1
|
Starowicz G, Siodłak D, Nowak G, Mlyniec K. The role of GPR39 zinc receptor in the modulation of glutamatergic and GABAergic transmission. Pharmacol Rep 2023; 75:609-622. [PMID: 36997827 DOI: 10.1007/s43440-023-00478-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Despite our poor understanding of the pathophysiology of depression, a growing body of evidence indicates the role of both glutamate and gamma-aminobutyric acid (GABA) signaling behind the effects of rapid-acting antidepressants (RAADs). GPR39 is a zinc-sensing receptor whose activation leads to a prolonged antidepressant-like response in mice. Both GPR39 and zinc can modulate glutamatergic and GABAergic neurotransmission, however, exact molecular mechanisms are still elusive. In this study, we aimed to research the role of glutamatergic and GABAergic system activation in TC-G 1008 antidepressant-like effects and the disruptions in this effect caused by a low-zinc diet. METHODS In the first part of our study, we investigated the role of joint administration of the GPR39 agonist (TC-G 1008) and ligands of the glutamatergic or GABAergic systems, in antidepressant-like response. To evaluate animal behaviour we used the forced swim test in mice. In the second part of the study, we assessed the effectiveness of TC-G 1008-induced antidepressant-like response in conditions of decreased dietary zinc intake and its molecular underpinning by conducting a Western Blot analysis of selected proteins involved in glutamatergic and GABAergic neurotransmission. RESULTS The TC-G 1008-induced effect was blocked by the administration of NMDA or picrotoxin. The joint administration of TC-G 1008 along with muscimol or SCH50911 showed a trend toward decreased immobility time. Zinc-deficient diet resulted in dysregulation of GluN1, PSD95, and KCC2 protein expression. CONCLUSIONS Our findings indicate the important role of glutamate/GABA signaling in the antidepressant-like effect of TC-G 1008 and imply that GPR39 regulates the balance between excitatory and inhibitory activity in the brain. Thus, we suggest the zinc-sensing receptor be considered an interesting new target for the development of novel antidepressants.
Collapse
Affiliation(s)
- Gabriela Starowicz
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Dominika Siodłak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
- Laboratory of Trace Elements Neurobiology, Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| |
Collapse
|
2
|
Prophylactic Zinc Administration Combined with Swimming Exercise Prevents Cognitive-Emotional Disturbances and Tissue Injury following a Transient Hypoxic-Ischemic Insult in the Rat. Behav Neurol 2022; 2022:5388944. [PMID: 35637877 PMCID: PMC9146809 DOI: 10.1155/2022/5388944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/04/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Exercise performance and zinc administration individually yield a protective effect on various neurodegenerative models, including ischemic brain injury. Therefore, this work was aimed at evaluating the combined effect of subacute prophylactic zinc administration and swimming exercise in a transient cerebral ischemia model. The prophylactic zinc administration (2.5 mg/kg of body weight) was provided every 24 h for four days before a 30 min common carotid artery occlusion (CCAO), and 24 h after reperfusion, the rats were subjected to swimming exercise in the Morris Water Maze (MWM). Learning was evaluated daily for five days, and memory on day 12 postreperfusion; anxiety or depression-like behavior was measured by the elevated plus maze and the motor activity by open-field test. Nitrites, lipid peroxidation, and the activity of superoxide dismutase (SOD) and catalase (CAT) were assessed in the temporoparietal cortex and hippocampus. The three nitric oxide (NO) synthase isoforms, chemokines, and their receptor levels were measured by ELISA. Nissl staining evaluated hippocampus cytoarchitecture and Iba-1 immunohistochemistry activated the microglia. Swimming exercise alone could not prevent ischemic damage but, combined with prophylactic zinc administration, reversed the cognitive deficit, decreased NOS and chemokine levels, prevented tissue damage, and increased Iba-1 (+) cell number. These results suggest that the subacute prophylactic zinc administration combined with swimming exercise, but not the individual treatment, prevents the ischemic damage on day 12 postreperfusion in the transient ischemia model.
Collapse
|
3
|
Zhang Y, Fang X, Ascota L, Li L, Guerra L, Vega A, Salinas A, Gonzalez A, Garza C, Tsin A, Hell JW, Ames JB. Zinc-chelating postsynaptic density-95 N-terminus impairs its palmitoyl modification. Protein Sci 2021; 30:2246-2257. [PMID: 34538002 DOI: 10.1002/pro.4187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023]
Abstract
Chemical synaptic transmission represents the most sophisticated dynamic process and is highly regulated with optimized neurotransmitter balance. Imbalanced transmitters can lead to transmission impairments, for example, intracellular zinc accumulation is a hallmark of degenerating neurons. However, the underlying mechanisms remain elusive. Postsynaptic density protein-95 (PSD-95) is a primary postsynaptic membrane-associated protein and the major scaffolding component in the excitatory postsynaptic densities, which performs substantial functions in synaptic development and maturation. Its membrane association induced by palmitoylation contributes largely to its regulatory functions at postsynaptic sites. Unlike other structural domains in PSD-95, the N-terminal region (PSD-95NT) is flexible and interacts with various targets, which modulates its palmitoylation of two cysteines (C3/C5) and glutamate receptor distributions in postsynaptic densities. PSD-95NT contains a putative zinc-binding motif (C2H2) with undiscovered functions. This study is the first effort to investigate the interaction between Zn2+ and PSD-95NT. The NMR titration of 15 N-labeled PSD-95NT by ZnCl2 was performed and demonstrated Zn2+ binds to PSD-95NT with a binding affinity (Kd ) in the micromolar range. The zinc binding was confirmed by fluorescence and mutagenesis assays, indicating two cysteines and two histidines (H24, H28) are critical residues for the binding. These results suggested the concentration-dependent zinc binding is likely to influence PSD-95 palmitoylation since the binding site overlaps the palmitoylation sites, which was verified by the mimic PSD-95 palmitoyl modification and intact cell palmitoylation assays. This study reveals zinc as a novel modulator for PSD-95 postsynaptic membrane association by chelating its N-terminal region, indicative of its importance in postsynaptic signaling.
Collapse
Affiliation(s)
- Yonghong Zhang
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Xiaoqian Fang
- Department of Molecular Science, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Luis Ascota
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA.,Department of Molecular Science, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Libo Li
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA.,Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, China
| | - Lili Guerra
- Department of Molecular Science, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Audrey Vega
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Amanda Salinas
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Andrea Gonzalez
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Claudia Garza
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Andrew Tsin
- Department of Molecular Science, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, California, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, California, USA
| |
Collapse
|
4
|
Berríos-Cartagena N, Rubio-Dávila MM, Rivera-Delgado I, Feliciano-Bonilla MM, De Cardona-Juliá EA, Ortiz JG. Effects of Zinc, Mercury, or Lead on [ 3H]MK-801 and [ 3H]Fluorowillardiine Binding to Rat Synaptic Membranes. Neurochem Res 2021; 46:3159-3165. [PMID: 34370167 DOI: 10.1007/s11064-021-03407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022]
Abstract
Glutamate (Glu) is considered the most important excitatory amino acid neurotransmitter in the mammalian Central Nervous System. Zinc (Zn) is co-released with Glu during synaptic transmission and interacts with Glutamate receptors and transporters. We performed binding experiments using [3H]MK-801 (NMDA), and [3H]Fluorowillardine (AMPA) as ligands to study Zn-Glutamate interactions in rat cortical synaptic membranes. We also examined the effects of mercury and lead on NMDA or AMPA receptors. Zinc at 1 nM, significantly potentiates [3H]MK-801 binding. Lead inhibits [3H]MK-801 binding at micromolar concentrations. At millimolar concentrations, Hg also has a significant inhibitory effect. These effects are not reversed by Zn (1 nM). Zinc displaces the [3H]FW binding curve to the right. Lead (nM) and Hg (μM) inhibit [3H]FW binding. At certain concentrations, Zn reverses the effects of these metals on [3H]FW binding. These specific interactions serve to clarify the role of Zn, Hg, and Pb in physiological and pathological conditions.
Collapse
Affiliation(s)
- N Berríos-Cartagena
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - M M Rubio-Dávila
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - I Rivera-Delgado
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - M M Feliciano-Bonilla
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - E A De Cardona-Juliá
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - J G Ortiz
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico.
| |
Collapse
|
5
|
Schizophrenia-associated SLC39A8 polymorphism is a loss-of-function allele altering glutamate receptor and innate immune signaling. Transl Psychiatry 2021; 11:136. [PMID: 33608496 PMCID: PMC7895948 DOI: 10.1038/s41398-021-01262-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/02/2021] [Indexed: 11/08/2022] Open
Abstract
Schizophrenia is a complex and heterogenous disease that presents with abnormalities in glutamate signaling and altered immune and inflammatory signals. Genome-wide association studies have indicated specific genes and pathways that may contribute to schizophrenia. We assessed the impact of the functional missense variant SLC39A8 (ZIP8)-A391T (ZIP8A391T) on zinc transport, glutamate signaling, and the neuroinflammatory response. The ZIP8A391T mutation resulted in reduced zinc transport into the cell, suggesting a loss in the tight control of zinc in the synaptic cleft. Electrophysiological recordings from perturbed neurons revealed a significant reduction in NMDA- and AMPA-mediated spontaneous EPSCs (sEPSCs) and a reduction in GluN2A and GluA1/2/3 receptor surface expression. All phenotypes were rescued by re-expression of wild-type ZIP8 (ZIP8WT) or application of the membrane-impermeable zinc chelator ZX1. ZIP8 reduction also resulted in decreased BBB integrity, increased IL-6/IL-1β protein expression, and increased NFκB following TNFα stimulation, indicating that ZIP8 loss-of-function may exacerbate immune and inflammatory signals. Together, our findings demonstrate that the A391T missense mutation results in alterations in glutamate and immune function and provide novel therapeutic targets relevant to schizophrenia.
Collapse
|
6
|
Torabi M, Kesmati M, Galehdari H, Varzi HN, Pourreza N. MgO and ZnO nanoparticles anti-nociceptive effect modulated by glutamate level and NMDA receptor expression in the hippocampus of stressed and non-stressed rats. Physiol Behav 2019; 214:112727. [PMID: 31676262 DOI: 10.1016/j.physbeh.2019.112727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/01/2019] [Accepted: 10/26/2019] [Indexed: 12/19/2022]
Abstract
The anti-nociceptive mechanisms of MgO and ZnO nanoparticles have not been thoroughly investigated; in this study, we evaluated the effects of anti-nociceptive dose of MgO and ZnO NPs on glutamate level and NMDA receptor subunits expression (NR1, NR2 and NR2B) in the rat whole hippocampus with and without acute restraint stress. Adult rats were divided into control, MgO and ZnO NPs 5 mg/kg, the stress of 90 min alone and with MgO or ZnO NPs 5 mg/kg groups. All components injected intraperitoneally and the nociceptive response was measured with hot plate apparatus 90 min after injections or stress induction. Magnesium, zinc, glutamate levels and NMDA receptor subunits expression were measured in the animal hippocampus. MgO NPs, ZnO NPs and acute stress induced anti-nociceptive effect. MgO NPs observably decreased glutamate and increased magnesium levels and NR2B subunit expression. ZnO NPs decreased glutamate level. Stress elevated endogenous magnesium and zinc levels and also the NR2B expression, but did not change glutamate level. MgO and ZnO NPs in the presence of stress increased the glutamate level and ZnO NPs increased the zinc and the NR2A expression. Stress decreased endogenous magnesium in the hippocampus. MgO and ZnO NPs could affect pain perception by changing glutamate level in the whole hippocampus tissue, while ion level changes followed by injection could probably affect the gene expression in the presence and the absence of stress. It seems that stress indirectly could adverse nanoparticles effects on glutamate level and increase zinc ion releasing from ZnO NPs by activating the gene expression without affecting pain perception.
Collapse
Affiliation(s)
- Mozhgan Torabi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mahnaz Kesmati
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Hamid Galehdari
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Biotechnology and Bioscience Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hossein Najafzadeh Varzi
- Cellular, and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nahid Pourreza
- Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
7
|
Chuang SH, Reddy DS. Zinc reduces antiseizure activity of neurosteroids by selective blockade of extrasynaptic GABA-A receptor-mediated tonic inhibition in the hippocampus. Neuropharmacology 2018; 148:244-256. [PMID: 30471294 DOI: 10.1016/j.neuropharm.2018.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 01/31/2023]
Abstract
Zinc is an abundant trace metal in the hippocampus nerve terminals. Previous studies demonstrate the ability of zinc to selectively block neurosteroid-sensitive, extrasynaptic GABA-A receptors in the hippocampus (Carver et al, 2016). Here we report that zinc prevents the seizure protective effects of the synthetic neurosteroid ganaxolone (GX) in an experimental model of epilepsy. GABA-gated and tonic currents were recorded from dissociated dentate gyrus granule cells (DGGCs), CA1 pyramidal cells (CA1PCs), and hippocampal slices from adult mice. Antiseizure effects of GX and the reversal of these effects by zinc were evaluated in fully-kindled mice expressing generalized (stage 5) seizures. In electrophysiological studies, zinc blocked the GABA-evoked and GX-potentiated GABA-gated chloride currents in DGGCs and CA1PCs in a concentration-dependent fashion similar to the competitive GABA-A receptor antagonists bicuculline and gabazine. Zinc completely blocked GX potentiation of extrasynaptic tonic currents, but not synaptic phasic currents. In hippocampus kindling studies, systemic administration of GX produced a dose-dependent suppression of behavioral and electrographic seizures in fully-kindled mice with complete seizure protection at the 10 mg/kg dose. However, the antiseizure effects of GX were significantly prevented by intrahippocampal administration of zinc (ED50, 150 μM). The zinc antagonistic response was reversible as animals responded normally to GX administration 24 h post-zinc blockade. These results demonstrate that zinc reduces the antiseizure effects of GX by selectively blocking extrasynaptic δGABA-A receptors in the hippocampus. These pharmacodynamic interactions have clinical implications in neurosteroid therapy for brain conditions associated with zinc fluctuations.
Collapse
Affiliation(s)
- Shu-Hui Chuang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
| |
Collapse
|
8
|
Swiatkowski P, Sewell E, Sweet ES, Dickson S, Swanson RA, McEwan SA, Cuccolo N, McDonnell ME, Patel MV, Varghese N, Morrison B, Reitz AB, Meaney DF, Firestein BL. Cypin: A novel target for traumatic brain injury. Neurobiol Dis 2018; 119:13-25. [PMID: 30031156 DOI: 10.1016/j.nbd.2018.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Cytosolic PSD-95 interactor (cypin), the primary guanine deaminase in the brain, plays key roles in shaping neuronal circuits and regulating neuronal survival. Despite this pervasive role in neuronal function, the ability for cypin activity to affect recovery from acute brain injury is unknown. A key barrier in identifying the role of cypin in neurological recovery is the absence of pharmacological tools to manipulate cypin activity in vivo. Here, we use a small molecule screen to identify two activators and one inhibitor of cypin's guanine deaminase activity. The primary screen identified compounds that change the initial rate of guanine deamination using a colorimetric assay, and secondary screens included the ability of the compounds to protect neurons from NMDA-induced injury and NMDA-induced decreases in frequency and amplitude of miniature excitatory postsynaptic currents. Hippocampal neurons pretreated with activators preserved electrophysiological function and survival after NMDA-induced injury in vitro, while pretreatment with the inhibitor did not. The effects of the activators were abolished when cypin was knocked down. Administering either cypin activator directly into the brain one hour after traumatic brain injury significantly reduced fear conditioning deficits 5 days after injury, while delivering the cypin inhibitor did not improve outcome after TBI. Together, these data demonstrate that cypin activation is a novel approach for improving outcome after TBI and may provide a new pathway for reducing the deficits associated with TBI in patients.
Collapse
Affiliation(s)
- Przemyslaw Swiatkowski
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA; Graduate Program in Molecular Biosciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Emily Sewell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6391, USA
| | - Eric S Sweet
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA; Graduate Program in Neurosciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Samantha Dickson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6391, USA
| | - Rachel A Swanson
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Sara A McEwan
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA; Graduate Program in Neurosciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Nicholas Cuccolo
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Mark E McDonnell
- Fox Chase Chemical Diversity Center, Inc., Doylestown, PA 18902, USA
| | - Mihir V Patel
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA; Graduate Program in Neurosciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Nevin Varghese
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Allen B Reitz
- Fox Chase Chemical Diversity Center, Inc., Doylestown, PA 18902, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6391, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA.
| |
Collapse
|
9
|
Shivarama Shetty M, Sajikumar S. 'Tagging' along memories in aging: Synaptic tagging and capture mechanisms in the aged hippocampus. Ageing Res Rev 2017; 35:22-35. [PMID: 28065806 DOI: 10.1016/j.arr.2016.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/12/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023]
Abstract
Aging is accompanied by a general decline in the physiological functions of the body with the deteriorating organ systems. Brain is no exception to this and deficits in cognitive functions are quite common in advanced aging. Though a variety of age-related alterations are observed in the structure and function throughout the brain, certain regions show selective vulnerability. Medial temporal lobe, especially the hippocampus, is one such preferentially vulnerable region and is a crucial structure involved in the learning and long-term memory functions. Hippocampal synaptic plasticity, such as long-term potentiation (LTP) and depression (LTD), are candidate cellular correlates of learning and memory and alterations in these properties have been well documented in aging. A related phenomenon called synaptic tagging and capture (STC) has been proposed as a mechanism for cellular memory consolidation and to account for temporal association of memories. Mounting evidences from behavioral settings suggest that STC could be a physiological phenomenon. In this article, we review the recent data concerning STC and provide a framework for how alterations in STC-related mechanisms could contribute to the age-associated memory impairments. The enormity of impairment in learning and memory functions demands an understanding of age-associated memory deficits at the fundamental level given its impact in the everyday tasks, thereby in the quality of life. Such an understanding is also crucial for designing interventions and preventive measures for successful brain aging.
Collapse
|
10
|
Sun Y, Zhan L, Cheng X, Zhang L, Hu J, Gao Z. The Regulation of GluN2A by Endogenous and Exogenous Regulators in the Central Nervous System. Cell Mol Neurobiol 2017; 37:389-403. [PMID: 27255970 DOI: 10.1007/s10571-016-0388-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/25/2016] [Indexed: 12/25/2022]
Abstract
The NMDA receptor is the most widely studied ionotropic glutamate receptor, and it is central to many physiological and pathophysiological processes in the central nervous system. GluN2A is one of the two main types of GluN2 NMDA receptor subunits in the forebrain. The proper activity of GluN2A is important to brain function, as the abnormal regulation of GluN2A may induce some neuropsychiatric disorders. This review will examine the regulation of GluN2A by endogenous and exogenous regulators in the central nervous system.
Collapse
Affiliation(s)
- Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Liying Zhan
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, People's Republic of China
| | - Xiaokun Cheng
- North China Pharmaceutical Group New Drug Research and Development Co., Ltd, Shijiazhuang, 050015, People's Republic of China
| | - Linan Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Jie Hu
- School of Nursing, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, People's Republic of China.
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
11
|
Shetty MS, Sharma M, Sajikumar S. Chelation of hippocampal zinc enhances long-term potentiation and synaptic tagging/capture in CA1 pyramidal neurons of aged rats: implications to aging and memory. Aging Cell 2017; 16:136-148. [PMID: 27633878 PMCID: PMC5242293 DOI: 10.1111/acel.12537] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2016] [Indexed: 01/08/2023] Open
Abstract
Aging is associated with decline in cognitive functions, prominently in the memory consolidation and association capabilities. Hippocampus plays a crucial role in the formation and maintenance of long‐term associative memories, and a significant body of evidence shows that impairments in hippocampal function correlate with aging‐related memory loss. A number of studies have implicated alterations in hippocampal synaptic plasticity, such as long‐term potentiation (LTP), in age‐related cognitive decline although exact mechanisms underlying are not completely clear. Zinc deficiency and the resultant adverse effects on cognition have been well studied. However, the role of excess of zinc in synaptic plasticity, especially in aging, is not addressed well. Here, we have investigated the hippocampal zinc levels and the impairments in synaptic plasticity, such as LTP and synaptic tagging and capture (STC), in the CA1 region of acute hippocampal slices from 82‐ to 84‐week‐old male Wistar rats. We report increased zinc levels in the hippocampus of aged rats and also deficits in the tetani‐induced and dopaminergic agonist‐induced late‐LTP and STC. The observed deficits in synaptic plasticity were restored upon chelation of zinc using a cell‐permeable chelator. These data suggest that functional plasticity and associativity can be successfully established in aged neural networks by chelating zinc with cell‐permeable chelating agents.
Collapse
Affiliation(s)
- Mahesh Shivarama Shetty
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; Block MD9, 2 Medical Drive Singapore 117 597 Singapore
- Neurobiology/Aging Program; Life Sciences Institute (LSI); National University of Singapore; #04-44, 28 Medical Drive Singapore 117 456 Singapore
| | - Mahima Sharma
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; Block MD9, 2 Medical Drive Singapore 117 597 Singapore
- Neurobiology/Aging Program; Life Sciences Institute (LSI); National University of Singapore; #04-44, 28 Medical Drive Singapore 117 456 Singapore
| | - Sreedharan Sajikumar
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; Block MD9, 2 Medical Drive Singapore 117 597 Singapore
- Neurobiology/Aging Program; Life Sciences Institute (LSI); National University of Singapore; #04-44, 28 Medical Drive Singapore 117 456 Singapore
| |
Collapse
|
12
|
Manganese-Disrupted Interaction of Dopamine D1 and NMDAR in the Striatum to Injury Learning and Memory Ability of Mice. Mol Neurobiol 2015; 53:6745-6758. [PMID: 26660110 DOI: 10.1007/s12035-015-9602-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
Manganese (Mn) is widely regarded as a neurotoxic heavy metal that causes learning and memory deficits. Recently, it has been proved that the striatum is related to memory and learning ability. However, no previous study focused on the effect of Mn-induced learning and memory deficits on the striatum. This study aims to investigate the probable interaction of dopamine D1 receptor (DR1) and N-methyl-D-aspartate receptor (NMDAR), two cognition-related receptors in the striatum during Mn exposure. Mice are randomly divided into four groups, including control group, 12.5 mg/kg MnCl2 group, 25 mg/kg MnCl2 group, and 50 mg/kg MnCl2 group. The mice receive intraperitoneal injections of 0, 12.5, 25, and 50 mg/kg MnCl2 once daily for 2 weeks. Then, learning and memory ability, pathological changes, expression, and interaction of DR1 and NMDAR are determined. It has been found that Mn disrupted spatial learning and memory ability of mice by Morris water maze test and the passive avoidance test. Pathological and ultrastructure were injured. Mn decreased the immunohistochemical activities, protein levels, and messenger RNA (mRNA) expression of DR1, NR1, and NR2A. Mn exposure inhibited interaction between DR1 and NMDAR in striatum by double immunofluorescent staining and co-immunoprecipitation. In conclusion, our study illustrated that Mn caused learning and memory dysfunction via injury of striatum and inhibition of interaction between DR1 and NMDAR in striatum.
Collapse
|
13
|
Zhu J, Wang Z, Zhang N, Ma J, Xu SL, Wang Y, Shen Y, Li YH. Protein Interacting C-Kinase 1 Modulates Surface Expression of P2Y6 Purinoreceptor, Actin Polymerization and Phagocytosis in Microglia. Neurochem Res 2015; 41:795-803. [DOI: 10.1007/s11064-015-1754-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 10/16/2015] [Accepted: 10/29/2015] [Indexed: 02/05/2023]
|
14
|
Wang G, Yu X, Wang D, Xu X, Chen G, Jiang X. Altered Levels of Zinc and N-methyl-D-aspartic Acid Receptor Underlying Multiple Organ Dysfunctions After Severe Trauma. Med Sci Monit 2015; 21:2613-20. [PMID: 26335029 PMCID: PMC4571529 DOI: 10.12659/msm.895075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/14/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Severe trauma can cause secondary multiple organ dysfunction syndrome (MODS) and death. Oxidative stress and/or excitatory neurotoxicity are considered as the final common pathway in nerve cell injuries. Zinc is the cofactor of the redox enzyme, and the effect of the excitatory neurotoxicity is related to N-methyl-D-aspartic acid receptor (NMDAR). MATERIAL AND METHODS We investigated the levels of zinc and brainstem NMDAR in a rabbit model of severe trauma. Zinc and serum biochemical profiles were determined. Immunohistochemistry was used to detect brainstem N-methyl-D-aspartic acid receptor 1 (NR1), N-methyl-D-aspartic acid receptor 2A (NR2A), and N-methyl-D-aspartic acid receptor 2B (NR2B) expression. RESULTS Brain and brainstem Zn levels increased at 12 h, but serum Zn decreased dramatically after the trauma. NR1 in the brainstem dorsal regions increased at 6 h after injury and then decreased. NR2A in the dorsal regions decreased to a plateau at 12 h after trauma. The levels of NR2B were lowest in the death group in the brainstem. Serum zinc was positively correlated with NR2A and 2B and negatively correlated with zinc in the brain. Correlations were also found between the brainstem NR2A and that of the dorsal brainstem, as well as between brainstem NR2A and changes in NR2B. There was a negative correlation between zinc and NR2A. CONCLUSIONS Severe trauma led to an acute reduction of zinc enhancing oxidative stress and the changes of NMDAR causing the neurotoxicity of the nerve cells. This may be a mechanism for the occurrence of MODS or death after trauma.
Collapse
Affiliation(s)
- Guanghuan Wang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Xiaojun Yu
- Department of Forensic Medicine, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Dian Wang
- Department of Forensic Medicine, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Xiaohu Xu
- Department of Forensic Medicine, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Guang Chen
- Department of Forensic Medicine, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Xuewu Jiang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
- Corresponding Author: Xuewu Jiang, e-mail: , Xiaojun Yu, e-mail:
| |
Collapse
|
15
|
Protein Interacting with C-Kinase 1 Deficiency Impairs Glutathione Synthesis and Increases Oxidative Stress via Reduction of Surface Excitatory Amino Acid Carrier 1. J Neurosci 2015; 35:6429-43. [PMID: 25904794 DOI: 10.1523/jneurosci.3966-14.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Protein interacting with C-kinase 1 (PICK1) has received considerable attention, because it interacts with a broad range of neurotransmitter receptors, transporters, and enzymes and thereby influences their localization and function in the CNS. Although it is suggested that putative partners of PICK1 are involved in neurological diseases such as schizophrenia, Parkinson's disease, chronic pain, and amyotrophic lateral sclerosis, the functions of PICK1 in neurological disorders are not clear. Here, we show that oxidative stress, which is tightly associated with neurological diseases, occurs in PICK1(-/-) mice. The oxidation in PICK1(-/-) mice was found selectively in neurons and was age dependent, leading to microglial activation and the release of inflammatory factors. Neurons in the cortex and hippocampus from PICK1(-/-) mice showed increased vulnerability to oxidants and reduced capacity to metabolize reactive oxygen species (ROS); this was caused by reduced glutathione content and impaired cysteine transport. The dysregulated expression of glutathione was attributed to a decrease of the surface glutamate transporter excitatory amino acid carrier 1 (EAAC1). Overexpression of PICK1 could rescue the surface expression of EAAC1 and ameliorate the glutathione deficit in PICK1(-/-) neurons. Finally, reduced surface EAAC1 was associated with defective Rab11 activity. Transfection with dominant-negative Rab11 effectively suppressed surface EAAC1 and increased ROS production. Together, these results indicate that PICK1 is a crucial regulator in glutathione homeostasis and may play important roles in oxidative stress and its associated neurodegenerative diseases.
Collapse
|
16
|
Li C, Lu Q, Huang P, Fu T, Li C, Guo L, Xu X. Activity-dependent downregulation of M-Type (Kv7) K⁺ channels surface expression requires the activation of iGluRs/Ca²⁺/PKC signaling pathway in hippocampal neuron. Neuropharmacology 2015; 95:154-67. [PMID: 25796298 DOI: 10.1016/j.neuropharm.2015.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 02/26/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
M-type (Kv7) K(+) channels, encoded by KCNQ2-KCNQ5 genes, play a pivotal role in controlling neuronal excitability. However, precisely how neuronal activity regulates Kv7 channel translocation has not yet been fully defined. Here we reported activity-dependent changes in Kv7 channel subunits Kv7.2 and Kv7.3 surface expression by glutamate (glu). In the present study, we found that treatment with glutamate rapidly caused a specific decrease in M-current as well as Kv7 channel surface expression in primary cultured hippocampal neurons. The glutamate effects were mimicked by NMDA and AMPA. The glutamate effects on Kv7 channels were partially attenuated by pre-treatment of NMDA receptors antagonist d,l-APV or AMPA-KA receptors antagonist CNQX. The signal required Ca(2+) influx through L-type Ca(2+) channel and intracellular Ca(2+) elevations. PKC activation was involved in the glutamate-induced reduction of Kv7 channel surface expression. Moreover, a significant reduction of Kv7 channel surface expression occurred following glycine-induced "chem"-LTP in vitro and hippocampus-dependent behavioral learning training in vivo. These results demonstrated that activity-dependent reduction of Kv7 channel surface expression through activation of ionotropic glutamate receptors (iGluRs)/Ca(2+)/PKC signaling pathway might be an important molecular mechanism for regulation of neuronal excitability and synaptic plasticity.
Collapse
Affiliation(s)
- Cai Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengcheng Huang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianli Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Changjun Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lianjun Guo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xulin Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
17
|
Prakash A, Bharti K, Majeed ABA. Zinc: indications in brain disorders. Fundam Clin Pharmacol 2015; 29:131-49. [PMID: 25659970 DOI: 10.1111/fcp.12110] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/08/2014] [Accepted: 12/24/2014] [Indexed: 12/14/2022]
Abstract
Zinc is the authoritative metal which is present in our body, and reactive zinc metal is crucial for neuronal signaling and is largely distributed within presynaptic vesicles. Zinc also plays an important role in synaptic function. At cellular level, zinc is a modulator of synaptic activity and neuronal plasticity in both development and adulthood. Different importers and transporters are involved in zinc homeostasis. ZnT-3 is a main transporter involved in zinc homeostasis in the brain. It has been found that alterations in brain zinc status have been implicated in a wide range of neurological disorders including impaired brain development and many neurodegenerative disorders such as Alzheimer's disease, and mood disorders including depression, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion disease. Furthermore, zinc has also been implicated in neuronal damage associated with traumatic brain injury, stroke, and seizure. Understanding the mechanisms that control brain zinc homeostasis is thus critical to the development of preventive and treatment strategies for these and other neurological disorders.
Collapse
Affiliation(s)
- Atish Prakash
- Brain Degeneration and Therapeutics Group, Brain and Neuroscience Communities of Research, Universiti Teknologi MARA (UiTM), Shah Alam, 40450, Malaysia; Department of Pharmacology, ISF college of Pharmacy, Ghal kalan, Moga, 142-001, India; Brain Research Laboratory, Faculty of Pharmacy, Campus Puncak Alam, Universiti Teknologi MARA (UiTM), Bandar Puncak Alam, 42300, Malaysia
| | | | | |
Collapse
|
18
|
Xie YJ, Zhou L, Jiang N, Zhang N, Zou N, Zhou L, Wang Y, Cowell JK, Shen Y. Essential roles of leucine-rich glioma inactivated 1 in the development of embryonic and postnatal cerebellum. Sci Rep 2015; 5:7827. [PMID: 25591666 PMCID: PMC4296302 DOI: 10.1038/srep07827] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/12/2014] [Indexed: 11/24/2022] Open
Abstract
Leucine-rich glioma inactivated 1 (LGI1) is a secreted protein that interacts with ADAM transmembrane proteins, and its mutations are linked to human epilepsy. The function of LGI1 in CNS development remains undefined. Here, we report novel functions of LGI1 in the generation of cerebellar granule precursors (CGPs) and differentiation of radial glial cells (RGCs) in the cerebellum. A reduction in external granule layer thickness and defects in foliation were seen in embryonic and new-born LGI1 knockout (KO) mice. BrdU staining showed an inhibited proliferation of CGPs in KO embryos, which might be explained by the reduced Sonic hedgehog in embryos. In addition, the differentiation of RGCs into Bergmann glias was suppressed in KO mice. Enhanced Jagged1-Notch1 signaling in KO mice via reduced β-secretase proteolysis suggests that altered phenotype of RGCs is due to abnormal Notch1 signaling. Together, our results demonstrate that LGI1 is an essential player in the cerebellar development.
Collapse
Affiliation(s)
- Ya-Jun Xie
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Zhou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Nanwei Jiang
- Zhejiang Provincial Key Laboratory of Pathophysiology, Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Nan Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| | - Na Zou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Zhou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| | - John K Cowell
- Georgia Regents University, Cancer Center, Augusta, GA, USA
| | - Ying Shen
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
GSK3β promotes the differentiation of oligodendrocyte precursor cells via β-catenin-mediated transcriptional regulation. Mol Neurobiol 2014; 50:507-19. [PMID: 24691545 DOI: 10.1007/s12035-014-8678-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/11/2014] [Indexed: 12/24/2022]
Abstract
Oligodendrocytes are generated by the differentiation and maturation of oligodendrocyte precursor cells (OPCs). The failure of OPC differentiation is a major cause of demyelinating diseases; thus, identifying the molecular mechanisms that affect OPC differentiation is critical for understanding the myelination process and repairing after demyelination. Although prevailing evidence shows that OPC differentiation is a highly coordinated process controlled by multiple extrinsic and intrinsic factors, such as growth factors, axon signals, and transcription factors, the intracellular signaling in OPC differentiation is still unclear. Here, we showed that glycogen synthase kinase 3β (GSK3β) is an essential positive modulator of OPC differentiation. Both pharmacologic inhibition and knockdown of GSK3β remarkably suppressed OPC differentiation. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assays and Ki67 staining showed that the effect of GSK3β on OPC differentiation was not via cell death. Conversely, activated GSK3β was sufficient to promote OPC differentiation. Our results also demonstrated that the transcription of myelin genes was regulated by GSK3β inhibition, accompanying accumulated nuclear β-catenin, and reduced the expression of transcriptional factors that are relevant to the expression of myelin genes. Taken together, our study identified GSK3β as a profound positive regulator of OPC differentiation, suggesting that GSK3β may contribute to the inefficient regeneration of oligodendrocytes and myelin repair after demyelination.
Collapse
|
20
|
Wang Z, Wang YN, Sun CL, Yang D, Su LD, Xie YJ, Zhou L, Wang Y, Shen Y. C-terminal domain of ICA69 interacts with PICK1 and acts on trafficking of PICK1-PKCα complex and cerebellar plasticity. PLoS One 2013; 8:e83862. [PMID: 24358315 PMCID: PMC3865253 DOI: 10.1371/journal.pone.0083862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/08/2013] [Indexed: 01/19/2023] Open
Abstract
Background PICK1 (protein interacting with C-kinase 1) is a PKC (protein kinase C)-binding protein, which is essential for synaptic plasticity. The trafficking of PKCα-PICK1 complex to plasma membrane is critical for the internalization of GluR2 and induction of long-term depression. ICA69 (islet cell autoantigen 69 kDa) is identified as a major binding partner of PICK1. While heteromeric BAR domain complex is suggested to underlie the interaction between PICK1 and ICA69, the role of C-terminal domain of ICA69 (ICAC) in PICK1-ICA69 complex is unknown. Methodology/Principal Findings We found that ICAC interacted with PICK1 and regulated the trafficking of PICK1-PKCα complex. ICAC and ΔICAC (containing BAR domain) might function distinctly in the association of ICA69 with PICK1. While ΔICAC domain inclined to form clusters, the distribution of ICAC was diffuse. The trafficking of PICK1 to plasma membrane mediated by activated PKCα was inhibited by ICA69. This action might ascribe to ICAC, because overexpression of ICAC, but not ΔICAC, interrupted PKCα-mediated PICK1 trafficking. Notably, infusion of maltose binding protein (MBP) fusion protein, MBP-ICA69 or MBP-ICAC, in cerebellar Purkinje cells significantly inhibited the induction of long-term depression at parallel fiber- and climbing fiber-Purkinje cell synapses. Conclusions Our experiments showed that ICAC is an important domain for the ICA69-PICK1 interaction and plays essential roles in PICK1-mediated neuronal plasticity.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Ya-Nan Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Cheng-Long Sun
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Dong Yang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Li-Da Su
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Ya-Jun Xie
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Lin Zhou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Yin Wang
- Department of Neurobiology, Center of Scientific Technology, Cranial Cerebral Disease Laboratory, Ningxia Medical University, Yinchuan, P. R. China
| | - Ying Shen
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, P. R. China
- * E-mail:
| |
Collapse
|
21
|
Ji YF, Zhou L, Xie YJ, Xu SM, Zhu J, Teng P, Shao CY, Wang Y, Luo JH, Shen Y. Upregulation of glutamate transporter GLT-1 by mTOR-Akt-NF-кB cascade in astrocytic oxygen-glucose deprivation. Glia 2013; 61:1959-75. [PMID: 24108520 DOI: 10.1002/glia.22566] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 07/24/2013] [Accepted: 07/30/2013] [Indexed: 01/13/2023]
Abstract
Excessive extracellular glutamate leads to neuronal death in central nervous system. Excitatory glutamate transporter subtype 2 (GLT-1) carries bulk of glutamate reuptake in cerebral ischemia. Although GLT-1 expression fluctuates during the period of ischemia, little is known about its regulatory mechanism. Here we show an up-regulation of GLT-1 via mammalian target of rapamycin (mTOR)-Akt-nuclear factor-кB (NF-кB) signaling cascade in oxygen glucose deprivation (OGD). We found that brief rapamycin treatment significantly increased GLT-1 expression in cultured astrocytes. Rapamycin increased phosphorylation of raptor at Ser792 and decreased phosphorylation of rictor at Thr1135, suggesting that both mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) are involved in GLT-1 expression. This conclusion was further confirmed by raptor and rictor disruption experiments. Akt was activated by mTORC1 inhibition and required for GLT-1 expression because triciribine, a specific inhibitor of Akt, blocked the increase of GLT-1 expression. mTOR-Akt cascade then activated NF-кB and increased кB-motif-binding phosphoprotein (KBBP) expression and GLT-1 transcription. We next demonstrated that mTOR-Akt-NF-кB cascade was activated in OGD and subsequently caused the upregulation of GLT-1. Supporting evidence included: (1) inhibition of Akt or NF-кB occluded OGD-induced GLT-1 upregulation; (2) Raptor knock-down plus OGD did not add to the increase of GLT-1 expression; (3) Intact mTORC2 was required for GLT-1 enhancement. In summary, our data first showed that mTOR-Akt-NF-кB cascade played critical roles to up-regulate GLT-1 in OGD. This signaling cascade may work to promote glutamate uptake in brain ischemia and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Fei Ji
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Teng P, Li Y, Cheng W, Zhou L, Shen Y, Wang Y. Neuroprotective effects of Lycium barbarum polysaccharides in lipopolysaccharide-induced BV2 microglial cells. Mol Med Rep 2013; 7:1977-81. [PMID: 23620217 DOI: 10.3892/mmr.2013.1442] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/22/2013] [Indexed: 11/06/2022] Open
Abstract
Polysaccharides extracted from Lycium barbarum (LBPs) possess a wide variety of biological activities. However, their neuroprotective effects have not yet been fully elucidated. The aim of the present study was to investigate the inhibitory effects of LBPs on the production of lipopolysaccharide (LPS)‑induced proinflammatory mediators in BV2 microglia. BV2 mouse microglial cells were cultured and an MTT assay was performed to determine whether LBPs had an effect on the apoptosis of LPS-stimulated BV2 cells. Our data showed that LPS induced the activation of nuclear factor‑κB (NF‑κB) and its upstream protein caspase 3, upregulated the expression of an additional apoptosis‑inducing factor, heat shock protein 60 (HSP60), in BV2 microglial cells and increased the release of TNF-α and HSP60 in the culture media. Following treatment with LBPs, the activated NF‑κB and caspase 3 were significantly suppressed. Furthermore, the enhanced expression of HSP60 was reduced and the LPS-induced release of TNF-α and HSP60 were inhibited. These results suggest that LBPs may have therapeutic potential for the treatment of neurodegenerative diseases that are accompanied by microglial activation.
Collapse
Affiliation(s)
- Peng Teng
- Department of Neurobiology, Basic Medical College, Center of Scientific Technology, Cranial Cerebral Disease Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | | | | | | | | | | |
Collapse
|
23
|
Shao CY, Zhu J, Xie YJ, Wang Z, Wang YN, Wang Y, Su LD, Zhou L, Zhou TH, Shen Y. Distinct functions of nuclear distribution proteins LIS1, Ndel1 and NudCL in regulating axonal mitochondrial transport. Traffic 2013; 14:785-97. [PMID: 23551859 DOI: 10.1111/tra.12070] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 03/26/2013] [Accepted: 03/30/2013] [Indexed: 11/27/2022]
Abstract
Neurons critically depend on the long-distance transport of mitochondria. Motor proteins kinesin and dynein control anterograde and retrograde mitochondrial transport, respectively in axons. The regulatory molecules that link them to mitochondria need to be better characterized. Nuclear distribution (Nud) family proteins LIS1, Ndel1 and NudCL are critical components of cytoplasmic dynein complex. Roles of these Nud proteins in neuronal mitochondrial transport are unknown. Here we report distinct functions of LIS1, Ndel1 and NudCL on axonal mitochondrial transport in cultured hippocampal neurons. We found that LIS1 interacted with kinsein family protein KIF5b. Depletion of LIS1 enormously suppressed mitochondrial motility in both anterograde and retrograde directions. Inhibition of either Ndel1 or NudCL only partially reduced retrograde mitochondrial motility. However, knocking down both Ndel1 and NudCL almost blocked retrograde mitochondrial transport, suggesting these proteins may work together to regulate retrograde mitochondrial transport through linking dynein-LIS1 complex. Taken together, our results uncover novel roles of LIS1, Ndel1 and NudCL in the transport of mitochondria in axons.
Collapse
Affiliation(s)
- Chong-Yu Shao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|