1
|
Wei W, Zhao Y, Chai Y, Shou S, Jin H. A novel role of DOT1L in kidney diseases. Mol Biol Rep 2023; 50:5415-5423. [PMID: 37085741 DOI: 10.1007/s11033-023-08415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/29/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND We systematically summarized the structure and biological function of DOT1L in detail, and further discussed the role of DOT1L in kidney diseases through different mechanisms. METHODS AND RESULTS We first described the role of DOT1L in various kidney diseases including AKI, CKD, DN and kidney tumor diseases. CONCLUSIONS A better understanding of DOT1L as a histone methylase based on characteristics of regulating telomere silencing, transcriptional extension, DNA damage repair and cell cycle could lead to the development of new therapeutic targets for various kidney diseases, thereby improving the prognosis of kidney disease patients.
Collapse
Affiliation(s)
- Wei Wei
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yibo Zhao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
2
|
do Carmo JM, da Silva AA, Hall JE. Impact of Mineralocorticoid Receptor and Angiotensin II Type 1 Receptor Antagonism on Blood Pressure Regulation in Obese Zucker Rats: Role of Sex Differences. Am J Hypertens 2021; 34:999-1005. [PMID: 33075125 DOI: 10.1093/ajh/hpaa170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/29/2020] [Accepted: 10/14/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previous studies suggest that obesity-induced hypertension in females, but not males, is due to leptin-mediated stimulation of aldosterone secretion and subsequent activation of the mineralocorticoid receptor (MR). Although angiotensin II type 1 receptor (AT1R) antagonism lowers blood pressure (BP) in male obese Zucker rats (OZR), which have defective leptin signaling, the potential role of sex differences in BP responses to renin-angiotensin-aldosterone system blockade, including MR antagonism, in obesity is still unclear. We tested the cardiovascular effects of MR antagonism, alone or in combination with AT1R blockade in male and female OZR (n = 5/sex) and lean Zucker rats (n = 7/sex). METHODS BP and heart rate (HR) were measured by telemetry 24 hour/day. After a 6-day control period, spironolactone (40 mg/kg/day) was given for 10 days followed by a 7-day combined treatment with losartan (20 mg/kg/day), and followed by 6-day post-treatment recovery period. RESULTS Compared with lean rats, OZR were hypertensive (mean arterial pressure: 115 ± 4 vs. 104 ± 2 and 111 ± 1 vs. 100 ± 3 mm Hg for males and females) and had lower HR (355 ± 9 vs. 393 ± 7 and 367 ± 10 vs. 412 ± 13 bpm). MR blockade alone did not alter BP or HR in lean or obese male and female Zucker rats, whereas combined treatment reduced BP in obese and lean rats by 31 ± 3 vs. 21 ± 1 and 8 ± 1 vs. 5 ± 1 mm Hg in males and females, respectively. No changes were observed in HR. CONCLUSIONS These results suggest that there are important sex differences in BP responses to chronic AT1R blockade but no major involvement of MR activation in BP regulation in OZR.
Collapse
Affiliation(s)
- Jussara M do Carmo
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
3
|
Vodošek Hojs N, Bevc S, Ekart R, Piko N, Petreski T, Hojs R. Mineralocorticoid Receptor Antagonists in Diabetic Kidney Disease. Pharmaceuticals (Basel) 2021; 14:561. [PMID: 34208285 PMCID: PMC8230766 DOI: 10.3390/ph14060561] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a global health issue and main cause of chronic kidney disease. Both diseases are also linked through high cardiovascular morbidity and mortality. Diabetic kidney disease (DKD) is present in up to 40% of diabetic patients; therefore, prevention and treatment of DKD are of utmost importance. Much research has been dedicated to the optimization of DKD treatment. In the last few years, mineralocorticoid receptor antagonists (MRA) have experienced a renaissance in this field with the development of non-steroidal MRA. Steroidal MRA have known cardiorenal benefits, but their use is limited by side effects, especially hyperkalemia. Non-steroidal MRA still block the damaging effects of mineralocorticoid receptor overactivation (extracellular fluid volume expansion, inflammation, fibrosis), but with fewer side effects (hormonal, hyperkalemia) than steroidal MRA. This review article summarizes the current knowledge and newer research conducted on MRA in DKD.
Collapse
Affiliation(s)
- Nina Vodošek Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia; (S.B.); (T.P.); (R.H.)
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia; (S.B.); (T.P.); (R.H.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia;
| | - Robert Ekart
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia;
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Nejc Piko
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Tadej Petreski
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia; (S.B.); (T.P.); (R.H.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia;
| | - Radovan Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia; (S.B.); (T.P.); (R.H.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia;
| |
Collapse
|
4
|
Zhang L, Chen L, Gao C, Chen E, Lightle AR, Foulke L, Zhao B, Higgins PJ, Zhang W. Loss of Histone H3 K79 Methyltransferase Dot1l Facilitates Kidney Fibrosis by Upregulating Endothelin 1 through Histone Deacetylase 2. J Am Soc Nephrol 2019; 31:337-349. [PMID: 31843983 DOI: 10.1681/asn.2019070739] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The progression rate of CKD varies substantially among patients. The genetic and epigenetic contributions that modify how individual patients respond to kidney injury are largely unknown. Emerging evidence has suggested that histone H3 K79 methyltransferase Dot1l has an antifibrotic effect by repressing Edn1, which encodes endothelin 1 in the connecting tubule/collecting duct. METHODS To determine if deletion of the Dot1l gene is a genetic and epigenetic risk factor through regulating Edn1, we studied four groups of mice: wild-type mice, connecting tubule/collecting duct-specific Dot1l conditional knockout mice (Dot1lAC ), Dot1l and Edn1 double-knockout mice (DEAC ), and Edn1 connecting tubule/collecting duct-specific conditional knockout mice (Edn1AC ), under three experimental conditions (streptozotocin-induced diabetes, during normal aging, and after unilateral ureteral obstruction). We used several approaches (colocalization, glutathione S-transferase pulldown, coimmunoprecipitation, yeast two-hybrid, gel shift, and chromatin immunoprecipitation assays) to identify and confirm interaction of Dot1a (the major Dot1l splicing variant in the mouse kidney) with histone deacetylase 2 (HDAC2), as well as the function of the Dot1a-HDAC2 complex in regulating Edn1 transcription. RESULTS In each case, Dot1lAC mice developed more pronounced kidney fibrosis and kidney malfunction compared with wild-type mice. These Dot1lAC phenotypes were ameliorated in the double-knockout DEAC mice. The interaction between Dot1a and HDAC2 prevents the Dot1a-HDAC2 complex from association with DNA, providing a counterbalancing mechanism governing Edn1 transcription by modulating H3 K79 dimethylation and H3 acetylation at the Edn1 promoter. CONCLUSIONS Our study confirms Dot1l to be a genetic and epigenetic modifier of kidney fibrosis, reveals a new mechanism regulating Edn1 transcription by Dot1a and HDAC2, and reinforces endothelin 1 as a therapeutic target of kidney fibrosis.
Collapse
Affiliation(s)
- Long Zhang
- Departments of Regenerative and Cancer Cell Biology and
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland; and
| | - Chao Gao
- Departments of Regenerative and Cancer Cell Biology and
| | - Enuo Chen
- Departments of Regenerative and Cancer Cell Biology and
| | - Andrea R Lightle
- Pathology and Laboratory Medicine, Albany Medical College, Albany, New York
| | - Llewellyn Foulke
- Pathology and Laboratory Medicine, Albany Medical College, Albany, New York
| | - Bihong Zhao
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | | | | |
Collapse
|
5
|
Yu C, Zhuang S. Histone Methyltransferases as Therapeutic Targets for Kidney Diseases. Front Pharmacol 2019; 10:1393. [PMID: 31866860 PMCID: PMC6908484 DOI: 10.3389/fphar.2019.01393] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence has demonstrated that epigenetic regulation plays a vital role in gene expression under normal and pathological conditions. Alterations in the expression and activation of histone methyltransferases (HMTs) have been reported in preclinical models of multiple kidney diseases, including acute kidney injury, chronic kidney disease, diabetic nephropathy, polycystic kidney disease, and renal cell carcinoma. Pharmacological inhibition of these enzymes has shown promise in preclinical models of those renal diseases. In this review, we summarize recent knowledge regarding expression and activation of various HMTs and their functional roles in some kidney diseases. The preclinical activity of currently available HMT inhibitors and the mechanisms of their actions are highlighted.
Collapse
Affiliation(s)
- Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
6
|
Tutun B, Elbe H, Vardi N, Parlakpinar H, Polat A, Gunaltili M, Guclu MM, Yasar EN. Dexpanthenol reduces diabetic nephropathy and renal oxidative stress in rats. Biotech Histochem 2018; 94:84-91. [PMID: 30317873 DOI: 10.1080/10520295.2018.1508746] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Hyperglycemia increases reactive oxygen species (ROS) and the resulting oxidative stress contributes to the development of diabetic complications. Dexpanthenol (Dxp) is the biological active form of pantothenic acid. We investigated whether Dxp administration could decrease oxidative stress as a way to treat renal complications of diabetes mellitus (DM). Thirty-two male Wistar albino rats were divided into four groups: control, Dxp, DM and DM + Dxp. Experimental diabetes was induced by a single dose of streptozotocin (STZ). After administration of STZ, the DM + Dxp group was administered 500 mg/kg Dxp intraperitoneally every day for 6 weeks. At the end of the study, blood glucose levels were measured and rats were sacrificed. Kidneys were embedded in paraffin, sectioned and stained with hematoxylin and eosin, and periodic acid-Schiff. The mean malondialdehyde levels, glutathione peroxidase, superoxide dismutase and catalase activities, and total antioxidant and total oxidant status also were measured. The control group was normal in histological appearance. We observed congestion, inflammation, glomerulosclerosis, tubular desquamation, loss of villi and hydropic degeneration in tubule cells in the DM group. Indicators of oxidative stress were elevated and antioxidant activity was reduced in the DM group compared to controls. In the DM + Dxp group, oxidative stress was decreased, antioxidant activity was increased and histopathological changes were reduced compared to the DM group. We found that Dxp exhibited ameliorative effects on STZ induced diabetic nephropathy by increasing antioxidant activity.
Collapse
Affiliation(s)
- B Tutun
- a Medical Faculty , Inonu University , Malatya , Turkey
| | - H Elbe
- b Medical Faculty, Department of Histology and Embryology , Mugla Sıtkı Kocman University , Mugla , Turkey
| | - N Vardi
- c Medical Faculty, Department of Histology and Embryology , Inonu University , Malatya , Turkey
| | - H Parlakpinar
- d Medical Faculty, Departments of Pharmacology , Inonu University , Malatya , Turkey
| | - A Polat
- e Medical Faculty, Physiology , Inonu University , Malatya , Turkey
| | - M Gunaltili
- a Medical Faculty , Inonu University , Malatya , Turkey
| | - M M Guclu
- a Medical Faculty , Inonu University , Malatya , Turkey
| | - E N Yasar
- a Medical Faculty , Inonu University , Malatya , Turkey
| |
Collapse
|
7
|
Qin L, Zhang B, Wang Q, Li D, Luo X, Zhong S. Effect of aldosterone on cochlear Af9 expression and hearing in guinea pig. Acta Otolaryngol 2017; 137:903-909. [PMID: 28399691 DOI: 10.1080/00016489.2017.1309681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CONCLUSIONS Af9 protein in cochlea may be closely related to endolymph regulation by aldosterone and thus may be involved in pathogenesis of endolymphatic hydrops (EH). OBJECTIVES EH is the pathological characteristic of Ménière's disease (MD). Aldosterone could induce EH, but its relationship with MD is still controversial. The aim of the present study is to investigate the Af9 protein expression in guinea pig cochlea and regulation of Af9 expression and cochlear function by aldosterone. The role of Af9 in pathogenesis of EH is discussed. METHODS Thirty guinea pigs were randomly divided into two groups. The treatment group was intraperitoneally injected with aldosterone 0.1 mg/kg/d for 5 days, while the control group was done with saline. Hearing and histomorphology of cochlea were examined. In addition, expression of Af9 protein was studied. RESULTS The hearing threshold of the treatment group was increased. EH was induced in 73% of guinea pigs in the treatment group, and no EH was found in the control group. Af9 protein was found in spiral limbus, stria vascularis, Reissner's membrane, organ of Corti and spiral ganglion in both groups. Af9 expression in cochlea decreased significantly at protein level after treatment by aldosterone.
Collapse
Affiliation(s)
- Li Qin
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Biyun Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianying Wang
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Duanchao Li
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Luo
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shixun Zhong
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Molina-Jijón E, Rodríguez-Muñoz R, González-Ramírez R, Namorado-Tónix C, Pedraza-Chaverri J, Reyes JL. Aldosterone signaling regulates the over-expression of claudin-4 and -8 at the distal nephron from type 1 diabetic rats. PLoS One 2017; 12:e0177362. [PMID: 28493961 PMCID: PMC5426686 DOI: 10.1371/journal.pone.0177362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/17/2017] [Indexed: 12/19/2022] Open
Abstract
Hyperglycemia in diabetes alters tight junction (TJ) proteins in the kidney. We evaluated the participation of aldosterone (ALD), and the effect of spironolactone (SPL), a mineralocorticoid receptor antagonist, on the expressions of claudin-2, -4, -5 and -8, and occludin in glomeruli, proximal and distal tubules isolated from diabetic rats. Type 1 diabetes was induced in female Wistar rats by a single tail vein injection of streptozotocin (STZ), and SPL was administrated daily by gavage, from days 3–21. Twenty-one days after STZ injection the rats were sacrificed. In diabetic rats, the serum ALD levels were increased, and SPL-treatment did not have effect on these levels or in hyperglycemia, however, proteinuria decreased in SPL-treated diabetic rats. Glomerular damage, evaluated by nephrin and Wilm’s tumor 1 (WT1) protein expressions, and proximal tubular damage, evaluated by kidney injury molecule 1 (Kim-1) and heat shock protein 72 kDa (Hsp72) expressions, were ameliorated by SPL. Also, SPL prevented decrement in claudin-5 in glomeruli, and claudin-2 and occludin in proximal tubules by decreasing oxidative stress, evaluated by superoxide anion (O2●―) production, and oxidative stress markers. In distal tubules, SPL ameliorated increase in mRNA, protein expression, and phosphorylation in threonine residues of claudin-4 and -8, through a serum and glucocorticoid-induced kinase 1 (SGK1), and with-no-lysine kinase 4 (WNK4) signaling pathway. In conclusion, this is the first study that demonstrates that ALD modulates the expression of renal TJ proteins in diabetes, and that the blockade of its actions with SPL, may be a promising therapeutic strategy to prevent alterations of TJ proteins in diabetic nephropathy.
Collapse
MESH Headings
- Aldosterone/metabolism
- Animals
- Claudin-4/metabolism
- Claudins/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Female
- Hyperglycemia/blood
- Hyperglycemia/drug therapy
- Hyperglycemia/prevention & control
- Immediate-Early Proteins/metabolism
- Kidney Glomerulus/drug effects
- Kidney Glomerulus/pathology
- Kidney Tubules/drug effects
- Kidney Tubules/pathology
- Models, Biological
- Natriuresis/drug effects
- Nephrons/metabolism
- Oxidative Stress/drug effects
- Phosphorylation/drug effects
- Potassium/blood
- Protein Serine-Threonine Kinases/metabolism
- Proteinuria/blood
- Proteinuria/complications
- Proteinuria/drug therapy
- Proteinuria/prevention & control
- Rats, Wistar
- Signal Transduction/drug effects
- Spironolactone/pharmacology
- Spironolactone/therapeutic use
- Tight Junctions/drug effects
- Tight Junctions/metabolism
- Weight Loss/drug effects
Collapse
Affiliation(s)
- Eduardo Molina-Jijón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, México
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre el Medio Ambiente y Desarrollo del Instituto Politécnico Nacional (CIIEMAD-IPN), Mexico City, México
| | - Rafael Rodríguez-Muñoz
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, México
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, Dr. Manuel Gea González, General Hospital, Mexico City, México
| | - Carmen Namorado-Tónix
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, México
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, México
| | - Jose L. Reyes
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, México
- * E-mail:
| |
Collapse
|
9
|
Wu YS, Chen YT, Bao YT, Li ZM, Zhou XJ, He JN, Dai SJ, Li CY. Identification and Verification of Potential Therapeutic Target Genes in Berberine-Treated Zucker Diabetic Fatty Rats through Bioinformatics Analysis. PLoS One 2016; 11:e0166378. [PMID: 27846294 PMCID: PMC5112949 DOI: 10.1371/journal.pone.0166378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/27/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Berberine is used to treat diabetes and dyslipidemia. However, the effect of berberine on specific diabetes treatment targets is unknown. In the current study, we investigated the effect of berberine on the random plasma glucose, glycated hemoglobin (HbA1C), AST, ALT, BUN and CREA levels of Zucker diabetic fatty (ZDF) rats, and we identified and verified the importance of potential therapeutic target genes to provide molecular information for further investigation of the mechanisms underlying the anti-diabetic effects of berberine. METHODS ZDF rats were randomly divided into control (Con), diabetic (DM) and berberine-treated (300 mg⋅kg-1, BBR) groups. After the ZDF rats were treated with BBR for 12 weeks, its effect on the random plasma glucose and HbA1C levels was evaluated. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), CREA and OGTT were measured from blood, respectively. The levels of gene expression in liver samples were analyzed using an Agilent rat gene expression 4x44K microarray. The differentially expressed genes (DEGs) were screened as those with log2 (Con vs DM) ≥ 1 and log2 (BBR vs DM) ≥ 1 expression levels, which were the genes with up-regulated expression, and those with log2 (Con vs DM) ≤ -1 and log2 (BBR vs DM) ≤ -1 expression levels, which were the genes with down-regulated expression; the changes in gene expression were considered significant at P<0.05. The functions of the DEGs were determined using gene ontology (GO) and pathway analysis. Furthermore, a protein-protein interaction (PPI) network was constructed using STRING and Cytoscape software. The expression levels of the key node genes in the livers of the ZDF rats were also analyzed using qRT-PCR. RESULTS We found that 12 weeks of berberine treatment significantly decreased the random plasma glucose, HbA1C levels and improved glucose tolerance. There was a tendency for berberine to reduce AST, ALT, BUN except increase CREA levels. In the livers of the BBR group, we found 154 DEGs, including 91 genes with up-regulated expression and 63 genes with down-regulated expression. In addition, GO enrichment analysis showed significant enrichment of the DEGs in the following categories: metabolic process, localization, cellular process, biological regulation and response to stimulus process. After the gene screening, KEGG pathway analysis showed that the target genes are involved in multiple pathways, including the lysine degradation, glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate and pyruvate metabolism pathways. By combining the results of PPI network and KEGG pathway analyses, we identified seven key node genes. The qRT-PCR results confirmed that the expression of the RHOA, MAPK4 and DLAT genes was significantly down-regulated compared with the levels in DM group, whereas the expression of the SgK494, DOT1L, SETD2 and ME3 genes was significantly up-regulated in the BBR group. CONCLUSION Berberine can significantly improve glucose metabolism and has a protective effects of liver and kidney function in ZDF rats. The qRT-PCR results for the crucial DEGs validated the microarray results. These results suggested that the RHOA, MAPK4, SGK494, DOT1L, SETD2, ME3 and DLAT genes are potential therapeutic target genes for the treatment of diabetes.
Collapse
Affiliation(s)
- Yang Sheng Wu
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yi-Tao Chen
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yu-Ting Bao
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhe-Ming Li
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiao-Jie Zhou
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Jia-Na He
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Shi-Jie Dai
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Chang yu Li
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- * E-mail:
| |
Collapse
|
10
|
Xiao Z, Chen L, Zhou Q, Zhang W. Dot1l deficiency leads to increased intercalated cells and upregulation of V-ATPase B1 in mice. Exp Cell Res 2015; 344:167-75. [PMID: 26404731 DOI: 10.1016/j.yexcr.2015.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/16/2015] [Accepted: 09/19/2015] [Indexed: 01/19/2023]
Abstract
The collecting duct in the mammalian kidney consists of principal cells (PCs) and intercalated cells (ICs), which regulate electrolyte/fluid and acid/base balance, respectively. The epigenetic regulators of PC and IC differentiation remain obscure. We previously used Aqp2 and V-ATPase B1B2 to label PCs and ICs, respectively. We found that mice with histone H3 K79 methyltransferase Dot1l disrupted in Aqp2-expressing cells (Dot1l(AC)) vs. Dot1l(f/f) possessed ~20% more ICs coupled with a similar decrease in PCs. Here, we performed multiple double immunofluorescence staining using various PC and IC markers and confirmed that this finding. Both α-IC and β-IC populations were significantly expanded in Dot1l(AC) vs. Dot1l(f/f). These changes are associated with significantly upregulated V-ATPase B1 and B2, but not Aqp2, AE1, and Pendrin. Chromatin immunoprecipitation assay unveiled a significant reduction of Dot1l and H3K79 di-methylation bound at the Atp6v1b1 5' flanking region. Overexpression of Dot1a significantly downregulated a stably-transfected luciferase reporter driven by the Atp6v1b1 promoter in IMCD3 cells. This downregulation was impaired, but not completely abolished when a methyltransferase-dead mutant was overexpressed. Taken together, our data suggest that Dot1l is a new epigenetic regulator of PC and IC differentiation and Atp6v1b1 is a new transcriptional target of Dot1l.
Collapse
Affiliation(s)
- Zhou Xiao
- Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Lihe Chen
- Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qiaoling Zhou
- Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wenzheng Zhang
- Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Abstract
Aldosterone is a major regulator of Na(+) absorption and acts primarily by controlling the epithelial Na(+) channel (ENaC) function at multiple levels including transcription. ENaC consists of α, β, and γ subunits. In the classical model, aldosterone enhances transcription primarily by activating mineralocorticoid receptor (MR). However, how aldosterone induces chromatin alternation and thus leads to gene activation or repression remains largely unknown. Emerging evidence suggests that Dot1a-Af9 complex plays an important role in repression of αENaC by directly binding and modulating targeted histone H3 K79 hypermethylation at the specific subregions of αENaC promoter. Aldosterone impairs Dot1a-Af9 formation by decreasing expression of Dot1a and Af9 and by inducing Sgk1, which, in turn, phosphorylates Af9 at S435 to weaken Dot1a-Af9 interaction. MR counterbalances Dot1a-Af9 action by competing with Dot1a for binding Af9. Af17 derepresses αENaC by competitively interacting with Dot1a and facilitating Dot1a nuclear export. Consistently, MR(-/-) mice have impaired ENaC expression at day 5 after birth, which may contribute to progressive development of pseudohypoaldosteronism type 1 in a later stage. Af17(-/-) mice have decreased ENaC expression, renal Na(+) retention, and blood pressure. In contrast, Dot1l(AC) mice have increased αENaC expression, despite a 20% reduction of the principal cells. This chapter reviews these findings linking aldosterone action to ENaC transcription through chromatin modification. Future direction toward the understanding the role of Dot1a-Af9 complex beyond ENaC regulation, in particular, in renal fibrosis is also briefly discussed.
Collapse
Affiliation(s)
- Lihe Chen
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA; Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Xi Zhang
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Wenzheng Zhang
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA; Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas, USA.
| |
Collapse
|
12
|
Abstract
The apical membrane epithelial Na(+) channel subunit (ENaC) in series with the basolateral Na(+)/K(+)-adenosine triphosphatase mediates collecting duct Na(+) reabsorption. Aldosterone induces αENaC gene transcription, which appears to be rate limiting for ENaC activity in this segment. Although this response has long been assumed to be solely the result of liganded nuclear hormone receptors trans-activating αENaC, epigenetic controls of basal and aldosterone-induced transcription of αENaC in the collecting duct recently were described. These epigenetic pathways involve dynamic nuclear repressor complexes targeted to specific subregions of the αENaC promoter and consisting of the histone methyltransferase disrupter of telomeric silencing (Dot)1a together with the transcriptional factor Af9 or the nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase Sirt1, key co-regulatory proteins, including serum- and glucocorticoid-induced kinase-1 and the putative transcription factor Af17, and targeted chromatin modifications. The complexes, through the action of Dot1a, maintain chromatin associated with the αENaC promoter in a stable hypermethylated state, constraining αENaC transcription under basal conditions. Aldosterone and serum- and glucocorticoid-induced kinase-1, itself, activate αENaC transcription in large part by disrupting or diminishing the Dot1a-Af9 and Dot1a-Sirt1 complexes and their effects on chromatin. Mouse models indicate potential roles of the Dot1a pathways in renal salt excretion and hypertension.
Collapse
Affiliation(s)
- Bruce C Kone
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, The University of Texas Medical School, Houston, TX.
| |
Collapse
|
13
|
A genome-wide association study identifies PLCL2 and AP3D1-DOT1L-SF3A2 as new susceptibility loci for myocardial infarction in Japanese. Eur J Hum Genet 2014; 23:374-80. [PMID: 24916648 DOI: 10.1038/ejhg.2014.110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/01/2014] [Accepted: 05/08/2014] [Indexed: 12/18/2022] Open
Abstract
Despite considerable progress in preventive and therapeutic strategies, myocardial infarction (MI) is one of the leading causes of death throughout the world. A total of 55 susceptibility genes have been identified mostly in European genome-wide association studies (GWAS). Nevertheless, large-scale GWAS from other population could possibly find additional susceptibility loci. To identify as many MI susceptibility loci as possible, we performed a large-scale genomic analysis in Japanese population. To identify MI susceptibility loci in Japanese, we conducted a GWAS using 1666 cases and 3198 controls using the Illumina Human610-Quad BeadChip and HumanHap550v3 Genotyping BeadChip. We performed replication studies using a total of 11,412 cases and 28,397 controls in the Japanese population. Our study identified two novel susceptibility loci for MI: PLCL2 on chromosome 3p24.3 (rs4618210:A>G, P = 2.60 × 10(-9), odds ratio (OR) = 0.91) and AP3D1-DOT1L-SF3A2 on chromosome 19p13.3 (rs3803915:A>C, P = 3.84 × 10(-9), OR = 0.89). Besides, a total of 14 previously reported MI susceptibility loci were replicated in our study. In particular, we validated a strong association on chromosome 12q24 (rs3782886:A>G: P = 1.14 × 10(-14), OR = 1.46). Following pathway analysis using 265 genes related to MI or coronary artery disease, we found that these loci might be involved in the pathogenesis of MI via the promotion of atherosclerosis. In the present large-scale genomic analysis, we identified PLCL2 and AP3D1-DOT1L-SF3A2 as new susceptibility loci for MI in the Japanese population. Our findings will add novel findings for MI susceptibility loci.
Collapse
|
14
|
Kim W, Choi M, Kim JE. The histone methyltransferase Dot1/DOT1L as a critical regulator of the cell cycle. Cell Cycle 2014; 13:726-38. [PMID: 24526115 PMCID: PMC3979909 DOI: 10.4161/cc.28104] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dot1/DOT1L catalyzes the methylation of histone H3 lysine 79 (H3K79), which regulates diverse cellular processes, such as development, reprogramming, differentiation, and proliferation. In regards to these processes, studies of Dot1/DOT1L-dependent H3K79 methylation have mainly focused on the transcriptional regulation of specific genes. Although the gene transcription mediated by Dot1/DOT1L during the cell cycle is not fully understood, H3K79 methylation plays a critical role in the progression of G 1 phase, S phase, mitosis, and meiosis. This modification may contribute to the chromatin structure that controls gene expression, replication initiation, DNA damage response, microtubule reorganization, chromosome segregation, and heterochromatin formation. Overall, Dot1/DOT1L is required to maintain genomic and chromosomal stability. This review summarizes the several functions of Dot1/DOT1L and highlights its role in cell cycle regulation.
Collapse
Affiliation(s)
- Wootae Kim
- Department of Pharmacology; School of Medicine; Kyung Hee University; Seoul, Republic of Korea; Department of Biomedical Science; Graduate School; Kyung Hee University; Seoul, Republic of Korea
| | - Minji Choi
- Department of Pharmacology; School of Medicine; Kyung Hee University; Seoul, Republic of Korea; Department of Biomedical Science; Graduate School; Kyung Hee University; Seoul, Republic of Korea
| | - Ja-Eun Kim
- Department of Pharmacology; School of Medicine; Kyung Hee University; Seoul, Republic of Korea; Department of Biomedical Science; Graduate School; Kyung Hee University; Seoul, Republic of Korea
| |
Collapse
|
15
|
Matsumoto T, Lopes RAM, Taguchi K, Kobayashi T, Tostes RC. Linking the beneficial effects of current therapeutic approaches in diabetes to the vascular endothelin system. Life Sci 2014; 118:129-35. [PMID: 24418002 DOI: 10.1016/j.lfs.2013.12.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/04/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022]
Abstract
The rising epidemic of diabetes worldwide is of significant concern. Although the ultimate objective is to prevent the development and find a cure for the disease, prevention and treatment of diabetic complications is very important. Vascular complications in diabetes, or diabetic vasculopathy, include macro- and microvascular dysfunction and represent the principal cause of morbidity and mortality in diabetic patients. Endothelial dysfunction plays a pivotal role in the development and progression of diabetic vasculopathy. Endothelin-1 (ET-1), an endothelial cell-derived peptide, is a potent vasoconstrictor with mitogenic, pro-oxidative and pro-inflammatory properties that are particularly relevant to the pathophysiology of diabetic vasculopathy. Overproduction of ET-1 is reported in patients and animal models of diabetes and the functional effects of ET-1 and its receptors are also greatly altered in diabetic conditions. The current therapeutic approaches in diabetes include glucose lowering, sensitization to insulin, reduction of fatty acids and vasculoprotective therapies. However, whether and how these therapeutic approaches affect the ET-1 system remain poorly understood. Accordingly, in the present review, we will focus on experimental and clinical evidence that indicates a role for ET-1 in diabetic vasculopathy and on the effects of current therapeutic approaches in diabetes on the vascular ET-1 system.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Rheure A M Lopes
- Department of Pharmacology, Medical School of Ribeirao Preto, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900, Brazil
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Rita C Tostes
- Department of Pharmacology, Medical School of Ribeirao Preto, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900, Brazil
| |
Collapse
|
16
|
Zhang W, Miao J, Wang S, Zhang Y. The protective effects of beta-casomorphin-7 against glucose -induced renal oxidative stress in vivo and vitro. PLoS One 2013; 8:e63472. [PMID: 23658831 PMCID: PMC3643933 DOI: 10.1371/journal.pone.0063472] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 04/02/2013] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress is implicated in the pathogenesis of diabetic nephropathy. The present study aimed to investigate the effect of β-casomorphin-7 (BCM7) on the oxidative stress occurring in kidney tissue in streptozotocin (STZ)-induced diabetic rats and proximal tubular epithelial cells (NRK-52E) exposure to high glucose (HG) by using biochemical methods. There is a significant decrease in plasma insulin and a significant increase in plasma glucagon in the rats of diabetic group. Oral administration of BCM7 for 30 days to rats with STZ-induced diabetes resulted in a significant increase in serum level of insulin, and a decrease in the level of glucagon. Moreover, rats with STZ-induced diabetes had lower levels of superoxide dismutase (SOD), glutathione peroxidase (GPx) and total antioxidative capacity (T-AOC), higher levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in the kidney than that in the control rats. The administration of BCM7 altered the changes of SOD, GPx, T-AOC, MDA and H2O2 in the kidney of diabetic rats. Furthermore, BCM7 alleviated high glucose-induced decreasement in SOD and GPx activity, increasement in MDA contents in the NRK-52E cells. BCM7 ameliorated the changes of angiotensin converting enzyme (ACE) and ACE2 levels in the kidney of diabetic rats and BCM7 lowered the levels of angiotensin (Ang)II in the kidney of diabetic rats and culture medium for cells. Moreover losartan (antagonist of angiotensin II type I receptor) lowered the high glucose-induced oxidative stress in the NRK-52E cells. Our results suggest that administration of BCM7 would alleviate high glucose-induced renal oxidative stress in vivo and in vitro, which may be associated with down regulation of the concentration of Ang II partly.
Collapse
Affiliation(s)
- Wei Zhang
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agriculture University, Nanjing, People's Republic of China
| | - Jinfeng Miao
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agriculture University, Nanjing, People's Republic of China
| | - Shanshan Wang
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agriculture University, Nanjing, People's Republic of China
| | - Yuanshu Zhang
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agriculture University, Nanjing, People's Republic of China
- * E-mail:
| |
Collapse
|
17
|
Wu H, Chen L, Zhang X, Zhou Q, Li JM, Berger S, Borok Z, Zhou B, Xiao Z, Yin H, Liu M, Wang Y, Jin J, Blackburn MR, Xia Y, Zhang W. Aqp5 is a new transcriptional target of Dot1a and a regulator of Aqp2. PLoS One 2013; 8:e53342. [PMID: 23326416 PMCID: PMC3542343 DOI: 10.1371/journal.pone.0053342] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/27/2012] [Indexed: 12/02/2022] Open
Abstract
Dot1l encodes histone H3 K79 methyltransferase Dot1a. Mice with Dot1l deficiency in renal Aqp2-expressing cells (Dot1l(AC)) develop polyuria by unknown mechanisms. Here, we report that Aqp5 links Dot1l deletion to polyuria through Aqp2. cDNA array analysis revealed and real-time RT-qPCR validated Aqp5 as the most upregulated gene in Dot1l(AC) vs. control mice. Aqp5 protein is barely detectable in controls, but robustly expressed in the Dot1l(AC) kidneys, where it colocalizes with Aqp2. The upregulation of Aqp5 is coupled with reduced association of Dot1a and H3 dimethyl K79 with specific subregions in Aqp5 5' flanking region in Dot1l(AC) vs. control mice. In vitro studies in IMCD3, MLE-15 and 293Tcells using multiple approaches including real-time RT-qPCR, luciferase reporter assay, cell surface biotinylation assay, colocalization, and co-immunoprecipitation uncovered that Dot1a represses Aqp5. Human AQP5 interacts with AQP2 and impairs its cell surface localization. The AQP5/AQP2 complex partially resides in the ER/Golgi. Consistently, AQP5 is expressed in none of 15 normal controls, but in all of 17 kidney biopsies from patients with diabetic nephropathy. In the patients with diabetic nephropathy, AQP5 colocalizes with AQP2 in the perinuclear region and AQP5 expression is associated with impaired cellular H3 dimethyl K79. Taken together, these data for the first time identify Aqp5 as a Dot1a potential transcriptional target, and an Aqp2 binding partner and regulator, and suggest that the upregulated Aqp5 may contribute to polyuria, possibly by impairing Aqp2 membrane localization, in Dot1l(AC) mice and in patients with diabetic nephropathy.
Collapse
Affiliation(s)
- Hongyu Wu
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Lihe Chen
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Xi Zhang
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Qiaoling Zhou
- Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ju-Mei Li
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Stefan Berger
- German Cancer Research Center, Division Molecular Biology of the Cell I, Heidelberg, Germany
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Beiyun Zhou
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Zhou Xiao
- Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongling Yin
- Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingyao Liu
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University System Health Science Center, Houston, Texas, United States of America
| | - Ying Wang
- Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University System Health Science Center, Houston, Texas, United States of America
| | - Jianping Jin
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Michael R. Blackburn
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Yang Xia
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Wenzheng Zhang
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|