1
|
Piotrowska-Nowak A, Safranow K, Adamczyk JG, Sołtyszewski I, Cięszczyk P, Tońska K, Żekanowski C, Borzemska B. Mitochondrial Genome Variation in Polish Elite Athletes. Int J Mol Sci 2023; 24:12992. [PMID: 37629173 PMCID: PMC10454803 DOI: 10.3390/ijms241612992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Energy efficiency is one of the fundamental athletic performance-affecting features of the cell and the organism as a whole. Mitochondrial DNA (mtDNA) variants and haplogroups have been linked to the successful practice of various sports, but despite numerous studies, understanding of the correlation is far from being comprehensive. In this study, the mtDNA sequence and copy number were determined for 99 outstanding Polish male athletes performing in power (n = 52) or endurance sports (n = 47) and 100 controls. The distribution of haplogroups, single nucleotide variant association, heteroplasmy, and mtDNA copy number were analyzed in the blood and saliva. We found no correlation between any haplogroup, single nucleotide variant, especially rare or non-synonymous ones, and athletic performance. Interestingly, heteroplasmy was less frequent in the study group, especially in endurance athletes. We observed a lower mtDNA copy number in both power and endurance athletes compared to controls. This could result from an inactivity of compensatory mechanisms activated by disadvantageous variants present in the general population and indicates a favorable genetic makeup of the athletes. The results emphasize a need for a more comprehensive analysis of the involvement of the mitochondrial genome in physical performance, combining nucleotide and copy number analysis in the context of nuclear gene variants.
Collapse
Affiliation(s)
- Agnieszka Piotrowska-Nowak
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Street, 02-106 Warszawa, Poland; (A.P.-N.); (K.T.)
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Jakub G. Adamczyk
- Department of Theory of Sport, Józef Piłsudski University of Physical Education, Marymoncka 34 Street, 00-968 Warszawa, Poland;
| | - Ireneusz Sołtyszewski
- Department of Forensic Medicine, Medical University of Warsaw, Oczki 1 Street, 02-007 Warszawa, Poland;
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland; (P.C.); (C.Ż.)
| | - Katarzyna Tońska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Street, 02-106 Warszawa, Poland; (A.P.-N.); (K.T.)
| | - Cezary Żekanowski
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland; (P.C.); (C.Ż.)
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 Street, 02-106 Warszawa, Poland
| | - Beata Borzemska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland; (P.C.); (C.Ż.)
| |
Collapse
|
2
|
Mullin NK, Voigt AP, Flamme-Wiese MJ, Liu X, Riker MJ, Varzavand K, Stone EM, Tucker BA, Mullins RF. Multimodal single-cell analysis of nonrandom heteroplasmy distribution in human retinal mitochondrial disease. JCI Insight 2023; 8:e165937. [PMID: 37289546 PMCID: PMC10443808 DOI: 10.1172/jci.insight.165937] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Variants within the high copy number mitochondrial genome (mtDNA) can disrupt organelle function and lead to severe multisystem disease. The wide range of manifestations observed in patients with mitochondrial disease results from varying fractions of abnormal mtDNA molecules in different cells and tissues, a phenomenon termed heteroplasmy. However, the landscape of heteroplasmy across cell types within tissues and its influence on phenotype expression in affected patients remains largely unexplored. Here, we identify nonrandom distribution of a pathogenic mtDNA variant across a complex tissue using single-cell RNA-Seq, mitochondrial single-cell ATAC sequencing, and multimodal single-cell sequencing. We profiled the transcriptome, chromatin accessibility state, and heteroplasmy in cells from the eyes of a patient with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and from healthy control donors. Utilizing the retina as a model for complex multilineage tissues, we found that the proportion of the pathogenic m.3243A>G allele was neither evenly nor randomly distributed across diverse cell types. All neuroectoderm-derived neural cells exhibited a high percentage of the mutant variant. However, a subset of mesoderm-derived lineage, namely the vasculature of the choroid, was near homoplasmic for the WT allele. Gene expression and chromatin accessibility profiles of cell types with high and low proportions of m.3243A>G implicate mTOR signaling in the cellular response to heteroplasmy. We further found by multimodal single-cell sequencing of retinal pigment epithelial cells that a high proportion of the pathogenic mtDNA variant was associated with transcriptionally and morphologically abnormal cells. Together, these findings show the nonrandom nature of mitochondrial variant partitioning in human mitochondrial disease and underscore its implications for mitochondrial disease pathogenesis and treatment.
Collapse
Affiliation(s)
- Nathaniel K. Mullin
- University of Iowa Institute for Vision Research, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences and
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, USA
| | - Andrew P. Voigt
- University of Iowa Institute for Vision Research, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences and
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, USA
| | - Miles J. Flamme-Wiese
- University of Iowa Institute for Vision Research, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences and
| | - Xiuying Liu
- University of Iowa Institute for Vision Research, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences and
| | - Megan J. Riker
- University of Iowa Institute for Vision Research, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences and
| | - Katayoun Varzavand
- University of Iowa Institute for Vision Research, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences and
| | - Edwin M. Stone
- University of Iowa Institute for Vision Research, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences and
| | - Budd A. Tucker
- University of Iowa Institute for Vision Research, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences and
| | - Robert F. Mullins
- University of Iowa Institute for Vision Research, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences and
| |
Collapse
|
3
|
Rahmadanthi FR, Maksum IP. Transfer RNA Mutation Associated with Type 2 Diabetes Mellitus. BIOLOGY 2023; 12:871. [PMID: 37372155 DOI: 10.3390/biology12060871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Transfer RNA (tRNA) genes in the mitochondrial DNA genome play an important role in protein synthesis. The 22 tRNA genes carry the amino acid that corresponds to that codon but changes in the genetic code often occur such as gene mutations that impact the formation of adenosine triphosphate (ATP). Insulin secretion does not occur because the mitochondria cannot work optimally. tRNA mutation may also be caused by insulin resistance. In addition, the loss of tRNA modification can cause pancreatic β cell dysfunction. Therefore, both can be indirectly associated with diabetes mellitus because diabetes mellitus, especially type 2, is caused by insulin resistance and the body cannot produce insulin. In this review, we will discuss tRNA in detail, several diseases related to tRNA mutations, how tRNA mutations can lead to type 2 diabetes mellitus, and one example of a point mutation that occurs in tRNA.
Collapse
Affiliation(s)
- Fanny Rizki Rahmadanthi
- Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Iman Permana Maksum
- Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
4
|
Roesch S, O'Sullivan A, Zimmermann G, Mair A, Lipuš C, Mayr JA, Wortmann SB, Rasp G. Mitochondrial Disease and Hearing Loss in Children: A Systematic Review. Laryngoscope 2022; 132:2459-2472. [PMID: 35188226 PMCID: PMC9790539 DOI: 10.1002/lary.30067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Hearing loss is a clinical symptom, frequently mentioned in the context of mitochondrial disease. With no cure available for mitochondrial disease, supportive treatment of clinical symptoms like hearing loss is of the utmost importance. The aim of this study was to summarize current knowledge on hearing loss in genetically proven mitochondrial disease in children and deduce possible and necessary consequences in patient care. METHODS Systematic literature review, including Medline, Embase, and Cochrane library. Review protocol was established and registered prior to conduction (International prospective register of systematic reviews-PROSPERO: CRD42020165356). Conduction of this review was done in accordance with MOOSE criteria. RESULTS A total of 23 articles, meeting predefined criteria and providing sufficient information on 75 individuals with childhood onset hearing loss was included for analysis. Both cochlear and retro-cochlear origin of hearing loss can be identified among different types of mitochondrial disease. Analysis was hindered by inhomogeneous reporting and methodical limitations. CONCLUSION Overall, the findings do not allow for a general statement on hearing loss in children with mitochondrial disease. Retro-cochlear hearing loss seems to be found more often than expected. A common feature appears to be progression of hearing loss over time. However, hearing loss in these patients shows manifold characteristics. Therefore, awareness of mitochondrial disease as a possible causative background is important for otolaryngologists. Future attempts rely on standardized reporting and long-term follow-up. LEVEL OF EVIDENCE NA Laryngoscope, 132:2459-2472, 2022.
Collapse
Affiliation(s)
- Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck SurgeryParacelsus Medical UniversitySalzburgAustria
| | - Anna O'Sullivan
- Department of Otorhinolaryngology, Head and Neck SurgeryParacelsus Medical UniversitySalzburgAustria,Insitute of PathologyParacelsus Medical UniversitySalzburgAustria
| | - Georg Zimmermann
- Team Biostatistics and Big Medical Data, IDA Lab SalzburgParacelsus Medical UniversitySalzburgAustria,Department of Research and InnovationParacelsus Medical UniversitySalzburgAustria
| | - Alois Mair
- Department of Otorhinolaryngology, Head and Neck SurgeryParacelsus Medical UniversitySalzburgAustria
| | - Cvetka Lipuš
- PMU University LibraryParacelsus Medical UniversitySalzburgAustria
| | - Johannes A. Mayr
- University Children's HospitalParacelsus Medical UniversitySalzburgAustria
| | - Saskia B. Wortmann
- University Children's HospitalParacelsus Medical UniversitySalzburgAustria,Amalia Children's Hospital, RadboudumcNijmegenThe Netherlands
| | - Gerd Rasp
- Department of Otorhinolaryngology, Head and Neck SurgeryParacelsus Medical UniversitySalzburgAustria
| |
Collapse
|
5
|
Ng YS, Lim AZ, Panagiotou G, Turnbull DM, Walker M. Endocrine Manifestations and New Developments in Mitochondrial Disease. Endocr Rev 2022; 43:583-609. [PMID: 35552684 PMCID: PMC9113134 DOI: 10.1210/endrev/bnab036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 11/19/2022]
Abstract
Mitochondrial diseases are a group of common inherited diseases causing disruption of oxidative phosphorylation. Some patients with mitochondrial disease have endocrine manifestations, with diabetes mellitus being predominant but also include hypogonadism, hypoadrenalism, and hypoparathyroidism. There have been major developments in mitochondrial disease over the past decade that have major implications for all patients. The collection of large cohorts of patients has better defined the phenotype of mitochondrial diseases and the majority of patients with endocrine abnormalities have involvement of several other systems. This means that patients with mitochondrial disease and endocrine manifestations need specialist follow-up because some of the other manifestations, such as stroke-like episodes and cardiomyopathy, are potentially life threatening. Also, the development and follow-up of large cohorts of patients means that there are clinical guidelines for the management of patients with mitochondrial disease. There is also considerable research activity to identify novel therapies for the treatment of mitochondrial disease. The revolution in genetics, with the introduction of next-generation sequencing, has made genetic testing more available and establishing a precise genetic diagnosis is important because it will affect the risk for involvement for different organ systems. Establishing a genetic diagnosis is also crucial because important reproductive options have been developed that will prevent the transmission of mitochondrial disease because of mitochondrial DNA variants to the next generation.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Albert Zishen Lim
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Grigorios Panagiotou
- Department of Diabetes and Endocrinology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Mark Walker
- Department of Diabetes and Endocrinology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Lipiński P, Różdżyńska-Świątkowska A, Iwanicka-Pronicka K, Perkowska B, Pokora P, Tylki-Szymańska A. Long-term outcome of patients with alpha-mannosidosis – A single center study. Mol Genet Metab Rep 2022; 30:100826. [PMID: 35242565 PMCID: PMC8856903 DOI: 10.1016/j.ymgmr.2021.100826] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction Alpha-mannosidosis (AM) is a rare autosomal recessive lysosomal storage disease which the natural history has not been exhaustively described yet. The aim of this study was to present the long-term follow-up of 12 Polish patients with AM, evaluate the clinical, biochemical, and molecular findings and progression of the disease. Material and methods The article presents a long-term (over 30 years) observational, retrospective, single-center study of patients with AM. Results The hearing loss, as one of the first symptoms, was detected in childhood (mean age of 2 years and 6 months) in 10 patients. The other symptoms include: recurrent infections (all patients), inguinal hernias (6 patients), craniosynostosis (1 patient). The mean age at AM diagnosis was 6 years while median was 4 years (age range: 1 year and 8 months – 12 years). The most commonly identified variant in the MAN2B1 gene was c.2245C > T, p.(Arg749Trp). The mean time of follow-up in our study was approximately 14 years (range: 1 year – 26 years). Following birth, children with AM grow slowly, finally reaching the 3rd percentile (or values below the 3rd percentile). Hearing loss was not progressive while a gradual exacerbation of intellectual disability with no developmental regression was observed in all patients. Ataxia was diagnosed in 6 patients in the second decade of life (age range 15–20 years). Conclusions Our study revealed the sensorineural hearing loss as one of the first noted symptom in AM which was congenital and non-progressive during the natural course of disease. A detailed anthropometric phenotype of AM patients was provided with observation of the growth decline during the long-term follow-up. Our study confirmed the existence of two distinguished clinical phenotypes of AM (mild and moderate), and also the lack of clear genotype-phenotype correlation.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, 04-730 Warsaw, Poland
| | | | | | - Barbara Perkowska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, 04-730 Warsaw, Poland
| | - Paulina Pokora
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, 04-730 Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, 04-730 Warsaw, Poland
- Corresponding author at: Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland.
| |
Collapse
|
7
|
Jones DE, Klacking E, Ryan RO. Inborn errors of metabolism associated with 3-methylglutaconic aciduria. Clin Chim Acta 2021; 522:96-104. [PMID: 34411555 PMCID: PMC8464523 DOI: 10.1016/j.cca.2021.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022]
Abstract
A growing number of inborn errors of metabolism (IEM) associated with compromised mitochondrial energy metabolism manifest an unusual phenotypic feature: 3-methylglutaconic (3MGC) aciduria. Two major categories of 3MGC aciduria, primary and secondary, have been described. In primary 3MGC aciduria, IEMs in 3MGC CoA hydratase (AUH) or HMG CoA lyase block leucine catabolism, resulting in a buildup of pathway intermediates, including 3MGC CoA. Subsequent thioester hydrolysis yields 3MGC acid, which is excreted in urine. In secondary 3MGC aciduria, no deficiencies in leucine catabolism enzymes exist and 3MGC CoA is formed de novo from acetyl CoA. In the "acetyl CoA diversion pathway", when IEMs directly, or indirectly, interfere with TCA cycle activity, acetyl CoA accumulates in the matrix space. This leads to condensation of two acetyl CoA to form acetoacetyl CoA, followed by another condensation between acetyl CoA and acetoacetyl CoA to form 3-hydroxy, 3-methylglutaryl (HMG) CoA. Once formed, HMG CoA serves as a substrate for AUH, producing trans-3MGC CoA. Non enzymatic isomerization of trans-3MGC CoA to cis-3MGC CoA precedes intramolecular cyclization to cis-3MGC anhydride plus CoA. Subsequent hydrolysis of cis-3MGC anhydride gives rise to cis-3MGC acid, which is excreted in urine. In reviewing 20 discrete IEMs that manifest secondary 3MGC aciduria, evidence supporting the acetyl CoA diversion pathway was obtained. This biochemical pathway serves as an "overflow valve" in muscle / brain tissue to redirect acetyl CoA to 3MGC CoA when entry to the TCA cycle is impeded.
Collapse
Affiliation(s)
- Dylan E Jones
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States
| | - Emma Klacking
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States
| | - Robert O Ryan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States.
| |
Collapse
|
8
|
Lechowicz U, Pollak A, Raj-Koziak D, Dziendziel B, Skarżyński PH, Skarżyński H, Ołdak M. Tinnitus in patients with hearing loss due to mitochondrial DNA pathogenic variants. Eur Arch Otorhinolaryngol 2018; 275:1979-1985. [PMID: 29936625 PMCID: PMC6060765 DOI: 10.1007/s00405-018-5028-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/01/2018] [Indexed: 12/28/2022]
Abstract
Purpose Tinnitus described as individual perception of phantom sound constitutes a significant medical problem and has become an essential subject of many studies conducted worldwide. In the study, we aimed to examine the prevalence of tinnitus among Polish hearing loss (HL) patients with identified mitochondrial DNA (mtDNA) variants. Methods Among the selected group of unrelated HL patients with known mtDNA pathogenic variants, two questionnaires were conducted, i.e. Tinnitus Handicap Inventory translated into Polish (THI-POL) and Visual Analogue Scale (VAS) for measuring subjectively perceived tinnitus loudness, distress, annoyance and possibility of coping with this condition (VASs). Pathogenic mtDNA variants were detected with real-time PCR and sequencing of the whole mtDNA. Results This is the first extensive tinnitus characterization using THI-POL and VASs questionnaires in HL patients due to mtDNA variants. We have established the prevalence of tinnitus among the studied group at 23.5%. We found that there are no statistically significant differences in the prevalence of tinnitus and its characteristic features between HL patients with known HL mtDNA variants and the general Polish population. In Polish HL patients with tinnitus, m.7511T>C was significantly more frequent than in patients without tinnitus. We observed that the prevalence of tinnitus is lower in Polish patients with m.1555A>G as compared to other available data. Conclusions Our data suggest that the mtDNA variants causative of HL may affect tinnitus development but this effect seems to be ethnic-specific.
Collapse
Affiliation(s)
- Urszula Lechowicz
- Department of Genetics, World Hearing Center, Institute of Physiology and Pathology of Hearing, Mochnackiego 10, 02-042, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Genetics, World Hearing Center, Institute of Physiology and Pathology of Hearing, Mochnackiego 10, 02-042, Warsaw, Poland
| | - Danuta Raj-Koziak
- World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Beata Dziendziel
- World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Piotr Henryk Skarżyński
- World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,Department of Heart Failure and Cardiac Rehabilitation, Second Faculty, Medical University of Warsaw, Warsaw, Poland.,Institute of Sensory Organs, Nadarzyn, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Monika Ołdak
- Department of Genetics, World Hearing Center, Institute of Physiology and Pathology of Hearing, Mochnackiego 10, 02-042, Warsaw, Poland. .,Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
9
|
Meng F, He Z, Tang X, Zheng J, Jin X, Zhu Y, Ren X, Zhou M, Wang M, Gong S, Mo JQ, Shu Q, Guan MX. Contribution of the tRNA Ile 4317A→G mutation to the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA 1555A→G mutation. J Biol Chem 2018; 293:3321-3334. [PMID: 29348176 DOI: 10.1074/jbc.ra117.000530] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/14/2018] [Indexed: 12/28/2022] Open
Abstract
The 1555A→G mutation in mitochondrial 12S rRNA has been associated with aminoglycoside-induced and non-syndromic deafness in many individuals worldwide. Mitochondrial genetic modifiers are proposed to influence the phenotypic expression of m.1555A→G mutation. Here, we report that a deafness-susceptibility allele (m.4317A→G) in the tRNAIle gene modulates the phenotype expression of m.1555A→G mutation. Strikingly, a large Han Chinese pedigree carrying both m.4317A→G and m.1555A→G mutations exhibited much higher penetrance of deafness than those carrying only the m.1555A→G mutation. The m.4317A→G mutation affected a highly conserved adenine at position 59 in the T-loop of tRNAIle We therefore hypothesized that the m.4317A→G mutation alters both structure and function of tRNAIle Using lymphoblastoid cell lines derived from members of Chinese families (three carrying both m.1555A→G and m.4317A→G mutations, three harboring only m.1555A→G mutation, and three controls lacking these mutations), we found that the cell lines bearing both m.4317A→G and m.1555A→G mutations exhibited more severe mitochondrial dysfunctions than those carrying only the m.1555A→G mutation. We also found that the m.4317A→G mutation perturbed the conformation, stability, and aminoacylation efficiency of tRNAIle These m.4317A→G mutation-induced alterations in tRNAIle structure and function aggravated the defective mitochondrial translation and respiratory phenotypes associated with the m.1555A→G mutation. Furthermore, mutant cell lines bearing both m.4317A→G and m.1555A→G mutations exhibited greater reductions in the mitochondrial ATP levels and membrane potentials and increasing production of reactive oxygen species than those carrying only the m.1555A→G mutation. Our findings provide new insights into the pathophysiology of maternally inherited deafness arising from the synergy between mitochondrial 12S rRNA and tRNA mutations.
Collapse
Affiliation(s)
- Feilong Meng
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China.,the Institute of Genetics
| | - Zheyun He
- the Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, and.,the Institute of Liver Diseases, Ningbo Secondary Hospital, Ningbo, Zhejiang 315010, China
| | - Xiaowen Tang
- the Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, and
| | - Jing Zheng
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China.,the Institute of Genetics
| | | | - Yi Zhu
- Department of Otolaryngology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoyan Ren
- the Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, and
| | - Mi Zhou
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China.,the Institute of Genetics
| | - Meng Wang
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China.,the Institute of Genetics
| | - Shasha Gong
- the Institute of Genetics.,the School of Medicine, Taizhou College, Taizhou, Zhejiang 318000, China, and
| | - Jun Qin Mo
- the Department of Pathology, Rady Children's Hospital, University of California at San Diego, San Diego, California 92123
| | - Qiang Shu
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China,
| | - Min-Xin Guan
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China, .,the Institute of Genetics.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and.,Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
10
|
Lechowicz U, Pollak A, Frączak A, Rydzanicz M, Stawiński P, Lorens A, Skarżyński PH, Skarżyński H, Płoski R, Ołdak M. Application of next‑generation sequencing to identify mitochondrial mutations: Study on m.7511T>C in patients with hearing loss. Mol Med Rep 2017; 17:1782-1790. [PMID: 29257206 PMCID: PMC5780123 DOI: 10.3892/mmr.2017.8064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Interruptions in the activity of mitochondria induced by mutations in the mitochondrial genome (mtDNA) can be the source of numerous diseases including hearing loss (HL). One of the mitochondrial variants responsible for HL is the m.7511T>C mutation located in the mitochondrially encoded tRNA serine 1 (UCN) gene. Next-generation sequencing was used to search for the HL mutations in the whole mtDNA of 2 patients with maternal inheritance and real time-polymerase chain reaction was applied for population screening of the m.7511T>C mutation in a group of 1,644 patients with HL. Sequencing of the whole mtDNA in 2 probands revealed a homoplasmic m.7511T>C mutation. Inheritance of the m.7511T>C mutation has been confirmed in examined matrilineal relatives in both families. The mean age of HL onset was 14.1 years old with the mean degree of HL equaling 74.8 dB. A large-scale search for the m.7511T>C mutation among the patients with HL established the frequency of the m.7511T>C mutation at 0.12% among Polish patients with HL. In conclusion, this first report on central European patients harboring the m.7511T>C mutation reveals that the m.7511T>C may be important when diagnosing patients with maternally inherited HL.
Collapse
Affiliation(s)
- Urszula Lechowicz
- Department of Genetics, World Hearing Center, Institute of Physiology and Pathology of Hearing, 02‑042 Warsaw, Poland
| | - Agnieszka Pollak
- Department of Genetics, World Hearing Center, Institute of Physiology and Pathology of Hearing, 02‑042 Warsaw, Poland
| | - Agnieszka Frączak
- Department of Genetics, World Hearing Center, Institute of Physiology and Pathology of Hearing, 02‑042 Warsaw, Poland
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Center for Biostructure, Medical University of Warsaw, 02‑106 Warsaw, Poland
| | - Piotr Stawiński
- Department of Genetics, World Hearing Center, Institute of Physiology and Pathology of Hearing, 02‑042 Warsaw, Poland
| | - Artur Lorens
- Department of Implants and Auditory Perception, Institute of Physiology and Pathology of Hearing, 02‑042 Warsaw, Poland
| | - Piotr H Skarżyński
- World Hearing Center, Institute of Physiology and Pathology of Hearing, 02‑042 Warsaw, Poland
| | - Henryk Skarżyński
- Oto‑Rhino‑Laryngology Surgery Clinic, Institute of Physiology and Pathology of Hearing, 02‑042 Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Center for Biostructure, Medical University of Warsaw, 02‑106 Warsaw, Poland
| | - Monika Ołdak
- Department of Genetics, World Hearing Center, Institute of Physiology and Pathology of Hearing, 02‑042 Warsaw, Poland
| |
Collapse
|
11
|
Meng F, Cang X, Peng Y, Li R, Zhang Z, Li F, Fan Q, Guan AS, Fischel-Ghosian N, Zhao X, Guan MX. Biochemical Evidence for a Nuclear Modifier Allele (A10S) in TRMU (Methylaminomethyl-2-thiouridylate-methyltransferase) Related to Mitochondrial tRNA Modification in the Phenotypic Manifestation of Deafness-associated 12S rRNA Mutation. J Biol Chem 2017; 292:2881-2892. [PMID: 28049726 DOI: 10.1074/jbc.m116.749374] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/15/2016] [Indexed: 11/06/2022] Open
Abstract
Nuclear modifier gene(s) was proposed to modulate the phenotypic expression of mitochondrial DNA mutation(s). Our previous investigations revealed that a nuclear modifier allele (A10S) in TRMU (methylaminomethyl-2-thiouridylate-methyltransferase) related to tRNA modification interacts with 12S rRNA 1555A→G mutation to cause deafness. The A10S mutation resided at a highly conserved residue of the N-terminal sequence. It was hypothesized that the A10S mutation altered the structure and function of TRMU, thereby causing mitochondrial dysfunction. Using molecular dynamics simulations, we showed that the A10S mutation introduced the Ser10 dynamic electrostatic interaction with the Lys106 residue of helix 4 within the catalytic domain of TRMU. The Western blotting analysis displayed the reduced levels of TRMU in mutant cells carrying the A10S mutation. The thermal shift assay revealed the Tm value of mutant TRMU protein, lower than that of the wild-type counterpart. The A10S mutation caused marked decreases in 2-thiouridine modification of U34 of tRNALys, tRNAGlu and tRNAGln However, the A10S mutation mildly increased the aminoacylated efficiency of tRNAs. The altered 2-thiouridine modification worsened the impairment of mitochondrial translation associated with the m.1555A→G mutation. The defective translation resulted in the reduced activities of mitochondrial respiration chains. The respiratory deficiency caused the reduction of mitochondrial ATP production and elevated the production of reactive oxidative species. As a result, mutated TRMU worsened mitochondrial dysfunctions associated with m.1555A→G mutation, exceeding the threshold for expressing a deafness phenotype. Our findings provided new insights into the pathophysiology of maternally inherited deafness that was manifested by interaction between mtDNA mutation and nuclear modifier gene.
Collapse
Affiliation(s)
- Feilong Meng
- From the Division of Medical Genetics and Genomics, Zhejiang Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,the Institute of Genetics and
| | - Xiaohui Cang
- From the Division of Medical Genetics and Genomics, Zhejiang Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,the Institute of Genetics and
| | - Yanyan Peng
- the Institute of Genetics and.,the Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Ronghua Li
- the Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30307
| | | | | | | | - Anna S Guan
- the Ahmanson Department of Pediatrics, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California 90095, and
| | - Nathan Fischel-Ghosian
- the Ahmanson Department of Pediatrics, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California 90095, and
| | | | - Min-Xin Guan
- From the Division of Medical Genetics and Genomics, Zhejiang Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China, .,the Institute of Genetics and.,the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China.,the Joining Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
12
|
Audiological manifestations in mitochondrial encephalomyopathy lactic acidosis and stroke like episodes (MELAS) syndrome. Clin Neurol Neurosurg 2016; 148:17-21. [DOI: 10.1016/j.clineuro.2016.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 07/10/2015] [Accepted: 04/26/2016] [Indexed: 11/23/2022]
|
13
|
Remenyi V, Inczedy-Farkas G, Komlosi K, Horvath R, Maasz A, Janicsek I, Pentelenyi K, Gal A, Karcagi V, Melegh B, Molnar MJ. Retrospective assessment of the most common mitochondrial DNA mutations in a large Hungarian cohort of suspect mitochondrial cases. MITOCHONDRIAL DNA 2015; 26:572-8. [PMID: 24438288 DOI: 10.3109/19401736.2013.878901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Prevalence estimations for mitochondrial disorders still vary widely and only few epidemiologic studies have been carried out so far. With the present work we aim to give a comprehensive overview about frequencies of the most common mitochondrial mutations in Hungarian patients. A total of 1328 patients were tested between 1999 and 2012. Among them, 882 were screened for the m.3243A > G, m.8344A > G, m.8993T > C/G mutations and deletions, 446 for LHON primary mutations. The mutation frequency in our cohort was 2.61% for the m.3243A > G, 1.47% for the m.8344A > G, 17.94% for Leber's Hereditary Optic Neuropathy (m.3460G > A, m.11778G > A, m.14484T > C) and 0.45% for the m.8993T > C/G substitutions. Single mtDNA deletions were detected in 14.97%, while multiple deletions in 6.01% of the cases. The mutation frequency in Hungarian patients suggestive of mitochondrial disease was similar to other Caucasian populations. Further retrospective studies of different populations are needed in order to accurately assess the importance of mitochondrial diseases and manage these patients.
Collapse
Affiliation(s)
- Viktoria Remenyi
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University , Budapest , Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Iwanicka-Pronicka K, Pollak A, Skórka A, Lechowicz U, Korniszewski L, Westfal P, Skarżyński H, Płoski R. Audio profiles in mitochondrial deafness m.1555A>G and m.3243A>G show distinct differences. Med Sci Monit 2015; 21:694-700. [PMID: 25744662 PMCID: PMC4360812 DOI: 10.12659/msm.890965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Hearing loss is one of the most common symptoms of mitochondrial disorders. However, audiological phenotypes associated with different molecular defects in mtDNA are not yet well characterized. MATERIAL AND METHODS A large cohort of 1499 nonconsanguineous patients aged 5-40 years with hearing loss of unknown etiology was screened for mutations in mtDNA. For further analysis, patients harboring m.1555A>G and m.3243A>G were selected. Hearing status of the patients was assessed by pure tone audiometry. Patterns of audiograms (hearing threshold levels at each examined frequency) were statistically compared among the carriers of the m.1555A>G and the m.3243A>G mutations. RESULTS We identified 20 patients positive for m.1555A>G mutation and 16 patients positive for m.3243A>G change. The frequency of the above transitions was calculated in our cohort as 1.33% and 1.06%, respectively. Seventeen affected family members carrying the mutations were included into the study. Typical shape of the audiograms in patients with m.1555A>G mutation presented a ski-slope pattern, whereas the audiometric curves among the m.3243A>G individuals had a pantonal shape (a flat curve) with slight downward sloping at the higher frequencies. The differences were statistically significant. The onset of hearing loss was noted earlier among m.1555A>G than m.3243A>G patients (12.5 and 26 years, respectively). Aminoglycoside administration was declared in both groups in 11 and 4 cases respectively, and caused abrupt hearing deterioration in all cases. CONCLUSIONS A pattern of audiogram in patients with mitochondrial deafness may suggest a localization of mtDNA mutation. The pathogenesis of the audiometric differences needs further study.
Collapse
Affiliation(s)
| | - Agnieszka Pollak
- Department of Genetics, Institut of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Agata Skórka
- Department of Pediatrics, Warsaw Medical University, Warsaw, Poland
| | - Urszula Lechowicz
- Department of Genetics, Institut of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Lech Korniszewski
- Department of Genetics, Institut of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Przemysław Westfal
- Department of Administration, Children's Memorial Health Institute, Warsaw, Poland
| | - Henryk Skarżyński
- Department of Otorhinolaryngology, Institute of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|