1
|
Wu Y, Bai Z, Jin Y, Zhu H, Dong Y, Gu S, Jin Y. A randomized, double-blind, placebo-controlled clinical study to evaluate the efficacy and safety of Weizmannia coagulans BC99 in the treatment of chronic constipation in adults. Front Nutr 2024; 11:1395083. [PMID: 39119466 PMCID: PMC11306189 DOI: 10.3389/fnut.2024.1395083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Weizmannia coagulans has emerged as a promising candidate for the management of gastrointestinal ailments. The novel strain of Weizmannia coagulans, Weizmannia coagulans BC99 (BC99), displays robust pathogen-inhibiting capabilities, susceptibility to various antibiotics, and a high level of biosafety. Nevertheless, additional research is necessary to fully understand its effectiveness in managing chronic constipation. Methods This study investigates the role of BC99 in alleviating chronic constipation in a double-blind, placebo-controlled, randomized trial, and participants were divided into BC99 (2 billion CFU/d) or placebo (maltodextrin) groups for a 4-week period. Results and discussion Results showed that significant improvements were noted in the BC99 group, with an increase in complete spontaneous bowel movements (CSBM) after 4-week treatment compared to the placebo (p = 0.002). The BC99 group also showed significantly lower Quality of Life (PAC-QOL) scores and reduced Constipation Symptoms (PAC-SYM) scores after 4 weeks of treatment (p < 0.001), indicating symptomatic relief. Notably, BC99 effectively modulated key gut microbiota such as Bifidobacterium and Ruminococcus, linked to crucial metabolic pathways like glutathione metabolism. In all, BC99 is confirmed to be an effective and safe therapeutic option for the relief of adult chronic constipation, enhancing gut microbiota balance and influencing critical metabolic pathways. Clinical trial registration ChiCTR2200065493.
Collapse
Affiliation(s)
- Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Food Microbiology, Luoyang, China
| | - Zhouya Bai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yuehong Jin
- Department of Gastroenterology, Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Hong Zhu
- Department of Gastroenterology, Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Yao Dong
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Food Microbiology, Luoyang, China
| | - Ying Jin
- Department of Gastroenterology, Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
2
|
Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res 2023; 89:101194. [PMID: 36150527 DOI: 10.1016/j.plipres.2022.101194] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB1 and CB2 receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| |
Collapse
|
3
|
Rigoni A, Poulsom R, Jeffery R, Mehta S, Lewis A, Yau C, Giannoulatou E, Feakins R, Lindsay JO, Colombo MP, Silver A. Separation of Dual Oxidase 2 and Lactoperoxidase Expression in Intestinal Crypts and Species Differences May Limit Hydrogen Peroxide Scavenging During Mucosal Healing in Mice and Humans. Inflamm Bowel Dis 2017; 24:136-148. [PMID: 29272487 DOI: 10.1093/ibd/izx024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND DUOX2 and DUOXA2 form the predominant H2O2-producing system in human colorectal mucosa. Inflammation, hypoxia, and 5-aminosalicylic acid increase H2O2 production, supporting innate defense and mucosal healing. Thiocyanate reacts with H2O2 in the presence of lactoperoxidase (LPO) to form hypothiocyanate (OSCN-), which acts as a biocide and H2O2 scavenging system to reduce damage during inflammation. We aimed to discover the organization of Duox2, Duoxa2, and Lpo expression in colonic crypts of Lieberkühn (intestinal glands) of mice and how distributions respond to dextran sodium sulfate (DSS)-induced colitis and subsequent mucosal regeneration. METHODS We studied tissue from DSS-exposed mice and human biopsies using in situ hybridization, reverse transcription quantitative polymerase chain reaction, and cDNA microarray analysis. RESULTS Duox2 mRNA expression was mostly in the upper crypt quintile while Duoxa2 was more apically focused. Most Lpo mRNA was in the basal quintile, where stem cells reside. Duox2 and Duoxa2 mRNA were increased during the induction and resolution of DSS colitis, while Lpo expression did not increase during the acute phase. Patterns of Lpo expression differed from Duox2 in normal, inflamed, and regenerative mouse crypts (P < 0.001). We found no evidence of LPO expression in the human gut. CONCLUSIONS The spatial and temporal separation of H2O2-consuming and -producing enzymes enables a thiocyanate- H2O2 "scavenging" system in murine intestinal crypts to protect the stem/proliferative zones from DNA damage, while still supporting higher H2O2 concentrations apically to aid mucosal healing. The absence of LPO expression in the human gut suggests an alternative mechanism or less protection from DNA damage during H2O2-driven mucosal healing.
Collapse
Affiliation(s)
- Alice Rigoni
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Richard Poulsom
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rosemary Jeffery
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shameer Mehta
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amy Lewis
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Christopher Yau
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Roger Feakins
- Department of Histopathology, The Royal London Hospital, London, UK
| | - James O Lindsay
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Group III phospholipase A 2 promotes colitis and colorectal cancer. Sci Rep 2017; 7:12261. [PMID: 28947740 PMCID: PMC5612992 DOI: 10.1038/s41598-017-12434-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/11/2017] [Indexed: 12/21/2022] Open
Abstract
Lipid mediators play pivotal roles in colorectal cancer and colitis, but only a limited member of the phospholipase A2 (PLA2) subtypes, which lie upstream of various lipid mediators, have been implicated in the positive or negative regulation of these diseases. Clinical and biochemical evidence suggests that secreted PLA2 group III (sPLA2-III) is associated with colorectal cancer, although its precise role remains obscure. Here we have found that sPLA2-III-null (Pla2g3 -/-) mice are highly resistant to colon carcinogenesis. Furthermore, Pla2g3 -/- mice are less susceptible to dextran sulfate-induced colitis, implying that the amelioration of colonic inflammation by sPLA2-III ablation may underlie the protective effect against colon cancer. Lipidomics analysis of the colon revealed significant reduction of pro-inflammatory/pro-tumorigenic lysophosholipids as well as unusual steady-state elevation of colon-protective fatty acids and their oxygenated metabolites in Pla2g3 -/- mice. Overall, our results establish a role of sPLA2-III in the promotion of colorectal inflammation and cancer, expand our understanding of the divergent roles of multiple PLA2 enzymes in the gastrointestinal tract, and point to sPLA2-III as a novel druggable target for colorectal diseases.
Collapse
|
5
|
Chu FF, Esworthy RS, Doroshow JH, Grasberger H, Donko A, Leto TL, Gao Q, Shen B. Deficiency in Duox2 activity alleviates ileitis in GPx1- and GPx2-knockout mice without affecting apoptosis incidence in the crypt epithelium. Redox Biol 2016; 11:144-156. [PMID: 27930931 PMCID: PMC5148781 DOI: 10.1016/j.redox.2016.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
Mice deficient in glutathione peroxidase (GPx)-1 and -2 (GPx1-/-GPx2-/- double knockout or DKO mice) develop very-early-onset (VEO) ileocolitis, suggesting that lack of defense against reactive oxygen species (ROS) renders susceptibility to intestinal inflammation. Two members of ROS-generating NADPH oxidase family, NOX1 and DUOX2, are highly inducible in the intestinal epithelium. Previously, we reported that Nox1 deficiency ameliorated the pathology in DKO mice (Nox1-TKO). The role of Duox2 in ileocolitis of the DKO mice is evaluated here in Duoxa-TKO mice by breeding DKO mice with Duoxa-/- mice (Duoxa-TKO), which do not have Duox2 activity. Similar to Nox1-TKO mice, Duoxa-TKO mice no longer have growth retardation, shortened intestine, exfoliation of crypt epithelium, crypt abscesses and depletion of goblet cells manifested in DKO mice by 35 days of age. Unlike Nox1-TKO mice, Duoxa-TKO mice still have rampant crypt apoptosis, elevated proliferation, partial loss of Paneth cells and diminished crypt density. Treating DKO mice with NOX inhibitors (di-2-thienyliodonium/DTI and thioridazine/THZ) and an antioxidant (mitoquinone/MitoQ) significantly reduced gut pathology. Furthermore, in the inflamed human colon, DUOX protein expression is highly elevated in the apical, lateral and perinuclear membrane along the whole length of gland. Taken together, we conclude that exfoliation of crypt epithelium, but not crypt apoptosis, is a major contributor to inflammation. Both Nox1 and Duox2 induce exfoliation of crypt epithelium, but only Nox1 induces apoptosis. NOX1 and DUOX2 may be potential therapeutic targets for treating ileocolitis in human patients suffering inflammatory bowel disease (IBD). Glutathione peroxidase-1/2-double knockout mice have very-early-onset ileocolitis. By deletion of Nox1 gene expression, the triple knockout mice are without pathology. By deletion of Duoxa, the mice have milder pathology without crypt exfoliation. The Duoxa triple knock mice still have rampant crypt epithelium apoptosis. Several antioxidants and NOX inhibitors reduce gut inflammation in the DKO mice. DKO mice are an excellent animal model for preclinical testing of NOX inhibitors.
Collapse
Affiliation(s)
- Fong-Fong Chu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, China; Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1450 E Duarte Road, Duarte, CA 91010, USA.
| | - R Steven Esworthy
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - James H Doroshow
- Center for Cancer Research and Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Helmut Grasberger
- Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Agnes Donko
- National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Thomas L Leto
- National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Yang ML, Li HQ, Li XZ, Jiang YL, Chen ML, Gao Q. Significance of NADPH oxidases Nox1 and Duox2 expression in mouse colitis. Shijie Huaren Xiaohua Zazhi 2015; 23:1560-1567. [DOI: 10.11569/wcjd.v23.i10.1560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the significance of expression of NADPH oxidases Nox1 and Duox2 in the pathogenesis of mouse colitis.
METHODS: Six-to-eight-week-old C57BL/6 mice were randomly divided into a control group, a 1.5% dextran sulfate sodium (DSS) group and a 3% DSS group (n = 10 for each group). Colitis was induced in mice by giving 1.5% DSS or 3% DSS in drinking water for 6 d, and mice in the control group was given drinking water only. Disease activity index (DAI), colon length and inflammatory score of the colon were observed. Oxidative stress indicators, malondialdehyde (MDA) in serum and oxidized glutathione/glutathione (GSSG/GSH) ratio in colon tissue, were measured by biochemical methods. The protein and mRNA expression of Nox1 and Duox2 in colon tissue of mice was evaluated by immunohistochemistry and quantitative real-time PCR, respectively.
RESULTS: There was no colitis in the control group, while mild and severe enteritis was found in mice in the 1.5% DSS group and 3.0% DSS group, respectively. Oxidative stress (MDA and GSSG/GSH) was enhanced along with the increased concentration of DSS (P < 0.05 for both). The expression of Nox1 and Duox2 protein and mRNA was different with the severity of inflammation: Nox1 protein and mRNA was highly expressed in normal colon epithelial cells, but down-regulated in the 1.5% DSS group (P < 0.05), and further reduced in the 3% DSS group (P < 0.05); Duox2 protein and mRNA expression was increased (P < 0.05) in mice in the 1.5% DSS group compared to the control group, but returned to the control level in the 3% DSS group.
CONCLUSION: Nox1 is mainly involved in the functional and structural maintenance of normal colonic epithelium, while Duox2 may actively participate in the inflammatory pathogenesis besides the physiological process of the colon.
Collapse
|
7
|
Abstract
The mechanism by which reactive oxygen species (ROS) are produced by tumour cells remained incompletely understood until the discovery over the last 15 years of the family of NADPH oxidases (NOXs 1–5 and dual oxidases DUOX1/2) which are structural homologues of gp91phox, the major membrane-bound component of the respiratory burst oxidase of leucocytes. Knowledge of the roles of the NOX isoforms in cancer is rapidly expanding. Recent evidence suggests that both NOX1 and DUOX2 species produce ROS in the gastrointestinal tract as a result of chronic inflammatory stress; cytokine induction (by interferon-γ, tumour necrosis factor α, and interleukins IL-4 and IL-13) of NOX1 and DUOX2 may contribute to the development of colorectal and pancreatic carcinomas in patients with inflammatory bowel disease and chronic pancreatitis, respectively. NOX4 expression is increased in pre-malignant fibrotic states which may lead to carcinomas of the lung and liver. NOX5 is highly expressed in malignant melanomas, prostate cancer and Barrett's oesophagus-associated adenocarcinomas, and in the last it is related to chronic gastro-oesophageal reflux and inflammation. Over-expression of functional NOX proteins in many tissues helps to explain tissue injury and DNA damage from ROS that accompany pre-malignant conditions, as well as elucidating the potential mechanisms of NOX-related damage that contribute to both the initiation and the progression of a wide range of solid and haematopoietic malignancies.
Collapse
|
8
|
Haberman Y, Tickle TL, Dexheimer PJ, Kim MO, Tang D, Karns R, Baldassano RN, Noe JD, Rosh J, Markowitz J, Heyman MB, Griffiths AM, Crandall WV, Mack DR, Baker SS, Huttenhower C, Keljo DJ, Hyams JS, Kugathasan S, Walters TD, Aronow B, Xavier RJ, Gevers D, Denson LA. Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature. J Clin Invest 2014; 124:3617-33. [PMID: 25003194 DOI: 10.1172/jci75436] [Citation(s) in RCA: 370] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/29/2014] [Indexed: 12/13/2022] Open
Abstract
Interactions between the host and gut microbial community likely contribute to Crohn disease (CD) pathogenesis; however, direct evidence for these interactions at the onset of disease is lacking. Here, we characterized the global pattern of ileal gene expression and the ileal microbial community in 359 treatment-naive pediatric patients with CD, patients with ulcerative colitis (UC), and control individuals. We identified core gene expression profiles and microbial communities in the affected CD ilea that are preserved in the unaffected ilea of patients with colon-only CD but not present in those with UC or control individuals; therefore, this signature is specific to CD and independent of clinical inflammation. An abnormal increase of antimicrobial dual oxidase (DUOX2) expression was detected in association with an expansion of Proteobacteria in both UC and CD, while expression of lipoprotein APOA1 gene was downregulated and associated with CD-specific alterations in Firmicutes. The increased DUOX2 and decreased APOA1 gene expression signature favored oxidative stress and Th1 polarization and was maximally altered in patients with more severe mucosal injury. A regression model that included APOA1 gene expression and microbial abundance more accurately predicted month 6 steroid-free remission than a model using clinical factors alone. These CD-specific host and microbe profiles identify the ileum as the primary inductive site for all forms of CD and may direct prognostic and therapeutic approaches.
Collapse
|
9
|
De Deken X, Corvilain B, Dumont JE, Miot F. Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid Redox Signal 2014; 20:2776-93. [PMID: 24161126 DOI: 10.1089/ars.2013.5602] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Among the NADPH oxidases, the dual oxidases, DUOX1 and DUOX2, constitute a distinct subfamily initially called thyroid oxidases, based on their high level of expression in thyroid tissue. Genetic alterations causing inherited hypothyroidism clearly demonstrate their physiological implication in thyroid hormonogenesis. However, a growing list of biological functions triggered by DUOX-dependent reactive oxygen species (ROS) in highly differentiated mucosae have recently emerged. RECENT ADVANCES A role of DUOX enzymes as ROS providers for lactoperoxidase-mediated killing of invading pathogens has been well established and a role in bacteria chemorepulsion has been proposed. Control of DUOX expression and activity by inflammatory molecules and immune receptor activation consolidates their contributions to innate immune defense of mucosal surfaces. Recent studies conducted in ancestral organisms have identified effectors of DUOX redox signaling involved in wound healing including epithelium regeneration and leukocyte recruitment. Moreover, local generation of hydrogen peroxide (H2O2) by DUOX has also been suggested to constitute a positive feedback loop to promote receptor signaling activation. CRITICAL ISSUES A correct balance between H2O2 generation and detoxification mechanisms must be properly maintained to avoid oxidative damages. Overexpression of DUOX genes has been associated with an increasing number of chronic inflammatory diseases. Furthermore, H2O2-mediated DNA damage supports a mutagenic function promoting tumor development. FUTURE DIRECTIONS Despite the high sequence similarity shared between DUOX1 and DUOX2, the two isoforms present distinct regulations, tissue expression and catalytic functions. The phenotypic characterization of novel DUOX/DUOXA invalidated animal models will be very useful for defining their medical importance in pathological conditions.
Collapse
Affiliation(s)
- Xavier De Deken
- Faculté de Médecine, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB) , Brussels, Belgium
| | | | | | | |
Collapse
|
10
|
Agbor TA, Demma Z, Mrsny RJ, Castillo A, Boll EJ, McCormick BA. The oxido-reductase enzyme glutathione peroxidase 4 (GPX4) governs Salmonella Typhimurium-induced neutrophil transepithelial migration. Cell Microbiol 2014; 16:1339-53. [PMID: 24617613 PMCID: PMC4146641 DOI: 10.1111/cmi.12290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 01/21/2023]
Abstract
Neutrophil (polymorphonuclear leucocytes; PMN) transmigration across mucosal surfaces contributes to dysfunction of epithelial barrier properties, a characteristic underlying many mucosal inflammatory diseases. Using Salmonella enterica serovar Typhimurium (S. Typhimurium) as a prototypic proinflammatory insult, we have previously reported that the eicosanoid hepoxilin A3 (HXA3), an endogenous product of 12-lipoxygenase (12-LOX) activity, is secreted from the apical surface of the intestinal epithelium to establish a chemotactic gradient that guides PMN across the epithelial surface. Since little is known regarding the molecular mechanisms that regulate 12-LOX during S. Typhimurium infection, we investigated this pathway. We found that expression of phospholipid glutathione peroxidase (GPX4), which is known to have an inhibitory effect on 12-LOX activity, is significantly decreased at both the mRNA and protein level during infection with S. Typhimurium. Moreover, employing intestinal epithelial cell monolayers expressing siRNA against GPX4 mRNA, S. Typhimurium-induced PMN migration was significantly increased compared with the non-specific siRNA control cells. Conversely, in cells engineered to overexpress GPX4, S. Typhimurium-induced PMN migration was significantly decreased, which is consistent with the finding that partial depletion of GPX4 by RNAi resulted in a significant increase in HXA3 secretion during S. Typhimurium infection. Mechanistically, although we found Salmonella entry not to be required for the induced decrease in GPX4, the secreted effector, SipA, which is known to induce epithelial responses leading to stimulation of HXA3, governed the decrease in GPX4 in a process that does not lead to an overall increase in the levels of ROS. Taken together, these results suggest that S. Typhimurium induces apical secretion of HXA3 by decreasing the expression of phospholipid GPX, which in turn leads to an increase in 12-LOX activity, and hence HXA3 synthesis.
Collapse
Affiliation(s)
- Terence A Agbor
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | | | | | | | | | | |
Collapse
|
11
|
Rogala AR, Morgan AP, Christensen AM, Gooch TJ, Bell TA, Miller DR, Godfrey VL, de Villena FPM. The Collaborative Cross as a resource for modeling human disease: CC011/Unc, a new mouse model for spontaneous colitis. Mamm Genome 2014; 25:95-108. [PMID: 24487921 PMCID: PMC3960486 DOI: 10.1007/s00335-013-9499-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/09/2013] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated condition driven by improper responses to intestinal microflora in the context of environmental and genetic background. GWAS in humans have identified many loci associated with IBD, but animal models are valuable for dissecting the underlying molecular mechanisms, characterizing environmental and genetic contributions and developing treatments. Mouse models rely on interventions such as chemical treatment or introduction of an infectious agent to induce disease. Here, we describe a new model for IBD in which the disease develops spontaneously in 20-week-old mice in the absence of known murine pathogens. The model is part of the Collaborative Cross and came to our attention due to a high incidence of rectal prolapse in an incompletely inbred line. Necropsies revealed a profound proliferative colitis with variable degrees of ulceration and vasculitis, splenomegaly and enlarged mesenteric lymph nodes with no discernible anomalies of other organ systems. Phenotypic characterization of the CC011/Unc mice with homozygosity ranging from 94.1 to 99.8% suggested that the trait was fixed and acted recessively in crosses to the colitis-resistant C57BL/6J inbred strain. Using a QTL approach, we identified four loci, Ccc1, Ccc2, Ccc3 and Ccc4 on chromosomes 12, 14, 1 and 8 that collectively explain 27.7% of the phenotypic variation. Surprisingly, we also found that minute levels of residual heterozygosity in CC011/Unc have significant impact on the phenotype. This work demonstrates the utility of the CC as a source of models of human disease that arises through new combinations of alleles at susceptibility loci.
Collapse
Affiliation(s)
- Allison R. Rogala
- Division of Laboratory Animal Medicine, University of North Carolina, Chapel Hill, NC USA
| | - Andrew P. Morgan
- Department of Genetics, Lineberger Comprehensive Cancer Center, and Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC USA
| | - Alexis M. Christensen
- Division of Laboratory Animal Medicine, University of North Carolina, Chapel Hill, NC USA
| | - Terry J. Gooch
- Department of Genetics, Lineberger Comprehensive Cancer Center, and Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC USA
| | - Timothy A. Bell
- Department of Genetics, Lineberger Comprehensive Cancer Center, and Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC USA
| | - Darla R. Miller
- Department of Genetics, Lineberger Comprehensive Cancer Center, and Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC USA
| | - Virginia L. Godfrey
- Division of Laboratory Animal Medicine, University of North Carolina, Chapel Hill, NC USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC USA
- Department of Genetics, Lineberger Comprehensive Cancer Center, and Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
12
|
Esworthy RS, Kim BW, Chow J, Shen B, Doroshow JH, Chu FF. Nox1 causes ileocolitis in mice deficient in glutathione peroxidase-1 and -2. Free Radic Biol Med 2014; 68:315-25. [PMID: 24374371 PMCID: PMC3943970 DOI: 10.1016/j.freeradbiomed.2013.12.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/14/2013] [Accepted: 12/17/2013] [Indexed: 02/06/2023]
Abstract
We previously reported that mice deficient in two Se-dependent glutathione peroxidases, GPx1 and GPx2, have spontaneous ileocolitis. Disease severity depends on mouse genetic background. Whereas C57BL/6J (B6) GPx1/2-double-knockout (DKO) mice have moderate ileitis and mild colitis, 129S1Svlm/J (129) DKO mice have severe ileocolitis. Because GPx's are antioxidant enzymes, we hypothesized that elevated reactive oxygen species trigger inflammation in these DKO mice. To test whether NADPH oxidase 1 (Nox1) contributes to colitis, we generated B6 triple-KO (TKO) mice to study their phenotype. Because the Nox1 gene is X-linked, we analyzed the effects of Nox1 on male B6 TKO mice and female B6 DKO mice with the Nox1(+/-) (het-TKO) genotype. We found that the male TKO and female het-TKO mice are virtually disease-free when monitored from 8 through 50 days of age. Male TKO and female het-TKO mice have nearly no signs of disease (e.g., lethargy and perianal alopecia) that are often exhibited in the DKO mice; further, the slower growth rate of DKO mice is almost completely eliminated in male TKO and female het-TKO mice. Male TKO and female het-TKO mice no longer have the shortened small intestine present in the DKO mice. Finally, the pathological characteristics of the DKO ileum, including the high level of crypt apoptosis (analyzed by apoptotic figures, TUNEL, and cleaved caspase-3 immunohistochemical staining), high numbers of Ki-67-positive crypt epithelium cells, and elevated levels of monocytes expressing myeloperoxidase, are all significantly decreased in male TKO mice. The attenuated ileal and colonic pathology is also evident in female het-DKO mice. Furthermore, the male DKO ileum has eightfold higher TNF cytokine levels than TKO ileum. Nox1 mRNA is highly elevated in both B6 and 129 DKO ileum compared to wild-type mouse ileum. Taking these results together, we propose that ileocolitis in the DKO mice is caused by Nox1, which is induced by TNF. The milder disease in female het-TKO intestine is probably due to random or imprinted X-chromosome inactivation, which produces mosaic Nox1 expression.
Collapse
Affiliation(s)
- Robert S Esworthy
- Department of Radiation Biology and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Byung-Wook Kim
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Joni Chow
- Department of Radiation Biology and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Binghui Shen
- Department of Radiation Biology and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | | | - Fong-Fong Chu
- Department of Radiation Biology and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
13
|
Steven Esworthy R, Kim BW, Wang Y, Gao Q, Doroshow JH, Leto TL, Chu FF. The Gdac1 locus modifies spontaneous and Salmonella-induced colitis in mice deficient in either Gpx2 or Gpx1 gene. Free Radic Biol Med 2013; 65:1273-1283. [PMID: 24090658 PMCID: PMC3875339 DOI: 10.1016/j.freeradbiomed.2013.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 09/06/2013] [Accepted: 09/19/2013] [Indexed: 02/06/2023]
Abstract
We previously identified the Gdac1 (Gpx-deficiency-associated colitis 1) locus, which influences the severity of spontaneous colitis in Gpx1- and Gpx2-double-knockout (Gpx1/2-DKO) mice. Congenic Gpx1/2-DKO mice in the 129S1/SvImJ (129) background but carrying the Gdac1(B6) allele have milder spontaneous colitis than 129 Gpx1/2-DKO mice carrying the Gdac1(129) allele. Here, we evaluated the effect of the Gdac1(B6) allele on 129 strain non-DKO mice that had a wild-type (WT) Gpx1 or Gpx2 allele and WT mice. We found that the congenic Gdac1(B6) Gpx2-KO, Gpx1-KO, and WT mice also had better health than the corresponding 129 mice measured by at least one of the parameters including disease signs, colon length, or weight gain. The Gdac1(B6) allele prevented loss of goblet cells and crypt epithelium exfoliation in the Gpx1/2-DKO mice, but did not affect epithelial cell apoptosis or proliferation. Because Gdac1(B6) affects gut dysbiosis in the DKO mice, we then tested its impact on bacteria-induced colitis in non-DKO mice. First, we found both Gpx1-KO and Gpx2-KO mice were susceptible to Salmonella enterica serotype typhimurium (S. Tm)-induced colitis under conditions where WT B6 and 129 mice were resistant. Second, the S. Tm-infected Gdac1(B6) Gpx1-KO mice had stronger inflammatory responses than 129 Gpx1-KO or 129 Gpx2-KO with both Gdac1 alleles and WT mice by having higher mRNA levels of Nod2, Nox2, Tnf, and Cox2. We conclude that the Gdac1 locus affects both spontaneous and S. Tm-induced colitis in 129 non-DKO mice, although in opposite directions.
Collapse
Affiliation(s)
- R Steven Esworthy
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Byung-Wook Kim
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yufeng Wang
- Department of Gastroenterology and Hepatology, First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | | | - Thomas L Leto
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Fong-Fong Chu
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
14
|
Buettner M, Bleich A. Mapping colitis susceptibility in mouse models: distal chromosome 3 contains major loci related to Cdcs1. Physiol Genomics 2013; 45:925-30. [PMID: 24022218 DOI: 10.1152/physiolgenomics.00084.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) summarizes a group of chronic intestinal disorders with Crohn's disease and ulcerative colitis being most prominent. Though much effort is put into identification of causative factors, its etiology is still not understood. Risk factors for disease development include genetic predisposition and environmental triggers. Crucial for identification and analysis of relevant factors are mouse models. Experimental IBD in mice occurs spontaneously or is induced by chemicals, cell transfer, pathogens, or genetic mutation. These models were utilized for analyzing genetic contribution to disease and genotype-environmental interactions. In these studies, a variety of modifier loci were identified, thereby demonstrating the complexity of disease. A major contribution of distal chromosome 3 was independently replicated in several studies. The first colitogenic QTL in this region was detected using the IL-10-deficient mouse model and called cytokine deficiency-induced colitis susceptibility (Cdcs)1. This quantitative trait locus contains at least three subintervals with independent genetic factors. This locus or defined subintervals were replicated in at least seven studies, using models based on dysregulation of innate or adaptive immunity or pathogen control. In this review we illustrate the various models used for genetic mapping of susceptibility to experimental IBD and display Cdcs1-related loci as well as the mechanism of their contribution identified so far.
Collapse
Affiliation(s)
- Manuela Buettner
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|