1
|
Alsharif ST, Gardouh AM, Mandour MF, Alaqais ZM, Alharbi LK, Almarwani MJ, Mokhtar HI, Hisham FA, Abdellah MM, Mohamed GM, Shorog EM, Almaeen AH, Atteia HH, Zaitone SA. Antitumor activity and targeting p53-PUMA mRNA expression by 5-flurouracil PLGA-lipid polymeric nanoparticles in mouse mammary carcinomas: comparison to free 5-flurouracil. Toxicol Mech Methods 2024; 34:385-397. [PMID: 38083807 DOI: 10.1080/15376516.2023.2294083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024]
Abstract
Polymeric poly (lactic-co-glycolic acid) (PLGA)-lipid hybrid nanoparticles (PNPs)-based therapy are powerful carriers for various therapeutic agents. This study was conducted to evaluate the chemotherapeutic potential of free 5-flurouracil (5FU) and synthetized 5FU-PNPs and impact on p53-dependent apoptosis in mammary carcinomas (MCs) grown in mice. Breast cancer cells were injected in Swiss albino female mice and 2 bilateral masses of MC were confirmed after one week. Mice were distributed to five experimental groups; Group 1: MC control group. Groups 2 and 3: MC + free 5FU [5 or 10 mg per kg] groups. Groups 4 and 5: synthetized MC+ 5FU-PNPs [5 or 10 mg per kg] groups. Medications were administered orally, twice weekly for 3 weeks. Then, tumors were dissected, and sections were stained with hematoxylin-eosin (HE) while the other MC was used for measuring of cell death and inflammatory markers. Treatment with 5FU-PNPs suppressed the MC masses and pathologic scores based on HE-staining. Similarly, greater proapoptotic activity was recorded in 5FU-PNPs groups compared to free 5FU groups as shown by significant upregulation in tumoral p53 immunostaining. The current results encourage the utility of PNPs for improving the antitumor effect of 5FU. The chemotherapeutic potential was mediated through enhancement of tumoral p53-mediated p53 up-regulated modulator of apoptosis (PUMA) genes. Additional studies are warranted for testing the antitumor activity of this preparation in other mouse models of breast cancer.
Collapse
Affiliation(s)
- Sara T Alsharif
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed M Gardouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jadara University, Irbid, Jordan
| | - Mohamed F Mandour
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Zood M Alaqais
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Lama K Alharbi
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Maha J Almarwani
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Hatem I Mokhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| | - Fatma Azzahraa Hisham
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Mahmoud Abdellah
- Department of Pathology, Faculty of Medicine, Galala University, Suez, Egypt
- Department of Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Ghena M Mohamed
- Nutrition and Food Science Department, College of Home Economics, Tabuk University, Tabuk, Saudi Arabia
| | - Eman M Shorog
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | - Hebatallah H Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
2
|
Recent progress in nanocarrier-based drug delivery systems for antitumour metastasis. Eur J Med Chem 2023; 252:115259. [PMID: 36934485 DOI: 10.1016/j.ejmech.2023.115259] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Tumour metastasis is one of the major factors leading to poor prognosis as well as lower survival among cancer patients. A number of studies investigating the inhibition of tumour metastasis have been conducted. It is difficult to achieve satisfactory results with surgery alone for distant metastatic tumours, and chemotherapy can boost the healing rate and prognosis of patients. However, the poor therapeutic efficacy of chemotherapy drugs due to their low solubility, lack of tumour targeting, instability in vivo, high toxicity and multidrug resistance hinder their application. Immunotherapy is beneficial to the treatment of metastatic cancers, but it also has disadvantages such as adverse reactions and acquired resistance. Fortunately, delivery of chemotherapeutic drugs with nanocarriers can reduce systemic reactions caused by chemotherapeutic agents and inhibit metastasis. This review discusses the underlying mechanisms of metastasis, therapeutic approaches for antitumour metastasis, the advantages of nanodrug delivery systems and their application in reducing metastasis.
Collapse
|
3
|
Akkın S, Varan G, Işık A, Gökşen S, Karakoç E, Malanga M, Esendağlı G, Korkusuz P, Bilensoy E. Synergistic Antitumor Potency of a Self-Assembling Cyclodextrin Nanoplex for the Co-Delivery of 5-Fluorouracil and Interleukin-2 in the Treatment of Colorectal Cancer. Pharmaceutics 2023; 15:pharmaceutics15020314. [PMID: 36839637 PMCID: PMC9963231 DOI: 10.3390/pharmaceutics15020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Chemotherapy is the most used method after surgery in the treatment of colon cancer. Cancer cells escape the recognition mechanism of immune system cells to survive and develop chemoresistance. Therefore, the use of immunotherapy in combination with chemotherapy can increase the effectiveness of the treatment. Nanoparticles have been used clinically to increase the accumulation of therapeutics in target tissues and reduce toxicity. In this paper, nanoplexes were formed via cationic cyclodextrin polymer, 5-Fluorouracil, and Interleukin-2 based on the opposite charge interaction of macromolecules without undergoing any structural changes or losing the biological activity of Interleukin-2. Anticancer activities of nanoplexes were determined in two-dimensional and three-dimensional cell culture setups. The dual drug-loaded cyclodextrin nanoplexes diffused deeper into the spheroids and accelerated apoptosis when compared with 5-FU solutions. In the colorectal tumor-bearing animal model, survival rate, antitumor activity, metastasis, and immune response parameters were assessed using a cyclodextrin derivative, which was found to be safe based on the ALT/AST levels in healthy mice. Histomorphometric analysis showed that the groups treated with the nanoplex formulation had significantly fewer initial tumors and lung foci when compared with the control. The dual drug-loaded nanoplex could be a promising drug delivery technique in the immunochemotherapy of colorectal cancer.
Collapse
Affiliation(s)
- Safiye Akkın
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Gamze Varan
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, 06100 Ankara, Turkey
| | - Anıl Işık
- Department of Basic Oncology, Cancer Institute, Hacettepe University, 06100 Ankara, Turkey
| | - Sibel Gökşen
- Department of Medical and Surgical Research, Institute of Health Sciences, Hacettepe University, 06100 Ankara, Turkey
| | - Elif Karakoç
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | - Milo Malanga
- CycloLab-Cyclodextrin Research & Development Laboratory, Organic Synthesis Laboratory, 1097 Budapest, Hungary
| | - Güneş Esendağlı
- Department of Basic Oncology, Cancer Institute, Hacettepe University, 06100 Ankara, Turkey
- Department of Medical and Surgical Research, Institute of Health Sciences, Hacettepe University, 06100 Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
- Correspondence:
| |
Collapse
|
4
|
Indrakumar J, Sankar S, Madhyastha H, Muthukaliannan GK. Progressive Application of Marine Biomaterials in Targeted Cancer Nanotherapeutics. Curr Pharm Des 2022; 28:3337-3350. [PMID: 35466870 DOI: 10.2174/1381612828666220422091611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 01/28/2023]
Abstract
The marine microenvironment harbors many unique species of organisms that produce a plethora of compounds that help mankind cure a wide range of diseases. The diversity of products from the ocean bed serves as potentially healing materials and inert vehicles carrying the drug of interest to the target site. Several composites still lay undiscovered under the blue canopy, which can provide treatment for untreated diseases that keep haunting the earth periodically. Cancer is one such disease that has been of interest to several eminent scientists worldwide due to the heterogenic complexity involved in the disease's pathophysiology. Due to extensive globalization and environmental changes, cancer has become a lifestyle disease continuously increasing exponentially in the current decade. This ailment requires a definite remedy that treats by causing minimal damage to the body's normal cells. The application of nanotechnology in medicine has opened up new avenues of research in targeted therapeutics due to their highly malleable characteristics. Marine waters contain an immense ionic environment that succors the production of distinct nanomaterials with exceptional character, yielding highly flexible molecules to modify, thus facilitating the engineering of targeted biomolecules. This review provides a short insight into an array of marine biomolecules that can be probed into cancer nanotherapeutics sparing healthy cells.
Collapse
Affiliation(s)
- Janani Indrakumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Srivarshini Sankar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Medical Sciences, Division of Cardio-Vascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | | |
Collapse
|
5
|
Ulker D, Ozyurt R, Erkasap N, Butun V. Magnetic Targeting of 5-Fluorouracil-Loaded Liposome-Nanogels for In Vivo Breast Cancer Therapy and the Cytotoxic Effects on Liver and Kidney. AAPS PharmSciTech 2022; 23:289. [DOI: 10.1208/s12249-022-02438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/03/2022] [Indexed: 02/06/2023] Open
|
6
|
Selective Viramidine-Loaded Aptamer-Nanoparticles Trigger Cell Cycle Arrest in Nucleolin-Expressed Hepatoma Cells Through Modulation of CDC25A/p53/PI3k Pathway. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Fawzi Kabil M, Nasr M, El-Sherbiny IM. Conventional and hybrid nanoparticulate systems for the treatment of hepatocellular carcinoma: An updated review. Eur J Pharm Biopharm 2021; 167:9-37. [PMID: 34271117 DOI: 10.1016/j.ejpb.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is considered a serious malignancy which affects a large number of people worldwide. Despite the presence of some diagnostic techniques for HCC, the fact that its symptoms somehow overlap with other diseases causes it to be diagnosed at a late stage, hence negatively affecting the prognosis of the disease. The currently available treatment strategies have many shortcomings such as high cost, induction of serious side effects as well as multiple drug resistance, hence resulting in therapeutic failure. Accordingly, nanoformulations have been developed in order to overcome the clinical challenges, enhance the therapeutic efficacy, and elicit chemotherapy tailor-ability. Hybrid nanoparticulate carriers in particular, which are composed of two or more drug vehicles with different physicochemical characteristics combined together in one system, have been recently reported to advance nanotechnology-based therapies. Therefore, this review sheds the light on HCC, and the role of nanotechnology and hybrid nanoparticulate carriers as well as the latest developments in the use of conventional nanoparticles in combating this disease.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ibrahim M El-Sherbiny
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt.
| |
Collapse
|
8
|
Abdul Mahdi S, Ali Kadhim A, Albukhaty S, Nikzad S, Haider AJ, Ibraheem S, Ali Kadhim H, Al-Musawi S. Gene expression and apoptosis response in hepatocellular carcinoma cells induced by biocompatible polymer/magnetic nanoparticles containing 5-fluorouracil. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
9
|
Li YL, Zhu XM, Liang H, Orvig C, Chen ZF. Recent Advances in Asialoglycoprotein Receptor and Glycyrrhetinic Acid Receptor-Mediated and/or pH-Responsive Hepatocellular Carcinoma- Targeted Drug Delivery. Curr Med Chem 2021; 28:1508-1534. [PMID: 32368967 DOI: 10.2174/0929867327666200505085756] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/01/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) seriously affects human health, especially, it easily develops multi-drug resistance (MDR) which results in treatment failure. There is an urgent need to develop highly effective and low-toxicity therapeutic agents to treat HCC and to overcome its MDR. Targeted drug delivery systems (DDS) for cancer therapy, including nanoparticles, lipids, micelles and liposomes, have been studied for decades. Recently, more attention has been paid to multifunctional DDS containing various ligands such as polymer moieties, targeting moieties, and acid-labile linkages. The polymer moieties such as poly(ethylene glycol) (PEG), chitosan (CTS), hyaluronic acid, pullulan, poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO) protect DDS from degradation. Asialoglycoprotein receptor (ASGPR) and glycyrrhetinic acid receptor (GAR) are most often used as the targeting moieties, which are overexpressed on hepatocytes. Acid-labile linkage, catering for the pH difference between tumor cells and normal tissue, has been utilized to release drugs at tumor tissue. OBJECTIVES This review provides a summary of the recent progress in ASGPR and GAR-mediated and/or pH-responsive HCC-targeted drug delivery. CONCLUSION The multifunctional DDS may prolong systemic circulation, continuously release drugs, increase the accumulation of drugs at the targeted site, enhance the anticancer effect, and reduce side effects both in vitro and in vivo. But it is rarely used to investigate MDR of HCC; therefore, it needs to be further studied before going into clinical trials.
Collapse
Affiliation(s)
- Yu-Lan Li
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| | - Xiao-Min Zhu
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| | - Hong Liang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| | - Chris Orvig
- Department of Chemistry, Faculty of Science, The University of British Columbia, 2036 Main Mall Vancouver, British Columbia V6T 1Z1, Canada
| | - Zhen-Feng Chen
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| |
Collapse
|
10
|
A. Attia M, Enan ET, Hashish AA, M. H. El-kannishy S, Gardouh AR, K. Tawfik M, Faisal S, El-Mistekawy A, Salama A, Alomar SY, H. Eltrawy A, Yagub Aloyouni S, Zaitone SA. Chemopreventive Effect of 5-Flurouracil Polymeric Hybrid PLGA-Lecithin Nanoparticles against Colon Dysplasia Model in Mice and Impact on p53 Apoptosis. Biomolecules 2021; 11:biom11010109. [PMID: 33467560 PMCID: PMC7830948 DOI: 10.3390/biom11010109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
The use of 5-fluorouracil (5FU) is associated with multifaceted challenges and poor pharmacokinetics. Poly(lactic-co-glycolic acid)-lipid hybrid nanoparticles (PLNs)-based therapy has received attention as efficient carriers for a diversity of drugs. This study evaluated the in vivo chemotherapeutic and anti-proliferative efficacy of 5FU-loaded PLNs against 1,2-dimethylhydrazine (Di-MH) prompted colon dysplasia in mice compared to free 5FU. 5FU PLNs were prepared. Male Swiss albino mice were distributed to six experimental groups. Group 1: Saline group. All the other groups were injected weekly with Di-MH [20 mg/kg, s.c.]. Group 2: Di-MH induced colon dysplasia control group. Groups 3 and 4: Di-MH + free 5FU treated group [2.5 and 5 mg/kg]. Groups 5 and 6: Di-MH + 5FU-PLNs treated group [2.5 and 5 mg/kg]. Free 5FU and 5FU-PLNs doses were administered orally, twice weekly. Treatment with 5FU-PLNs induced a higher cytoprotective effect compared to free 5FU as indicated by lower mucosal histopathologic score and reduction in number of Ki-67 immunpositive proliferating nuclei. Additionally, there was significant upregulation of p53 and caspase 3 genes in colon specimens. Our results support the validity of utilizing the PLNs technique to improve the chemopreventive action of 5FU in treating colon cancer.
Collapse
Affiliation(s)
- Mohammed A. Attia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
- Department of Pharmacology, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Eman T. Enan
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Abdullah A. Hashish
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Basic Medical Sciences Department, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Sherif M. H. El-kannishy
- Department of Toxicology, Mansoura Hospital, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ahmed R. Gardouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
- Department of Pharmacy, Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan
| | - Mona K. Tawfik
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: or (M.K.T.); (S.Y.A.); or (S.A.Z.); Tel.: +20-12-2271-9473 (M.K.T.); +966-05-0076-7717 (S.Y.A.); +20-10-6891-6396 (S.A.Z.)
| | - Salwa Faisal
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Amr El-Mistekawy
- Department of Internal Medicine, Gastroenterology Division, Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt;
| | - Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11751, Egypt
| | - Suliman Y. Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence: or (M.K.T.); (S.Y.A.); or (S.A.Z.); Tel.: +20-12-2271-9473 (M.K.T.); +966-05-0076-7717 (S.Y.A.); +20-10-6891-6396 (S.A.Z.)
| | - Amira H. Eltrawy
- Department of Anatomy and Embryology, Faculty of Medicine, Alexandria University, Alexandria 22785, Egypt;
| | - Sheka Yagub Aloyouni
- Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia;
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: or (M.K.T.); (S.Y.A.); or (S.A.Z.); Tel.: +20-12-2271-9473 (M.K.T.); +966-05-0076-7717 (S.Y.A.); +20-10-6891-6396 (S.A.Z.)
| |
Collapse
|
11
|
Shi T, Dansen TB. Reactive Oxygen Species Induced p53 Activation: DNA Damage, Redox Signaling, or Both? Antioxid Redox Signal 2020; 33:839-859. [PMID: 32151151 DOI: 10.1089/ars.2020.8074] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: The p53 tumor suppressor has been dubbed the "guardian of genome" because of its various roles in the response to DNA damage such as DNA damage repair, cell cycle arrest, senescence, and apoptosis, all of which are in place to prevent mutations from being passed on down the lineage. Recent Advances: Reactive oxygen species (ROS), for instance hydrogen peroxide derived from mitochondrial respiration, have long been regarded mainly as a major source of cellular damage to DNA and other macromolecules. Critical Issues: More recently, ROS have been shown to also play important physiological roles as second messengers in so-called redox signaling. It is, therefore, not clear whether the observed activation of p53 by ROS is mediated through the DNA damage response, redox signaling, or both. In this review, we will discuss the similarities and differences between p53 activation in response to DNA damage and redox signaling in terms of upstream signaling and downstream transcriptional program activation. Future Directions: Understanding whether and how DNA damage and redox signaling-dependent p53 activation can be dissected could be useful to develop anti-cancer therapeutic p53-reactivation strategies that do not depend on the induction of DNA damage and the resulting additional mutational load.
Collapse
Affiliation(s)
- Tao Shi
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tobias B Dansen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
12
|
Kumar S, Fayaz F, Pottoo FH, Bajaj S, Manchanda S, Bansal H. Nanophytomedicine Based Novel Therapeutic Strategies in Liver Cancer. Curr Top Med Chem 2020; 20:1999-2024. [DOI: 10.2174/1568026619666191114113048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Liver cancer is the fifth (6.3% of all cancers i.e., 548,000 cases/year) and ninth (2.8% of all
cancers i.e., 244,000 cases/year) most prevalent cancer worldwide in men and women, respectively. Although
multiple choices of therapies are offered for Hepatocellular Carcinoma (HCC) like liver resection
or transplant, radiofrequency ablation, transarterial chemoembolization, radioembolization, and systemic
targeted agent, by the time of diagnosis, most of the cases of HCC are in an advanced stage, which
renders therapies like liver transplant or resection and local ablation impractical; and targeted therapy
has its shortcomings like general toxicity, imprecise selectivity, several adversative reactions, and resistance
development. Therefore, novel drugs with specificity and selectivity are needed to provide the potential
therapeutic response. Various researches have shown the potential of phytomedicines in liver
cancer by modulating cell growth, invasion, metastasis, and apoptosis. However, their therapeutic potential
is held up by their unfavorable properties like stability, poor water solubility, low absorption, and
quick metabolism. Nonetheless, the advancement of nanotechnology-based innovative nanocarrier formulations
has improved the phytomedicines’ profile to be used in the treatment of liver cancer. Nanocarriers
not only improve the solubility and stability of phytomedicines but also extend their residence in
plasma and accomplish specificity. In this review, we summarize the advancements introduced by
nanotechnology in the treatment of liver cancer. In particular, we discuss quite a few applications of
nanophytomedicines like curcumin, quercetin, epigallocatechin-3-gallate, berberine, apigenin, triptolide,
and resveratrol in liver cancer treatment.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Faizana Fayaz
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sakshi Bajaj
- Department of Herbal Drug Technology, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Satish Manchanda
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Himangini Bansal
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| |
Collapse
|
13
|
Mansoori B, Mohammadi A, Abedi-Gaballu F, Abbaspour S, Ghasabi M, Yekta R, Shirjang S, Dehghan G, Hamblin MR, Baradaran B. Hyaluronic acid-decorated liposomal nanoparticles for targeted delivery of 5-fluorouracil into HT-29 colorectal cancer cells. J Cell Physiol 2020; 235:6817-6830. [PMID: 31989649 PMCID: PMC7384933 DOI: 10.1002/jcp.29576] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
The use of liposomes as drug carriers improves the therapeutic efficacy of anticancer drugs, while at the same time reducing side effects. Hyaluronic acid (HA) is recognized by the CD44 receptor, which is overexpressed in many cancer cells. In this study, we developed HA-modified liposomes encapsulating 5-fluorouracil (5-FU) and tested them against a CD44 expressing colorectal cell line (HT29) and a non-CD44 expressing hepatoma cell line. The average size of 5-FU-lipo and 5-FU-lipo-HA nanoparticles were 112 ± 28 and 144 ± 77 nm, respectively. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay showed selective cancer cell death depending on the CD44 expression in a time-dependent manner. Apoptosis assays and cell-cycle analysis indicated that G0/G1 arrest occurred. The colony formation study revealed that cells treated with 5-FU-lipo and 5-FU-lipo-HA had reduced colony formation. Quantitative reverse-transcription polymerase chain reaction study showed that the oncogenic messenger RNA and microRNA levels were significantly reduced in the 5-FU-lipo-HA-treated group, while tumor suppressors were increased in that group. We suggest that optimal targeted delivery and release of 5-FU into colorectal cancer cells, renders them susceptible to apoptosis, cell-cycle arrest, and decreased colony formation.
Collapse
Affiliation(s)
- Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Fereydoon Abedi-Gaballu
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Soheil Abbaspour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehri Ghasabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Yekta
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Understanding fundamentals of hepatocellular carcinoma to design next-generation chitosan nano-formulations: Beyond chemotherapy stride. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Malla RR, Kumari S, Kgk D, Momin S, Nagaraju GP. Nanotheranostics: Their role in hepatocellular carcinoma. Crit Rev Oncol Hematol 2020; 151:102968. [DOI: 10.1016/j.critrevonc.2020.102968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/24/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
|
16
|
Zhang F, Yin J, Zhang C, Han M, Wang X, Fu S, Du J, Zhang H, Li W. Affibody-Conjugated RALA Polymers Delivering Oligomeric 5-Fluorodeoxyuridine for Targeted Therapy of HER2 Overexpressing Gastric Cancer. Macromol Biosci 2020; 20:e2000083. [PMID: 32558229 DOI: 10.1002/mabi.202000083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/30/2020] [Indexed: 11/10/2022]
Abstract
Affibody-conjugated RALA (affi-RA) are designed for delivering oligomeric 5-fluorodeoxyuridine (FUdR, metabolite of 5-FU) strand to raise the selectivity of 5-fluorouracil (5-FU), decrease its toxicity and improve its suboptimal therapeutic efficacy. The nanodrugs, FUdR@affi-RA, are spontaneously assembled by electrostatic interaction between positively charged affi-RA and negatively charged FUdR15 -strands (15 consecutive FUdR). FUdR@affi-RA exhibits excellent stability under simulated physiological conditions. Compared with free FUdR, FUdR@affi-RA shows excellent targeting and higher cytotoxicity in human epidermal growth factor receptor 2 (HER2) overexpressing gastric cancer N87 cells. Moreover, the anticancer mechanism studies reveal that FUdR@affi-RA enhances the expression and activity of apoptosis-associated proteins in the Bcl-2/Bax-caspase 8,9-caspase 3 apoptotic pathway induced by FUdR. This study indicates that the fusion vector, affi-RA, presents a promising delivery system platform for nucleoside analogue drugs and provides a new strategy for the development of therapeutics of cancer treatment.
Collapse
Affiliation(s)
- Fanghua Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Jiwei Yin
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Chao Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Mengnan Han
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Xuming Wang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Shuangqing Fu
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Jie Du
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Honglei Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Wei Li
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| |
Collapse
|
17
|
Chitosan Nanoparticles for Therapy and Theranostics of Hepatocellular Carcinoma (HCC) and Liver-Targeting. NANOMATERIALS 2020; 10:nano10050870. [PMID: 32365938 PMCID: PMC7279387 DOI: 10.3390/nano10050870] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/24/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Chitosan nanoparticles are well-known delivery systems widely used as polymeric carriers in the field of nanomedicine. Chitosan is a carbohydrate of natural origin: it is a biodegradable, biocompatible, mucoadhesive, polycationic polymer and it is endowed with penetration enhancer properties. Furthermore, it can be easily derivatized. Hepatocellular carcinoma (HCC) represents a remarkable health problem because current therapies, that include surgery, liver transplantation, trans-arterial embolization, chemoembolization and chemotherapy, present significant limitations due to the high risk of recurrence, to a lack of drug selectivity and to other serious side effects. Therefore, there is the need for new therapeutic strategies and for improving the liver-targeting to HCC. Nanomedicine consists in the use of nanoscale carriers as delivery systems to target and deliver drugs and/or diagnostic agents to specific organs or tissues. Chitosan and its derivatives can be successfully used in the preparation of nanoparticles that, for their peculiar surface-properties, can specifically interact with liver tumor, by passive and active targeting. This review concerns the use of chitosan nanoparticles for the therapy and theranostics of HCC and liver-targeting.
Collapse
|
18
|
Development of Asialoglycoprotein Receptor-Targeted Nanoparticles for Selective Delivery of Gemcitabine to Hepatocellular Carcinoma. Molecules 2019; 24:molecules24244566. [PMID: 31847085 PMCID: PMC6943439 DOI: 10.3390/molecules24244566] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Selective targeting of anticancer drugs to the tumor site is beneficial in the pharmacotherapy of hepatocellular carcinoma (HCC). This study evaluated the prospective of galactosylated chitosan nanoparticles as a liver-specific carrier to improve the therapeutic efficacy of gemcitabine in HCC by targeting asialoglycoprotein receptors expressed on hepatocytes. Nanoparticles were formulated (G1–G5) by an ionic gelation method and evaluated for various physicochemical characteristics. Targeting efficacy of formulation G4 was evaluated in rats. Physicochemical characteristics exhibited by nanoparticles were optimal for administering and targeting gemcitabine effectively to the liver. The biphasic release behavior observed with G4 can provide higher drug concentration and extend the pharmacotherapy in the liver target site. Rapid plasma clearance of gemcitabine (70% in 30 min) from G4 was noticed in rats with HCC as compared to pure drug (p < 0.05). Higher uptake of gemcitabine predominantly by HCC (64% of administered dose; p < 0.0001) demonstrated excellent liver targeting by G4, while mitigating systemic toxicity. Morphological, biochemical, and histopathological examination as well as blood levels of the tumor marker, alpha-fetoprotein, in rats confirmed the curative effect of G4. In conclusion, this study demonstrated site-specific delivery and enhanced in vivo anti-HCC efficacy of gemcitabine by G4, which could function as promising carrier in hepatoma.
Collapse
|
19
|
Abd-Rabou AA, Bharali DJ, Mousa SA. Viramidine-Loaded Galactosylated Nanoparticles Induce Hepatic Cancer Cell Apoptosis and Inhibit Angiogenesis. Appl Biochem Biotechnol 2019; 190:305-324. [PMID: 31346920 DOI: 10.1007/s12010-019-03090-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/05/2019] [Indexed: 01/19/2023]
Abstract
Current estimates indicate that hepatocarcinoma is the leading cause of death globally. There is interest in utilizing nanomedicine for cancer therapy to overcome side effects of chemo-interventions. Ribavirin, an antiviral nucleoside inhibitor, accumulates inside red blood cells, causing anemia. Its analog, viramidine, can concentrate within hepatocytes and spare red blood cells, thus limiting anemia. Hepatocarcinoma cells have a large number of asialoglycoprotein receptors on their membranes that can bind galactosyl-terminating solid lipid nanoparticles (Gal-SLN) and internalize them. Here, viramidine, 5-fluorouracil, and paclitaxel-loaded Gal-SLN were characterized inside cells. Cytotoxicities of free-drug, nano-void, and drug-loaded Gal-SLN were evaluated using HepG2 cells; over 3 days, cell viability was measured. To test the mechanistic pathway, we investigated in vitro apoptosis using flow cytometry and in ovo angiogenesis using the CAM assay. Results showed that 1 and 2 μM of the viramidine-encapsulated Gal-SLN had the highest cytotoxic effect, achieving 80% cell death with a steady increase over 3 days, with induction of apoptosis and reduction of necrosis and angiogenesis, compared to free-drugs. Gal-SLN application on breast cancer MCF-7 cells confirmed its specificity against liver cancer HepG2 cells. We conclude that viramidine-encapsulated Gal-SLN has anticancer and anti-angiogenic activities against hepatocarcinoma.
Collapse
Affiliation(s)
- Ahmed A Abd-Rabou
- Hormones Department, Medical Research Division, National Research Centre, Giza, 12622, Egypt.,Stem Cell Laboratory, Center of Excellence for Advanced Science, National Research Centre, Giza, 12622, Egypt
| | - Dhruba J Bharali
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, 12144, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, 12144, USA.
| |
Collapse
|
20
|
Wei Y, Gu X, Cheng L, Meng F, Storm G, Zhong Z. Low-toxicity transferrin-guided polymersomal doxorubicin for potent chemotherapy of orthotopic hepatocellular carcinoma in vivo. Acta Biomater 2019; 92:196-204. [PMID: 31102765 DOI: 10.1016/j.actbio.2019.05.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most lethal malignancies. The current chemotherapy with typically low tumor uptake and high toxicity reveals a poor anti-HCC efficacy. Here, we report transferrin-guided polycarbonate-based polymersomal doxorubicin (Tf-Ps-Dox) as a low-toxic and potent nanotherapeutic agent for effective treatment of liver tumor using a transferrin receptor (TfR)-positive human liver tumor SMMC-7721 model. Tf-Ps-Dox was facilely fabricated with small size of ca. 75 nm and varying Tf densities from 2.2% to 7.0%, by postmodification of maleimide-functionalized Ps-Dox (Dox loading content of 10.6 wt%) with thiolated transferrin. MTT assays showed that Tf-Ps-Dox had an optimal Tf surface density of 3.9%. The cellular uptake, intracellular Dox level, and anticancer efficacy of Tf-Ps-Dox to SMMC-7721 cells were inhibited by supplementing free transferrin, which supports that Tf-Ps-Dox is endocytosed through TfR. Interestingly, Tf-Ps-Dox exhibited a high accumulation of 8.5%ID/g (percent injected dose per gram of tissue) in subcutaneous SMMC-7721 tumors, which was 2- and 3-fold higher than that of nontargeted Ps-Dox and clinically used liposomal Dox formulation (Lipo-Dox), respectively. The median survival times of mice bearing orthotopic SMMC-7721 tumors increased from 82, 88 to 96 days when treated with Tf-Ps-Dox at Dox doses from 8, 12 to 16 mg/kg, which was significantly longer than that of Ps-Dox at 8 mg/kg (58 days) and Lipo-Dox at 4 mg/kg (48 days) or PBS (36 days). Notably, unlike Lipo-Dox, no body weight loss and damage to major organs could be discerned for all Tf-Ps-Dox groups, indicating that Tf-Ps-Dox caused low systemic toxicity. This transferrin-dressed polymersomal doxorubicin provides a potent and low-toxic treatment modality for human hepatocellular carcinoma. STATEMENT OF SIGNIFICANCE: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Vast work has focused on developing HCC-targeted nanotherapeutics. However, none of the nanotherapeutics has advanced to clinics, partly because the ligands used have not been validated in patients. Transferrin (Tf) is a natural ligand for transferrin receptor (TfR) that is overexpressed on cancerous cells, and it is currently under clinical trials (MBP-426 and CALAA-01) for the treatment of solid tumors. We designed Tf-functionalized polymersomal doxorubicin (Tf-Ps-Dox) for targeted therapy of orthotopic SMMC-7721 tumor in nude mice. Tf-Ps-Dox showed potent anti-HCC efficacy and significantly improved survival time with low toxicity as compared with nontargeted Ps-Dox and clinical liposomal Dox (Lipo-Dox). Hence, Tf-Ps-Dox is very appealing for targeted treatment of HCC.
Collapse
|
21
|
Abstract
Bioavailability is an ancient but effective terminology by which the entire therapeutic efficacy of a drug directly or indirectly relays. Despite considering general plasma bioavailability, specific organ/tissue bioavailability will pave the path to broad spectrum dose calculation. Clear knowledge and calculative vision on bioavailability can improve the research and organ-targeting phenomenon. This article comprises a detailed introduction on bioavailability along with regulatory aspects, kinetic data and novel bioformulative approaches to achieve improved organ specific bioavailability, which may not be readily related to blood plasma bioavailability.
Collapse
|
22
|
pH-sensitive ZnO/carboxymethyl cellulose/chitosan bio-nanocomposite beads for colon-specific release of 5-fluorouracil. Int J Biol Macromol 2019; 128:468-479. [DOI: 10.1016/j.ijbiomac.2019.01.140] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
|
23
|
Schneiderova M, Naccarati A, Pardini B, Rosa F, Gaetano CD, Jiraskova K, Opattova A, Levy M, Veskrna K, Veskrnova V, Buchler T, Landi S, Vodicka P, Vymetalkova V. MicroRNA-binding site polymorphisms in genes involved in colorectal cancer etiopathogenesis and their impact on disease prognosis. Mutagenesis 2018; 32:533-542. [PMID: 29048575 DOI: 10.1093/mutage/gex026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
According to the Vogelstein's model of colorectal carcinogenesis, genetic variations in highly penetrant genes may be involved in the colorectal cancer (CRC) pathogenesis. Similarly, aberrant function and/or altered expression of microRNAs (miRNAs) often occur in CRC. In this context, polymorphisms in miRNA-binding sites (miRSNPs) may affect miRNA/target gene interaction, resulting in differential mRNA/protein expression and increased susceptibility to common diseases. To explore this phenomenon, we have mined the 3' untranslated regions (3'UTRs) of genes known to be frequently mutated in CRC to search for miRSNPs and tested their association with CRC risk and clinical outcome. Eight miRSNPs (rs1804191, rs397768, rs41116 in APC; rs1137918, s227091, rs4585 in ATM; rs712, rs1137282, rs61764370 in KRAS; rs8674 in PARP1 and rs16950113 in SMAD7) were tested for their association with CRC risk in a case-control study (1111 cases and 1469 healthy controls). The role of these miRSNPs was also investigated in relation to clinical outcome on a subset of patients with complete follow-up. rs8679 within PARP1 was associated with CRC risk and patients' survival. In the dominant model, carriers of at least one C allele were at a decreased risk of cancer (P = 0.05). The CC genotype in rs8679 was also associated with an increased risk of recurrence/progression in patients that received 5-FU-based chemotherapy (log-rank test P = 0.03). Carriers of the homozygous variant genotype TT for rs712 in KRAS gene were associated with a decreased risk of rectal cancer (odds ratio (OR) = 0.65, 95% confidence intervals (CI) 0.43-1.00, P = 0.05) while individuals with colon cancer carrying the heterozygous GT genotype showed a longer overall survival (OS) (P = 0.04). We provide the first evidence that variations in potential miRNA-binding target sites in the 3' UTR of PARP1 gene may modulate CRC risk and prognosis after therapy. Further studies are needed to replicate our finding and assess miRSNPs as predictive biomarkers in independent populations.
Collapse
Affiliation(s)
- Michaela Schneiderova
- Department of Surgery, General University Hospital in Prague, Prague 12800, Czech Republic
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14200 Prague, Czech Republic
- Molecular and Genetic Epidemiology; Genomic Variation in Human Populations and Complex Diseases, IIGM Italian Institute for Genomic Medicine, Via Nizza 52, 10126 Turin, Italy
| | - Barbara Pardini
- Molecular and Genetic Epidemiology; Genomic Variation in Human Populations and Complex Diseases, IIGM Italian Institute for Genomic Medicine, Via Nizza 52, 10126 Turin, Italy
| | - Fabio Rosa
- Molecular and Genetic Epidemiology; Genomic Variation in Human Populations and Complex Diseases, IIGM Italian Institute for Genomic Medicine, Via Nizza 52, 10126 Turin, Italy
| | - Cornelia Di Gaetano
- Molecular and Genetic Epidemiology; Genomic Variation in Human Populations and Complex Diseases, IIGM Italian Institute for Genomic Medicine, Via Nizza 52, 10126 Turin, Italy
- Department of Medical Sciences, University of Turin, Via Verdi 8, 10124 Turin, Italy
| | - Katerina Jiraskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14200 Prague, Czech Republic
- Institute of Biology Medicine Genet., First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - Alena Opattova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14200 Prague, Czech Republic
- Institute of Biology Medicine Genet., First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic
| | - Karel Veskrna
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic
| | - Veronika Veskrnova
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic
| | - Stefano Landi
- Department of Biology, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14200 Prague, Czech Republic
- Institute of Biology Medicine Genet., First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14200 Prague, Czech Republic
- Institute of Biology Medicine Genet., First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague, Czech Republic
| |
Collapse
|
24
|
Improved chemo-photothermal therapy of hepatocellular carcinoma using chitosan-coated gold nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 182:92-99. [DOI: 10.1016/j.jphotobiol.2018.03.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 12/20/2022]
|
25
|
Gardouh AR, Barakat BM, Qushawy MKE, El-Kazzaz AY, Sami MM, Zaitone SA. Antitumor activity of a molecularly imprinted nanopreparation of 5-flurouracil against Ehrlich's carcinoma solid tumors grown in mice: Comparison to free 5-flurouracil. Chem Biol Interact 2018; 295:52-63. [PMID: 29678497 DOI: 10.1016/j.cbi.2018.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/05/2018] [Accepted: 04/16/2018] [Indexed: 11/17/2022]
Abstract
Recently, nanotechnology has received great attention in war against cancer. The present study investigated the antitumor efficacy of molecularly imprinted nanopreparation of 5-fluorouracil (nano-5-FU) against Ehrlich ascites carcinoma (EAC) solid tumors grown in mice. Tumor cells were transplanted into female albino mice. Mice were allocated into 5 groups; Group 1: control EAC bearing mice. Groups 2&3: EAC-bearing mice treated orally with 5-FU (5 and 10 mg/kg) twice weekly. Groups 4&5: EAC bearing mice treated with nano-5-FU (5 and 10 mg/kg) twice weekly. Treatment with nano-5-FU showed higher antitumor effect compared to free 5-FU as indicated by enhanced apoptosis and reduction in tumor weight. Additionally, lower number of mitotic figures and greater area for necrosis were observed in the tumor specimens alongside with a decline in the number of intratumoral proliferating nuclei in comparison to free 5-FU. Furthermore, the results showed a significant down-regulation in tumoral expression of caspase-3 and vascular endothelial growth factor. Together, these results further support the potential of using nanotechnology to enhance anticancer efficacy of 5-FU.
Collapse
Affiliation(s)
- Ahmed R Gardouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Bassant M Barakat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt; Department of Clinical Pharmacy, College of Clinical Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia.
| | - Mona K E Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, El-Arish, North Sinai, Egypt.
| | - Amany Y El-Kazzaz
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Manal M Sami
- Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
26
|
Hu YL, Li XS, Xiong S, Ma Q, Liu D, Shi ZQ, Tang J, Rao XC, Hu FQ, Li GL. The inhibiting effect of the transcription factor p53 on dengue virus infection by activating the type I interferon. Oncotarget 2018; 8:25151-25157. [PMID: 28212581 PMCID: PMC5421917 DOI: 10.18632/oncotarget.15352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/11/2017] [Indexed: 11/25/2022] Open
Abstract
To investigate the role of the transcription factor p53 in the course of the dengue virus (DV) infection. The human hepatocellular carcinoma cell strain HepG2 with a low expression level of p53 was built by using the retroviral-mediated RNA interference technology, and was detected by Western blot. The wild group and the interference group were respectively infected by the type 2 DV. The viral titration was detected by the Vero plaque assay, the viral multiplication was detected by the immunofluorescence, the cell apoptosis after virus infection was detected by FCM and the level of IFN-β was analyzed by ELISA. Compared to the wild group, the expression level of p53 in the interference group decreased significantly, which indicated that the HepG2 cell strain with the low expression level of p53 was successfully built. 24h after DV infection, the virus titration in the interference group was 100 times higher than that in the wild group. The result of the immunofluorescence showed that, the amount of green fluorescent cells in the interference group was significant higher than that in the wild group. It was indicated that the DV infection was inhibited by p53. However, 24h after DV infection, there was no significant difference in the amount of apoptotic cells in both groups. And the amount of IFN-β in the wild group increased 6 times. The DV infection was inhibited by the transcription factor p53 by activating type I interferon pathway other than promoting the cell apoptosis.
Collapse
Affiliation(s)
- Yan-Ling Hu
- Department of Pathogen Biology and Immunology, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Xiao-Shan Li
- Department of Pathogen Biology and Immunology, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Shu Xiong
- Department of Pathogen Biology and Immunology, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Qiang Ma
- Department of Pathogen Biology and Immunology, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Dan Liu
- Department of Pathogen Biology and Immunology, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Zhong-Quan Shi
- Department of Pathogen Biology and Immunology, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Jing Tang
- Department of Pathogen Biology and Immunology, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Xian-Cai Rao
- Department of Microbiology, The Third Military Medical University, Chongqing 400038, China
| | - Fu-Quan Hu
- Department of Microbiology, The Third Military Medical University, Chongqing 400038, China
| | - Guo-Li Li
- Department of Pathogen Biology and Immunology, Chongqing Three Gorges Medical College, Chongqing 404120, China
| |
Collapse
|
27
|
Shi X, He D, Tang G, Tang Q, Xiong R, Ouyang H, Yu CY. Fabrication and characterization of a folic acid-bound 5-fluorouracil loaded quantum dot system for hepatocellular carcinoma targeted therapy. RSC Adv 2018; 8:19868-19878. [PMID: 35541013 PMCID: PMC9080723 DOI: 10.1039/c8ra01025k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023] Open
Abstract
In the present study, we covalently coupled folic acid (FA) and 5-fluorouracil acetic acid (FUA) on the surface of quantum dots (QDs) to produce a tumor targeting drug delivery system, FA-QDs-FUA.
Collapse
Affiliation(s)
- Xiaoxin Shi
- Institute of Pharmacy & Pharmacology
- University of South China
- Hengyang
- China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
| | - Dongxiu He
- Institute of Pharmacy & Pharmacology
- University of South China
- Hengyang
- China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
| | - Guotao Tang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- Hengyang
- China
| | - Qian Tang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- Hengyang
- China
| | - Runde Xiong
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- Hengyang
- China
| | - Hu Ouyang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- Hengyang
- China
| | - Cui-yun Yu
- Institute of Pharmacy & Pharmacology
- University of South China
- Hengyang
- China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
| |
Collapse
|
28
|
Moghimipour E, Rezaei M, Ramezani Z, Kouchak M, Amini M, Angali KA, Dorkoosh FA, Handali S. Folic acid-modified liposomal drug delivery strategy for tumor targeting of 5-fluorouracil. Eur J Pharm Sci 2017; 114:166-174. [PMID: 29247686 DOI: 10.1016/j.ejps.2017.12.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/02/2023]
Abstract
The aim of this study was to develop a liposomal formulation to selectively target cancer cells. Liposomes were prepared using thin layer method and folic acid (FA) was applied for targeted delivery of 5FU to cancer cells. Liposomes prepared were characterized for encapsulation efficiency (EE%), morphology and their particle size. Cellular uptake, cytotoxicity study and ROS production were evaluated using CT26 cell line. Hemolysis test was performed on rat red blood cells (RBCs). Moreover, the efficacy of targeted liposomes were investigated by in vivo antitumor activity and tissue toxicities were studied by histological examination. The EE% and average particle size of liposomes were 67.88±1.84% and 114.00±4.58nm, respectively. TEM image revealed that liposomes were spherical in shape. Targeted liposomes showed higher cellular uptake, lower IC50 (12.02μM compared to 39.81μM for liposomal 5FU and 39.81μM for free 5FU) and higher ROS production than free drug (62,271.28 vs 2369.55 fluorescence intensity) on cancer cells. Results of hemolysis assay confirmed the blood biocompatibility of the liposomes. Moreover, folate targeted liposomes showed better tumor inhibition than free drug (88.75mm3 tumor volume vs 210.00mm3) and no tissue abnormalities were found in histological examination. It can be concluded that folate targeted liposomes provide an effective and safe strategy for colon cancer targeted chemotherapy.
Collapse
Affiliation(s)
- Eskandar Moghimipour
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Ramezani
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Ahmadi Angali
- Department of Biostatistics, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Handali
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
29
|
Wei Y, Yang P, Cao S, Zhao L. The combination of curcumin and 5-fluorouracil in cancer therapy. Arch Pharm Res 2017; 41:1-13. [PMID: 29230689 DOI: 10.1007/s12272-017-0979-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 10/26/2017] [Indexed: 12/29/2022]
Abstract
5-Fluorouracil (5-FU) alone or in combination with other therapeutic drugs has been widely used for clinical treatment of various cancers. However, 5-FU-based chemotherapy has limited anticancer efficacy in clinic due to multidrug resistance and dose-limiting cytotoxicity. Some molecules and genes in cancer cells, such as nuclear factor kappa B, insulin-like growth factor-1 receptor, epidermal growth factor receptor, cyclooxygenase-2, signal transducer and activator of transcription 3, phosphatase and tensin homolog deleted on chromosome ten and Bcl-2 etc. are related to the chemoresistance and sensitivity of cancer cells to 5-FU. The activation of these molecules and genes expressions in cancer cells will be increased or decreased with long-term exposure of 5-FU. Curcumin has been found to be able to negatively regulate these processes. In order to overcome the problems of 5-FU, curcumin has been used to combine with 5-FU in cancer therapy.
Collapse
Affiliation(s)
- Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No.3-5, Zhongshan Road, Jiangyang District, Luzhou, Sichuan, 646000, China
| | - Panjing Yang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, Luzhou, Sichuan, 646000, China.
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No.3-5, Zhongshan Road, Jiangyang District, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
30
|
Panchal SS, Ghatak SB, Jha AB, Onattu R. Reduction of liver tumerogenic effect of N-nitrosodiethylamine by treatment with ɣ-oryzanol in Balb/C mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:86-98. [PMID: 28888159 DOI: 10.1016/j.etap.2017.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
In recent years, naturally occurring phytochemicals with antioxidant capacity have generated surmount interest in their therapeutic usage against a wide range of pathological and toxicological conditions. The present study was designed to evaluate potential of ɣ-oryzanol (OZ), a bio-active natural antioxidant against hepatocellular carcinoma effect of the carcinogen N-nitrosodiethylamine in Balb/c mice. OZ inhibited the proliferation of Hep-3B cell line in concentration dependent manner. Administration of OZ to N-nitrosodiethylamine induced Balb/c mice for 16 and 32 weeks showed reduction in levels of liver injury markers, restored the levels of liver tumor markers, suppressed the hepatic nodular incidence and multiplicity, and favorably modulated the liver antioxidant status in a time dependent manner. Histologically, no obvious signs of neoplasia in the liver tissues were observed in OZ supplemented rats with N-nitrosodiethylamine induced liver tumerogenesis. OZ was found to be effective for reduction of N-nitrosodiethylamine induced hepatocellular carcinoma.
Collapse
Affiliation(s)
- Shital S Panchal
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382 481, Gujarat, India.
| | - Somsuvra B Ghatak
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382 481, Gujarat, India; US Pharma Lab, 1300 Airport Road, North Brunswick, NJ 08902, USA
| | - Abhishek B Jha
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382 481, Gujarat, India
| | - Raoul Onattu
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382 481, Gujarat, India
| |
Collapse
|
31
|
Huang C, Li NM, Gao P, Yang S, Ning Q, Huang W, Li ZP, Ye PJ, Xiang L, He DX, Tan XW, Yu CY. In vitro and in vivo evaluation of macromolecular prodrug GC-FUA based nanoparticle for hepatocellular carcinoma chemotherapy. Drug Deliv 2017; 24:459-466. [PMID: 28219253 PMCID: PMC8241166 DOI: 10.1080/10717544.2016.1264499] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/16/2016] [Accepted: 11/21/2016] [Indexed: 11/16/2022] Open
Abstract
A novel type of macromolecular prodrug delivery system is reported in this research. The N-galactosylated-chitosan-5-fluorouracil acetic acid conjugate (GC-FUA) based nanoparticle delivery system was evaluated in vitro and in vivo. Biocompatibility of GC-FUA-NPs was screened by BSA adsorption test and hemolysis activity examination in vitro. Cytotoxicity and cellular uptake study in HepG2 and A549 cells demonstrated that compared to free 5-Fu, the GC-FUA-NPs play great function in killing cancer cells for the cell endocytosis mediated by asialoglycoprotein receptor (ASGPR), which overexpresses on the cell surface. Pharmacokinetics study further illustrated that the drug-loaded nanoparticles has a much longer half-time than free 5-Fu in blood circulation in Sprague-Dawley (SD) rats. Tissue distribution was investigated in Kunming mice, and the result showed that the GC-FUA-NPs have a long circulation effect. The obtained data suggested that GC-FUA-NP is a very promising drug delivery system for efficient treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Can Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Na-Mei Li
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy & Pharmacology University of South China, Hengyang, China, and
| | - Pei Gao
- Chemistry Department, Eastern Kentucky University, Richmond, KY, USA
| | - Sa Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Qian Ning
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Wen Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zhi-Ping Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Peng-Ju Ye
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Li Xiang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Dong-Xiu He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiang-Wen Tan
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy & Pharmacology University of South China, Hengyang, China, and
| |
Collapse
|
32
|
Sun L, Chen Y, Zhou Y, Guo D, Fan Y, Guo F, Zheng Y, Chen W. Preparation of 5-fluorouracil-loaded chitosan nanoparticles and study of the sustained release in vitro and in vivo. Asian J Pharm Sci 2017; 12:418-423. [PMID: 32104354 PMCID: PMC7032219 DOI: 10.1016/j.ajps.2017.04.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/07/2017] [Indexed: 11/26/2022] Open
Abstract
The sustained-release properties of the biodegradable nano-drug delivery systems were used to improve the residence time of the chemotherapeutic agent in the body. These drug delivery systems were widely used to deliver chemotherapeutic drugs. The 5-fluorouracil loaded chitosan nanoparticles prepared in this paper have the above advantage. Here, we found that when the mass ratio of 5-fluorouracil and chitosan was 1:1, the maximum drug loading of nanoparticles was 20.13 ± 0.007%, the encapsulation efficiency was 44.28 ± 1.69%, the particle size was 283.9 ± 5.25 nm and the zeta potential was 45.3 ± 3.23 mV. The prepared nanoparticles had both burst-release and sustained-release phases in vitro release studies. In addition, the inhibitory effect of the prepared nanoparticles on gastric cancer SGC-7901 cells was similar to that of 5-fluorouracil injection, and the blank vector had no obvious inhibitory effect on SGC-7901 cells. In the pharmacokinetic study of rats in vivo, we found that AUC (0−t), MRT (0−t) and t1/2z of nanoparticles were significantly increased in vivo compared with 5-fluorouracil solution, indicating that the prepared nanoparticles can play a role in sustained-release.
Collapse
Affiliation(s)
- Li Sun
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yunna Chen
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.,Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yali Zhou
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.,Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Dongdong Guo
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.,Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yufan Fan
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Fangyan Guo
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yufeng Zheng
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Weidong Chen
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.,Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
33
|
Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J Control Release 2016; 240:332-348. [PMID: 26774224 DOI: 10.1016/j.jconrel.2016.01.020] [Citation(s) in RCA: 806] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 12/31/2022]
Abstract
30-99% of administered nanoparticles will accumulate and sequester in the liver after administration into the body. This results in reduced delivery to the targeted diseased tissue and potentially leads to increased toxicity at the hepatic cellular level. This review article focuses on the inter- and intra-cellular interaction between nanoparticles and hepatic cells, the elimination mechanism of nanoparticles through the hepatobiliary system, and current strategies to manipulate liver sequestration. The ability to solve the "nanoparticle-liver" interaction is critical to the clinical translation of nanotechnology for diagnosing and treating cancer, diabetes, cardiovascular disorders, and other diseases.
Collapse
Affiliation(s)
- Yi-Nan Zhang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada
| | - Wilson Poon
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada
| | - Anthony J Tavares
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada
| | - Ian D McGilvray
- Multi Organ Transport Program, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada; Toronto General Research Institute, University Health Network, 585 University Avenue, Toronto, ON M5G 2N2, Canada
| | - Warren C W Chan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemistry, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Materials Science and Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
34
|
Varshosaz J, Farzan M. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma. World J Gastroenterol 2015; 21:12022-12041. [PMID: 26576089 PMCID: PMC4641122 DOI: 10.3748/wjg.v21.i42.12022] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/31/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the 5th most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorable systemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs (siRNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and siRNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited side-effects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is over-expressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and non-viral siRNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic siRNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein, ganglioside GM1 cell surface ligand, epidermal growth factor receptor receptors, monoclonal antibodies, retinoic acid receptors, integrin receptors targeted by Arg-Gly-Asp peptide, folate, and transferrin receptors are the most widely studied cell surface receptors which are used for the site specific delivery of drugs and siRNA-based therapeutics in HCC and discussed in detail in this article.
Collapse
|
35
|
Yu CY, Li NM, Yang S, Ning Q, Huang C, Huang W, He ZN, He DX, Tan XW, Sun LC. Fabrication of galactosylated chitosan-5-fluorouracil acetic acid based nanoparticles for controlled drug delivery. J Appl Polym Sci 2015. [DOI: 10.1002/app.42625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study; University of South China; Hengyang 421001 China
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province; Institute of Pharmacy and Pharmacology, University of South China; Hengyang 421001 China
| | - Na-Mei Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study; University of South China; Hengyang 421001 China
| | - Sa Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study; University of South China; Hengyang 421001 China
| | - Qian Ning
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study; University of South China; Hengyang 421001 China
| | - Can Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study; University of South China; Hengyang 421001 China
| | - Wen Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study; University of South China; Hengyang 421001 China
| | - Zi-Ning He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study; University of South China; Hengyang 421001 China
| | - Dong-Xiu He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study; University of South China; Hengyang 421001 China
| | - Xiang-Wen Tan
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study; University of South China; Hengyang 421001 China
| | - Li-Chun Sun
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study; University of South China; Hengyang 421001 China
- Department of Medicine; Tulane University Health Sciences Center; New Orleans Louisiana 70112
| |
Collapse
|
36
|
Fernandes E, Ferreira JA, Andreia P, Luís L, Barroso S, Sarmento B, Santos LL. New trends in guided nanotherapies for digestive cancers: A systematic review. J Control Release 2015; 209:288-307. [PMID: 25957905 DOI: 10.1016/j.jconrel.2015.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
Abstract
Digestive tract tumors are among the most common and deadliest malignancies worldwide, mainly due to late diagnosis and lack of efficient therapeutics. Current treatments essentially rely on surgery associated with (neo)adjuvant chemotherapy agents. Despite an upfront response, conventional drugs often fail to eliminate highly aggressive clones endowed with chemoresistant properties, which are responsible for tumor recurrence and disease dissemination. Synthetic drugs also present severe adverse systemic effects, hampering the administration of biologically effective dosages. Nanoencapsulation of chemotherapeutic agents within biocompatible polymeric or lipid matrices holds great potential to improve the pharmacokinetics and efficacy of conventional chemotherapy while reducing systemic toxicity. Tagging nanoparticle surfaces with specific ligands for cancer cells, namely monoclonal antibodies or antibody fragments, has provided means to target more aggressive clones, further improving the selectivity and efficacy of nanodelivery vehicles. In fact, over the past twenty years, significant research has translated into a wide array of guided nanoparticles, providing the molecular background for a new generation of intelligent and more effective anti-cancer agents. Attempting to bring awareness among the medical community to emerging targeted nanopharmaceuticals and foster advances in the field, we have conducted a systematic review about this matter. Emphasis was set on ongoing preclinical and clinical trials for liver, colorectal, gastric and pancreatic cancers. To the best of our knowledge this is the first systematic and integrated overview on this field. Using a specific query, 433 abstracts were gathered and narrowed to 47 manuscripts when matched against inclusion/exclusion criteria. All studies showed that active targeting improves the effectiveness of the nanodrugs alone, while lowering its side effects. The main focus has been on hepatocarcinomas, mainly by exploring glycans as homing molecules. Other ligands such as peptides/small proteins and antibodies/antibody fragments, with affinity to either tumor vasculature or tumor cells, have also been widely and successfully applied to guide nanodrugs to gastrointestinal carcinomas. Conversely, few solutions have been presented for pancreatic tumors. To this date only three nanocomplexes have progressed beyond pre-clinical stages: i) PK2, a galactosamine-functionalized polymeric-DOX formulation for hepatocarcinomas; ii) MCC-465, an anti-(myosin heavy chain a) immunoliposome for advanced stage metastatic solid tumors; and iii) MBP-426, a transferrin-liposome-oxaliplatin conjugate, also for advanced stage tumors. Still, none has been approved for clinical use. However, based on the high amount of pre-clinical studies showing enthusiastic results, the number of clinical trials is expected to increase in the near future. A more profound understanding about the molecular nature of chemoresistant clones and cancer stem cell biology will also contribute to boost the field of guided nanopharmacology towards more effective solutions.
Collapse
Affiliation(s)
- Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal and INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal; Mass Spectrometry Center, QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - Peixoto Andreia
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Lima Luís
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal; Nucleo de Investigação em Farmácia - Centro de Investigação em Saúde e Ambiente (CISA), Health School of the Polytechnic Institute of Porto, Porto, Portugal
| | - Sérgio Barroso
- Serviço de Oncologia, Hospital de Évora, Évora, Portugal
| | - Bruno Sarmento
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal and INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra PRD, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal; Health School of University of Fernando Pessoa, Porto, Portugal; Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| |
Collapse
|
37
|
de Souza PC, Ranjan A, Towner RA. Nanoformulations for therapy of pancreatic and liver cancers. Nanomedicine (Lond) 2015; 10:1515-34. [DOI: 10.2217/nnm.14.231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pancreatic and liver cancers often have poor prognoses. Clinically, pancreatic and liver cancer requires early diagnosis, and surgery is often associated with tumor recurrence. Currently, chemotherapies are limited in their ability to accurately target the tumors, and are associated with significant toxicity in patients. Targeting of chemotherapy can be improved by encapsulation in nanocarriers. A variety of preclinical studies indicate relatively superior therapeutic outcomes compared with drug alone therapy. Targeted nanoparticle imaging agents may also additionally facilitate better diagnosis and improve patient outcomes. This review discusses the nanoformulations that are under investigation (mainly preclinical studies, but also with some current clinical trial examples) against pancreatic and liver cancers, understands the challenges and provides future perspectives.
Collapse
Affiliation(s)
- Patricia Coutinho de Souza
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74074, USA
- Advanced Magnetic Resonance Center, MS 60, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Ashish Ranjan
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74074, USA
| | - Rheal A Towner
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74074, USA
- Advanced Magnetic Resonance Center, MS 60, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| |
Collapse
|
38
|
Prabhu RH, Patravale VB, Joshi MD. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomedicine 2015; 10:1001-18. [PMID: 25678788 PMCID: PMC4324541 DOI: 10.2147/ijn.s56932] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy, a major strategy for cancer treatment, lacks the specificity to localize the cancer therapeutics in the tumor site, thereby affecting normal healthy tissues and advocating toxic adverse effects. Nanotechnological intervention has greatly revolutionized the therapy of cancer by surmounting the current limitations in conventional chemotherapy, which include undesirable biodistribution, cancer cell drug resistance, and severe systemic side effects. Nanoparticles (NPs) achieve preferential accumulation in the tumor site by virtue of their passive and ligand-based targeting mechanisms. Polymer-based nanomedicine, an arena that entails the use of polymeric NPs, polymer micelles, dendrimers, polymersomes, polyplexes, polymer–lipid hybrid systems, and polymer–drug/protein conjugates for improvement in efficacy of cancer therapeutics, has been widely explored. The broad scope for chemically modifying the polymer into desired construct makes it a versatile delivery system. Several polymer-based therapeutic NPs have been approved for clinical use. This review provides an insight into the advances in polymer-based targeted nanocarriers with focus on therapeutic aspects in the field of oncology.
Collapse
Affiliation(s)
- Rashmi H Prabhu
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Medha D Joshi
- Department of Pharmaceutical Sciences, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
| |
Collapse
|
39
|
Wang H, Thorling CA, Liang X, Bridle KR, Grice JE, Zhu Y, Crawford DHG, Xu ZP, Liu X, Roberts MS. Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J Mater Chem B 2015; 3:939-958. [PMID: 32261972 DOI: 10.1039/c4tb01611d] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liver diseases, particularly viral hepatitis, cirrhosis and hepatocellular carcinoma, are common in clinical practice with high morbidity and mortality worldwide. Many substances for diagnostic imaging and therapy of liver diseases may have either severe adverse effects or insufficient effectiveness in vivo because of their nonspecific uptake. Therefore, by targeting the delivery of drugs into the liver or specific liver cells, drug efficiency may be largely improved. This review summarizes the up-to-date research progress focusing on nanoparticles targeting the liver for both diagnostic and therapeutic purposes. Targeting strategies, mechanisms of enhanced effects, and clinical applications of nanoparticles are discussed specifically. We believe that new targeting nanotechnology such as nanoprobes for multi-modality imaging and multifunctional nanoparticles would facilitate significant advancements in this active research area in the near future.
Collapse
Affiliation(s)
- Haolu Wang
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Matai I, Sachdev A, Gopinath P. Multicomponent 5-fluorouracil loaded PAMAM stabilized-silver nanocomposites synergistically induce apoptosis in human cancer cells. Biomater Sci 2015. [DOI: 10.1039/c4bm00360h] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we report the development of a poly(amidoamine) (PAMAM) dendrimer based multicomponent therapeutic agent forin vitrocancer therapy applications.
Collapse
Affiliation(s)
- Ishita Matai
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - Abhay Sachdev
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - P. Gopinath
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| |
Collapse
|
41
|
Shaaban S, Negm A, Ibrahim EE, Elrazak AA. Chemotherapeutic agents for the treatment of hepatocellular carcinoma: efficacy and mode of action. Oncol Rev 2014; 8:246. [PMID: 25992234 PMCID: PMC4419609 DOI: 10.4081/oncol.2014.246] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/06/2014] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a dreaded malignancy that every year causes half a million deaths worldwide. Being an aggressive cancer, its incidence exceeds 700,000 new cases per year worldwide with a median survival of 6-8 months. Despite advances in prognosis and early detection, effective HCC chemoprevention or treatment strategies are still lacking, therefore its dismal survival rate remains largely unchanged. This review will characterize currently available chemotherapeutic drugs used in the treatment of HCC. The respective mode(s) of action, side effects and recommendations will be also described for each drug.
Collapse
Affiliation(s)
- Saad Shaaban
- Department of Chemistry, Mansoura University , Egypt
| | - Amr Negm
- Department of Biochemistry, Mansoura University , Egypt
| | | | | |
Collapse
|
42
|
Mitigation of 5-Fluorouracil induced renal toxicity by chrysin via targeting oxidative stress and apoptosis in wistar rats. Food Chem Toxicol 2014; 66:185-93. [DOI: 10.1016/j.fct.2014.01.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/26/2013] [Accepted: 01/16/2014] [Indexed: 11/20/2022]
|
43
|
Yu CY, Wang YM, Li NM, Liu GS, Yang S, Tang GT, He DX, Tan XW, Wei H. In Vitro and in Vivo Evaluation of Pectin-Based Nanoparticles for Hepatocellular Carcinoma Drug Chemotherapy. Mol Pharm 2014; 11:638-44. [DOI: 10.1021/mp400412c] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cui-Yun Yu
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Yan-Mei Wang
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Na-Mei Li
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Ge-Sha Liu
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Sa Yang
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Guo-Tao Tang
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Dong-Xiu He
- Institute of Pharmacy & Pharmacology, Department of Pharmacy, University of South China, Hengyang 421001, China
| | - Xiang-Wen Tan
- Department
of Laboratory Animal Science, University of South China, Hengyang 421001, China
| | - Hua Wei
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
44
|
Devulapally R, Paulmurugan R. Polymer nanoparticles for drug and small silencing RNA delivery to treat cancers of different phenotypes. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:40-60. [PMID: 23996830 PMCID: PMC3865230 DOI: 10.1002/wnan.1242] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/25/2013] [Accepted: 08/01/2013] [Indexed: 02/06/2023]
Abstract
Advances in nanotechnology have provided powerful and efficient tools in the development of cancer diagnosis and therapy. There are numerous nanocarriers that are currently approved for clinical use in cancer therapy. In recent years, biodegradable polymer nanoparticles have attracted a considerable attention for their ability to function as a possible carrier for target-specific delivery of various drugs, genes, proteins, peptides, vaccines, and other biomolecules in humans without much toxicity. This review will specifically focus on the recent advances in polymer-based nanocarriers for various drugs and small silencing RNA's loading and delivery to treat different types of cancer.
Collapse
Affiliation(s)
- Rammohan Devulapally
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94304, USA
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94304, USA
| |
Collapse
|
45
|
Cheng M, Gao X, Wang Y, Chen H, He B, Li Y, Han J, Zhang Z. Synthesis of liver-targeting dual-ligand modified GCGA/5-FU nanoparticles and their characteristics in vitro and in vivo. Int J Nanomedicine 2013; 8:4265-76. [PMID: 24232303 PMCID: PMC3826867 DOI: 10.2147/ijn.s52877] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nanoparticle drug delivery systems using polymers hold promise for clinical applications. We synthesized dual-ligand modified chitosan (GCGA) nanoparticles using lactic acid, glycyrrhetinic acid, and chitosan to target the liver in our previous studies. We then synthesized the GCGA/5-FU nanoparticles by conjugating 5-fluorouracil (5-FU) onto the GCGA nanomaterial, which had a mean particle size of 239.9 nm, a polydispersity index of 0.040, a zeta potential of +21.2 mV, and a drug loading of 3.90%. GCGA/5-FU nanoparticles had good slow release properties, and the release process could be divided into five phases: small burst release, gentle release, second burst release, steady release, and slow release. Inhibitory effects of GCGA/5-FU on tumor cells targeted the liver, and were time and dose dependent. GCGA nanoparticles significantly prolonged the efficacy of 5-FU on tumor cells, and alleviated the resistance of tumor cells to 5-FU. GCGA/5-FU nanoparticles were mostly concentrated in the liver, indicating that the GCGA nanoparticles were liver targeting. GCGA/5-FU nanoparticles significantly suppressed tumor growth in orthotopic liver transplantation mouse model, and improved mouse survival.
Collapse
Affiliation(s)
- Mingrong Cheng
- Department of General Surgery, Pudong New Area District Zhoupu Hospital, Shanghai, People's Republic of China ; Department of Endoscopy, Pudong New Area District Zhoupu Hospital, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Efficient hepatic delivery of drugs: novel strategies and their significance. BIOMED RESEARCH INTERNATIONAL 2013; 2013:382184. [PMID: 24286077 PMCID: PMC3826320 DOI: 10.1155/2013/382184] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/14/2013] [Accepted: 08/25/2013] [Indexed: 02/06/2023]
Abstract
Liver is a vital organ responsible for plethora of functions including detoxification, protein synthesis, and the production of biochemicals necessary for the sustenance of life. Therefore, patients with chronic liver diseases such as viral hepatitis, liver cirrhosis, and hepatocellular carcinoma need immediate attention to sustain life and as a result are often exposed to the prolonged treatment with drugs/herbal medications. Lack of site-specific delivery of these medications to the hepatocytes/nonparenchymal cells and adverse effects associated with their off-target interactions limit their continuous use. This calls for the development and fabrication of targeted delivery systems which can deliver the drug payload at the desired site of action for defined period of time. The primary aim of drug targeting is to manipulate the whole body distribution of drugs, that is, to prevent distribution to non-target cells and concomitantly increase the drug concentration at the targeted site. Carrier molecules are designed for their selective cellular uptake, taking advantage of specific receptors or binding sites present on the surface membrane of the target cell. In this review, various aspects of liver targeting of drug molecules and herbal medications have been discussed which elucidate the importance of delivering the drugs/herbal medications at their desired site of action.
Collapse
|
47
|
Cheng M, Xu H, Wang Y, Chen H, He B, Gao X, Li Y, Han J, Zhang Z. Glycyrrhetinic acid-modified chitosan nanoparticles enhanced the effect of 5-fluorouracil in murine liver cancer model via regulatory T-cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1287-99. [PMID: 24187487 PMCID: PMC3810199 DOI: 10.2147/dddt.s52809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modified chitosan nanoparticles are a promising platform for drug, such as 5-fluorouracil (5-FU), gene, and vaccine delivery. Here, we used chitosan and hepatoma cell-specific binding molecule glycyrrhetinic acid (GA) to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS). The synthetic product was confirmed by infrared spectroscopy and hydrogen nuclear magnetic resonance. By combining GA-CTS and 5-FU, we obtained a GA-CTS/5-FU nanoparticle, with a particle size of 193.7 nm, drug loading of 1.56%, and a polydispersity index of 0.003. The GA-CTS/5-FU nanoparticle provided a sustained-release system comprising three distinct phases of quick, steady, and slow release. In vitro data indicated that it had a dose- and time-dependent anticancer effect. The effective drug exposure time against hepatic cancer cells was increased in comparison with that observed with 5-FU. In vivo studies on an orthotropic liver cancer mouse model demonstrated that GA-CTS/5-FU significantly inhibited cancer cell proliferation, resulting in increased survival time. The antitumor mechanisms for GA-CTS/5-FU nanoparticle were possibly associated with an increased expression of regulatory T-cells, decreased expression of cytotoxic T-cell and natural killer cells, and reduced levels of interleukin-2 and interferon gamma.
Collapse
Affiliation(s)
- Mingrong Cheng
- Department of General Surgery, Pudong New Area District Zhoupu Hospital, Shanghai, People's Republic of China ; Department of Endoscopy, Pudong New Area District Zhoupu Hospital, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cheng M, Gao X, Wang Y, Chen H, He B, Xu H, Li Y, Han J, Zhang Z. Synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and its inhibition of liver cancer characteristics in vitro and in vivo. Mar Drugs 2013; 11:3517-36. [PMID: 24048270 PMCID: PMC3806472 DOI: 10.3390/md11093517] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/01/2013] [Accepted: 09/02/2013] [Indexed: 12/13/2022] Open
Abstract
Nanoparticle drug delivery (NDDS) is a novel system in which the drugs are delivered to the site of action by small particles in the nanometer range. Natural or synthetic polymers are used as vectors in NDDS, as they provide targeted, sustained release and biodegradability. Here, we used the chitosan and hepatoma cell-specific binding molecule, glycyrrhetinic acid (GA), to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS). The synthetic product was confirmed by Fourier transformed infrared spectroscopy (FT-IR) and ¹H-nuclear magnetic resonance (¹H-NMR). By combining GA-CTS and 5-FU (5-fluorouracil), we obtained a GA-CTS/5-FU nanoparticle, with a particle size of 217.2 nm, a drug loading of 1.56% and a polydispersity index of 0.003. The GA-CTS/5-FU nanoparticle provided a sustained release system comprising three distinct phases of quick, steady and slow release. We demonstrated that the nanoparticle accumulated in the liver. In vitro data indicated that it had a dose- and time-dependent anti-cancer effect. The effective drug exposure time against hepatic cancer cells was increased in comparison with that observed with 5-FU. Additionally, GA-CTS/5-FU significantly inhibited the growth of drug-resistant hepatoma, which may compensate for the drug-resistance of 5-FU. In vivo studies on an orthotropic liver cancer mouse model demonstrated that GA-CTS/5-FU significantly inhibited tumor growth, resulting in increased survival time.
Collapse
Affiliation(s)
- Mingrong Cheng
- Department of General Surgery, Pudong New Area District Zhoupu Hospital, Shanghai 201318, China; E-Mails: (M.C.); (J.H.); (Z.Z.)
- Department of Endoscopy, Pudong New Area District Zhoupu Hospital, Shanghai 201318, China; E-Mail:
| | - Xiaoyan Gao
- Department of Plastic Surgery, Pudong New Area District Zhoupu Hospital, Shanghai 201318, China; E-Mail:
| | - Yong Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Author to whom correspondence should be addressed; E-Mails: (W.Y.); (B.H.); Tel.: +86-18971374413 (W.Y.); +86-21-24289005 (B.H.);
Fax: +86-27-87880734 (W.Y.); +86-21-64307611 (B.H.)
| | - Houxiang Chen
- Zhejiang Huafon Fiber Research Institute, Zhejiang Huafon Spandex Co., Ltd, Wenzhou 325200, China; E-Mail:
| | - Bing He
- Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mails: (W.Y.); (B.H.); Tel.: +86-18971374413 (W.Y.); +86-21-24289005 (B.H.);
Fax: +86-27-87880734 (W.Y.); +86-21-64307611 (B.H.)
| | - Hongzhi Xu
- Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China; E-Mail:
| | - Yingchun Li
- Department of Endoscopy, Pudong New Area District Zhoupu Hospital, Shanghai 201318, China; E-Mail:
| | - Jiang Han
- Department of General Surgery, Pudong New Area District Zhoupu Hospital, Shanghai 201318, China; E-Mails: (M.C.); (J.H.); (Z.Z.)
| | - Zhiping Zhang
- Department of General Surgery, Pudong New Area District Zhoupu Hospital, Shanghai 201318, China; E-Mails: (M.C.); (J.H.); (Z.Z.)
| |
Collapse
|