exhaust particles (DEPs), the fine particulate matters produced by diesel engines, cause or exacerbate airway-related diseases. Our previous study documented that DEP inhibits the CC16 expression in the immortalized mouse Clara cell line through methylation of C/EBPα promoter. However, the molecular mechanism by which DEP regulates CC16 secretion is unclear. Here, we isolated CC16 containing Clara cells (CC16+) from human distal lung, and found that DEP inhibited CC16 secretion from CC16+ cells via methylation of C/EBPα and inhibition of Munc18b transcription. CC16+ cell conditioned media containing different concentrations of CC16 was prepared and used for culture of airway epithelial cells BEAS-2B with no expression of CC16. A positive correlation was observed between CC16 level and DEP-induced autophagy activity, and a negative correlation between CC16 level and DEP-induced pro-inflammatory cytokine TNF-α, IL-6, and IL-8 level, suggesting that CC16 might mitigate DEP-induced inflammation via promoting autophagy in BEAS-2B cells. This result was further confirmed by adding recombinant CC16 to BEAS-2B cells exposed to DEP. Moreover, CC16 level was significantly increased when CC16+ cells were cultured in BEAS-2B cell conditioned medium containing TNF-α or the normal medium supplemented with recombinant TNF-α, suggesting that TNF-α induced CC16 production and secretion from CC16+ cells. Collectively, these data point that CC16 and TNF-α form a negative feedback loop, and this negative feedback loop between Clara cells and normal airway epithelial cells protects against DEP exposure-induced inflammation.
Collapse
Affiliation(s)
- Ting Hu
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| | - Fenglan Sun
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| | - Xinjuan Yu
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| | - Qinghai Li
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| | - Long Zhao
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| | - Wanming Hao
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| | - Wei Han
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| |
Collapse
|
6
|
Xie M, Park D, Sica GL, Deng X. Bcl2-induced DNA replication stress promotes lung carcinogenesis in response to space radiation. Carcinogenesis 2021; 41:1565-1575. [PMID: 32157295 DOI: 10.1093/carcin/bgaa021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/18/2020] [Accepted: 03/05/2020] [Indexed: 11/12/2022] Open
Abstract
Space radiation is characterized by high-linear energy transfer (LET) ionizing radiation. The relationships between the early biological effects of space radiation and the probability of cancer in humans are poorly understood. Bcl2 not only functions as a potent antiapoptotic molecule but also as an oncogenic protein that induces DNA replication stress. To test the role and mechanism of Bcl2 in high-LET space radiation-induced lung carcinogenesis, we created lung-targeting Bcl2 transgenic C57BL/6 mice using the CC10 promoter to drive Bcl2 expression selectively in lung tissues. Intriguingly, lung-targeting transgenic Bcl2 inhibits ribonucleotide reductase activity, reduces dNTP pool size and retards DNA replication fork progression in mouse bronchial epithelial cells. After exposure of mice to space radiation derived from 56iron, 28silicon or protons, the incidence of lung cancer was significantly higher in lung-targeting Bcl2 transgenic mice than in wild-type mice, indicating that Bcl2-induced DNA replication stress promotes lung carcinogenesis in response to space radiation. The findings provide some evidence for the relative effectiveness of space radiation and Bcl-2 at inducing lung cancer in mice.
Collapse
Affiliation(s)
- Maohua Xie
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Dongkyoo Park
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Gabriel L Sica
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
Almuntashiri S, Zhu Y, Han Y, Wang X, Somanath PR, Zhang D. Club Cell Secreted Protein CC16: Potential Applications in Prognosis and Therapy for Pulmonary Diseases. J Clin Med 2020; 9:jcm9124039. [PMID: 33327505 PMCID: PMC7764992 DOI: 10.3390/jcm9124039] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Club cell secretory protein (CC16) is encoded by the SCGB1A1 gene. It is also known as CC10, secretoglobin, or uteroglobin. CC16 is a 16 kDa homodimeric protein secreted primarily by the non-ciliated bronchial epithelial cells, which can be detected in the airways, circulation, sputum, nasal fluid, and urine. The biological activities of CC16 and its pathways have not been completely understood, but many studies suggest that CC16 has anti-inflammatory and anti-oxidative effects. The human CC16 gene is located on chromosome 11, p12-q13, where several regulatory genes of allergy and inflammation exist. Studies reveal that factors such as gender, age, obesity, renal function, diurnal variation, and exercise regulate CC16 levels in circulation. Current findings indicate CC16 not only may reflect the pathogenesis of pulmonary diseases, but also could serve as a potential biomarker in several lung diseases and a promising treatment for chronic obstructive pulmonary disease (COPD). In this review, we summarize our current understanding of CC16 in pulmonary diseases.
Collapse
Affiliation(s)
- Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.Z.); (Y.H.); (P.R.S.)
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.Z.); (Y.H.); (P.R.S.)
| | - Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.Z.); (Y.H.); (P.R.S.)
| | - Xiaoyun Wang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA;
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.Z.); (Y.H.); (P.R.S.)
- Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.Z.); (Y.H.); (P.R.S.)
- Correspondence: ; Tel.: +1-706-721-6491; Fax: +1-706-721-3994
| |
Collapse
|
8
|
FBW7 Mediates Senescence and Pulmonary Fibrosis through Telomere Uncapping. Cell Metab 2020; 32:860-877.e9. [PMID: 33086033 DOI: 10.1016/j.cmet.2020.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 07/28/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
Tissue stem cells undergo premature senescence under stress, promoting age-related diseases; however, the associated mechanisms remain unclear. Here, we report that in response to radiation, oxidative stress, or bleomycin, the E3 ubiquitin ligase FBW7 mediates cell senescence and tissue fibrosis through telomere uncapping. FBW7 binding to telomere protection protein 1 (TPP1) facilitates TPP1 multisite polyubiquitination and accelerates degradation, triggering telomere uncapping and DNA damage response. Overexpressing TPP1 or inhibiting FBW7 by genetic ablation, epigenetic interference, or peptidomimetic telomere dysfunction inhibitor (TELODIN) reduces telomere uncapping and shortening, expanding the pulmonary alveolar AEC2 stem cell population in mice. TELODIN, synthesized from the seventh β strand blade of FBW7 WD40 propeller domain, increases TPP1 stability, lung respiratory function, and resistance to senescence and fibrosis in animals chronically exposed to environmental stress. Our findings elucidate a pivotal mechanism underlying stress-induced pulmonary epithelial stem cell senescence and fibrosis, providing a framework for aging-related disorder interventions.
Collapse
|
9
|
Donati Y, Blaskovic S, Ruchonnet-Métrailler I, Lascano Maillard J, Barazzone-Argiroffo C. Simultaneous isolation of endothelial and alveolar epithelial type I and type II cells during mouse lung development in the absence of a transgenic reporter. Am J Physiol Lung Cell Mol Physiol 2020; 318:L619-L630. [PMID: 32022591 DOI: 10.1152/ajplung.00227.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mouse lung developmental maturation and final alveolarization phase begin at birth. During this dynamic process, alveolar cells modify their morphology and anchorage to the extracellular matrix. In particular, alveolar epithelial cell (AEC) type I undergo cytoplasmic flattening and folding to ensure alveoli lining. We developed FACS conditions for simultaneous isolation of alveolar epithelial and endothelial cells in the absence of specific reporters during the early and middle alveolar phase. We evidenced for the first time a pool of extractable epithelial cell populations expressing high levels of podoplanin at postnatal day (pnd)2, and we confirmed by RT-qPCR that these cells are already differentiated but still immature AEC type I. Maturation causes a decrease in isolation yields, reflecting the morphological changes that these cell populations are undergoing. Moreover, we find that major histocompatibility complex II (MHCII), reported as a good marker of AEC type II, is poorly expressed at pnd2 but highly present at pnd8. Combined experiments using LysoTracker and MHCII demonstrate the de novo acquisition of MCHII in AEC type II during lung alveolarization. The lung endothelial populations exhibit FACS signatures from vascular and lymphatic compartments. They can be concomitantly followed throughout alveolar development and were obtained with a noticeable increased yield at the last studied time point (pnd16). Our results provide new insights into early lung alveolar cell isolation feasibility and represent a valuable tool for pure AEC type I preparation as well as further in vitro two- and three-dimensional studies.
Collapse
Affiliation(s)
- Yves Donati
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sanja Blaskovic
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Isabelle Ruchonnet-Métrailler
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Constance Barazzone-Argiroffo
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Wong AP, Shojaie S, Liang Q, Xia S, Di Paola M, Ahmadi S, Bilodeau C, Garner J, Post M, Duchesneau P, Waddell TK, Bear CE, Nagy A, Rossant J. Conversion of human and mouse fibroblasts into lung-like epithelial cells. Sci Rep 2019; 9:9027. [PMID: 31227724 PMCID: PMC6588580 DOI: 10.1038/s41598-019-45195-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
Cell lineage conversion of fibroblasts to specialized cell types through transdifferentiation may provide a fast and alternative cell source for regenerative medicine. Here we show that transient transduction of fibroblasts with the four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) in addition to the early lung transcription factor Nkx2-1 (also known as Ttf1), followed by directed differentiation of the cells, can convert mouse embryonic and human adult dermal fibroblasts into induced lung-like epithelial cells (iLEC). These iLEC differentiate into multiple lung cell types in air liquid interface cultures, repopulate decellularized rat lung scaffolds, and form lung epithelia composed of Ciliated, Goblet, Basal, and Club cells after transplantation into immune-compromised mice. As proof-of-concept, differentiated human iLEC harboring the Cystic Fibrosis mutation dF508 demonstrated pharmacological rescue of CFTR function using the combination of lumacaftor and ivacaftor. Overall, this is a promising alternative approach for generation of patient-specific lung-like progenitors to study lung function, disease and future regeneration strategies.
Collapse
Affiliation(s)
- Amy P Wong
- Program in Developmental & Stem Cell Biology, SickKids Research Institute, Hospital for Sick Children, Toronto, ON, Canada.
| | - Sharareh Shojaie
- Program in Translational Medicine, SickKids Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Qin Liang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Sunny Xia
- Program in Molecular Medicine, SickKids Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Michelle Di Paola
- Program in Molecular Medicine, SickKids Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Saumel Ahmadi
- Program in Molecular Medicine, SickKids Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Claudia Bilodeau
- Program in Translational Medicine, SickKids Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Jodi Garner
- Program in Developmental & Stem Cell Biology, SickKids Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Martin Post
- Program in Translational Medicine, SickKids Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Pascal Duchesneau
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, and the McEwen Centre for Regenerative Medicine, Toronto, Canada
| | - Thomas K Waddell
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, and the McEwen Centre for Regenerative Medicine, Toronto, Canada
| | - Christine E Bear
- Program in Molecular Medicine, SickKids Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Janet Rossant
- Program in Developmental & Stem Cell Biology, SickKids Research Institute, Hospital for Sick Children, Toronto, ON, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada. .,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Canada.
| |
Collapse
|
11
|
Lee KP, Park SJ, Kang S, Koh JM, Sato K, Chung HY, Okajima F, Im DS. ω-3 Polyunsaturated fatty acids accelerate airway repair by activating FFA4 in club cells. Am J Physiol Lung Cell Mol Physiol 2017; 312:L835-L844. [DOI: 10.1152/ajplung.00350.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 03/01/2017] [Accepted: 03/10/2017] [Indexed: 01/02/2023] Open
Abstract
A G protein-coupled receptor (GPCR) named free fatty acid receptor 4 (FFA4, also known as GPR120) was found to act as a GPCR for ω-3 polyunsaturated fatty acids. Its expression has been reported in lung epithelial club cells. We investigated whether supplementation of the ω-3 fatty acids benefits lung health. Omacor (7.75 mg/kg), clinically prescribed preparation of ω-3 fatty acids, and FFA4-knockout mice were utilized in a naphthalene-induced mouse model of acute airway injury (1 injection of 30 mg/kg ip). Naphthalene injection induced complete destruction of bronchiolar epithelial cells within a day. Appearance of bronchiolar epithelial cells was observed after 21 days in control mice. It was found, however, that supplementation of Omacor accelerated the recovery. The appearance of bronchiolar epithelial cells was observed between 7 and 14 days after naphthalene injury in Omacor-treated mice. In isolated club cells, ω-3 fatty acids were found to stimulate cell proliferation and migration but to inhibit cell differentiation. With the use of pharmacological tools and FFA4-knockout mice, FFA4 was found to be responsible for ω-3 fatty acids-induced proliferation in vitro in club cells. Furthermore, accelerated recovery from naphthalene-induced airway injury in Omacor-treated mice was not observed in FFA4-knockout mice in vivo. Present findings indicate that ω-3 fatty acids-induced proliferation of bronchiole epithelial cells through FFA4 is responsible for Omacor-induced accelerated recovery from airway injury. Therefore, intermittent administration of Omacor needs to be tested for acute airway injury because ω-3 fatty acids stimulate proliferation but inhibit differentiation of club cells.
Collapse
Affiliation(s)
- Kyoung-Pil Lee
- Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Soo-Jin Park
- Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Saeromi Kang
- Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; and
| | - Koichi Sato
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Showa-machi, Maebashi, Japan
| | - Hae-Young Chung
- Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Fumikazu Okajima
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Showa-machi, Maebashi, Japan
| | - Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
12
|
Chimenti I, Pagano F, Angelini F, Siciliano C, Mangino G, Picchio V, De Falco E, Peruzzi M, Carnevale R, Ibrahim M, Biondi‐Zoccai G, Messina E, Frati G. Human Lung Spheroids as In Vitro Niches of Lung Progenitor Cells with Distinctive Paracrine and Plasticity Properties. Stem Cells Transl Med 2016; 6:767-777. [PMID: 28297570 PMCID: PMC5442776 DOI: 10.5966/sctm.2015-0374] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 08/09/2016] [Indexed: 02/05/2023] Open
Abstract
Basic and translational research on lung biology has discovered multiple progenitor cell types, specialized or facultative, responsible for turnover, renewal, and repair. Isolation of populations of resident lung progenitor cells (LPCs) has been described by multiple protocols, and some have been successfully applied to healthy human lung tissue. We aimed at understanding how different cell culture conditions may affect, in vitro, the phenotype of LPCs to create an ideal niche‐like microenvironment. The influence of different substrates (i.e., fibronectin, gelatin, laminin) and the impact of a three‐dimensional/two‐dimensional (3D/2D) culture switch on the biology of LPCs isolated as lung spheroids (LSs) from normal adult human lung biopsy specimens were investigated. We applied a spheroid culture system as the selective/inductive step for progenitor cell culture, as described in many biological systems. The data showed a niche‐like proepithelial microenvironment inside the LS, highly sensitive to the 3D culture system and significantly affecting the phenotype of adult LPCs more than culture substrate. LSs favor epithelial phenotypes and LPC maintenance and contain cells more responsive to specific commitment stimuli than 2D monolayer cultures, while secreting a distinctive set of paracrine factors. We have shown for the first time, to our knowledge, how culture as 3D LSs can affect LPC epithelial phenotype and produce strong paracrine signals with a distinctive secretomic profile compared with 2D monolayer conditions. These findings suggest novel approaches to maintain ex vivo LPCs for basic and translational studies. Stem Cells Translational Medicine2017;6:767–777
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Francesca Pagano
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Francesco Angelini
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Camilla Siciliano
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Giorgio Mangino
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Vittorio Picchio
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Elena De Falco
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Mariangela Peruzzi
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Roberto Carnevale
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Mohsen Ibrahim
- Department of Medical‐Surgical Science and Translational Medicine, “La Sapienza” University of Rome, Rome, Italy
| | - Giuseppe Biondi‐Zoccai
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
- Department of AngioCardioNeurology, Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy
| | - Elisa Messina
- Department of Pediatrics and Neuropsychiatry, “Umberto I” Hospital, Rome, Italy
| | - Giacomo Frati
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
- Department of AngioCardioNeurology, Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy
| |
Collapse
|
13
|
Abstract
Lung cancer remains a major cause of cancer-related deaths worldwide with unfavourable prognosis mainly due to the late stage of disease at presentation. High incidence and disease recurrence rates are a fact despite advances in treatment. Ongoing experimental and clinical observations suggest that the malignant phenotype in lung cancer is sustained by lung cancer stem cells (CSCs) which are putative stem cells situated throughout the airways that have the potential of initiating lung cancer formation. These cells share the common characteristic of increased proliferation and differentiation, long life span and resistance to chemotherapy and radiation therapy. This review summarises the current knowledge on their characteristics and phenotype.
Collapse
Affiliation(s)
- Georgia Hardavella
- 1 Department of Respiratory Medicine and Allergy, King's College, London, UK ; 2 Department of Respiratory Medicine, King's College Hospital, London, UK
| | - Rachel George
- 1 Department of Respiratory Medicine and Allergy, King's College, London, UK ; 2 Department of Respiratory Medicine, King's College Hospital, London, UK
| | - Tariq Sethi
- 1 Department of Respiratory Medicine and Allergy, King's College, London, UK ; 2 Department of Respiratory Medicine, King's College Hospital, London, UK
| |
Collapse
|
14
|
Laube M, Stolzing A, Thome UH, Fabian C. Therapeutic potential of mesenchymal stem cells for pulmonary complications associated with preterm birth. Int J Biochem Cell Biol 2016; 74:18-32. [PMID: 26928452 DOI: 10.1016/j.biocel.2016.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/22/2022]
Abstract
Preterm infants frequently suffer from pulmonary complications resulting in significant morbidity and mortality. Physiological and structural lung immaturity impairs perinatal lung transition to air breathing resulting in respiratory distress. Mechanical ventilation and oxygen supplementation ensure sufficient oxygen supply but enhance inflammatory processes which might lead to the establishment of a chronic lung disease called bronchopulmonary dysplasia (BPD). Current therapeutic options to prevent or treat BPD are limited and have salient side effects, highlighting the need for new therapeutic approaches. Mesenchymal stem cells (MSCs) have demonstrated therapeutic potential in animal models of BPD. This review focuses on MSC-based therapeutic approaches to treat pulmonary complications and critically compares results obtained in BPD models. Thereby bottlenecks in the translational systems are identified that are preventing progress in combating BPD. Notably, current animal models closely resemble the so-called "old" BPD with profound inflammation and injury, whereas clinical improvements shifted disease pathology towards a "new" BPD in which arrest of lung maturation predominates. Future studies need to evaluate the utility of MSC-based therapies in animal models resembling the "new" BPD though promising in vitro evidence suggests that MSCs do possess the potential to stimulate lung maturation. Furthermore, we address the mode-of-action of MSC-based therapies with regard to lung development and inflammation/fibrosis. Their therapeutic efficacy is mainly attributed to an enhancement of regeneration and immunomodulation due to paracrine effects. In addition, we discuss current improvement strategies by genetic modifications or precondition of MSCs to enhance their therapeutic efficacy which could also prove beneficial for BPD therapies.
Collapse
Affiliation(s)
- Mandy Laube
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany.
| | - Alexandra Stolzing
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Loughborough University, Wolfson School of Mechanical and Manufacturing Engineering, Centre for Biological Engineering, Loughborough, UK.
| | - Ulrich H Thome
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany.
| | - Claire Fabian
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
15
|
Karnati S, Graulich T, Oruqaj G, Pfreimer S, Seimetz M, Stamme C, Mariani TJ, Weissmann N, Mühlfeld C, Baumgart-Vogt E. Postnatal development of the bronchiolar club cells of distal airways in the mouse lung: stereological and molecular biological studies. Cell Tissue Res 2016; 364:543-557. [PMID: 26796206 DOI: 10.1007/s00441-015-2354-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 12/17/2015] [Indexed: 01/15/2023]
Abstract
Club (Clara) cells are nonciliated secretory epithelial cells present in bronchioles of distal pulmonary airways. So far, no information is available on the postnatal differentiation of club cells by a combination of molecular biological, biochemical, and stereological approaches in the murine lung. Therefore, the present study was designed to investigate the changes in the club cell secretory proteins (CC10, surfactant proteins A, B and D) and club cell abundance within the epithelium of bronchioles of distal airways during the postnatal development of the mouse lung. Perfusion-fixed murine lungs of three developmental stages (newborn, 15-day-old and adult) were used. Frozen, unfixed lungs were used for cryosectioning and subsequent laser-assisted microdissection of bronchiolar epithelial cells and RT-PCR analyses. High resolution analyses of the three-dimensional structures and composition of lung airways were obtained by scanning electron microscopy. Finally, using design-based stereology, the total and average club cell volume and the volume of secretory granules were quantified by light and transmission electron microscopy. Our results reveal that murine club cells are immature at birth and differentiate postnatally. Further, increase of the club cell volume and number of intracellular granules are closely correlated to the total lung volume enlargement. However, secretory granule density was only increased within the first 15 days of postnatal development. The differentiation is accompanied by a decrease in glycogen content, and a close positive relationship between CC10 expression and secretory granule abundance. Taken together, our data are consistent with the concept that the morphological and functional differentiation of club cells is a postnatal phenomenon.
Collapse
Affiliation(s)
- Srikanth Karnati
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, D-35385, Giessen, Germany.
| | - Tilman Graulich
- Department of Trauma, Hannover Medical School, Hannover, Germany
| | - Gani Oruqaj
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, D-35385, Giessen, Germany
| | - Susanne Pfreimer
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, D-35385, Giessen, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Giessen, Germany
| | - Cordula Stamme
- Division of Cellular Pneumology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany and Department of Anesthesiology, University of Lübeck, Lübeck, Germany
| | - Thomas J Mariani
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Giessen, Germany
| | - Christian Mühlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, D-35385, Giessen, Germany.
| |
Collapse
|
16
|
C22-bronchial and T7-alveolar epithelial cell lines of the immortomouse are excellent murine cell culture model systems to study pulmonary peroxisome biology and metabolism. Histochem Cell Biol 2015; 145:287-304. [DOI: 10.1007/s00418-015-1385-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2015] [Indexed: 10/22/2022]
|
17
|
Denney L, Byrne AJ, Shea TJ, Buckley JS, Pease JE, Herledan GMF, Walker SA, Gregory LG, Lloyd CM. Pulmonary Epithelial Cell-Derived Cytokine TGF-β1 Is a Critical Cofactor for Enhanced Innate Lymphoid Cell Function. Immunity 2015; 43:945-58. [PMID: 26588780 PMCID: PMC4658339 DOI: 10.1016/j.immuni.2015.10.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 06/16/2015] [Accepted: 08/05/2015] [Indexed: 12/31/2022]
Abstract
Epithelial cells orchestrate pulmonary homeostasis and pathogen defense and play a crucial role in the initiation of allergic immune responses. Maintaining the balance between homeostasis and inappropriate immune activation and associated pathology is particularly complex at mucosal sites that are exposed to billions of potentially antigenic particles daily. We demonstrated that epithelial cell-derived cytokine TGF-β had a central role in the generation of the pulmonary immune response. Mice that specifically lacked epithelial cell-derived TGF-β1 displayed a reduction in type 2 innate lymphoid cells (ILCs), resulting in suppression of interleukin-13 and hallmark features of the allergic response including airway hyperreactivity. ILCs in the airway lumen were primed to respond to TGF-β by expressing the receptor TGF-βRII and ILC chemoactivity was enhanced by TGF-β. These data demonstrate that resident epithelial cells instruct immune cells, highlighting the central role of the local environmental niche in defining the nature and magnitude of immune reactions.
Collapse
Affiliation(s)
- Laura Denney
- Inflammation, Repair & Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ UK
| | - Adam J Byrne
- Inflammation, Repair & Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ UK
| | - Thomas J Shea
- Inflammation, Repair & Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ UK
| | - James S Buckley
- Inflammation, Repair & Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ UK
| | - James E Pease
- Inflammation, Repair & Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ UK
| | - Gaelle M F Herledan
- Inflammation, Repair & Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ UK
| | - Simone A Walker
- Inflammation, Repair & Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ UK
| | - Lisa G Gregory
- Inflammation, Repair & Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ UK
| | - Clare M Lloyd
- Inflammation, Repair & Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ UK.
| |
Collapse
|
18
|
Nabe T, Wakamori H, Yano C, Nishiguchi A, Yuasa R, Kido H, Tomiyama Y, Tomoda A, Kida H, Takiguchi A, Matsuda M, Ishihara K, Akiba S, Ohya S, Fukui H, Mizutani N, Yoshino S. Production of interleukin (IL)-33 in the lungs during multiple antigen challenge-induced airway inflammation in mice, and its modulation by a glucocorticoid. Eur J Pharmacol 2015; 757:34-41. [PMID: 25797285 DOI: 10.1016/j.ejphar.2015.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 12/19/2022]
Abstract
Although interleukin (IL)-33 is a candidate aggravator of asthma, the cellular sources of IL-33 in the lungs during the progression of antigen-induced airway inflammation remain unclear. Furthermore, it has not been determined whether the antigen-induced production of IL-33 can be pharmacologically modulated in vivo. In this study, we examined the production of IL-33 in the lungs of sensitized mice during multiple intratracheal challenges with the antigen, ovalbumin. The 1st challenge clearly induced the IL-33 production in the lungs, and it was enhanced by the 2nd-4th challenges. IL-33 mRNA transcription was also induced after these challenges. An immunohistochemical analysis revealed that the cellular sources of IL-33 after the 1st challenge were mainly bronchial epithelial cells, while those after the 3rd challenge were not only the epithelial cells, but also inflammatory cells that infiltrated the lungs. Flow cytometric analyses indicated that approximately 20% and 10% of the IL-33-producing cells in the lungs were M2 macrophages and conventional dendritic cells, respectively. A systemic treatment with dexamethasone before the 1st challenge potently suppressed the IL-33 production. When dexamethasone was administered before the respective challenges, production of the IL-33 protein and the infiltration of IL-33-producing M2 macrophages and dendritic cells into the lungs in the 3rd challenge were also suppressed. In conclusion, the cellular sources of IL-33 in the lungs were dynamically altered during multiple challenges: not only bronchial epithelial cells, but also the M2 macrophages and dendritic cells that infiltrated the lungs produced IL-33. The production of IL-33 was susceptible to the glucocorticoid treatment.
Collapse
Affiliation(s)
- Takeshi Nabe
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan; Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroki Wakamori
- Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Chihiro Yano
- Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Ayumi Nishiguchi
- Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Rino Yuasa
- Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Hitomi Kido
- Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yusaku Tomiyama
- Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Ayumi Tomoda
- Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Haruka Kida
- Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Anna Takiguchi
- Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Masaya Matsuda
- Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Keiichi Ishihara
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Satoshi Akiba
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Susumu Ohya
- Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Hiroyuki Fukui
- Department of Molecular Studies for Incurable Diseases, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Nobuaki Mizutani
- Department of Pharmacology, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Shin Yoshino
- Department of Pharmacology, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| |
Collapse
|
19
|
Katsirntaki K, Mauritz C, Olmer R, Schmeckebier S, Sgodda M, Puppe V, Eggenschwiler R, Duerr J, Schubert SC, Schmiedl A, Ochs M, Cantz T, Salwig I, Szibor M, Braun T, Rathert C, Martens A, Mall MA, Martin U. Bronchoalveolar sublineage specification of pluripotent stem cells: effect of dexamethasone plus cAMP-elevating agents and keratinocyte growth factor. Tissue Eng Part A 2014; 21:669-82. [PMID: 25316003 DOI: 10.1089/ten.tea.2014.0097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Respiratory progenitors can be efficiently generated from pluripotent stem cells (PSCs). However, further targeted differentiation into bronchoalveolar sublineages is still in its infancy, and distinct specifying effects of key differentiation factors are not well explored. Focusing on airway epithelial Clara cell generation, we analyzed the effect of the glucocorticoid dexamethasone plus cAMP-elevating agents (DCI) on the differentiation of murine embryonic and induced pluripotent stem cells (iPSCs) into bronchoalveolar epithelial lineages, and whether keratinocyte growth factor (KGF) might further influence lineage decisions. We demonstrate that DCI strongly induce expression of the Clara cell marker Clara cell secretory protein (CCSP). While KGF synergistically supports the inducing effect of DCI on alveolar markers with increased expression of surfactant protein (SP)-C and SP-B, an inhibitory effect on CCSP expression was shown. In contrast, neither KGF nor DCI seem to have an inducing effect on ciliated cell markers. Furthermore, the use of iPSCs from transgenic mice with CCSP promoter-dependent lacZ expression or a knockin of a YFP reporter cassette in the CCSP locus enabled detection of derivatives with Clara cell typical features. Collectively, DCI was shown to support bronchoalveolar specification of mouse PSCs, in particular Clara-like cells, and KGF to inhibit bronchial epithelial differentiation. The targeted in vitro generation of Clara cells with their important function in airway protection and regeneration will enable the evaluation of innovative cellular therapies in animal models of lung diseases.
Collapse
Affiliation(s)
- Katherina Katsirntaki
- 1 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School , Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Paracrine regulation of fetal lung morphogenesis using human placenta-derived mesenchymal stromal cells. J Surg Res 2014; 190:255-63. [DOI: 10.1016/j.jss.2014.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/24/2014] [Accepted: 04/04/2014] [Indexed: 12/20/2022]
|
21
|
Templeton AK, Miyamoto S, Babu A, Munshi A, Ramesh R. Cancer stem cells: progress and challenges in lung cancer. Stem Cell Investig 2014; 1:9. [PMID: 27358855 DOI: 10.3978/j.issn.2306-9759.2014.03.06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/07/2014] [Indexed: 12/17/2022]
Abstract
The identification of a subpopulation of tumor cells with stem cell-like characteristics first in hematological malignancies and later in solid tumors has emerged into a novel field of cancer research. It has been proposed that this aberrant population of cells now called "cancer stem cells" (CSCs) drives tumor initiation, progression, metastasis, recurrence, and drug resistance. CSCs have been shown to have the capacity of self-renewal and multipotency. Adopting strategies from the field of stem cell research has aided in identification, localization, and targeting of CSCs in many tumors. Despite the huge progress in other solid tumors such as brain, breast, and colon cancers no substantial advancements have been made in lung cancer. This is most likely due to the current rudimentary understanding of lung stem cell hierarchy and heterogeneous nature of lung disease. In this review, we will discuss the most recent findings related to identification of normal lung stem cells and CSCs, pathways involved in regulating the development of CSCs, and the importance of the stem cell niche in development and maintenance of CSCs. Additionally, we will examine the development and feasibility of novel CSC-targeted therapeutic strategies aimed at eradicating lung CSCs.
Collapse
Affiliation(s)
- Amanda K Templeton
- 1 Department of Pathology, 2 Peggy and Charles Stephenson Cancer Center, 3 Department of Radiation Oncology, 4 Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shinya Miyamoto
- 1 Department of Pathology, 2 Peggy and Charles Stephenson Cancer Center, 3 Department of Radiation Oncology, 4 Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anish Babu
- 1 Department of Pathology, 2 Peggy and Charles Stephenson Cancer Center, 3 Department of Radiation Oncology, 4 Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anupama Munshi
- 1 Department of Pathology, 2 Peggy and Charles Stephenson Cancer Center, 3 Department of Radiation Oncology, 4 Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rajagopal Ramesh
- 1 Department of Pathology, 2 Peggy and Charles Stephenson Cancer Center, 3 Department of Radiation Oncology, 4 Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
22
|
Hansen T, Chougule A, Borlak J. Isolation and cultivation of metabolically competent alveolar epithelial cells from A/J mice. Toxicol In Vitro 2014; 28:812-21. [PMID: 24681204 DOI: 10.1016/j.tiv.2014.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 03/15/2014] [Accepted: 03/18/2014] [Indexed: 11/24/2022]
Abstract
The A/J mouse strain is used in lung cancer studies. To enable mechanistic investigations the isolation and cultivation of alveolar epithelial cells (AECs) is desirable. Based on four different protocols dispase digestion of lung tissue was best and yielded 9.3 ± 1.5 × 10(6) AECs. Of these 61 ± 13% and 43 ± 5% were positive for AP and NBT staining, respectively. Purification by discontinuous Percoll gradient centrifugation did not change this ratio; however, reduced the total cell yield to 4.4 ± 1.1 × 10(6) AECs. Flow cytometry of lectin bound AECs determined 91 ± 7% and 87 ± 5% as positive for Helix pomatia and Maclura pomifera to evidence type II pneumocytes. On day 3 in culture the ethoxyresorufin-O-demethylase activity was 251 ± 80 pmol/4 h × 1.5 × 10(6) and the production of androstenedione proceed at 243.5 ± 344.4 pmol/24 h × 1.5 × 10(6) AECs. However, 6-α, 6-β and 16-β-hydroxytestosterone were produced about 20-fold less as compared to androstenedione and the production of metabolites depended on the culture media supplemented with 2% mouse serum or 10% FCS. Finally, by RT-PCR expression of CYP genes was confirmed in lung tissue and AECs; a link between testosterone metabolism and CYP2A12, 3A16 and 2B9/10 expression was established. Taken collectively, AECs can be successfully isolated and cultured for six days while retaining metabolic competence.
Collapse
Affiliation(s)
- Tanja Hansen
- Fraunhofer Institute of Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany.
| | - Anil Chougule
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|