1
|
Bouteldja AA, Penichet D, Srivastava LK, Cermakian N. The circadian system: A neglected player in neurodevelopmental disorders. Eur J Neurosci 2024; 60:3858-3890. [PMID: 38816965 DOI: 10.1111/ejn.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Patients with neurodevelopmental disorders, such as autism spectrum disorder, often display abnormal circadian rhythms. The role of the circadian system in these disorders has gained considerable attention over the last decades. Yet, it remains largely unknown how these disruptions occur and to what extent they contribute to the disorders' development. In this review, we examine circadian system dysregulation as observed in patients and animal models of neurodevelopmental disorders. Second, we explore whether circadian rhythm disruptions constitute a risk factor for neurodevelopmental disorders from studies in humans and model organisms. Lastly, we focus on the impact of psychiatric medications on circadian rhythms and the potential benefits of chronotherapy. The literature reveals that patients with neurodevelopmental disorders display altered sleep-wake cycles and melatonin rhythms/levels in a heterogeneous manner, and model organisms used to study these disorders appear to support that circadian dysfunction may be an inherent characteristic of neurodevelopmental disorders. Furthermore, the pre-clinical and clinical evidence indicates that circadian disruption at the environmental and genetic levels may contribute to the behavioural changes observed in these disorders. Finally, studies suggest that psychiatric medications, particularly those prescribed for attention-deficit/hyperactivity disorder and schizophrenia, can have direct effects on the circadian system and that chronotherapy may be leveraged to offset some of these side effects. This review highlights that circadian system dysfunction is likely a core pathological feature of neurodevelopmental disorders and that further research is required to elucidate this relationship.
Collapse
Affiliation(s)
- Ahmed A Bouteldja
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Danae Penichet
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Lalit K Srivastava
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
2
|
Sumová A, Sládek M. Circadian Disruption as a Risk Factor for Development of Cardiovascular and Metabolic Disorders - From Animal Models to Human Population. Physiol Res 2024; 73:S321-S334. [PMID: 38634651 PMCID: PMC11412342 DOI: 10.33549/physiolres.935304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The lifestyle of human society is drifting apart from the natural environmental cycles that have influenced it since its inception. These cycles were fundamental in structuring the daily lives of people in the pre-industrial era, whether they were seasonal or daily. Factors that disrupt the regularity of human behaviour and its alignment with solar cycles, such as late night activities accompanied with food intake, greatly disturb the internal temporal organization in the body. This is believed to contribute to the rise of the so-called diseases of civilization. In this review, we discuss the connection between misalignment in daily (circadian) regulation and its impact on health, with a focus on cardiovascular and metabolic disorders. Our aim is to review selected relevant research findings from laboratory and human studies to assess the extent of evidence for causality between circadian clock disruption and pathology. Keywords: Circadian clock, Chronodisruption, Metabolism, Cardiovascular disorders, Spontaneously hypertensive rat, Human, Social jetlag, Chronotype.
Collapse
Affiliation(s)
- A Sumová
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
3
|
Hibberd TJ, Ramsay S, Spencer-Merris P, Dinning PG, Zagorodnyuk VP, Spencer NJ. Circadian rhythms in colonic function. Front Physiol 2023; 14:1239278. [PMID: 37711458 PMCID: PMC10498548 DOI: 10.3389/fphys.2023.1239278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
A rhythmic expression of clock genes occurs within the cells of multiple organs and tissues throughout the body, termed "peripheral clocks." Peripheral clocks are subject to entrainment by a multitude of factors, many of which are directly or indirectly controlled by the light-entrainable clock located in the suprachiasmatic nucleus of the hypothalamus. Peripheral clocks occur in the gastrointestinal tract, notably the epithelia whose functions include regulation of absorption, permeability, and secretion of hormones; and in the myenteric plexus, which is the intrinsic neural network principally responsible for the coordination of muscular activity in the gut. This review focuses on the physiological circadian variation of major colonic functions and their entraining mechanisms, including colonic motility, absorption, hormone secretion, permeability, and pain signalling. Pathophysiological states such as irritable bowel syndrome and ulcerative colitis and their interactions with circadian rhythmicity are also described. Finally, the classic circadian hormone melatonin is discussed, which is expressed in the gut in greater quantities than the pineal gland, and whose exogenous use has been of therapeutic interest in treating colonic pathophysiological states, including those exacerbated by chronic circadian disruption.
Collapse
Affiliation(s)
- Timothy J. Hibberd
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Stewart Ramsay
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | - Phil G. Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | | | - Nick J. Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
4
|
Cui L, Li J, Lou X, Yang L, Chen T, Guo Y, Zhou H, Yang X, Li Z, Wang X. Associations between sleep characteristics and risk for high blood pressure among students aged 9-18: A cross-sectional study in China. Sleep Med 2023; 107:72-80. [PMID: 37121222 DOI: 10.1016/j.sleep.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023]
Abstract
OBJECTIVE The aim was to investigate the association of multidimensional sleep indicators with high blood pressure (HBP) of Chinese students. METHODS Participants in this cross-sectional study included 11561 students aged 9-18. Sleep was characterized by sleep timing (e.g., bedtime), sleep duration and sleep consistency (e.g., bedtime/wake-up time deviations and social jet lag (SJL)). We used odds ratios (OR) and 95% confidence intervals (95% CI) to assess the relationship between sleep and HBP. RESULTS Primary school students who slept 8.00-9.00h had a lower risk of HBP compared with sleeping >10h (OR 0.370, 95%CI 0.208, 0.658), while junior middle school students reporting ≤8.00h on weekday night had a lower risk of HBP compared with sleeping >10h (OR 0.303, 95%CI 0.111, 0.829). Moreover, compared with deviations = 0h, the OR (95%CI) for wake-up time deviations <0h and bedtime deviations >0h in primary school students with HBP were 0.314 (0.125, 0.790) and 2.155 (1.205, 3.853). Furthermore, compared with SJL = 0h, senior high school students reporting SJL = 0.01-0.50h, SJL = 0.51-1.00h and SJL = 1.01-2.00h had greater risk of HBP (OR 1.566, 95%CI 1.039, 2.361; OR 1.760, 95%CI 1.177, 2.631; OR 1.660, 95%CI 1.124, 2.452, respectively). Bedtime at night was associated with HBP for three educational periods students, however, there was no significant association between mid-day nap and HBP. CONCLUSIONS Sleep timing, sleep duration and sleep consistency are associated with high blood pressure in children and adolescents.
Collapse
Affiliation(s)
- Lingling Cui
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jiaxin Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaomin Lou
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Liying Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Tingting Chen
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yingying Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Huijun Zhou
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoli Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiqian Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xian Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
5
|
The Circadian Clock of Polarized Microglia and Its Interaction with Mouse Brain Oscillators. Cell Mol Neurobiol 2023; 43:1319-1333. [PMID: 35821305 DOI: 10.1007/s10571-022-01252-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022]
Abstract
The activity of the immune system is controlled by circadian clocks present in different immune cells. The brain-resident subtype of immune cells, microglia, exhibits a wide range of functional phenotypes depending on the signaling molecules in their microenvironment. The exact role of microglia in the hypothalamic suprachiasmatic nuclei (SCN), the central circadian clock, has not been known. Therefore, the aim of this study was to determine (1) whether microenvironment-induced changes in microglial polarization affect circadian clocks in these cells and (2) whether the presence of microglia contributes to SCN clock function. Microglial and SCN clocks were monitored using PER2-driven bioluminescence rhythms at the tissue and single-cell levels. We found that polarization of resting microglia to a pro-inflammatory (M1) or anti-inflammatory (M2) state significantly altered the period and amplitude of their molecular circadian clock; importantly, the parameters changed plastically with the repolarization of microglia. This effect was reflected in specific modulations of the expression profiles of individual clock genes in the polarized microglia. Depletion of microglia significantly reduced the amplitude of the SCN clock, and co-cultivation of the SCN explants with M2-polarized microglia specifically improved the amplitude of the SCN clock. These results demonstrate that the presence of M2-polarized microglia has beneficial effects on SCN clock function. Our results provide new insight into the mutual interaction between immune and circadian systems in the brain.
Collapse
|
6
|
Honzlová P, Novosadová Z, Houdek P, Sládek M, Sumová A. Misaligned feeding schedule elicits divergent circadian reorganizations in endo- and exocrine pancreas clocks. Cell Mol Life Sci 2022; 79:318. [PMID: 35622158 PMCID: PMC11072313 DOI: 10.1007/s00018-022-04354-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022]
Abstract
Misaligned feeding may lead to pancreatic insufficiency, however, whether and how it affects circadian clock in the exocrine pancreas is not known. We exposed rats to a reversed restricted feeding regimen (rRF) for 10 or 20 days and analyzed locomotor activity, daily profiles of hormone levels (insulin, glucagon, and corticosterone) in plasma, and clock gene expression in the liver and endocrine and exocrine pancreas. In addition, we monitored responses of the exocrine pancreatic clock in organotypic explants of mPer2Luc mice in real time to acetylcholine, insulin, and glucocorticoids. rRF phase-reversed the clock in the endocrine pancreas, similar to the clock in the liver, but completely abolished clock gene rhythmicity and significantly downregulated the expression of Cpb1 and Cel in the exocrine pancreas. rRF desynchronized the rhythms of plasma insulin and corticosterone. Daily profiles of their receptor expression differed in the two parts of the pancreas and responded differently to rRF. Additionally, the pancreatic exocrine clock responded differently to treatments with insulin and the glucocorticoid analog dexamethasone in vitro. Mathematical simulation confirmed that the long-term misalignment between these two hormonal signals, as occurred under rRF, may lead to dampening of the exocrine pancreatic clock. In summary, our data suggest that misaligned meals impair the clock in the exocrine part of the pancreas by uncoupling insulin and corticosterone rhythms. These findings suggest a new mechanism by which adverse dietary habits, often associated with shift work in humans, may impair the clock in the exocrine pancreas and potentially contribute to exocrine pancreatic insufficiency.
Collapse
Affiliation(s)
- Petra Honzlová
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Zuzana Novosadová
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Pavel Houdek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Martin Sládek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Alena Sumová
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic.
| |
Collapse
|
7
|
Roles of sleep-related cardiovascular autonomic functions in voluntary-exercise-induced alleviation of hypertension in spontaneously hypertensive rats. Hypertens Res 2022; 45:1154-1167. [PMID: 35459851 DOI: 10.1038/s41440-022-00916-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Autonomic dysfunction and sleep problems are closely associated with hypertension and predict cardiovascular morbidity and mortality. Animal studies and clinical observations have identified exercise as an important factor in preventing and treating hypertension. However, the roles of autonomic function and sleep in the antihypertensive mechanisms of exercise are still not fully understood. This study aimed to clarify the physiological mechanisms associated with autonomic function and sleep through wheel exercise. Male spontaneously hypertensive rats (SHRs) were grouped into a wheel-exercised group and a sedentary group (controls). Electroencephalogram, electromyogram, electrocardiogram, and mean arterial pressure (MAP) were recorded simultaneously for 24 h once a week over 11 weeks. Wheel exercise was initiated in the SHRs at 12 weeks old and continued for another eight weeks. A significant suppression in the age-related elevation of MAP was noted in the SHRs undergoing wheel exercise. The reduction in MAP was correlated with increased parasympathetic activity and baroreflex sensitivity and decreased sympathetic activity, mainly during quiet sleep. Exercise increased the paradoxical sleep time and theta power (associated with cognitive function) but not the delta power (an indicator of sleep depth) or the attenuation of circadian rhythm flattening (characterized by increased wakefulness and less sleep during the light period and the opposite during the dark period). Furthermore, the exercise-induced changes in autonomic function occurred before those in sleep patterns, which were dependent on each other. In conclusion, wheel exercise can modulate sleep-related cardiovascular dysfunction and the flattening of circadian rhythm, preventing the progression of hypertension, which reduces the incidence of cardiovascular diseases.
Collapse
|
8
|
Pačesová D, Spišská V, Novotný J, Bendová Z. Maternal morphine intake during pregnancy and lactation affects the circadian clock of rat pups. Brain Res Bull 2021; 177:143-154. [PMID: 34560238 DOI: 10.1016/j.brainresbull.2021.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/24/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022]
Abstract
Early-life morphine exposure causes a variety of behavioural and physiological alterations observed later in life. In the present study, we investigated the effects of prenatal and early postnatal morphine on the maturation of the circadian clockwork in the suprachiasmatic nucleus and the liver, and the rhythm in aralkylamine N-acetyltransferase activity in the pineal gland. Our data suggest that the most affected animals were those born to control, untreated mothers and cross-fostered by morphine-exposed dams. These animals showed the highest mesor and amplitude in the rhythm of Per2, Nr1d1 but not Per1 gene expression in the suprachiasmatic nuclei (SCN) and arrhythmicity in AA-NAT activity in the pineal gland. In a similar pattern to the rhythm of Per2 expression in the SCN, they also expressed Per2 in a higher amplitude rhythm in the liver. Five of seven specific genes in the liver showed significant differences between groups in their expression. A comparison of mean relative mRNA levels suggests that this variability was caused mostly by cross-fostering, animals born to morphine-exposed dams that were cross-fostered by control mothers and vice versa differed from both groups of natural mothers raising offspring. Our data reveal that the circadian system responds to early-life morphine administration with significant changes in clock gene expression profiles both in the SCN and in the liver. The observed differences between the groups suggest that the dose, timing and accompanying stress events such as cross-fostering may play a role in the final magnitude of the physiological challenge that opioids bring to the developing circadian clock.
Collapse
Affiliation(s)
- Dominika Pačesová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Veronika Spišská
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zdeňka Bendová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
9
|
Does circadian rhythm disruption during their early development have lasting effects on cognition of the elder rats? Neuroreport 2021; 31:544-550. [PMID: 32282585 DOI: 10.1097/wnr.0000000000001443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study aimed to investigate the changes in learning and memory after chronic circadian disruption followed by a long period of circadian recovery. MATERIALS AND METHODS Eleven adult male spontaneously hypertensive rats were randomly divided into control group, 12-h light/12-h dark circadian disruption group (12L/12D) and 6-h light/6-h dark circadian disruption group (6L/6D). Rats in control group remained under the original 12-h light/12-h dark cycle throughout the experiment; rats in the 12L/12D group were exposed to 12-h light/12-h dark cycle with light-dark order changed every 3 days; rats in the 6L/6D group were exposed to 6-h light/6-h dark cycle. The disruption period continued for 18 weeks. Then after 8 weeks and 32 weeks of circadian re-entrainment, all animals were tested by Morris Water Maze (MWM), respectively, followed by an MRI examination. RESULTS Rats in the 12L/12D group demonstrated longer escape latency and swim distance in the MWM test than rats in the other two groups (P < 0.05). The MRI results showed volume% reduction and concentration% decrease of brain regions in the two circadian disruptive groups, while the changes were more significant and comprehensive in the 12L/12D group (P < 0.05). CONCLUSIONS Circadian disruption during early life accelerates cognition decline in later life in rats. Frequent light-dark order shift is more harmful.
Collapse
|
10
|
Tharmalingam S, Khurana S, Murray A, Lamothe J, Tai TC. Whole transcriptome analysis of adrenal glands from prenatal glucocorticoid programmed hypertensive rodents. Sci Rep 2020; 10:18755. [PMID: 33127986 PMCID: PMC7603342 DOI: 10.1038/s41598-020-75652-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Prenatal glucocorticoid exposure is associated with the development of hypertension in adults. We have previously demonstrated that antenatal dexamethosone (DEX) administration in Wistar-Kyoto dams results in offspring with increased blood pressure coupled with elevated plasma epinephrine levels. In order to elucidate the molecular mechanisms responsible for prenatal DEX-mediated programming of hypertension, a whole-transcriptome analysis was performed on DEX programmed WKY male adrenal glands using the Rat Gene 2.0 microarray. Differential gene expression (DEG) analysis of DEX-exposed offspring compared with saline-treated controls revealed 142 significant DEGs (109 upregulated and 33 downregulated genes). DEG pathway enrichment analysis demonstrated that genes involved in circadian rhythm signaling were most robustly dysregulated. RT-qPCR analysis confirmed the increased expression of circadian genes Bmal1 and Npas2, while Per2, Per3, Cry2 and Bhlhe41 were significantly downregulated. In contrast, gene expression profiling of Spontaneously Hypertensive (SHR) rats, a genetic model of hypertension, demonstrated decreased expression of Bmal1 and Npas2, while Per1, Per2, Per3, Cry1, Cry2, Bhlhe41 and Csnk1D were all upregulated compared to naïve WKY controls. Taken together, this study establishes that glucocorticoid programmed adrenals have impaired circadian signaling and that changes in adrenal circadian rhythm may be an underlying molecular mechanism responsible for the development of hypertension.
Collapse
Affiliation(s)
- Sujeenthar Tharmalingam
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.,Department of Biology, Laurentian University, Sudbury, ON, P3E 2C6, Canada.,Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada.,Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada.,Health Sciences North Research Institute, Sudbury, ON, P3E 2H2, Canada
| | - Sandhya Khurana
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada
| | - Alyssa Murray
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.,Department of Biology, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - Jeremy Lamothe
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.,Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - T C Tai
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada. .,Department of Biology, Laurentian University, Sudbury, ON, P3E 2C6, Canada. .,Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada. .,Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
11
|
Sládek M, Kudrnáčová Röschová M, Adámková V, Hamplová D, Sumová A. Chronotype assessment via a large scale socio-demographic survey favours yearlong Standard time over Daylight Saving Time in central Europe. Sci Rep 2020; 10:1419. [PMID: 31996761 PMCID: PMC6989656 DOI: 10.1038/s41598-020-58413-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/10/2020] [Indexed: 01/19/2023] Open
Abstract
Abandoning daylight saving time in Europe raises the topical issue of proper setting of yearlong social time, which needs mapping of various socio-demographic factors, including chronotype, in specific geographic regions. This study represents the first detailed large scale chronotyping in the Czech Republic based on data collected in the complex panel socio-demographic survey in households (total 8760 respondents) and the socio-physiological survey, in which chronotyped participants also provided blood samples (n = 1107). Chronotype assessment based on sleep phase (MCTQ questions and/or time-use diary) correlated with a self-assessed interval of best alertness. The mean chronotype of the Czech population defined as mid sleep phase (MSFsc) was 3.13 ± 0.02 h. Chronotype exhibited significant east-to-westward, north-to-southward, and settlement size-dependent gradients and was associated with age, sex, partnership, and time spent outdoors as previously demonstrated. Moreover, for subjects younger than 40 years, childcare was highly associated with earlier chronotype, while dog care was associated with later chronotype. Body mass index correlated with later chronotype in women whose extreme chronotype was also associated with lower plasma levels of protective HDL cholesterol. Based on the chronotype prevalence the results favour yearlong Standard Time as the best choice for this geographic region.
Collapse
Affiliation(s)
- Martin Sládek
- Institute of Physiology, the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Věra Adámková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Dana Hamplová
- Institute of Sociology, the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Sumová
- Institute of Physiology, the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
12
|
Kimura Y, Honda M, Sasaki R, Yumioka T, Iwamoto H, Tsounapi P, Morizane S, Hikita K, Osaki M, Okada F, Takenaka A. The circadian rhythm of bladder clock genes in the spontaneously hypersensitive rat. PLoS One 2019; 14:e0220381. [PMID: 31344120 PMCID: PMC6658119 DOI: 10.1371/journal.pone.0220381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022] Open
Abstract
Circadian expression rhythms of clock gene products in the bladder are reportedly hindered by clock gene abnormalities. However, the role of clock gene products in various pathological lower urinary tract conditions is unknown. The present study examined the relationship between clock genes and voiding dysfunction in spontaneous hypertensive rats (SHR). The voluntary voiding behavior study using metabolic cages was performed in 18-weeks old male Wistar rats (control group, n = 36) and SHR (SHR group, n = 36) under 12-h light/12-h dark conditions. Bladders were harvested every 4 h at six time points (n = 6 for each time point for each group), and we analyzed the messenger RNA (mRNA) expression of several clock genes: period 2 (Per2), cryptochrome 2 (Cry2), brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1), circadian locomotor output cycles kaput (Clock), nuclear receptor subfamily 1, group D, member 1 (Rev-erbα), mechanosensors: transient receptor potential vanilloid channel 1 (TRPV1), TRPV4, Piezo1, and vesicular nucleotide transporter (VNUT) using real-time polymerase chain reaction. Though 24-h urination frequency for both light and dark periods was significantly higher in the SHR group, urine volume per voiding was significantly lower versus control. In controls, urine volume per voiding was significantly lower during the dark period (active phase) than the light period (rest phase); this parameter did not significantly differ between active and rest phases for SHR. SHR bladders showed significantly higher expression of Cry2 and Clock during the active phase compared to controls. In the SHR group, TRPV1, TRPV4, Piezo1, and VNUT mRNA levels were significantly higher during the active phase compared to the control group. We speculate that Cry2 and Clock may be contributing factors in the decrease of bladder capacity during the active phase in SHR through increase of TRPV1, TRPV4, Piezo1, and VNUT expression, but further research will be necessary to elucidate the precise mechanisms.
Collapse
Affiliation(s)
- Yusuke Kimura
- Division of Urology, Tottori University Faculty of Medicine, Yonago, Japan
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Japan
- * E-mail:
| | - Masashi Honda
- Division of Urology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Ryo Sasaki
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Japan
| | - Tetsuya Yumioka
- Division of Urology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Hideto Iwamoto
- Division of Urology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Panagiota Tsounapi
- Division of Urology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Shuichi Morizane
- Division of Urology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Katsuya Hikita
- Division of Urology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Mitsuhiko Osaki
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Japan
- Chromosome Engineering Research Center, Tottori University Faculty of Medicine, Yonago, Japan
| | - Futoshi Okada
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Japan
- Chromosome Engineering Research Center, Tottori University Faculty of Medicine, Yonago, Japan
| | - Atsushi Takenaka
- Division of Urology, Tottori University Faculty of Medicine, Yonago, Japan
| |
Collapse
|
13
|
Tanaka S, Ueno T, Tsunemi A, Nagura C, Tahira K, Fukuda N, Soma M, Abe M. The adrenal gland circadian clock exhibits a distinct phase advance in spontaneously hypertensive rats. Hypertens Res 2018; 42:165-173. [PMID: 30464218 DOI: 10.1038/s41440-018-0148-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 09/09/2018] [Indexed: 11/09/2022]
Abstract
The circadian clock influences a multitude of cellular and biological processes, including blood pressure control. Spontaneously hypertensive rats (SHR) exhibit aberrant circadian rhythms affecting cardiovascular parameters, and they also have abnormal clock gene expression profiles in several organs. Given the important role of the adrenal gland in orchestrating circadian oscillations, we investigated the adrenal gland circadian clock in SHR and control Wistar-Kyoto rats maintained under a 12-hour light-dark cycle. Adrenal glands, livers, and serum samples were collected every 4 h and mRNA was extracted for analysis of clock gene expression. Serum levels of corticosterone and aldosterone were also analyzed. Overall, the circadian profiles of Bmal1, Per2, Per3, Cry1, RevErba, Revervb, and Dbp gene expression in SHR adrenal glands were phase-advanced relative to controls. The expression profile of StAR (a representative gene under circadian control in the adrenal gland), as well as the circadian rhythms of serum concentrations of corticosteroid and aldosterone were also phase advanced. E4bp4 gene expression was significantly higher during the dark period, yet the expression of its transcriptional activator, Rora, was significantly lower throughout the 24 h period in SHR adrenal glands than in controls. This paradoxical high E4bp4 gene expression was, however, not observed in the liver. In addition, Per1, Per2, Per3, Reverba, and Reverbb mRNA tended to be lower in SHR adrenal glands than in controls. Thus, we conclude that SHR possess an abnormal adrenal circadian clock, which may affect the transcriptional regulation of clock-controlled genes, and steroid hormone secretion by the adrenal gland.
Collapse
Affiliation(s)
- Sho Tanaka
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Kamicho, Oyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Takahiro Ueno
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Kamicho, Oyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Akiko Tsunemi
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Kamicho, Oyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Chinami Nagura
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Kamicho, Oyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Kazunobu Tahira
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Kamicho, Oyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Noboru Fukuda
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Kamicho, Oyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Masayoshi Soma
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Kamicho, Oyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Masanori Abe
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Kamicho, Oyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan
| |
Collapse
|
14
|
Sumová A, Čečmanová V. Mystery of rhythmic signal emergence within the suprachiasmatic nuclei. Eur J Neurosci 2018; 51:300-309. [PMID: 30188597 DOI: 10.1111/ejn.14141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/07/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022]
Abstract
The circadian system provides organisms with a temporal organization that optimizes their adaptation to environmental fluctuations on a 24-hr basis. In mammals, the circadian clock in the suprachiasmatic nuclei (SCN) develops during the perinatal period. The rhythmicity first appears at the level of individual SCN neurons during the fetal stage, and this step is often misinterpreted as the time of complete SCN clock development. However, the process is only finalized when the SCN begin to play a role of the central clock in the body, that is, when they are able to generate robust rhythmicity at the cell population level, entrain the rhythmic signal with external light-dark cycles and convey this signal to the rest of the body. The development is gradual and correlates with morphological maturation of the SCN structural complexity, which is based on intercellular network formation. The aim of this review is to summarize events related to the first emergence of circadian oscillations in the fetal SCN clock. Although a large amount of data on ontogenesis of the circadian system have been accumulated, how exactly the immature SCN converts into a functional central clock has still remained rather elusive. In this review, the hypothesis of how the SCN attains its rhythmicity at the tissue level is discussed in context with the recent advances in the field. For an extensive summary of the complete ontogenetic development of the circadian system, the readers are referred to other previously published reviews.
Collapse
Affiliation(s)
- Alena Sumová
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vendula Čečmanová
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
15
|
Petrasek T, Vojtechova I, Lobellova V, Popelikova A, Janikova M, Brozka H, Houdek P, Sladek M, Sumova A, Kristofikova Z, Vales K, Stuchlík A. The McGill Transgenic Rat Model of Alzheimer's Disease Displays Cognitive and Motor Impairments, Changes in Anxiety and Social Behavior, and Altered Circadian Activity. Front Aging Neurosci 2018; 10:250. [PMID: 30210330 PMCID: PMC6121039 DOI: 10.3389/fnagi.2018.00250] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
The McGill-R-Thy1-APP transgenic rat is an animal model of the familial form of Alzheimer's disease (AD). This model mirrors several neuropathological hallmarks of the disease, including the accumulation of beta-amyloid and the formation of amyloid plaques (in homozygous animals only), neuroinflammation and the gradual deterioration of cognitive functions even prior to plaque formation, although it lacks the tauopathy observed in human victims of AD. The goal of the present study was a thorough characterization of the homozygous model with emphasis on its face validity in several domains of behavior known to be affected in AD patients, including cognitive functions, motor coordination, emotionality, sociability, and circadian activity patterns. On the behavioral level, we found normal locomotor activity in spontaneous exploration, but problems with balance and gait coordination, increased anxiety and severely impaired spatial cognition in 4–7 month old homozygous animals. The profile of social behavior and ultrasonic communication was altered in the McGill rats, without a general social withdrawal. McGill rats also exhibited changes in circadian profile, with a shorter free-running period and increased total activity during the subjective night, without signs of sleep disturbances during the inactive phase. Expression of circadian clock gene Bmal1 was found to be increased in the parietal cortex and cerebellum, while Nr1d1 expression was not changed. The clock-controlled gene Prok2 expression was found to be elevated in the parietal cortex and hippocampus, which might have contributed to the observed changes in circadian phenotype. We conclude that the phenotype in the McGill rat model is not restricted to the cognitive domain, but also includes gait problems, changes in emotionality, social behavior, and circadian profiles. Our findings show that the model should be useful for the development of new therapeutic approaches targeting not only memory decline but also other symptoms decreasing the quality of life of AD patients.
Collapse
Affiliation(s)
- Tomas Petrasek
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,National Institute of Mental Health, Klecany, Czechia
| | - Iveta Vojtechova
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,National Institute of Mental Health, Klecany, Czechia.,First Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Veronika Lobellova
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Anna Popelikova
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martina Janikova
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Hana Brozka
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Pavel Houdek
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Sladek
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Alena Sumova
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | | | - Karel Vales
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,National Institute of Mental Health, Klecany, Czechia
| | - Ales Stuchlík
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
16
|
Yilmaz A, Kalsbeek A, Buijs RM. Functional changes of the SCN in spontaneous hypertension but not after the induction of hypertension. Chronobiol Int 2018; 35:1221-1235. [DOI: 10.1080/07420528.2018.1469035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ajda Yilmaz
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), Amsterdam The Netherlands
| | - Ruud M Buijs
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Cell Biology and Physiology, Institute for Biomedical Research, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| |
Collapse
|
17
|
Olejníková L, Polidarová L, Behuliak M, Sládek M, Sumová A. Circadian alignment in a foster mother improves the offspring's pathological phenotype. J Physiol 2018; 596:5757-5775. [PMID: 29748957 DOI: 10.1113/jp275585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS In mammals, the mother-offspring interaction is essential for health later in adulthood. The impact of altered timing and quality of maternal care on the offspring's circadian system was assessed using a cross-strain fostering approach. Better maternal care facilitated the development of amplitudes of Bmal1 clock gene expression in the central clock, as well as the clock-driven activity/rest rhythm, and also its entrainment to the external light/dark cycle. Worse maternal care impaired entrainment of the central clock parameters in the Wistar rat during the early developmental stages. Better maternal care remedied the dampened amplitudes of the colonic clock, as well as cardiovascular functions. The results provide compelling evidence that the circadian phenotype of a foster mother may affect the pathological symptoms of the offspring, even if they are genetically programmed. ABSTRACT In mammals, the mother-offspring interaction is essential for health later in adulthood. Maternal care is determined by the circadian phenotype of the mother. The impact of altered timing and quality of maternal care on the circadian system was assessed using a cross-strain fostering approach, with 'abnormal' (i.e. circadian misaligned) care being represented by spontaneously hypertensive rats (SHR) and 'normal' care by Wistar rats. The SHR mothers worsened synchrony of the central clock in the suprachiasmatic nuclei with the light/dark cycle in Wistar rat pups, although this effect disappeared after weaning. The maternal care provided by Wistar rat mothers to SHR pups facilitated the development of amplitudes of the Bmal1 expression rhythm in the suprachiasmatic nuclei of the hypothalamus, as well as the clock-driven activity/rest rhythm and its entrainment to the external light/dark cycle. The peripheral clocks in the liver and colon responded robustly to cross-strain fostering; the circadian phenotype of the Wistar rat foster mother remedied the dampened amplitudes of the colonic clock in SHR pups and improved their cardiovascular functions. In general, the more intensive maternal care of the Wistar rat mothers improved most of the parameters of the abnormal SHR circadian phenotype in adulthood; conversely, the less frequent maternal care of the SHR mothers worsened these parameters in the Wistar rat during the early developmental stages. Altogether, our data provide compelling evidence that the circadian phenotype of a foster mother may positively and negatively affect the regulatory mechanisms of various physiological parameters, even if the pathological symptoms are genetically programmed.
Collapse
Affiliation(s)
| | | | - Michal Behuliak
- Department of Experimental Hypertension, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | | |
Collapse
|
18
|
Ku Mohd Noor KM, Wyse C, Roy LA, Biello SM, McCabe C, Dewar D. Chronic photoperiod disruption does not increase vulnerability to focal cerebral ischemia in young normotensive rats. J Cereb Blood Flow Metab 2017; 37:3580-3588. [PMID: 27789784 PMCID: PMC5669340 DOI: 10.1177/0271678x16671316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Photoperiod disruption, which occurs during shift work, is associated with changes in metabolism or physiology (e.g. hypertension and hyperglycaemia) that have the potential to adversely affect stroke outcome. We sought to investigate if photoperiod disruption affects vulnerability to stroke by determining the impact of photoperiod disruption on infarct size following permanent middle cerebral artery occlusion. Adult male Wistar rats (210-290 g) were housed singly under two different light/dark cycle conditions ( n = 12 each). Controls were maintained on a standard 12:12 light/dark cycle for nine weeks. For rats exposed to photoperiod disruption, every three days for nine weeks, the lights were switched on 6 h earlier than in the previous photoperiod. T2-weighted magnetic resonance imaging was performed at 48 h after middle cerebral artery occlusion. Disruption of photoperiod in young healthy rats for nine weeks did not alter key physiological variables that can impact on ischaemic damage, e.g. blood pressure and blood glucose immediately prior to middle cerebral artery occlusion. There was no effect of photoperiod disruption on infarct size after middle cerebral artery occlusion. We conclude that any potentially adverse effect of photoperiod disruption on stroke outcome may require additional factors such as high fat/high sugar diet or pre-existing co-morbidities.
Collapse
Affiliation(s)
- Ku Mastura Ku Mohd Noor
- 1 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Cathy Wyse
- 2 Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Lisa A Roy
- 1 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Stephany M Biello
- 1 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christopher McCabe
- 1 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Deborah Dewar
- 1 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
19
|
Fang M, Guo WR, Park Y, Kang HG, Zarbl H. Enhancement of NAD⁺-dependent SIRT1 deacetylase activity by methylselenocysteine resets the circadian clock in carcinogen-treated mammary epithelial cells. Oncotarget 2016; 6:42879-91. [PMID: 26544624 PMCID: PMC4767478 DOI: 10.18632/oncotarget.6002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/13/2015] [Indexed: 12/29/2022] Open
Abstract
We previously reported that dietary methylselenocysteine (MSC) inhibits N-methyl-N-nitrosourea (NMU)-induced mammary tumorigenesis by resetting circadian gene expression disrupted by the carcinogen at the early stage of tumorigenesis. To investigate the underlying mechanism, we developed a circadian reporter system comprised of human mammary epithelial cells with a luciferase reporter driven by the promoter of human PERIOD 2 (PER2), a core circadian gene. In this in vitro model, NMU disrupted cellular circadian rhythm in a pattern similar to that observed with SIRT1-specific inhibitors; in contrast, MSC restored the circadian rhythms disrupted by NMU and protected against SIRT1 inhibitors. Moreover, NMU inhibited intracellular NAD+/NADH ratio and reduced NAD+-dependent SIRT1 activity in a dose-dependent manner, while MSC restored NAD+/NADH and SIRT1 activity in the NMU-treated cells, indicating that the NAD+-SIRT1 pathway was targeted by NMU and MSC. In rat mammary tissue, a carcinogenic dose of NMU also disrupted NAD+/NADH oscillations and decreased SIRT1 activity; dietary MSC restored NAD+/NADH oscillations and increased SIRT1 activity in the mammary glands of NMU-treated rats. MSC-induced SIRT1 activity was correlated with decreased acetylation of BMAL1 and increased acetylation of histone 3 lysine 9 at the Per2 promoter E-Box in mammary tissue. Changes in SIRT1 activity were temporally correlated with loss or restoration of rhythmic Per2 mRNA expression in NMU-treated or MSC-rescued rat mammary glands, respectively. Together with our previous findings, these results suggest that enhancement of NAD+-dependent SIRT1 activity contributes to the chemopreventive efficacy of MSC by restoring epigenetic regulation of circadian gene expression at early stages of mammary tumorigenesis.
Collapse
Affiliation(s)
- Mingzhu Fang
- Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,NIEHS Center for Environmental Exposures and Disease, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Wei-Ren Guo
- Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Youngil Park
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, Anyang 430-757, Republic of Korea
| | - Hwan-Goo Kang
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, Anyang 430-757, Republic of Korea
| | - Helmut Zarbl
- Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,NIEHS Center for Environmental Exposures and Disease, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
20
|
Polidarová L, Houdek P, Sládek M, Novosadová Z, Pácha J, Sumová A. Mechanisms of hormonal regulation of the peripheral circadian clock in the colon. Chronobiol Int 2016; 34:1-16. [PMID: 27661138 DOI: 10.1080/07420528.2016.1231198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Colonic function is controlled by an endogenous clock that allows the colon to optimize its function on the daytime basis. For the first time, this study provided evidence that the clock is synchronized by rhythmic hormonal signals. In rat colon, adrenalectomy decreased and repeated applications of dexamethasone selectively rescued circadian rhythm in the expression of the clock gene Per1. Dexamethasone entrained the colonic clock in explants from mPer2Luc mice in vitro. In contrast, pinealectomy had no effect on the rat colonic clock, and repeated melatonin injections were not able to rescue the clock in animals maintained in constant light. Additionally, melatonin did not entrain the clock in colonic explants from mPer2Luc mice in vitro. However, melatonin affected rhythmic regulation of Nr1d1 gene expression in vivo. The findings provide novel insight into possible beneficial effects of glucocorticoids in the treatment of digestive tract-related diseases, greatly exceeding their anti-inflammatory action.
Collapse
Affiliation(s)
| | | | | | | | - Jiří Pácha
- b Department of Epithelial Function, Institute of Physiology , The Czech Academy of Sciences , Videnska , Prague , Czech Republic
| | | |
Collapse
|
21
|
Lai CT, Chen CY, Kuo TBJ, Chern CM, Yang CCH. Sympathetic Hyperactivity, Sleep Fragmentation, and Wake-Related Blood Pressure Surge During Late-Light Sleep in Spontaneously Hypertensive Rats. Am J Hypertens 2016; 29:590-7. [PMID: 26350298 DOI: 10.1093/ajh/hpv154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 08/13/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Many cardiovascular disease events occur before morning awaking and are more severe in hypertensive patients. Sleep-related cardiovascular regulation has been suggested to play an important role in the pathogenesis. In this study, we explored whether such impairments are exaggerated during late sleep (before the active phase) in spontaneously hypertensive rats (SHRs). METHODS Polysomnographic recording was performed through wireless transmission in freely moving SHRs and Wistar-Kyoto rats (WKYs) over 24 hours. The SHRs were injected with saline and an α1-adrenergic antagonist (prazosin: 5 mg/kg) on 2 separate days. Cardiovascular and autonomic functions were assessed by cardiovascular variability and spontaneous baroreflex analysis. RESULTS Compared with the early-light period (Zeitgeber time (ZT) 0-6 hours), both the WKYs and SHRs during the late-light period (ZT 6-12 hours) showed sleep fragmentation, sympathovagal imbalance, and baroreflex impairment, which were exaggerated and more advanced in the SHRs. Like the morning blood pressure (BP) surge in humans, we found that there was a wake-related blood pressure surge (WBPS) during the late-light period in both groups of rats. The WBPS was also greater and occurred earlier in the SHRs, and was accompanied by a surge in vascular sympathetic index. Under α1-adrenergic antagonism, the late-light period-related sleep fragmentation and BP surge in the SHRs were partially reversed. CONCLUSIONS Our results reveal that sleep-related sympathetic overactivity, baroreflex sensitivity impairment, WBPS, and sleep fragmentation in SHRs deteriorates during the late-light period can be partially alleviated by treatment with an α1-adrenoceptor antagonist.
Collapse
Affiliation(s)
- Chun-Ting Lai
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Yu Chen
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Terry B J Kuo
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan; Research Center for Adaptive Data Analysis, National Central University, Taoyuan, Taiwan; Chief of Division of Translational Medicine, Stroke & Neurovascular Center, Veterans General Hospital, Taipei, Taiwan
| | - Chang-Ming Chern
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Chief of Division of Translational Medicine, Stroke & Neurovascular Center, Veterans General Hospital, Taipei, Taiwan
| | - Cheryl C H Yang
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan;
| |
Collapse
|
22
|
Jankowski KS, Zajenkowski M. The Role of Morningness and Endurance in Mood and Attention During Morning and Evening Hours. JOURNAL OF INDIVIDUAL DIFFERENCES 2016. [DOI: 10.1027/1614-0001/a000189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abstract. This study aimed at testing the effects of morningness-eveningness and endurance on mood and selective attention during morning and evening hours. University students (N = 80) completed the Polish version of the Morningness-Eveningness Questionnaire, the Formal Characteristics of Behaviour-Temperament Inventory, and two testing sessions scheduled during the morning and evening hours. Each testing session consisted of completing the UWIST Mood Adjective Checklist composed of three scales: energetic arousal (EA), tense arousal (TA), and hedonic tone (HT), and a computerized visual search task. Without consideration of morningness and endurance, a time-of-day effect appeared in the visual attention but not in affect: participants were more accurate and faster in the evening than in the morning. Considering morningness and endurance, neither of them influenced the selective attention but they did influence mood. Morningness influenced diurnal variations in EA and HT in such a way that from morning to evening hours, morning chronotypes showed a decrease and evening types an increase in EA and HT. During morning hours, morningness was related to higher EA and HT and lower TA, but endurance was not. During evening hours, morningness was unrelated to mood, but endurance was linked to higher EA. It is concluded that morningness and endurance impact mood differently throughout the day, with the role of morningness decreasing and the role of endurance increasing as the day progresses.
Collapse
|
23
|
Olejníková L, Polidarová L, Paušlyová L, Sládek M, Sumová A. Diverse development and higher sensitivity of the circadian clocks to changes in maternal-feeding regime in a rat model of cardio-metabolic disease. Chronobiol Int 2015; 32:531-47. [DOI: 10.3109/07420528.2015.1014095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Polidarová L, Olejníková L, Paušlyová L, Sládek M, Soták M, Pácha J, Sumová A. Development and entrainment of the colonic circadian clock during ontogenesis. Am J Physiol Gastrointest Liver Physiol 2014; 306:G346-56. [PMID: 24337008 DOI: 10.1152/ajpgi.00340.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Colonic morphology and function change significantly during ontogenesis. In mammals, many colonic physiological functions are temporally controlled by the circadian clock in the colon, which is entrained by the central circadian clock in the suprachiasmatic nuclei (SCN). The aim of this present study was to ascertain when and how the circadian clock in the colon develops during the perinatal period and whether maternal cues and/or the developing pup SCN may influence the ontogenesis of the colonic clock. Daily profiles of clock genes Per1, Per2, Cry1, Cry2, Rev-erbα, Bmal1, and Clock expression in the colon underwent significant modifications since embryonic day 20 (E20) through postnatal days (P) 2, 10, 20, and 30 via changes in the mutual phasing among the individual clock gene expression rhythms, their relative phasing to the light-dark regime, and their amplitudes. An adult-like state was achieved around P20. The foster study revealed that during the prenatal period, the maternal circadian phase may partially modulate development of the colonic clock. Postnatally, the absence and/or presence of rhythmic maternal care affected the phasing of the clock gene expression profiles in pups at P10 and P20. A reversal in the colonic clock phase between P10 and P20 occurred in the absence of rhythmic signals from the pup SCN. The data demonstrate ontogenetic maturation of the colonic clock and stress the importance of prenatal and postnatal maternal rhythmic signals for its development. These data may contribute to the understanding of colonic function-related diseases in newborn children.
Collapse
Affiliation(s)
- Lenka Polidarová
- Department of Neurohumoral Regulations, Institute of Physiology, Academy of Science of the Czech Republic, Prague, Czech Republic; and
| | | | | | | | | | | | | |
Collapse
|
25
|
Sládek M, Sumová A. Entrainment of spontaneously hypertensive rat fibroblasts by temperature cycles. PLoS One 2013; 8:e77010. [PMID: 24116198 PMCID: PMC3792033 DOI: 10.1371/journal.pone.0077010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/27/2013] [Indexed: 01/23/2023] Open
Abstract
The functional state of the circadian system of spontaneously hypertensive rats (SHR) differs in several characteristics from the functional state of normotensive Wistar rats. Some of these changes might be due to the compromised ability of the central pacemaker to entrain the peripheral clocks. Daily body temperature cycles represent one of the important cues responsible for the integrity of the circadian system, because these cycles are driven by the central pacemaker and are able to entrain the peripheral clocks. This study tested the hypothesis that the aberrant peripheral clock entrainment of SHR results from a compromised peripheral clock sensitivity to the daily temperature cycle resetting. Using cultured Wistar rat and SHR fibroblasts transfected with the circadian luminescence reporter Bmal1-dLuc, we demonstrated that two consecutive square-wave temperature cycles with amplitudes of 2.5°C are necessary and sufficient to restart the dampened oscillations and entrain the circadian clocks in both Wistar rat and SHR fibroblasts. We also generated a phase response curve to temperature cycles for fibroblasts of both rat strains. Although some of the data suggested a slight resistance of SHR fibroblasts to temperature entrainment, we concluded that the overall effect it too weak to be responsible for the differences between the SHR and Wistar in vivo circadian phenotype.
Collapse
Affiliation(s)
- Martin Sládek
- Department of Neurohumoral Regulations, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
- * E-mail:
| | - Alena Sumová
- Department of Neurohumoral Regulations, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| |
Collapse
|
26
|
Polidarová L, Sládek M, Nováková M, Parkanová D, Sumová A. Increased sensitivity of the circadian system to temporal changes in the feeding regime of spontaneously hypertensive rats - a potential role for Bmal2 in the liver. PLoS One 2013; 8:e75690. [PMID: 24086613 PMCID: PMC3783415 DOI: 10.1371/journal.pone.0075690] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 08/20/2013] [Indexed: 01/03/2023] Open
Abstract
The mammalian timekeeping system generates circadian oscillations that rhythmically drive various functions in the body, including metabolic processes. In the liver, circadian clocks may respond both to actual feeding conditions and to the metabolic state. The temporal restriction of food availability to improper times of day (restricted feeding, RF) leads to the development of food anticipatory activity (FAA) and resets the hepatic clock accordingly. The aim of this study was to assess this response in a rat strain exhibiting complex pathophysiological symptoms involving spontaneous hypertension, an abnormal metabolic state and changes in the circadian system, i.e., in spontaneously hypertensive rats (SHR). The results revealed that SHR were more sensitive to RF compared with control rats, developing earlier and more pronounced FAA. Whereas in control rats, the RF only redistributed the activity profiles into two bouts (one corresponding to FAA and the other corresponding to the dark phase), in SHR the RF completely phase-advanced the locomotor activity according to the time of food presentation. The higher behavioral sensitivity to RF was correlated with larger phase advances of the hepatic clock in response to RF in SHR. Moreover, in contrast to the controls, RF did not suppress the amplitude of the hepatic clock oscillation in SHR. In the colon, no significant differences in response to RF between the two rat strains were detected. The results suggested the possible involvement of the Bmal2 gene in the higher sensitivity of the hepatic clock to RF in SHR because, in contrast to the Wistar rats, the rhythm of Bmal2 expression was advanced similarly to that of Bmal1 under RF. Altogether, the data demonstrate a higher behavioral and circadian responsiveness to RF in the rat strain with a cardiovascular and metabolic pathology and suggest a likely functional role for the Bmal2 gene within the circadian clock.
Collapse
Affiliation(s)
- Lenka Polidarová
- Department of Neurohumoral Regulations, Institute of Physiology, v.v.i., Academy of Science of the Czech Republic, Prague, Czech Republic
| | - Martin Sládek
- Department of Neurohumoral Regulations, Institute of Physiology, v.v.i., Academy of Science of the Czech Republic, Prague, Czech Republic
| | - Marta Nováková
- Department of Neurohumoral Regulations, Institute of Physiology, v.v.i., Academy of Science of the Czech Republic, Prague, Czech Republic
| | - Daniela Parkanová
- Department of Neurohumoral Regulations, Institute of Physiology, v.v.i., Academy of Science of the Czech Republic, Prague, Czech Republic
| | - Alena Sumová
- Department of Neurohumoral Regulations, Institute of Physiology, v.v.i., Academy of Science of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
27
|
Pácha J, Sumová A. Circadian regulation of epithelial functions in the intestine. Acta Physiol (Oxf) 2013; 208:11-24. [PMID: 23461998 DOI: 10.1111/apha.12090] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/21/2013] [Accepted: 02/21/2013] [Indexed: 12/24/2022]
Abstract
Many physiological functions exhibit a diurnal rhythmicity that is influenced by biological clocks and feeding rhythms. In this review, we discuss the growing evidence showing the important role of circadian rhythms in regulating intestinal mucosa. First, we introduce the molecular timing system and the interrelationship between the master biological clock in the suprachiasmatic nuclei of the brain and the peripheral intestinal clock and provide evidence that the intestinal clock is entrained with the external environment. Second, we review the circadian rhythmicity of enterocyte proliferation and the largely unknown regulatory mechanisms behind these rhythms. Finally, we focus on the circadian clock control of food processing that functions by regulating the expression of digestive enzymes and intestinal nutrient and salt transporters. The concepts to be discussed highlight the ability of the intestinal epithelium to utilize self-sustained clock signals together with signals associated with changes in the cellular environment and to use endogenous temporal control of the gastrointestinal functions to meet varying physiological and pathophysiological demands. The fact that internal de-synchronizations within the body, such as those that occur in shift workers or with changes in food intake behaviour, are often associated with malfunctions of the gastrointestinal tract indicates that more information about the connections between the circadian clock and intestinal mucosa/transporting enterocytes could provide clues for future therapies.
Collapse
Affiliation(s)
- J. Pácha
- Institute of Physiology; Academy of Sciences of the Czech Republic; Prague; Czech Republic
| | - A. Sumová
- Institute of Physiology; Academy of Sciences of the Czech Republic; Prague; Czech Republic
| |
Collapse
|