1
|
Giske J, Dumitru ML, Enberg K, Folkedal O, Handeland SO, Higginson AD, Opdal AF, Rønnestad I, Salvanes AGV, Vollset KW, Zennaro FM, Mangel M, Budaev S. Premises for digital twins reporting on Atlantic salmon wellbeing. Behav Processes 2025; 226:105163. [PMID: 39909180 DOI: 10.1016/j.beproc.2025.105163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 02/01/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Many species of fish, birds and mammals commonly live in human captivity; Atlantic salmon Salmo salar is one of them. The international legal status of the welfare of captive animals is slowly developing and still requires rigorous specification. For example, even though fish have complex cognition and elements of sentience, The United Nations' animal welfare principles still take a functional health-centred perspective overlooking the cognitive-affective component. Wellbeing problems remain a major source of slow growth and high mortality in intensive aquaculture of Atlantic salmon. The value system for decision making in vertebrates is based on expectations of emotional wellbeing for the options available and is linked with the individual's assessment of its future. We propose a new approach for monitoring and improving the welfare of salmon (or any other captive or wild vertebrate) based on modelling the salmon's wellbeing system by digital twins, which are simulation models that implement major bodily mechanisms of the organism. Indeed, predictions on boredom, stress and wellbeing can all be captured by a computational evolutionary model of the factors underlying behaviour. We explain how such an agent-based model of salmon digital twins can be constructed by modelling a salmon's subjective wellbeing experience along with prediction of its near future and allostasis (the bodily preparation for the expected near future). We attempt to identify the building blocks required in digital twin models to deliver early warnings about escalating issues that could eventually lead to negative effects on salmon health in aquaculture. These models would provide critical insights for optimizing production processes and could significantly reduce the reliance on animal experiments. Overall, reports of a population of digital twins could support the implementation of 3Rs - replacement, reduction, refinement - by offering actionable information to fish farmers as well as consumers, voters, politicians and regulators on relevant issues as well as guide experimental work on animal wellbeing across species.
Collapse
Affiliation(s)
- Jarl Giske
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Magda L Dumitru
- Department of Biological Sciences, University of Bergen, Bergen, Norway; Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Katja Enberg
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ole Folkedal
- Animal Welfare Research Group, Institute of Marine Research, Bergen, Norway
| | | | - Andrew D Higginson
- Centre for Research in Animal Behaviour, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QG, UK
| | - Anders F Opdal
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Knut Wiik Vollset
- Department of Climate & Environment, NORCE Norwegian Research Centre, Bergen, Norway
| | - Fabio M Zennaro
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Marc Mangel
- Department of Biological Sciences, University of Bergen, Bergen, Norway; Department of Applied Mathematics, University of California, Santa Cruz, USA
| | - Sergey Budaev
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Kim SH, Lee SI, Lee SH, Jo SE, Kim KY. The Molecular Monitoring of an Invasive Freshwater Fish, Brown Trout ( Salmo trutta), Using Real-Time PCR Assay and Environmental Water Samples. Animals (Basel) 2025; 15:659. [PMID: 40075941 PMCID: PMC11898192 DOI: 10.3390/ani15050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Salmo trutta, commonly known as brown trout, is an invasive species that has established itself in various regions, including South Korea, where it poses ecological risks to native freshwater fish populations. To enable natural habitat restoration, S. trutta needs to be monitored, but traditional monitoring techniques are associated with several limitations. Therefore, in this study, we aimed to apply a sensitive and specific real-time PCR (qPCR) assay using a set of primers and a hydrolysis probe specific to the mitochondrial cytochrome b gene of S. trutta. Environmental DNA (eDNA) was extracted from river-water samples collected downstream of the Soyang Reservoir and around the Uiam Reservoir between January and March 2023. The qPCR assays successfully detected S. trutta eDNA in 11 of the 24 samples, with high concentrations found upstream and downstream of the Soyang River. Our results demonstrate the effectiveness of qPCR assay for the S. trutta detection in aquatic environments and highlight its potential for monitoring the spread of this species, especially in areas that are difficult to survey using traditional methods. This molecular approach offers a more efficient tool for S. trutta population management, mitigating its impact on native biodiversity.
Collapse
Affiliation(s)
- Su-Hwan Kim
- Wetland Research Team, National Institute of Ecology, Seocheon 33657, Republic of Korea; (S.-H.K.); (S.-H.L.)
| | - Soo-In Lee
- Invasive Alien Species Team, National Institute of Ecology, Seocheon 33657, Republic of Korea;
| | - Sang-Hun Lee
- Wetland Research Team, National Institute of Ecology, Seocheon 33657, Republic of Korea; (S.-H.K.); (S.-H.L.)
| | - So-Eun Jo
- Genetic Analysis Team, AquaGenTech Co., Ltd., Busan 48228, Republic of Korea;
| | - Keun-Yong Kim
- Genetic Analysis Team, AquaGenTech Co., Ltd., Busan 48228, Republic of Korea;
| |
Collapse
|
3
|
Christensen KA, Flores AM, Joshi J, Shibata K, Fujimoto T, Koop BF, Devlin RH. Masu salmon species complex relationships and sex chromosomes revealed from analyses of the masu salmon (Oncorhynchus masou masou) genome assembly. G3 (BETHESDA, MD.) 2025; 15:jkae278. [PMID: 39607719 PMCID: PMC11797027 DOI: 10.1093/g3journal/jkae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Masu salmon (Oncorhynchus masou) are the only Pacific salmon endemic to Asia. Some researchers prefer to categorize these salmon into 4 subspecies (masu-Oncorhynchus masou masou, amago-Oncorhynchus masou ishikawae, Biwa-Oncorhynchus masou subsp., and Formosan-Oncorhynchus masou formosanus), while others prefer individual species designations. Even though the masu salmon fishery is thousands of years old, classification of the diversity within the masu salmon species complex remains elusive. In this study, a genetic map and reference genome assembly were generated for 1 species/subspecies (masu) to provide resources for understanding the species complex. In O. m. masou, the sex chromosome was determined to be chromosome 7. Resequenced genomes from 2 other putative subspecies (amago and Biwa) provided evidence that they do not share the same sex chromosome. Principal component and admixture analyses clustered the amago and Biwa salmon close together. This supported previous findings of a close relationship between amago and Biwa salmon and a more distant relationship to masu salmon for both. Additional analyses of the masu salmon species complex will benefit from using the new reference genome assembly.
Collapse
Affiliation(s)
- Kris A Christensen
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2
| | - Anne-Marie Flores
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2
| | - Jay Joshi
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2
| | - Kiko Shibata
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Takafumi Fujimoto
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2
| | - Robert H Devlin
- Fisheries and Oceans Canada, West Vancouver, British Columbia, Canada V7V 1N6
| |
Collapse
|
4
|
Backenstose NJC, MacGuigan DJ, Osborne CA, Bernal MA, Thomas EK, Normandeau E, Yule DL, Stott W, Ackiss AS, Albert VA, Bernatchez L, Krabbenhoft TJ. Origin of the Laurentian Great Lakes fish fauna through upward adaptive radiation cascade prior to the Last Glacial Maximum. Commun Biol 2024; 7:978. [PMID: 39134631 PMCID: PMC11319351 DOI: 10.1038/s42003-024-06503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
The evolutionary histories of adaptive radiations can be marked by dramatic demographic fluctuations. However, the demographic histories of ecologically-linked co-diversifying lineages remain understudied. The Laurentian Great Lakes provide a unique system of two such radiations that are dispersed across depth gradients with a predator-prey relationship. We show that the North American Coregonus species complex ("ciscoes") radiated rapidly prior to the Last Glacial Maximum (80-90 kya), a globally warm period, followed by rapid expansion in population size. Similar patterns of demographic expansion were observed in the predator species, Lake Charr (Salvelinus namaycush), following a brief time lag, which we hypothesize was driven by predator-prey dynamics. Diversification of prey into deep water created ecological opportunities for the predators, facilitating their demographic expansion, which is consistent with an upward adaptive radiation cascade. This study provides a new timeline and environmental context for the origin of the Laurentian Great Lakes fish fauna, and firmly establishes this system as drivers of ecological diversification and rapid speciation through cyclical glaciation.
Collapse
Affiliation(s)
| | - Daniel J MacGuigan
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | | | - Moisés A Bernal
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | | | - Eric Normandeau
- Plateforme de bio-informatique de l'IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, G1V 0A6, Canada
| | - Daniel L Yule
- US Geological Survey, Lake Superior Biological Station, Great Lakes Science Center, Ashland, WI, USA
| | - Wendylee Stott
- Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Amanda S Ackiss
- US Geological Survey, Great Lakes Science Center, Ann Arbor, MI, USA
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Trevor J Krabbenhoft
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA.
- RENEW Institute, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
5
|
Claeson KM, Sidlauskas BL, Troll R, Prescott ZM, Davis EB. From sabers to spikes: A newfangled reconstruction of the ancient, giant, sexually dimorphic Pacific salmon, †Oncorhynchus rastrosus (SALMONINAE: SALMONINI). PLoS One 2024; 19:e0300252. [PMID: 38656950 PMCID: PMC11042722 DOI: 10.1371/journal.pone.0300252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/24/2024] [Indexed: 04/26/2024] Open
Abstract
The impressive †Oncorhynchus rastrosus of the Pacific Northwest's Miocene and Pliocene eras was the largest salmonid ever to live. It sported a hypertrophied premaxilla with a pair of enlarged teeth which the original describers reconstructed as projecting ventrally into the mouth, leading them to assign the species to "Smilodonichthys," a genus now in synonymy. Through CT reconstruction of the holotype and newly collected specimens, we demonstrate that the famed teeth projected laterally like tusks, not ventrally like sabers or fangs. We also expand the original description to characterize sexual dimorphism in mature, breeding individuals. Male and female †Oncorhynchus rastrosus differ in the form of the vomer, rostro-dermethmoid-supraethmoid, and dentary, much as do other extant species of Oncorhynchus. Male specimens possess a more elongate vomer than do females, and female vomers have concave ventral surfaces and prominent median dorsal keels. The dentary of females has no evidence of a kype, though some specimens of †O. rastrosus have a non-uniform density mesial to the tooth bed, which we interpret as a male kype. Unlike extant Oncorhynchus, male and female †O. rastrosus do not differ in premaxilla shape. Because male and females possess hypertrophied premaxillae and lateral premaxillary spikes, the former common name "Sabertoothed Salmon" no longer reflects our understanding of the species' morphology. Accordingly, we redub †O. rastrosus the Spike-Toothed Salmon and postulate that its spikes were multifunctional, serving as defense against predators, in agonism against conspecifics, and as a practical aid to nest construction.
Collapse
Affiliation(s)
- Kerin M. Claeson
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States of America
| | - Brian L. Sidlauskas
- Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Ray Troll
- Troll Art Studios, Ketchikan, Alaska, United States of America
| | | | - Edward B. Davis
- Museum of Natural and Cultural History and Department of Earth Sciences, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
6
|
Lecomte L, Árnyasi M, Ferchaud A, Kent M, Lien S, Stenløkk K, Sylvestre F, Bernatchez L, Mérot C. Investigating structural variant, indel and single nucleotide polymorphism differentiation between locally adapted Atlantic salmon populations. Evol Appl 2024; 17:e13653. [PMID: 38495945 PMCID: PMC10940791 DOI: 10.1111/eva.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/14/2023] [Accepted: 01/13/2024] [Indexed: 03/19/2024] Open
Abstract
Genomic structural variants (SVs) are now recognized as an integral component of intraspecific polymorphism and are known to contribute to evolutionary processes in various organisms. However, they are inherently difficult to detect and genotype from readily available short-read sequencing data, and therefore remain poorly documented in wild populations. Salmonid species displaying strong interpopulation variability in both life history traits and habitat characteristics, such as Atlantic salmon (Salmo salar), offer a prime context for studying adaptive polymorphism, but the contribution of SVs to fine-scale local adaptation has yet to be explored. Here, we performed a comparative analysis of SVs, single nucleotide polymorphisms (SNPs) and small indels (<50 bp) segregating in the Romaine and Puyjalon salmon, two putatively locally adapted populations inhabiting neighboring rivers (Québec, Canada) and showing pronounced variation in life history traits, namely growth, fecundity, and age at maturity and smoltification. We first catalogued polymorphism using a hybrid SV characterization approach pairing both short- (16X) and long-read sequencing (20X) for variant discovery with graph-based genotyping of SVs across 60 salmon genomes, along with characterization of SNPs and small indels from short reads. We thus identified 115,907 SVs, 8,777,832 SNPs and 1,089,321 short indels, with SVs covering 4.8 times more base pairs than SNPs. All three variant types revealed a highly congruent population structure and similar patterns of F ST and density variation along the genome. Finally, we performed outlier detection and redundancy analysis (RDA) to identify variants of interest in the putative local adaptation of Romaine and Puyjalon salmon. Genes located near these variants were enriched for biological processes related to nervous system function, suggesting that observed variation in traits such as age at smoltification could arise from differences in neural development. This study therefore demonstrates the feasibility of large-scale SV characterization and highlights its relevance for salmonid population genomics.
Collapse
Affiliation(s)
- Laurie Lecomte
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
- Département de BiologieUniversité LavalQuébecCanada
| | - Mariann Árnyasi
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE)Norwegian University of Life Sciences (NMBU)ÅsNorway
| | - Anne‐Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
- Département de BiologieUniversité LavalQuébecCanada
- Present address:
Parks Canada, Office of the Chief Ecosystem ScientistQuébecQCCanada
| | - Matthew Kent
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE)Norwegian University of Life Sciences (NMBU)ÅsNorway
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE)Norwegian University of Life Sciences (NMBU)ÅsNorway
| | - Kristina Stenløkk
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE)Norwegian University of Life Sciences (NMBU)ÅsNorway
| | - Florent Sylvestre
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
- Département de BiologieUniversité LavalQuébecCanada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
- Département de BiologieUniversité LavalQuébecCanada
| | - Claire Mérot
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
- Département de BiologieUniversité LavalQuébecCanada
- Present address:
UMR 6553 Ecobio, OSUR, CNRSUniversité de RennesRennesFrance
| |
Collapse
|
7
|
Ninua L, Tarkhnishvili D, Anderson CL. Genetic structure of Ponto-Caspian trout populations shows gene flow among river drainages and supports resident Salmo rizeensis as a genetically distinct taxon. Ecol Evol 2023; 13:e10335. [PMID: 37496759 PMCID: PMC10365970 DOI: 10.1002/ece3.10335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
To assess the genetic structure of Ponto-Caspian brown trout (Salmo trutta complex) populations, we analyzed both mitochondrial DNA sequences and genotypes at 10 microsatellite loci of fish caught in the Black Sea and from nine river catchments in Georgia, flowing into either the Black or Caspian seas. The results show that: (1) there is substantial genetic differentiation among Ponto-Caspian trout populations, both among the populations of different nominal species and within those of the same species; (2) the genetic distance between conspecific populations from the Black and Caspian Sea basins exceeds that among the populations within the same basin. Moreover, within drainages, genetic distance correlates with the geographic distance; (3) the Black Sea itself is not a barrier to gene flow among the watersheds draining into the Black Sea; (4) some populations in the headwaters of the rivers draining into the Black Sea Basin fall out of this pattern and likely form a separate, non-anadromous (resident) taxon, previously described from northeastern Turkey as Salmo rizeensis. This hypothesis is supported by mitochondrial DNA phylogeny. The presence of both anadromous and resident populations in a single river basin calls for a substantial re-thinking of speciation patterns and taxonomy of Eurasian brown trout.
Collapse
Affiliation(s)
- Levan Ninua
- Institute of EcologyIlia State UniversityTbilisiGeorgia
| | | | | |
Collapse
|
8
|
Walter G, Brant A, Kim H. Food protein-induced enterocolitis syndrome in response to salmon roe and trout roe. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:122-123. [PMID: 37780111 PMCID: PMC10509918 DOI: 10.1016/j.jacig.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 10/03/2023]
Abstract
Clinical implications herein, we describe the first case in the medical literature of food protein-induced enterocolitis syndrome in response to specific fish roe.
Collapse
Affiliation(s)
- Graham Walter
- Department of Medicine, Western University, London, Ontario, Canada
- Division of Clinical Immunology and Allergy, Western University, London, Ontario, Canada
| | - Adam Brant
- Division of Neurosurgery, Community Regional Medical Center, Fresno, Calif
| | - Harold Kim
- Department of Medicine, Western University, London, Ontario, Canada
- Division of Clinical Immunology and Allergy, Western University, London, Ontario, Canada
| |
Collapse
|
9
|
Bartholomew JL, Alexander JD, Hallett SL, Alama-Bermejo G, Atkinson SD. Ceratonova shasta: a cnidarian parasite of annelids and salmonids. Parasitology 2022; 149:1862-1875. [PMID: 36081219 PMCID: PMC11010528 DOI: 10.1017/s0031182022001275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 12/29/2022]
Abstract
The myxozoan Ceratonova shasta was described from hatchery rainbow trout over 70 years ago. The parasite continues to cause severe disease in salmon and trout, and is recognized as a barrier to salmon recovery in some rivers. This review incorporates changes in our knowledge of the parasite's life cycle, taxonomy and biology and examines how this information has expanded our understanding of the interactions between C. shasta and its salmonid and annelid hosts, and how overarching environmental factors affect this host–parasite system. Development of molecular diagnostic techniques has allowed discrimination of differences in parasite genotypes, which have differing host affinities, and enabled the measurement of the spatio-temporal abundance of these different genotypes. Establishment of the C. shasta life cycle in the laboratory has enabled studies on host–parasite interactions and the availability of transcriptomic data has informed our understanding of parasite virulence factors and host defences. Together, these advances have informed the development of models and management actions to mitigate disease.
Collapse
Affiliation(s)
- Jerri L. Bartholomew
- Department of Microbiology, Oregon State University, Nash Hall 226, Corvallis, Oregon 97331, USA
| | - Julie D. Alexander
- Department of Microbiology, Oregon State University, Nash Hall 226, Corvallis, Oregon 97331, USA
| | - Sascha L. Hallett
- Department of Microbiology, Oregon State University, Nash Hall 226, Corvallis, Oregon 97331, USA
| | - Gema Alama-Bermejo
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
- Division of Fish Health, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Stephen D. Atkinson
- Department of Microbiology, Oregon State University, Nash Hall 226, Corvallis, Oregon 97331, USA
| |
Collapse
|
10
|
Dysin AP, Shcherbakov YS, Nikolaeva OA, Terletskii VP, Tyshchenko VI, Dementieva NV. Salmonidae Genome: Features, Evolutionary and Phylogenetic Characteristics. Genes (Basel) 2022; 13:genes13122221. [PMID: 36553488 PMCID: PMC9778375 DOI: 10.3390/genes13122221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The salmon family is one of the most iconic and economically important fish families, primarily possessing meat of excellent taste as well as irreplaceable nutritional and biological value. One of the most common and, therefore, highly significant members of this family, the Atlantic salmon (Salmo salar L.), was not without reason one of the first fish species for which a high-quality reference genome assembly was produced and published. Genomic advancements are becoming increasingly essential in both the genetic enhancement of farmed salmon and the conservation of wild salmon stocks. The salmon genome has also played a significant role in influencing our comprehension of the evolutionary and functional ramifications of the ancestral whole-genome duplication event shared by all Salmonidae species. Here we provide an overview of the current state of research on the genomics and phylogeny of the various most studied subfamilies, genera, and individual salmonid species, focusing on those studies that aim to advance our understanding of salmonid ecology, physiology, and evolution, particularly for the purpose of improving aquaculture production. This review should make potential researchers pay attention to the current state of research on the salmonid genome, which should potentially attract interest in this important problem, and hence the application of new technologies (such as genome editing) in uncovering the genetic and evolutionary features of salmoniforms that underlie functional variation in traits of commercial and scientific importance.
Collapse
Affiliation(s)
- Artem P. Dysin
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
- Correspondence:
| | - Yuri S. Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Olga A. Nikolaeva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Valerii P. Terletskii
- All-Russian Research Veterinary Institute of Poultry Science-Branch of the Federal Scientific Center, All-Russian Research and Technological Poultry Institute (ARRVIPS), Lomonosov, 198412 St. Petersburg, Russia
| | - Valentina I. Tyshchenko
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| |
Collapse
|
11
|
Zolotarenko AD, Shitova MV. Transcriptome Studies of Salmonid Fishes of the Genius Oncorhynchus. RUSS J GENET+ 2022. [DOI: 10.1134/s102279542207016x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Wang Y, Xiong F, Song Z. Molecular Phylogeny and Adaptive Mitochondrial DNA Evolution of Salmonids (Pisces: Salmonidae). Front Genet 2022; 13:903240. [PMID: 35783273 PMCID: PMC9249015 DOI: 10.3389/fgene.2022.903240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Salmonids are composed of anadromous and freshwater fishes, which is an important model for studying adaptive evolution. Herein, 49 salmonid complete mitochondrial genomes and those of two outgroups were used to infer a robust phylogeny for the family Salmonidae. The BI and RAxML phylogenetic trees based on 13 concatenated mitochondrial protein-coding genes showed well-supported nodes, and topologies were highly congruent. The concatenated 13 mitochondrial protein-coding genes, ND2, ND3, and ND5 genes were shown to have significantly larger dN/dS ratios in anadromous species than in freshwater species of Salmonidae, but the CYTB gene had significantly smaller dN/dS in anadromous species. The FEL analysis identified positively selected sites and negatively selected sites in each mitochondrial protein-coding gene separately. The RELAX program revealed that the ATP8 and CYTB genes supported intensified selection of the anadromous lineages. Our results demonstrated the phylogeny of Salmonidae and explored the mitochondrial DNA evolution pattern between anadromous and freshwater salmonids.
Collapse
Affiliation(s)
- Ying Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fei Xiong
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, China
- *Correspondence: Fei Xiong, ; Zhaobin Song,
| | - Zhaobin Song
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Fei Xiong, ; Zhaobin Song,
| |
Collapse
|
13
|
Venney CJ, Wellband KW, Normandeau E, Houle C, Garant D, Audet C, Bernatchez L. Thermal regime during parental sexual maturation, but not during offspring rearing, modulates DNA methylation in brook charr ( Salvelinus fontinalis). Proc Biol Sci 2022; 289:20220670. [PMID: 35506232 PMCID: PMC9065957 DOI: 10.1098/rspb.2022.0670] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 01/04/2023] Open
Abstract
Epigenetic inheritance can result in plastic responses to changing environments being faithfully transmitted to offspring. However, it remains unclear how epigenetic mechanisms such as DNA methylation can contribute to multigenerational acclimation and adaptation to environmental stressors. Brook charr (Salvelinus fontinalis), an economically important salmonid, is highly sensitive to thermal stress and is of conservation concern in the context of climate change. We studied the effects of temperature during parental sexual maturation and offspring rearing on whole-genome DNA methylation in brook charr juveniles (fry). Parents were split between warm and cold temperatures during sexual maturation, mated in controlled breeding designs, then offspring from each family were split between warm (8°C) and cold (5°C) rearing environments. Using whole-genome bisulfite sequencing, we found 188 differentially methylated regions (DMRs) due to parental maturation temperature after controlling for family structure. By contrast, offspring rearing temperature had a negligible effect on offspring methylation. Stable intergenerational inheritance of DNA methylation and minimal plasticity in progeny could result in the transmission of acclimatory epigenetic states to offspring, priming them for a warming environment. Our findings have implications pertaining to the role of intergenerational epigenetic inheritance in response to ongoing climate change.
Collapse
Affiliation(s)
- Clare J. Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada G1 V 0A6
| | - Kyle W. Wellband
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada G1 V 0A6
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada G1 V 0A6
| | - Carolyne Houle
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada J1 K 2R1
| | - Dany Garant
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada J1 K 2R1
| | - Céline Audet
- Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski (UQAR), Rimouski, QC, Canada G5 L 2Z9
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada G1 V 0A6
| |
Collapse
|
14
|
Christensen KA, Rondeau EB, Sakhrani D, Biagi CA, Johnson H, Joshi J, Flores AM, Leelakumari S, Moore R, Pandoh PK, Withler RE, Beacham TD, Leggatt RA, Tarpey CM, Seeb LW, Seeb JE, Jones SJM, Devlin RH, Koop BF. The pink salmon genome: Uncovering the genomic consequences of a two-year life cycle. PLoS One 2021; 16:e0255752. [PMID: 34919547 PMCID: PMC8682878 DOI: 10.1371/journal.pone.0255752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022] Open
Abstract
Pink salmon (Oncorhynchus gorbuscha) adults are the smallest of the five Pacific salmon native to the western Pacific Ocean. Pink salmon are also the most abundant of these species and account for a large proportion of the commercial value of the salmon fishery worldwide. A two-year life history of pink salmon generates temporally isolated populations that spawn either in even-years or odd-years. To uncover the influence of this genetic isolation, reference genome assemblies were generated for each year-class and whole genome re-sequencing data was collected from salmon of both year-classes. The salmon were sampled from six Canadian rivers and one Japanese river. At multiple centromeres we identified peaks of Fst between year-classes that were millions of base-pairs long. The largest Fst peak was also associated with a million base-pair chromosomal polymorphism found in the odd-year genome near a centromere. These Fst peaks may be the result of a centromere drive or a combination of reduced recombination and genetic drift, and they could influence speciation. Other regions of the genome influenced by odd-year and even-year temporal isolation and tentatively under selection were mostly associated with genes related to immune function, organ development/maintenance, and behaviour.
Collapse
Affiliation(s)
- Kris A. Christensen
- West Vancouver, Fisheries and Oceans Canada, British Columbia, Canada
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail: (KAC); (BFK)
| | - Eric B. Rondeau
- West Vancouver, Fisheries and Oceans Canada, British Columbia, Canada
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Dionne Sakhrani
- West Vancouver, Fisheries and Oceans Canada, British Columbia, Canada
| | - Carlo A. Biagi
- West Vancouver, Fisheries and Oceans Canada, British Columbia, Canada
| | - Hollie Johnson
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Jay Joshi
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Anne-Marie Flores
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Sreeja Leelakumari
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Richard Moore
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Pawan K. Pandoh
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Ruth E. Withler
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Terry D. Beacham
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | | | - Carolyn M. Tarpey
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Lisa W. Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - James E. Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Steven J. M. Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Robert H. Devlin
- West Vancouver, Fisheries and Oceans Canada, British Columbia, Canada
| | - Ben F. Koop
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail: (KAC); (BFK)
| |
Collapse
|
15
|
Rohonczy J, O'Dwyer K, Rochette A, Robinson SA, Forbes MR. Meta-analysis shows environmental contaminants elevate cortisol levels in teleost fish - Effect sizes depend on contaminant class and duration of experimental exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149402. [PMID: 34399351 DOI: 10.1016/j.scitotenv.2021.149402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Glucocorticoid hormones (GCs) help vertebrates maintain homeostasis during and following challenging events. Short-term elevations in GC levels are necessary for survival, whereas longer-term changes can lead to reduced reproductive output and immunosuppression. Persistent environmental contaminants (ECs) are widespread globally. Experimental exposure of individuals to ECs is associated with varying GC responses, within, and across, species and contaminants. Individuals exposed to ECs over long durations are expected to have prolonged GC elevations, which likely affect their health. We conducted a meta-analysis to test for a relationship between fish GC levels and experimental exposure to ECs, and to explore potential moderators, including duration of exposure, that could help explain the variation in effect sizes within and between studies. We report almost exclusively on cortisol responses of teleost fish to ECs. Although there was much variation in effect sizes, captive-bred fish exposed to ECs had baseline GC levels 1.5× higher than unexposed fish, and fish exposed to pharmaceuticals (estradiols and stimulants being mainly considered) had baseline GC levels approximately 2.5× higher than unexposed fish. We found that captive-bred and wild-caught fish did not differ in GC levels after exposure to the same classes of ECs - studies on captive bred fish may thus enable inferences about GC responses to ECs for wild species. Furthermore, effect sizes did not differ between baseline and challenge-induced GC measures. In different analyses, duration of exposure was negatively correlated to effect size, suggesting that the GC response may acclimate after chronic exposure to some ECs which could potentially alter the GC response of EC-exposed fish to novel stressors. Future studies should explore the effect of multiple stressors on the fish GC response and perform tests on a broader array of contaminant types and vertebrate classes.
Collapse
Affiliation(s)
- Jillian Rohonczy
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Katie O'Dwyer
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Alicia Rochette
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Stacey A Robinson
- National Wildlife Research Centre, Environment and Climate Change Canada, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Mark R Forbes
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
16
|
Turan D, Aksu İ, Oral M, Kaya C, Bayçelebi E. Contribution to the trout of Euphrates River, with description of a new species, and range extension of Salmo munzuricus (Salmoniformes, Salmonidae). ZOOSYST EVOL 2021. [DOI: 10.3897/zse.97.72181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In an effort to reveal the Euphrates trout taxonomy, the Karasu River, which is one of the eastern drainages of the river, was investigated and three independent populations were identified. Result revealed that two populations belonged to Salmo munzuricus, which was known only in Munzur River, while the other population belonged to an unnamed species. Salmo baliki, a new species, is described from the Murat River, a drainage of Euphrates River. It differs from Salmo species in adjacent water by the combination of the following characters: a grayish body; commonly one, rarely two pale black spots behind eye and on cheek; two to seven black spots on opercle; a few black spots on back and upper part of flank, missing on predorsal area; few to numerous large irregular-shaped red spots in median, upper and lower part of flank, surrounded by a large irregular-shaped white ring; the number of black and red spots not increasing in parallel with size; maxilla short and narrow; adipose-fin medium size, no or rarely one or two red spot its posterior edge; 107–118 lateral line scales; 24–28 scales rows between dorsal-in origin and lateral line; 18–22 scale rows between lateral line and anal–fin origin; maxilla length 7.7–9.1% SL in males, 8.2–9.6 in females. Finally, the genetic study of the Cyt b mitochondrial gene confirmed the morphological data, suggesting the separation of S. baliki from other Salmo species.
Collapse
|
17
|
Hierarchical genetic structure and implications for conservation of the world's largest salmonid, Hucho taimen. Sci Rep 2021; 11:20508. [PMID: 34654859 PMCID: PMC8520000 DOI: 10.1038/s41598-021-99530-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022] Open
Abstract
Population genetic analyses can evaluate how evolutionary processes shape diversity and inform conservation and management of imperiled species. Taimen (Hucho taimen), the world’s largest freshwater salmonid, is threatened, endangered, or extirpated across much of its range due to anthropogenic activity including overfishing and habitat degradation. We generated genetic data using high throughput sequencing of reduced representation libraries for taimen from multiple drainages in Mongolia and Russia. Nucleotide diversity estimates were within the range documented in other salmonids, suggesting moderate diversity despite widespread population declines. Similar to other recent studies, our analyses revealed pronounced differentiation among the Arctic (Selenge) and Pacific (Amur and Tugur) drainages, suggesting historical isolation among these systems. However, we found evidence for finer-scale structure within the Pacific drainages, including unexpected differentiation between tributaries and the mainstem of the Tugur River. Differentiation across the Amur and Tugur basins together with coalescent-based demographic modeling suggests the ancestors of Tugur tributary taimen likely diverged in the eastern Amur basin, prior to eventual colonization of the Tugur basin. Our results suggest the potential for differentiation of taimen at different geographic scales, and suggest more thorough geographic and genomic sampling may be needed to inform conservation and management of this iconic salmonid.
Collapse
|
18
|
Guinand B, Oral M, Tougard C. Brown trout phylogenetics: A persistent mirage towards (too) many species. JOURNAL OF FISH BIOLOGY 2021; 99:298-307. [PMID: 33483952 DOI: 10.1111/jfb.14686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Bruno Guinand
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Münevver Oral
- Faculty of Fisheries and Aquatic Science, Recep Tayyip Erdogan University, Rize, Turkey
| | | |
Collapse
|
19
|
Alama-Bermejo G, Meyer E, Atkinson SD, Holzer AS, Wiśniewska MM, Kolísko M, Bartholomew JL. Transcriptome-Wide Comparisons and Virulence Gene Polymorphisms of Host-Associated Genotypes of the Cnidarian Parasite Ceratonova shasta in Salmonids. Genome Biol Evol 2021; 12:1258-1276. [PMID: 32467979 PMCID: PMC7487138 DOI: 10.1093/gbe/evaa109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
Ceratonova shasta is an important myxozoan pathogen affecting the health of salmonid fishes in the Pacific Northwest of North America. Ceratonova shasta exists as a complex of host-specific genotypes, some with low to moderate virulence, and one that causes a profound, lethal infection in susceptible hosts. High throughput sequencing methods are powerful tools for discovering the genetic basis of these host/virulence differences, but deep sequencing of myxozoans has been challenging due to extremely fast molecular evolution of this group, yielding strongly divergent sequences that are difficult to identify, and unavoidable host contamination. We designed and optimized different bioinformatic pipelines to address these challenges. We obtained a unique set of comprehensive, host-free myxozoan RNA-seq data from C. shasta genotypes of varying virulence from different salmonid hosts. Analyses of transcriptome-wide genetic distances and maximum likelihood multigene phylogenies elucidated the evolutionary relationship between lineages and demonstrated the limited resolution of the established Internal Transcribed Spacer marker for C. shasta genotype identification, as this marker fails to differentiate between biologically distinct genotype II lineages from coho salmon and rainbow trout. We further analyzed the data sets based on polymorphisms in two gene groups related to virulence: cell migration and proteolytic enzymes including their inhibitors. The developed single-nucleotide polymorphism-calling pipeline identified polymorphisms between genotypes and demonstrated that variations in both motility and protease genes were associated with different levels of virulence of C. shasta in its salmonid hosts. The prospective use of proteolytic enzymes as promising candidates for targeted interventions against myxozoans in aquaculture is discussed. We developed host-free transcriptomes of a myxozoan model organism from strains that exhibited different degrees of virulence, as a unique source of data that will foster functional gene analyses and serve as a base for the development of potential therapeutics for efficient control of these parasites.
Collapse
Affiliation(s)
- Gema Alama-Bermejo
- Department of Microbiology, Oregon State University.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.,Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni (CIMAS), CCT CONICET - CENPAT, San Antonio Oeste, Argentina
| | - Eli Meyer
- Department of Integrative Biology, Oregon State University
| | | | - Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Monika M Wiśniewska
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Martin Kolísko
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | |
Collapse
|
20
|
Dallaire X, Normandeau É, Mainguy J, Tremblay J, Bernatchez L, Moore J. Genomic data support management of anadromous Arctic Char fisheries in Nunavik by highlighting neutral and putatively adaptive genetic variation. Evol Appl 2021; 14:1880-1897. [PMID: 34295370 PMCID: PMC8287999 DOI: 10.1111/eva.13248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022] Open
Abstract
Distinguishing neutral and adaptive genetic variation is one of the main challenges in investigating processes shaping population structure in the wild, and landscape genomics can help identify signatures of adaptation to contrasting environments. Arctic Char (Salvelinus alpinus) is an anadromous salmonid and the most harvested fish species by Inuit people, including in Nunavik (Québec, Canada), one of the most recently deglaciated regions in the world. Unlike many other anadromous salmonids, Arctic Char occupy coastal habitats near their natal rivers during their short marine phase restricted to the summer ice-free period. Our main objective was to document putatively neutral and adaptive genomic variation in anadromous Arctic Char populations from Nunavik and bordering regions to inform local fisheries management. We used genotyping by sequencing (GBS) to genotype 18,112 filtered single nucleotide polymorphisms (SNP) in 650 individuals from 23 sampling locations along >2000 km of coastline. Our results reveal a hierarchical genetic structure, whereby neighboring hydrographic systems harbor distinct populations grouped by major oceanographic basins: Hudson Bay, Hudson Strait, Ungava Bay, and Labrador Sea. We found genetic diversity and differentiation to be consistent both with the expected postglacial recolonization history and with patterns of isolation-by-distance reflecting contemporary gene flow. Results from three gene-environment association methods supported the hypothesis of local adaptation to both freshwater and marine environments (strongest associations with sea surface and air temperatures during summer and salinity). Our results support a fisheries management strategy at a regional scale, and other implications for hatchery projects and adaptation to climate change are discussed.
Collapse
Affiliation(s)
- Xavier Dallaire
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Centre d’Études Nordiques (CEN)Université LavalQuébecQCCanada
- Département de Biologie, Université LavalQuébecQCCanada
| | - Éric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Julien Mainguy
- Ministère des Forêts, de la Faune et des ParcsQuébecQCCanada
| | - Jean‐Éric Tremblay
- Département de Biologie, Université LavalQuébecQCCanada
- Ministère des Forêts, de la Faune et des ParcsQuébecQCCanada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Département de Biologie, Université LavalQuébecQCCanada
| | - Jean‐Sébastien Moore
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Centre d’Études Nordiques (CEN)Université LavalQuébecQCCanada
- Département de Biologie, Université LavalQuébecQCCanada
| |
Collapse
|
21
|
Hashemzadeh Segherloo I, Freyhof J, Berrebi P, Ferchaud AL, Geiger M, Laroche J, Levin BA, Normandeau E, Bernatchez L. A genomic perspective on an old question: Salmo trouts or Salmo trutta (Teleostei: Salmonidae)? Mol Phylogenet Evol 2021; 162:107204. [PMID: 34015446 DOI: 10.1016/j.ympev.2021.107204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
There are particular challenges in defining the taxonomic status of recently radiated groups due to the low level of phylogenetic signal. Members of the Salmo trutta species-complex, which mostly evolved during and following the Pleistocene, show high morphological and ecological diversity that, along with their very wide geographic distribution, have led to morphological description of 47 extant nominal species. However, many of these species have not been supported by previous phylogenetic studies, which could be partly due to lack of significant genetic differences among them, the limited resolution offered by molecular methods previously used, as well as the often local scale of these studies. The development of next-generation sequencing (NGS) and related analytical tools have enhanced our ability to address such challenging questions. In this study, Genotyping-by-Sequencing (GBS) of 15,169 filtered SNPs and mitochondrial DNA (mtDNA) D-loop sequences were combined to assess the phylogenetic relationships among 166 brown trouts representing 21 described species and three undescribed groups collected from 84 localities throughout their natural distribution in Europe, west Asia, and North Africa. The data were analysed using different clustering algorithms (admixture analysis and discriminant analysis of principal components-DAPC), a Bayes Factor Delimitation (BFD) test, species tree reconstruction, gene flow tests (three- and four-population tests), and Rogue taxa identification tests. Genomic contributions of the Atlantic lineage brown trout were found in all major sea basins excluding the North African and Aral Sea basins, suggesting introgressive hybridization of native brown trouts driven by stocking using strains of the Atlantic lineage. After removing the phylogenetic noise caused by the Atlantic brown trout, admixture clusters and DAPC clustering based on GBS data, respectively, resolved 11 and 13 clusters among the previously described brown trout species, which were also supported by BFD test results. Our results suggest that natural hybridization between different brown trout lineages has probably played an important role in the origin of several of the putative species, including S. marmoratus, S. carpio, S. farioides, S. pellegrini, S. caspius (in the Kura River drainage) and Salmo sp. in the Danube River basin. Overall, our results support a multi-species taxonomy for brown trouts. They also resolve some species in the Adriatic-Mediterranean and Black Sea drainages as members of very closely related genomic clusters that may need taxonomic revision. However, any final conclusions pertaining to the taxonomy of the brown trout complex should be based on an integrative approach combining genomic, morphological, and ecological data. To avoid challenges in taxonomy and conservation of species complexes like brown trouts, it is suggested to describe species based on genomic clusters of populations instead of describing species based only on morphologically differentiated single type populations.
Collapse
Affiliation(s)
- Iraj Hashemzadeh Segherloo
- Department of Fisheries and Environmental Sciences, Faculty of Natural Resources and Earth Sciences, Shahr-e-Kord University, Shahr-e-Kord, Iran; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada.
| | - Jörg Freyhof
- Museum für Naturkunde Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, 10115 Berlin, Germany
| | - Patrick Berrebi
- Genome - Research & Diagnostic, 697 avenue de Lunel, 34400 Saint-Just, France
| | - Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Matthias Geiger
- Zoologisches Forschungsmuseum Museum Alexander Koenig, Leibniz Institute for Animal Biodiversity, 53133 Bonn, Germany
| | - Jérôme Laroche
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Boris A Levin
- Papanin Institute of Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia & Cherepovets State University, Cherepovets, Vologda Region, Russia
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
22
|
Oleinik AG, Skurikhina LA, Kukhlevsky AD, Semenchenko AA. The first complete mitochondrial genomes of two species of charr, Salvelinus boganidae and Salvelinus elgyticus, from Lake El’gygytgyn (Chukotka). Polar Biol 2021. [DOI: 10.1007/s00300-021-02861-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
A novel reference dated phylogeny for the genus Spodoptera Guenée (Lepidoptera: Noctuidae: Noctuinae): new insights into the evolution of a pest-rich genus. Mol Phylogenet Evol 2021; 161:107161. [PMID: 33794395 DOI: 10.1016/j.ympev.2021.107161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 02/03/2023]
Abstract
The noctuid genus Spodoptera currently consists of 31 species with varied host plant breadths, ranging from monophagous and oligophagous non-pest species to polyphagous pests of economic importance. Several of these pest species have become major invaders, colonizing multiple continents outside their native range. Such is the case of the infamous fall armyworm, Spodoptera frugiperda (J.E. Smith), which includes two recognized host strains that have not been treated as separate species. Following its accidental introduction to Africa in 2016, it quickly spread through Africa and Asia to Australia. Given that half the described Spodoptera species cause major crop losses, comparative genomics studies of several Spodoptera species have highlighted major adaptive changes in genetic architecture, possibly relating to their pest status. Several recent population genomics studies conducted on two species enable a more refined understanding of their population structures, migration patterns and invasion processes. Despite growing interest in the genus, the taxonomic status of several Spodoptera species remains unstable and evolutionary studies suffer from the absence of a robust and comprehensive dated phylogenetic framework. We generated mitogenomic data for 14 Spodoptera taxa, which are combined with data from 15 noctuoid outgroups to generate a resolved mitogenomic backbone phylogeny using both concatenation and multi-species coalescent approaches. We combine this backbone with additional mitochondrial and nuclear data to improve our understanding of the evolutionary history of the genus. We also carry out comprehensive dating analyses, which implement three distinct calibration strategies based on either primary or secondary fossil calibrations. Our results provide an updated phylogenetic framework for 28 Spodoptera species, identifying two well-supported ecologically diverse clades that are recovered for the first time. Well-studied larvae in each of these clades are characterized by differences in mandibular shape, with one clade's being more specialized on silica-rich C4 grasses. Interestingly, the inferred timeframe for the genus suggests an earlier origin than previously thought for the genus: about 17-18 million years ago.
Collapse
|
24
|
Waters CD, Clemento A, Aykanat T, Garza JC, Naish KA, Narum S, Primmer CR. Heterogeneous genetic basis of age at maturity in salmonid fishes. Mol Ecol 2021; 30:1435-1456. [PMID: 33527498 DOI: 10.1111/mec.15822] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/07/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
Understanding the genetic basis of repeated evolution of the same phenotype across taxa is a fundamental aim in evolutionary biology and has applications in conservation and management. However, the extent to which interspecific life-history trait polymorphisms share evolutionary pathways remains underexplored. Here, we address this gap by studying the genetic basis of a key life-history trait, age at maturity, in four species of Pacific salmonids (genus Oncorhynchus) that exhibit intra- and interspecific variation in this trait-Chinook Salmon, Coho Salmon, Sockeye Salmon, and Steelhead Trout. We tested for associations in all four species between age at maturity and two genome regions, six6 and vgll3, that are strongly associated with the same trait in Atlantic Salmon (Salmo salar). We also conducted a genome-wide association analysis in Steelhead to assess whether additional regions were associated with this trait. We found the genetic basis of age at maturity to be heterogeneous across salmonid species. Significant associations between six6 and age at maturity were observed in two of the four species, Sockeye and Steelhead, with the association in Steelhead being particularly strong in both sexes (p = 4.46 × 10-9 after adjusting for genomic inflation). However, no significant associations were detected between age at maturity and the vgll3 genome region in any of the species, despite its strong association with the same trait in Atlantic Salmon. We discuss possible explanations for the heterogeneous nature of the genetic architecture of this key life-history trait, as well as the implications of our findings for conservation and management.
Collapse
Affiliation(s)
- Charles D Waters
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Anthony Clemento
- Institute of Marine Sciences, University of California, Santa Cruz, CA, USA.,Santa Cruz Laboratory, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA, USA
| | - Tutku Aykanat
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - John Carlos Garza
- Institute of Marine Sciences, University of California, Santa Cruz, CA, USA.,Santa Cruz Laboratory, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA, USA
| | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Shawn Narum
- Hagerman Genetics Laboratory, Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Brix KV, Baker J, Morris W, Ferry K, Pettem C, Elphick J, Tear LM, Napier R, Adzic M, DeForest DK. Effects of Maternally Transferred Egg Selenium on Embryo-Larval Survival, Growth, and Development in Arctic Grayling (Thymallus arcticus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:380-389. [PMID: 33136298 DOI: 10.1002/etc.4920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/22/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Selenium (Se) toxicity to fish is primarily manifested via maternal transfer to the eggs, which may result in adverse effects on larval survival and development. The present study assessed the effects of egg Se concentrations derived via maternal transfer on early life-stage development, survival, and growth of Arctic grayling (Thymallus arcticus), a salmonid species not previously assessed for Se sensitivity. Fish gametes were collected from 4 streams in Alaska known to exhibit a range of egg Se concentrations. Eggs were fertilized and reared in the laboratory from hatch through post-swim-up. Larvae were assessed for survival, length, and weight, as well as deformities (skeletal, craniofacial, fin-fold) and edema based on a graduated severity index. Eggs from a total of 47 females were collected, with egg Se concentrations ranging from 3.3 to 33.9 mg kg-1 dry weight. No relationships were observed between larval endpoints evaluated and parent females' egg, muscle, or whole-body Se concentrations. Therefore, Se 10% effective concentrations (EC10s) were defined as the maximum measured Se concentrations: >33.9, >17.6, and >19.7 mg kg-1 dry weight for eggs, muscle, and whole-body tissue, respectively. Collectively, these data indicate that Arctic grayling are relatively insensitive to maternally transferred Se compared to other fish species. Environ Toxicol Chem 2021;40:380-389. © 2020 SETAC.
Collapse
Affiliation(s)
| | - Josh Baker
- Nautilus Environmental, Burnaby, British Columbia, Canada
| | - William Morris
- Owl Ridge Natural Resource Consultants, Anchorage, Alaska, USA
| | - Kathleen Ferry
- Owl Ridge Natural Resource Consultants, Anchorage, Alaska, USA
| | - Connor Pettem
- Nautilus Environmental, Burnaby, British Columbia, Canada
| | - James Elphick
- Nautilus Environmental, Burnaby, British Columbia, Canada
| | | | | | - Marko Adzic
- Teck Resources, Vancouver, British Columbia, Canada
| | | |
Collapse
|
26
|
MHC class I evolution; from Northern pike to salmonids. BMC Ecol Evol 2021; 21:3. [PMID: 33514321 PMCID: PMC7853315 DOI: 10.1186/s12862-020-01736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/13/2020] [Indexed: 11/29/2022] Open
Abstract
Background Salmonids are of major importance both as farmed and wild animals. With the changing environment comes changes in pathogenic pressures so understanding the immune system of all salmonid species is of essence. Major histocompatibility complex (MHC) genes are key players in the adaptive immune system signalling infection to responding T-cells populations. Classical MHC class I (MHCI) genes, defined by high polymorphism, broad expression patterns and peptide binding ability, have a key role in inducing immunity. In salmonids, the fourth whole genome duplication that occurred 94 million years ago has provided salmonids with duplicate MHCI regions, while Northern Pike, a basal sister clade to salmonids, represent a species which has not experienced this whole genome duplication. Results Comparing the gene organization and evolution of MHC class I gene sequences in Northern pike versus salmonids displays a complex picture of how many of these genes evolved. Regional salmonid Ia and Ib Z lineage gene duplicates are not orthologs to the Northern pike Z lineage sequences. Instead, salmonids have experienced unique gene duplications in both duplicate regions as well as in the Salmo and Oncorhynchus branch. Species-specific gene duplications are even more pronounced for some L lineage genes. Conclusions Although both Northern pike as well as salmonids have expanded their U and Z lineage genes, these gene duplications occurred separately in pike and in salmonids. However, the similarity between these duplications suggest the transposable machinery was present in a common ancestor. The salmonid MHCIa and MHCIb regions were formed during the 94 MYA since the split from pike and before the Oncorhynchus and Salmo branch separated. As seen in tetrapods, the non-classical U lineage genes are diversified duplicates of their classical counterpart. One MHCI lineage, the L lineage, experienced massive species-specific gene duplications after Oncorhynchus and Salmo split approximately 25 MYA. Based on what we currently know about L lineage genes, this large variation in number of L lineage genes also signals a large functional diversity in salmonids.
Collapse
|
27
|
Quinn TP. Differential migration in Pacific salmon and trout: Patterns and hypotheses. ANIMAL MIGRATION 2021. [DOI: 10.1515/ami-2021-0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Migrations affect the population dynamics, life history, evolution, and connections of animals to natural ecosystems and humans. Many species and populations display partial migration (some individuals migrate and some do not), and differential migration (migration distance varies). Partial migration is widely distributed in fishes but the term differential migration is much less commonly applied, despite the occurrence of this phenomenon. This paper briefly reviews the extent of differential migration in Pacific salmon and trout (genus Oncorhynchus), a very extensively studied group. Three hypotheses are presented to explain the patterns among species: 1) phylogenetic relationships, 2) the prevalence of partial migration (i.e., variation in anadromy), and 3) life history patterns (iteroparous or semelparous, and duration spent feeding at sea prior to maturation). Each hypothesis has some support but none is consistent with all patterns. The prevalence of differential migration, ranging from essentially non-existent to common within a species, reflects phylogeny and life history, interacting with the geographic features of the region where juvenile salmon enter the ocean. Notwithstanding the uncertain evolution of this behavior, it has very clear implications for salmon conservation, as it strongly affects exposure to predators, patterns of fishery exploitation and also uptake of toxic contaminants.
Collapse
Affiliation(s)
- Thomas P. Quinn
- School of Aquatic and Fishery Sciences , University of Washington , Seattle , WA 98195, USA
| |
Collapse
|
28
|
Weiss SJ, Gonçalves DV, Secci-Petretto G, Englmaier GK, Gomes-Dos-Santos A, Denys GPJ, Persat H, Antonov A, Hahn C, Taylor EB, Froufe E. Global systematic diversity, range distributions, conservation and taxonomic assessments of graylings (Teleostei: Salmonidae; Thymallus spp.). ORG DIVERS EVOL 2020. [DOI: 10.1007/s13127-020-00468-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractGraylings (Thymallus) are among the less well-studied groups of salmonid fishes, especially across their Asian distribution range. Here we perform a comprehensive global review of their phylogeography, systematic diversity and range distributions, including biogeographic reconstruction and assessment of both conservation and taxonomic status of each species. Based on a mitogenomic phylogenetic analysis, three approaches to the delineation of molecular operational units, and evaluation of 15 a-priori defined species, we provide biological support for the recognition of 13 grayling species, plus two additional species tentatively. Several instances of paraphyly and its potential effect on systematic inferences are discussed. Overall, the genus displays increasing species diversity and decreasing range size from higher to lower latitudes and ancestral trait reconstruction supports an East Asian origin for extant diversity, most likely centred in the Amur River drainage. Europe’s colonization by Thymallus took place as early as the late Miocene, at least two colonisations of North America are supported, and multiple dispersal events likely took place into Western Siberia. The conservation status for the 15 taxa was estimated to be: 6 least concern, 1 near-threatened, 2 vulnerable, 3 endangered and 3 data deficient.
Collapse
|
29
|
Grimholt U, Lukacs M. Fate of MHCII in salmonids following 4WGD. Immunogenetics 2020; 73:79-91. [PMID: 33225379 PMCID: PMC7862078 DOI: 10.1007/s00251-020-01190-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022]
Abstract
Major histocompatibility complex (MHC) genes are key players in the adaptive immunity providing a defense against invading pathogens. Although the basic structures are similar when comparing mammalian and teleost MHC class II (MHCII) molecules, there are also clear-cut differences. Based on structural requirements, the teleosts non-classical MHCII molecules do not comply with a function similar to the human HLA-DM and HLA-DO, i.e., assisting in peptide loading and editing of classical MHCII molecules. We have previously studied the evolution of teleost class II genes identifying various lineages and tracing their phylogenetic occurrence back to ancient ray-finned fishes. We found no syntenic MHCII regions shared between cyprinids, salmonids, and neoteleosts, suggesting regional instabilities. Salmonids have experienced a unique whole genome duplication 94 million years ago, providing them with the opportunity to experiment with gene duplicates. Many salmonid genomes have recently become available, and here we set out to investigate how MHCII has evolved in salmonids using Northern pike as a diploid sister phyla, that split from the salmonid lineage prior to the fourth whole genome duplication (4WGD) event. We identified 120 MHCII genes in pike and salmonids, ranging from 11 to 20 genes per species analyzed where DB-group genes had the most expansions. Comparing the MHC of Northern pike with that of Atlantic salmon and other salmonids species provides a tale of gene loss, translocations, and genome rearrangements.
Collapse
Affiliation(s)
- Unni Grimholt
- Norwegian Veterinary Institute, P.O. Box 8146 Dep, 0033, Oslo, Norway.
| | - Morten Lukacs
- Norwegian Veterinary Institute, P.O. Box 8146 Dep, 0033, Oslo, Norway
| |
Collapse
|
30
|
Pepping MY, O’Rourke SM, Huang C, Katz JVE, Jeffres C, Miller MR. Rapture facilitates inexpensive and high-throughput parent-based tagging in salmonids. PLoS One 2020; 15:e0239221. [PMID: 33175847 PMCID: PMC7657533 DOI: 10.1371/journal.pone.0239221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022] Open
Abstract
Accurate methods for tracking individuals are crucial to the success of fisheries and aquaculture management. Management of migratory salmonid populations, which are important for the health of many economies, ecosystems, and indigenous cultures, is particularly dependent on data gathered from tagged fish. However, the physical tagging methods currently used have many challenges including cost, variable marker retention, and information limited to tagged individuals. Genetic tracking methods combat many of the problems associated with physical tags, but have their own challenges including high cost, potentially difficult marker design, and incompatibility of markers across species. Here we show the feasibility of a new genotyping method for parent-based tagging (PBT), where individuals are tracked through the inherent genetic relationships with their parents. We found that Rapture sequencing, a combination of restriction-site associated DNA and capture sequencing, provides sufficient data for parentage assignment. Additionally, the same capture bait set, which targets specific restriction-site associated DNA loci, can be used for both Rainbow Trout Oncorhynchus mykiss and Chinook Salmon Oncorhynchus tshawytscha. We input 248 single nucleotide polymorphisms from 1,121 samples to parentage assignment software and compared parent-offspring relationships of the spawning pairs recorded in a hatchery. Interestingly, our results suggest sperm contamination during hatchery spawning occurred in the production of 14% of offspring, further confirming the need for genetic tagging in accurately tracking individuals. PBT with Rapture successfully assigned progeny to parents with a 98.86% accuracy with sufficient genetic data. Cost for this pilot study was approximately $3 USD per sample. As costs vary based on the number of markers used and individuals sequenced, we expect that when implemented at a large-scale, per sample costs could be further decreased. We conclude that Rapture PBT provides a cost-effective and accurate alternative to the physical coded wire tags, and other genetic-based methods.
Collapse
Affiliation(s)
- Michelle Y. Pepping
- Department of Animal Science, University of California, Davis, California, United States of America
- Center for Watershed Sciences, University of California, Davis, California, United States of America
| | - Sean M. O’Rourke
- Department of Animal Science, University of California, Davis, California, United States of America
| | - Connie Huang
- Department of Animal Science, University of California, Davis, California, United States of America
| | - Jacob V. E. Katz
- California Trout, San Francisco, California, United States of America
| | - Carson Jeffres
- Center for Watershed Sciences, University of California, Davis, California, United States of America
| | - Michael R. Miller
- Department of Animal Science, University of California, Davis, California, United States of America
- Center for Watershed Sciences, University of California, Davis, California, United States of America
| |
Collapse
|
31
|
The sockeye salmon genome, transcriptome, and analyses identifying population defining regions of the genome. PLoS One 2020; 15:e0240935. [PMID: 33119641 PMCID: PMC7595290 DOI: 10.1371/journal.pone.0240935] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Sockeye salmon (Oncorhynchus nerka) is a commercially and culturally important species to the people that live along the northern Pacific Ocean coast. There are two main sockeye salmon ecotypes—the ocean-going (anadromous) ecotype and the fresh-water ecotype known as kokanee. The goal of this study was to better understand the population structure of sockeye salmon and identify possible genomic differences among populations and between the two ecotypes. In pursuit of this goal, we generated the first reference sockeye salmon genome assembly and an RNA-seq transcriptome data set to better annotate features of the assembly. Resequenced whole-genomes of 140 sockeye salmon and kokanee were analyzed to understand population structure and identify genomic differences between ecotypes. Three distinct geographic and genetic groups were identified from analyses of the resequencing data. Nucleotide variants in an immunoglobulin heavy chain variable gene cluster on chromosome 26 were found to differentiate the northwestern group from the southern and upper Columbia River groups. Several candidate genes were found to be associated with the kokanee ecotype. Many of these genes were related to ammonia tolerance or vision. Finally, the sex chromosomes of this species were better characterized, and an alternative sex-determination mechanism was identified in a subset of upper Columbia River kokanee.
Collapse
|
32
|
Ortega JCG, Figueiredo BRS, Graça WJ, Agostinho AA, Bini LM. Negative effect of turbidity on prey capture for both visual and non‐visual aquatic predators. J Anim Ecol 2020; 89:2427-2439. [DOI: 10.1111/1365-2656.13329] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/10/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Jean C. G. Ortega
- Programa de Pós‐Graduação em Ecologia e Evolução Universidade Federal de Goiás Goiânia Brazil
| | - Bruno R. S. Figueiredo
- Departamento de Ecologia e Zoologia Universidade Federal de Santa Catarina Florianópolis Brazil
| | - Weferson J. Graça
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura Universidade Estadual de Maringá Maringá Brazil
- Programa de Pós‐Graduação em Ecologia de Ambientes Aquáticos Continentais Universidade Estadual de Maringá Maringá Brazil
| | - Angelo A. Agostinho
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura Universidade Estadual de Maringá Maringá Brazil
- Programa de Pós‐Graduação em Ecologia de Ambientes Aquáticos Continentais Universidade Estadual de Maringá Maringá Brazil
| | - Luis M. Bini
- Departamento de Ecologia Universidade Federal de Goiás Goiânia Brazil
| |
Collapse
|
33
|
Ferchaud AL, Leitwein M, Laporte M, Boivin-Delisle D, Bougas B, Hernandez C, Normandeau É, Thibault I, Bernatchez L. Adaptive and maladaptive genetic diversity in small populations: Insights from the Brook Charr (Salvelinus fontinalis) case study. Mol Ecol 2020; 29:3429-3445. [PMID: 33463857 DOI: 10.1111/mec.15566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Investigating the relative importance of neutral versus selective processes governing the accumulation of genetic variants is a key goal in both evolutionary and conservation biology. This is particularly true in the context of small populations, where genetic drift can counteract the effect of selection. Using Brook Charr (Salvelinus fontinalis) from Québec, Canada, as a case study, we investigated the importance of demographic versus selective processes governing the accumulation of both adaptive and maladaptive mutations in closed versus open and connected populations to assess gene flow effect. This was achieved by using 14,779 high-quality filtered SNPs genotyped among 1,416 fish representing 50 populations from three life history types: lacustrine (closed populations), riverine and anadromous (connected populations). Using the PROVEAN algorithm, we observed a considerable accumulation of putative deleterious mutations across populations. The absence of correlation between the occurrence of putatively beneficial or deleterious mutations and local recombination rate supports the hypothesis that genetic drift might be the main driver of the accumulation of such variants. However, despite a lower genetic diversity observed in lacustrine than in riverine or anadromous populations, lacustrine populations do not exhibit more deleterious mutations than the two other history types, suggesting that the negative effect of genetic drift in lacustrine populations may be mitigated by that of relaxed purifying selection. Moreover, we also identified genomic regions associated with anadromy, as well as an overrepresentation of transposable elements associated with variation in environmental variables, thus supporting the importance of transposable elements in adaptation.
Collapse
Affiliation(s)
- Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Maeva Leitwein
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Damien Boivin-Delisle
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Bérénice Bougas
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Cécilia Hernandez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Éric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Isabel Thibault
- Direction de l'expertise Sur la Faune Aquatique, Ministère des Forêts, de la Faune et des Parcs du Québec, Québec, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| |
Collapse
|
34
|
Comparative Genomic Analyses and a Novel Linkage Map for Cisco ( Coregonus artedi) Provide Insights into Chromosomal Evolution and Rediploidization Across Salmonids. G3-GENES GENOMES GENETICS 2020; 10:2863-2878. [PMID: 32611547 PMCID: PMC7407451 DOI: 10.1534/g3.120.401497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Whole-genome duplication (WGD) is hypothesized to be an important evolutionary mechanism that can facilitate adaptation and speciation. Genomes that exist in states of both diploidy and residual tetraploidy are of particular interest, as mechanisms that maintain the ploidy mosaic after WGD may provide important insights into evolutionary processes. The Salmonidae family exhibits residual tetraploidy, and this, combined with the evolutionary diversity formed after an ancestral autotetraploidization event, makes this group a useful study system. In this study, we generate a novel linkage map for cisco (Coregonus artedi), an economically and culturally important fish in North America and a member of the subfamily Coregoninae, which previously lacked a high-density haploid linkage map. We also conduct comparative genomic analyses to refine our understanding of chromosomal fusion/fission history across salmonids. To facilitate this comparative approach, we use the naming strategy of protokaryotype identifiers (PKs) to associate duplicated chromosomes to their putative ancestral state. The female linkage map for cisco contains 20,292 loci, 3,225 of which are likely within residually tetraploid regions. Comparative genomic analyses revealed that patterns of residual tetrasomy are generally conserved across species, although interspecific variation persists. To determine the broad-scale retention of residual tetrasomy across the salmonids, we analyze sequence similarity of currently available genomes and find evidence of residual tetrasomy in seven of the eight chromosomes that have been previously hypothesized to show this pattern. This interspecific variation in extent of rediploidization may have important implications for understanding salmonid evolutionary histories and informing future conservation efforts.
Collapse
|
35
|
Campbell MA, Buser TJ, Alfaro ME, López JA. Addressing incomplete lineage sorting and paralogy in the inference of uncertain salmonid phylogenetic relationships. PeerJ 2020; 8:e9389. [PMID: 32685284 PMCID: PMC7337038 DOI: 10.7717/peerj.9389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Recent and continued progress in the scale and sophistication of phylogenetic research has yielded substantial advances in knowledge of the tree of life; however, segments of that tree remain unresolved and continue to produce contradicting or unstable results. These poorly resolved relationships may be the product of methodological shortcomings or of an evolutionary history that did not generate the signal traits needed for its eventual reconstruction. Relationships within the euteleost fish family Salmonidae have proven challenging to resolve in molecular phylogenetics studies in part due to ancestral autopolyploidy contributing to conflicting gene trees. We examine a sequence capture dataset from salmonids and use alternative strategies to accommodate the effects of gene tree conflict based on aspects of salmonid genome history and the multispecies coalescent. We investigate in detail three uncertain relationships: (1) subfamily branching, (2) monophyly of Coregonus and (3) placement of Parahucho. Coregoninae and Thymallinae are resolved as sister taxa, although conflicting topologies are found across analytical strategies. We find inconsistent and generally low support for the monophyly of Coregonus, including in results of analyses with the most extensive dataset and complex model. The most consistent placement of Parahucho is as sister lineage of Salmo.
Collapse
Affiliation(s)
- Matthew A. Campbell
- University of Alaska Museum, University of Alaska—Fairbanks, Fairbanks, AK, USA
| | - Thaddaeus J. Buser
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Michael E. Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - J. Andrés López
- University of Alaska Museum, University of Alaska—Fairbanks, Fairbanks, AK, USA
- College of Fisheries and Ocean Sciences, University of Alaska—Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
36
|
Bohling J. Evaluating the effect of reference genome divergence on the analysis of empirical RADseq datasets. Ecol Evol 2020; 10:7585-7601. [PMID: 32760550 PMCID: PMC7391306 DOI: 10.1002/ece3.6483] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/29/2022] Open
Abstract
The advent of high-throughput sequencing (HTS) has made genomic-level analyses feasible for nonmodel organisms. A critical step of many HTS pipelines involves aligning reads to a reference genome to identify variants. Despite recent initiatives, only a fraction of species has publically available reference genomes. Therefore, a common practice is to align reads to the genome of an organism related to the target species; however, this could affect read alignment and bias genotyping. In this study, I conducted an experiment using empirical RADseq datasets generated for two species of salmonids (Actinopterygii; Teleostei; Salmonidae) to address these questions. There are currently reference genomes for six salmonids of varying phylogenetic distance. I aligned the RADseq data to all six genomes and identified variants with several different genotypers, which were then fed into population genetic analyses. Increasing phylogenetic distance between target species and reference genome reduced the proportion of reads that successfully aligned and mapping quality. Reference genome also influenced the number of SNPs that were generated and depth at those SNPs, although the affect varied by genotyper. Inferences of population structure were mixed: increasing reference genome divergence reduced estimates of differentiation but similar patterns of population relationships were found across scenarios. These findings reveal how the choice of reference genome can influence the output of bioinformatic pipelines. It also emphasizes the need to identify best practices and guidelines for the burgeoning field of biodiversity genomics.
Collapse
Affiliation(s)
- Justin Bohling
- Abernathy Fish Technology Center US Fish and Wildlife Service Longview WA USA
| |
Collapse
|
37
|
Mapping of Adaptive Traits Enabled by a High-Density Linkage Map for Lake Trout. G3-GENES GENOMES GENETICS 2020; 10:1929-1947. [PMID: 32284313 PMCID: PMC7263693 DOI: 10.1534/g3.120.401184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Understanding the genomic basis of adaptative intraspecific phenotypic variation is a central goal in conservation genetics and evolutionary biology. Lake trout (Salvelinus namaycush) are an excellent species for addressing the genetic basis for adaptive variation because they express a striking degree of ecophenotypic variation across their range; however, necessary genomic resources are lacking. Here we utilize recently-developed analytical methods and sequencing technologies to (1) construct a high-density linkage and centromere map for lake trout, (2) identify loci underlying variation in traits that differentiate lake trout ecophenotypes and populations, (3) determine the location of the lake trout sex determination locus, and (4) identify chromosomal homologies between lake trout and other salmonids of varying divergence. The resulting linkage map contains 15,740 single nucleotide polymorphisms (SNPs) mapped to 42 linkage groups, likely representing the 42 lake trout chromosomes. Female and male linkage group lengths ranged from 43.07 to 134.64 centimorgans, and 1.97 to 92.87 centimorgans, respectively. We improved the map by determining coordinates for 41 of 42 centromeres, resulting in a map with 8 metacentric chromosomes and 34 acrocentric or telocentric chromosomes. We use the map to localize the sex determination locus and multiple quantitative trait loci (QTL) associated with intraspecific phenotypic divergence including traits related to growth and body condition, patterns of skin pigmentation, and two composite geomorphometric variables quantifying body shape. Two QTL for the presence of vermiculations and spots mapped with high certainty to an arm of linkage group Sna3, growth related traits mapped to two QTL on linkage groups Sna1 and Sna12, and putative body shape QTL were detected on six separate linkage groups. The sex determination locus was mapped to Sna4 with high confidence. Synteny analysis revealed that lake trout and congener Arctic char (Salvelinus alpinus) are likely differentiated by three or four chromosomal fissions, possibly one chromosomal fusion, and 6 or more large inversions. Combining centromere mapping information with putative inversion coordinates revealed that the majority of detected inversions differentiating lake trout from other salmonids are pericentric and located on acrocentric and telocentric linkage groups. Our results suggest that speciation and adaptive divergence within the genus Salvelinus may have been associated with multiple pericentric inversions occurring primarily on acrocentric and telocentric chromosomes. The linkage map presented here will be a critical resource for advancing conservation oriented genomic research on lake trout and exploring chromosomal evolution within and between salmonid species.
Collapse
|
38
|
Gruzdeva MA, Semenova AV, Kuzishchin KV, Ponomareva EV, Volkov AA, Pavlov DS. Genetic Variability of Dolly Varden (Salvelinus malma), White-Spotted Char (S. leucomaenis), and Interspecific Hybrids from the Utkholok River (Northwestern Kamchatka). RUSS J GENET+ 2020. [DOI: 10.1134/s1022795419090060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Schneider K, Adams CE, Elmer KR. Parallel selection on ecologically relevant gene functions in the transcriptomes of highly diversifying salmonids. BMC Genomics 2019; 20:1010. [PMID: 31870285 PMCID: PMC6929470 DOI: 10.1186/s12864-019-6361-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022] Open
Abstract
Background Salmonid fishes are characterised by a very high level of variation in trophic, ecological, physiological, and life history adaptations. Some salmonid taxa show exceptional potential for fast, within-lake diversification into morphologically and ecologically distinct variants, often in parallel; these are the lake-resident charr and whitefish (several species in the genera Salvelinus and Coregonus). To identify selection on genes and gene categories associated with such predictable diversifications, we analysed 2702 orthogroups (4.82 Mbp total; average 4.77 genes/orthogroup; average 1783 bp/orthogroup). We did so in two charr and two whitefish species and compared to five other salmonid lineages, which do not evolve in such ecologically predictable ways, and one non-salmonid outgroup. Results All selection analyses are based on Coregonus and Salvelinus compared to non-diversifying taxa. We found more orthogroups were affected by relaxed selection than intensified selection. Of those, 122 were under significant relaxed selection, with trends of an overrepresentation of serine family amino acid metabolism and transcriptional regulation, and significant enrichment of behaviour-associated gene functions. Seventy-eight orthogroups were under significant intensified selection and were enriched for signalling process and transcriptional regulation gene ontology terms and actin filament and lipid metabolism gene sets. Ninety-two orthogroups were under diversifying/positive selection. These were enriched for signal transduction, transmembrane transport, and pyruvate metabolism gene ontology terms and often contained genes involved in transcriptional regulation and development. Several orthogroups showed signs of multiple types of selection. For example, orthogroups under relaxed and diversifying selection contained genes such as ap1m2, involved in immunity and development, and slc6a8, playing an important role in muscle and brain creatine uptake. Orthogroups under intensified and diversifying selection were also found, such as genes syn3, with a role in neural processes, and ctsk, involved in bone remodelling. Conclusions Our approach pinpointed relevant genomic targets by distinguishing among different kinds of selection. We found that relaxed, intensified, and diversifying selection affect orthogroups and gene functions of ecological relevance in salmonids. Because they were found consistently and robustly across charr and whitefish and not other salmonid lineages, we propose these genes have a potential role in the replicated ecological diversifications.
Collapse
Affiliation(s)
- Kevin Schneider
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Colin E Adams
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.,Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, G63 0AW, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
40
|
Wong MKS, Nobata S, Hyodo S. Enhanced osmoregulatory ability marks the smoltification period in developing chum salmon (Oncorhynchus keta). Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110565. [PMID: 31493553 DOI: 10.1016/j.cbpa.2019.110565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 11/29/2022]
Abstract
The freshwater (FW) life of chum salmon is short, as they migrate to the ocean soon after emergence from the substrate gravel of natal waters. The alevins achieve seawater (SW) acclimating ability at an early developmental stage and the details of smoltification are not clear. We examined the stage-dependent SW acclimating ability in chum salmon alevins and found a sharp increase in SW tolerance during development that resembles the physiological parr-smolt transformation seen in other salmonids. Perturbation of plasma Na+ after SW exposure was prominent from the hatched embryo stage to emerged alevins, but the plasma Na+ became highly stable and more resistant to perturbation soon after complete absorption of yolk. Marker gene expression for SW-ionocytes including Na/K-ATPase (NKA α1b), Na-K-Cl cotransporter 1a (NKCC1a), Na/H exchanger 3a (NHE3a), cystic fibrosis transmembrane conductance regulators (CFTR I and CFTR II) were all upregulated profoundly at the same stage when the alevins were challenged by SW, suggesting that the stability of plasma Na+ concentration was partly a result of elevated osmoregulatory capability. FW-ionocyte markers including NKA α1a and NHE3b were consistently downregulated independent of stage by SW exposure, suggesting that embryos at all stages respond to salinity challenge, but the increase in SW osmoregulatory capability is restricted to the developmental stage after emergence. We propose that the "smoltification period" is condensed and integrated into the early development of chum salmon, and our results can be extrapolated to the future studies on hormonal controls and developmental triggers for smoltification in salmonids.
Collapse
Affiliation(s)
- Marty Kwok-Shing Wong
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.
| | - Shigenori Nobata
- International Coastal Research Center, Atmosphere and Ocean Research Institute, the University of Tokyo, Otsuchi, Iwate, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| |
Collapse
|
41
|
Corush JB. Evolutionary patterns of diadromy in fishes: more than a transitional state between marine and freshwater. BMC Evol Biol 2019; 19:168. [PMID: 31412761 PMCID: PMC6694556 DOI: 10.1186/s12862-019-1492-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 07/31/2019] [Indexed: 12/20/2022] Open
Abstract
Background Across the tree of life there are numerous evolutionary transitions between different habitats (i.e., aquatic and terrestrial or marine and freshwater). Many of these dramatic evolutionary shifts parallel developmental shifts that require physiological, anatomical and behavioral changes for survival and reproduction. Diadromy (scheduled movement between marine and freshwater) has been characterized as a behavior that acts as an evolutionary intermediate state between marine and freshwater environments, implying that diadromous lineages are evolutionarily transient. This hypothesis comes with assumptions regarding the rates of evolutionary transitions in and out of diadromy as well as rates of speciation and extinction in diadromous fishes. Results Based on a published phylogeny of 7822 species of ray-finned fishes, state speciation and extinction models of evolutionary transition between marine, freshwater, and diadromous species suggest transition rates out of diadromy are 5–100 times higher that transition between marine and freshwater or into diadromy. Additionally, high speciation and low extinction rates separate diadromous fishes from marine and freshwater species. As a result, net diversification (net diversification = speciation – extinction) is about 7–40 times higher in diadromous fishes compared to freshwater and marine respectively. Together the transition, speciation, and extinction rates suggest diadromy is the least stable of the three states. Conclusion Evolutionary transitions to diadromy are rare in fishes. However, once established, diversification rates in diadromous lineages are high compared to both marine and freshwater species. Diadromous lineages tend to be more transient than marine or freshwater lineages and are found to give rise to marine and freshwater specialists in addition to diadromous descendants. Although diadromy is not a necessary evolutionary intermediate between marine and freshwater, these results support the interpretation of diadromy as an important, occasionally intermediate state, that contributes to biodiversity in fishes in all environments. This evolutionary instability of diadromous lineages is counteracted by their relatively high diversification rates. These findings highlight the importance of integrating the dynamics of diversification and major evolutionary transitions for understanding macroevolutionary patterns. Electronic supplementary material The online version of this article (10.1186/s12862-019-1492-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joel B Corush
- Department of Ecology and Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, TN, 37996, USA.
| |
Collapse
|
42
|
Oleinik AG, Skurikhina LA, Kukhlevsky AD, Semenchenko AA. First report of three complete mitochondrial genomes of the long-finned charr Salvethymus svetovidovi Chereshnev et Skopetz, 1990 (Salmoniformes: Salmonidae) with phylogenetic consideration. Mitochondrial DNA B Resour 2019; 4:2464-2466. [PMID: 33365584 PMCID: PMC7687372 DOI: 10.1080/23802359.2019.1638325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/22/2019] [Indexed: 11/24/2022] Open
Abstract
The complete mitochondrial genome was sequenced in three individuals of long-finned charr Salvethymus svetovidovi from Lake El'gygytgyn (Chukotka Peninsula, Russia). The genome sequences are 16,655 bp in size and the gene arrangement, composition, and size are similar to the charr genomes published previously. The difference between the three genomes studied is low, 0.07%. Our results support the phylogenetic closeness of Sl. svetovidovi with representatives of the genus Salvelinus and their origin from a common ancestor. A placement of Sl. svetovidovi in the phylogenetic tree is strictly defined and this taxon should be included in the genus Salvelinus.
Collapse
Affiliation(s)
- Alla G. Oleinik
- A. V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Lubov A. Skurikhina
- A. V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Andrey D. Kukhlevsky
- A. V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Far Eastern Federal University, Vladivostok, Russia
| | | |
Collapse
|
43
|
Shirdel I, Kalbassi MR, Hosseinkhani S, Paknejad H, Wink M. Cloning, characterization and tissue-specific expression of the antimicrobial peptide hepcidin from caspian trout (Salmo caspius) and the antibacterial activity of the synthetic peptide. FISH & SHELLFISH IMMUNOLOGY 2019; 90:288-296. [PMID: 31071462 DOI: 10.1016/j.fsi.2019.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Antimicrobial peptides have a wide range of antimicrobial activity and widely occur in different organisms including mollusks, crustaceans and vertebrates. Hepcidins are a group of cysteine-rich antimicrobial peptides that are active against a variety of pathogens including gram-positive and gram-negative bacteria, as well as viruses. In this study, the hepcidin gene of Caspian trout (CtHep) was identified and characterized. Our results showed that CtHep cDNA has a 267-bp Open Reading Frame (ORF), which is translated to 88 amino acids. The CtHep was classified in the HAMP1 class of hepcidins. Comparison of DNA and cDNA sequences showed that CtHep has 3 exons and 2 introns. The signal, prodomain and mature part of CtHep have 24, 39 and 25 amino acids, respectively. The mature peptide has a molecular weight of 2881.43 Da and a theoretical isoelectric point of 8.53. The expression of CtHep mRNA was detected in different tissues of healthy and infected fish. CtHep expression in the liver, head kidney, spleen and skin was significantly enhanced after bacterial challenge. Expression of CtHep in different embryonic development stages was also substantial. Antibacterial activity of synthetic CtHep peptides was investigated against a number of Gram-positive and Gram-negative bacteria. CtHep inhibited some pathogenic bacteria such as Streptococcus iniae and Aeromonas hydrophila. In the in vivo experiment, CtHep upregulated the cytokines IL-6 and TNF-α in both kidney and spleen tissues after 24 h of the peptide injection. In conclusion, our study showed that CtHep plays an important role in the immune system of Caspian trout and also in the embryonic stages. Moreover, CtHep peptide has a potential to be used as an antimicrobial therapeutic agent as well as an immunostimulant in aquaculture.
Collapse
Affiliation(s)
- Iman Shirdel
- Department of Fisheries, Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran.
| | - Mohammad Reza Kalbassi
- Department of Fisheries, Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hamed Paknejad
- Department of Fisheries, Division of Genetics and Physiology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
44
|
Rodgers TW, Olson JR, Mock KE. Use of
RN
ase H‐dependent
PCR
for discrimination and detection of closely related species from environmental
DNA. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - John R. Olson
- School of Natural Sciences California State University Monterey Bay Seaside California
| | - Karen E. Mock
- Department of Wildland Resources Utah State University Logan Utah
| |
Collapse
|
45
|
Oleinik AG, Skurikhina LA, Kukhlevsky AD, Bondar EI. Genetic Differentiation of the Arctic Phylogenetic Group of Charr from Northeast Asia and North America. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419030116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Zak MA, Manzon RG. Expression and activity of lipid and oxidative metabolism enzymes following elevated temperature exposure and thyroid hormone manipulation in juvenile lake whitefish (Coregonus clupeaformis). Gen Comp Endocrinol 2019; 275:51-64. [PMID: 30721659 DOI: 10.1016/j.ygcen.2019.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/11/2019] [Accepted: 02/01/2019] [Indexed: 01/08/2023]
Abstract
Temperature has unequivocal effects on several aspects of fish physiology, but the full extent of its interaction with key endocrine signaling systems to influence metabolic function remains unknown. The aim of the current study was to assess the individual and combined effects of elevated temperature and hyperthyroidism on hepatic metabolism in juvenile lake whitefish by quantifying mRNA abundance and activity of key metabolic enzymes. Fish were exposed to 13 (control), 17 or 21 °C for 0, 4, 8 or 24 days in the presence or absence of low-T4 (1 µg × g body weight-1) or high-T4 (10 µg × g body weight-1) treatment. Our results demonstrate moderate sensitivity to elevated temperature in this species, characterized by short-term changes in mRNA abundance of several metabolic enzymes and long-term declines in citrate synthase (CS) and cytochrome c oxidase (COX) activities. T4-induced hyperthyroidism also had several short-term effects on mRNA abundance of metabolic transcripts, including depressions in acetyl-coA carboxylase β (accβ) and carnitine palmitoyltransferase 1β (cpt1β), and stabilization of cs mRNA levels; however, these effects were primarily limited to elevated temperature groups, indicating temperature-dependent effects of exogenous T4 treatment in this species. In contrast, maximal CS and COX activities were not altered by hyperthyroidism at any temperature. Collectively, our data suggest that temperature has the potential to manipulate thyroid hormone physiology in juvenile lake whitefish and, under warm-conditions, hyperthyroidism may suppress certain elements of the β-oxidation pathway without substantial impacts on overall cellular oxidative capacity.
Collapse
Affiliation(s)
- Megan A Zak
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Richard G Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
47
|
Davesne D, Meunier FJ, Schmitt AD, Friedman M, Otero O, Benson RBJ. The phylogenetic origin and evolution of acellular bone in teleost fishes: insights into osteocyte function in bone metabolism. Biol Rev Camb Philos Soc 2019; 94:1338-1363. [DOI: 10.1111/brv.12505] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Donald Davesne
- Department of Earth SciencesUniversity of Oxford OX1 3AN Oxford U.K
| | - François J. Meunier
- BOREA (UMR 7208 CNRS, IRD, MNHN, Sorbonne Université)Muséum national d'Histoire naturelle 75005 Paris France
| | - Armin D. Schmitt
- Department of Earth SciencesUniversity of Oxford OX1 3AN Oxford U.K
| | - Matt Friedman
- Museum of Paleontology and Department of Earth and Environmental SciencesUniversity of Michigan Ann Arbor MI 48109‐1079 U.S.A
| | - Olga Otero
- PalEvoPrim (UMR 7262 CNRS)Université de Poitiers 86000 Poitiers France
| | | |
Collapse
|
48
|
Sutherland BJG, Prokkola JM, Audet C, Bernatchez L. Sex-Specific Co-expression Networks and Sex-Biased Gene Expression in the Salmonid Brook Charr Salvelinus fontinalis. G3 (BETHESDA, MD.) 2019; 9:955-968. [PMID: 30692150 PMCID: PMC6404618 DOI: 10.1534/g3.118.200910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/21/2019] [Indexed: 12/31/2022]
Abstract
Networks of co-expressed genes produce complex phenotypes associated with functional novelty. Sex differences in gene expression levels or in the structure of gene co-expression networks can cause sexual dimorphism and may resolve sexually antagonistic selection. Here we used RNA-sequencing in the salmonid Brook Charr Salvelinus fontinalis to characterize sex-specific co-expression networks in the liver of 47 female and 53 male offspring. In both networks, modules were characterized for functional enrichment, hub gene identification, and associations with 15 growth, reproduction, and stress-related phenotypes. Modules were then evaluated for preservation in the opposite sex, and in the congener Arctic Charr Salvelinus alpinus Overall, more transcripts were assigned to a module in the female network than in the male network, which coincided with higher inter-individual gene expression and phenotype variation in the females. Most modules were preserved between sexes and species, including those involved in conserved cellular processes (e.g., translation, immune pathways). However, two sex-specific male modules were identified, and these may contribute to sexual dimorphism. To compare with the network analysis, differentially expressed transcripts were identified between the sexes, revealing a total of 16% of expressed transcripts as sex-biased. For both sexes, there was no overrepresentation of sex-biased genes or sex-specific modules on the putative sex chromosome. Sex-biased transcripts were also not overrepresented in sex-specific modules, and in fact highly male-biased transcripts were enriched in preserved modules. Comparative network analysis and differential expression analyses identified different aspects of sex differences in gene expression, and both provided new insights on the genes underlying sexual dimorphism in the salmonid Brook Charr.
Collapse
Affiliation(s)
- Ben J G Sutherland
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Jenni M Prokkola
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, UK
| | - Céline Audet
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
49
|
Du TY, Tissandier SC, Larsson HCE. Integration and modularity of teleostean pectoral fin shape and its role in the diversification of acanthomorph fishes. Evolution 2019; 73:401-411. [PMID: 30593658 DOI: 10.1111/evo.13669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/09/2018] [Indexed: 12/30/2022]
Abstract
Phenotypic integration and modularity describe the strength and pattern of interdependencies between traits. Integration and modularity have been proposed to influence the trajectory of evolution, either acting as constraints or facilitators. Here, we examine trends in the integration and modularity of pectoral fin morphology in teleost fishes using geometric morphometrics. We compare the fin shapes of the highly diverse radiation of acanthomorph fishes to lower teleosts. Integration and modularity are measured using two-block partial least squares analysis and the covariance ratio coefficient between the radial bones and lepidotrichia of the pectoral fins. We show that the fins of acanthomorph fishes are more tightly integrated but also more morphologically diverse and faster evolving compared to nonacanthomorph fishes. The main pattern of shape covariation in nonacanthomorphs is concordant with the main trajectory of evolution between nonacanthomorphs and acanthomorphs. Our findings support a facilitating role for integration during the acanthomorph diversification. Potential functional consequences and developmental mechanisms of fin integration are discussed.
Collapse
Affiliation(s)
- Trina Y Du
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada.,Current Address: Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Sylvie C Tissandier
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada.,Current Address: Edmonton, Alberta, Canada
| | - Hans C E Larsson
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
50
|
Lujić J, Marinović Z, Bajec SS, Djurdjevič I, Urbányi B, Horváth Á. Interspecific germ cell transplantation: a new light in the conservation of valuable Balkan trout genetic resources? FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1487-1498. [PMID: 29756177 DOI: 10.1007/s10695-018-0510-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Interspecific transplantation of germ cells from the brown trout Salmo trutta m. fario and the European grayling Thymallus thymallus into rainbow trout Oncorhynchus mykiss recipients was carried out in order to improve current practices in conservation of genetic resources of endangered salmonid species in the Balkan Peninsula. Current conservation methods mainly include in situ efforts such as the maintenance of purebred individuals in isolated streams and restocking with purebred fingerlings; however, additional ex situ strategies such as surrogate production are needed. Steps required for transplantation such as isolation of high number of viable germ cells and fluorescent labeling of germ cells which are to be transplanted have been optimized. Isolated and labeled brown trout and grayling germ cells were intraperitoneally transplanted into 3 to 5 days post hatch rainbow trout larvae. Survival of the injected larvae was comparable to the controls. Sixty days after transplantation, fluorescently labeled donor cells were detected within the recipient gonads indicating successful incorporation of germ cells (brown trout spermatogonia and oogonia-27%; grayling spermatogonia-28%; grayling oogonia-23%). PCR amplification of donor mtDNA CR fragments within the recipient gonads additionally corroborated the success of incorporation. Overall, the transplantation method demonstrated in this study presents the first step and a possible onset of the application of the germ cell transplantation technology in conservation and revitalization of genetic resources of endangered and endemic species or populations of salmonid fish and thus give rise to new or improved management strategies for such species.
Collapse
Affiliation(s)
- Jelena Lujić
- Department of Aquaculture, Szent István University, Páter Károly u. 1, Gödöllő, 2100, Hungary
| | - Zoran Marinović
- Department of Aquaculture, Szent István University, Páter Károly u. 1, Gödöllő, 2100, Hungary.
| | - Simona Sušnik Bajec
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230, Domžale, Slovenia
| | - Ida Djurdjevič
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230, Domžale, Slovenia
| | - Béla Urbányi
- Department of Aquaculture, Szent István University, Páter Károly u. 1, Gödöllő, 2100, Hungary
| | - Ákos Horváth
- Department of Aquaculture, Szent István University, Páter Károly u. 1, Gödöllő, 2100, Hungary
| |
Collapse
|