1
|
Wang X, Liu E, Hou C, Wang Y, Zhao Y, Guo J, Li M. Effects of natural products on angiogenesis in melanoma. Fitoterapia 2024; 177:106100. [PMID: 38972550 DOI: 10.1016/j.fitote.2024.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Melanoma is the most aggressive form of skin cancer and originates from genetic mutations in melanocytes. The disease is multifactorial, but its main cause is overexposure to UV radiation. Currently, available chemotherapy expresses little to no results, which may justify the extensive use of natural products to treat this cancer. In this study, we reviewed the inhibition of melanoma angiogenesis by natural products and its potential mechanisms using literature from PubMed, EMBASE, Web of Science, Ovid, ScienceDirect and China National Knowledge Infrastructure databases. According to summarizes 27 natural products including alkaloids, polyphenols, terpenoids, flavonoids, and steroids that effectively inhibit angiogenesis in melanoma. In addition to these there are 15 crude extracts that can be used as promising agents to inhibit angiogenesis, but their core components still deserve further investigation. There are current studies on melanoma angiogenesis involving oxidative stress, immune-inflammatory response, cell proliferation and migration and capillary formation. The above natural products can be involved in melanoma angiogenesis through core targets such as VE-cadherin, COX-2, iNOS, VEGF, bFGF, FGF2,MMP2,MMP9,IL-1β,IL-6 play a role in inhibiting melanoma angiogenesis. Effective excavation of natural products can not only clarify the mechanism of drug action and key targets, but also help to promote the preclinical research of natural products for melanoma treatment and further promote the development of new clinical drugs, which will bring the gospel to the vast number of patients who are deeply afflicted by melanoma.
Collapse
Affiliation(s)
- Xurui Wang
- Department of Chinese Medicine Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China,Chengdu, China; Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - E Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changcheng Hou
- Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Yueyue Wang
- Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Yijia Zhao
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Mingyue Li
- Special Needs Outpatient Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Chakravarti M, Bera S, Dhar S, Sarkar A, Choudhury PR, Ganguly N, Das J, Sultana J, Guha A, Biswas S, Das T, Hajra S, Banerjee S, Baral R, Bose A. Neem Leaf Glycoprotein Disrupts Exhausted CD8+ T-Cell-Mediated Cancer Stem Cell Aggression. Mol Cancer Res 2024; 22:759-778. [PMID: 38743057 DOI: 10.1158/1541-7786.mcr-23-0993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Targeting exhausted CD8+ T-cell (TEX)-induced aggravated cancer stem cells (CSC) holds immense therapeutic potential. In this regard, immunomodulation via Neem Leaf Glycoprotein (NLGP), a plant-derived glycoprotein immunomodulator is explored. Since former reports have proven immune dependent-tumor restriction of NLGP across multiple tumor models, we hypothesized that NLGP might reprogram and rectify TEX to target CSCs successfully. In this study, we report that NLGP's therapeutic administration significantly reduced TEX-associated CSC virulence in in vivo B16-F10 melanoma tumor model. A similar trend was observed in in vitro generated TEX and B16-F10/MCF7 coculture setups. NLGP rewired CSCs by downregulating clonogenicity, multidrug resistance phenotypes and PDL1, OCT4, and SOX2 expression. Cell cycle analysis revealed that NLGP educated-TEX efficiently pushed CSCs out of quiescent phase (G0G1) into synthesis phase (S), supported by hyper-phosphorylation of G0G1-S transitory cyclins and Rb proteins. This rendered quiescent CSCs susceptible to S-phase-targeting chemotherapeutic drugs like 5-fluorouracil (5FU). Consequently, combinatorial treatment of NLGP and 5FU brought optimal CSC-targeting efficiency with an increase in apoptotic bodies and proapoptotic BID expression. Notably a strong nephron-protective effect of NLGP was also observed, which prevented 5FU-associated toxicity. Furthermore, Dectin-1-mediated NLGP uptake and subsequent alteration of Notch1 and mTOR axis were deciphered as the involved signaling network. This observation unveiled Dectin-1 as a potent immunotherapeutic drug target to counter T-cell exhaustion. Cumulatively, NLGP immunotherapy alleviated exhausted CD8+ T-cell-induced CSC aggravation. Implications: Our study recommends that NLGP immunotherapy can be utilized to counter ramifications of T-cell exhaustion and to target therapy elusive aggressive CSCs without evoking toxicity.
Collapse
Affiliation(s)
- Mohona Chakravarti
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Saurav Bera
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Sukanya Dhar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Anirban Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Pritha Roy Choudhury
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Juhina Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Jasmine Sultana
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Aishwarya Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Tapasi Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Anamika Bose
- Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| |
Collapse
|
3
|
Wang Y, Zeng Y, Yang W, Wang X, Jiang J. Targeting CD8 + T cells with natural products for tumor therapy: Revealing insights into the mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155608. [PMID: 38642413 DOI: 10.1016/j.phymed.2024.155608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Despite significant advances in cancer immunotherapy over the past decades, such as T cell-engaging chimeric antigen receptor (CAR)-T cell therapy and immune checkpoint blockade (ICB), therapeutic failure resulting from various factors remains prevalent. Therefore, developing combinational immunotherapeutic strategies is of great significance for improving the clinical outcome of cancer immunotherapy. Natural products are substances that naturally exist in various living organisms with multiple pharmacological or biological activities, and some of them have been found to have anti-tumor potential. Notably, emerging evidences have suggested that several natural compounds may boost the anti-tumor effects through activating immune response of hosts, in which CD8+ T cells play a pivotal role. METHODS The data of this review come from PubMed, Web of Science, Google Scholar, and ClinicalTrials (https://clinicaltrials.gov/) with the keywords "CD8+ T cell", "anti-tumor", "immunity", "signal 1", "signal 2", "signal 3", "natural products", "T cell receptor (TCR)", "co-stimulation", "co-inhibition", "immune checkpoint", "inflammatory cytokine", "hesperidin", "ginsenoside", "quercetin", "curcumin", "apigenin", "dendrobium officinale polysaccharides (DOPS)", "luteolin", "shikonin", "licochalcone A", "erianin", "resveratrol", "procyanidin", "berberine", "usnic acid", "naringenin", "6-gingerol", "ganoderma lucidum polysaccharide (GL-PS)", "neem leaf glycoprotein (NLGP)", "paclitaxel", "source", "pharmacological activities", and "toxicity". These literatures were published between 1993 and 2023. RESULTS Natural products have considerable advantages as anti-tumor drugs based on the various species, wide distribution, low price, and few side effects. This review summarized the effects and mechanisms of some natural products that exhibit anti-tumor effects via targeting CD8+ T cells, mainly focused on the three signals that activate CD8+ T cells: TCR, co-stimulation, and inflammatory cytokines. CONCLUSION Clarifying the role and underlying mechanism of natural products in cancer immunotherapy may provide more options for combinational treatment strategies and benefit cancer therapy, to shed light on identifying potential natural compounds for improving the clinical outcome in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuke Wang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yan Zeng
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xiuxuan Wang
- Research and Development Department, Beijing DCTY Biotech Co., Ltd., Beijing, China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Ganguly N, Das T, Bhuniya A, Guha I, Chakravarti M, Dhar S, Sarkar A, Bera S, Dhar J, Dasgupta S, Saha A, Ghosh T, Das J, Sk UH, Banerjee S, Laskar S, Bose A, Baral R. Neem leaf glycoprotein binding to Dectin-1 receptors on dendritic cell induces type-1 immunity through CARD9 mediated intracellular signal to NFκB. Cell Commun Signal 2024; 22:237. [PMID: 38649988 PMCID: PMC11036628 DOI: 10.1186/s12964-024-01576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/16/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND A water-soluble ingredient of mature leaves of the tropical mahogany 'Neem' (Azadirachta indica), was identified as glycoprotein, thus being named as 'Neem Leaf Glycoprotein' (NLGP). This non-toxic leaf-component regressed cancerous murine tumors (melanoma, carcinoma, sarcoma) recurrently in different experimental circumstances by boosting prime antitumor immune attributes. Such antitumor immunomodulation, aid cytotoxic T cell (Tc)-based annihilation of tumor cells. This study focused on identifying and characterizing the signaling gateway that initiate this systemic immunomodulation. In search of this gateway, antigen-presenting cells (APCs) were explored, which activate and induce the cytotoxic thrust in Tc cells. METHODS Six glycoprotein-binding C-type lectins found on APCs, namely, MBR, Dectin-1, Dectin-2, DC-SIGN, DEC205 and DNGR-1 were screened on bone marrow-derived dendritic cells from C57BL/6 J mice. Fluorescence microscopy, RT-PCR, flow cytometry and ELISA revealed Dectin-1 as the NLGP-binding receptor, followed by verifications through RNAi. Following detection of β-Glucans in NLGP, their interactions with Dectin-1 were explored in silico. Roles of second messengers and transcription factors in the downstream signal were studied by co-immunoprecipitation, western blotting, and chromatin-immunoprecipitation. Intracellularization of FITC-coupled NLGP was observed by processing confocal micrographs of DCs. RESULTS Considering extents of hindrance in NLGP-driven transcription rates of the cytokines IL-10 and IL-12p35 by receptor-neutralization, Dectin-1 receptors on dendritic cells were found to bind NLGP through the ligand's peripheral β-Glucan chains. The resulting signal phosphorylates PKCδ, forming a trimolecular complex of CARD9, Bcl10 and MALT1, which in turn activates the canonical NFκB-pathway of transcription-regulation. Consequently, the NFκB-heterodimer p65:p50 enhances Il12a transcription and the p50:p50 homodimer represses Il10 transcription, bringing about a cytokine-based systemic-bias towards type-1 immune environment. Further, NLGP gets engulfed within dendritic cells, possibly through endocytic activities of Dectin-1. CONCLUSION NLGP's binding to Dectin-1 receptors on murine dendritic cells, followed by the intracellular signal, lead to NFκB-mediated contrasting regulation of cytokine-transcriptions, initiating a pro-inflammatory immunopolarization, which amplifies further by the responding immune cells including Tc cells, alongside their enhanced cytotoxicity. These insights into the initiation of mammalian systemic immunomodulation by NLGP at cellular and molecular levels, may help uncovering its mode of action as a novel immunomodulator against human cancers, following clinical trials.
Collapse
Affiliation(s)
- Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Tapasi Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Mohona Chakravarti
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Sukanya Dhar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Anirban Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Saurav Bera
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Jesmita Dhar
- Jubilant Biosys Limited, 96, Digital Park Rd, Yesvantpur Industrial Suburb, Bengaluru, Karnataka, 560022, India
| | - Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Juhina Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Ugir Hossain Sk
- Department of Clinical and Translational Research, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Subrata Laskar
- Department of Chemistry, University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India.
- Department of Pharmaceutical Technology-Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER),-S.A.S. Nagar, Mohali, Punjab, 160062, India.
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
5
|
Das J, Bera S, Ganguly N, Guha I, Ghosh Halder T, Bhuniya A, Nandi P, Chakravarti M, Dhar S, Sarkar A, Das T, Banerjee S, Ghose S, Bose A, Baral R. The immunomodulatory impact of naturally derived neem leaf glycoprotein on the initiation progression model of 4NQO induced murine oral carcinogenesis: a preclinical study. Front Immunol 2024; 15:1325161. [PMID: 38585261 PMCID: PMC10996442 DOI: 10.3389/fimmu.2024.1325161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/29/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Murine tumor growth restriction by neem leaf glycoprotein (NLGP) was established in various transplanted models of murine sarcoma, melanoma and carcinoma. However, the role of NLGP in the sequential carcinogenic steps has not been explored. Thus, tongue carcinogenesis in Swiss mice was induced by 4-nitroquinoline-1-oxide (4NQO), which has close resemblance to human carcinogenesis process. Interventional role of NLGP in initiation-promotion protocol established during 4NQO mediated tongue carcinogenesis in relation to systemic immune alteration and epithelial-mesenchymal transition (EMT) is investigated. Methods 4NQO was painted on tongue of Swiss mice every third day at a dose of 25µl of 5mg/ml stock solution. After five consecutive treatment with 4NQO (starting Day7), one group of mice was treated with NLGP (s.c., 25µg/mice/week), keeping a group as PBS control. Mice were sacrificed in different time-intervals to harvest tongues and studied using histology, immunohistochemistry, flow-cytometry and RT-PCR on different immune cells and EMT markers (e-cadherin, vimentin) to elucidate their phenotypic and secretory status. Results Local administration of 4NQO for consecutive 300 days promotes significant alteration in tongue mucosa including erosion in papillae and migration of malignant epithelial cells to the underlying connective tissue stroma with the formation of cell nests (exophytic-hyperkeratosis with mild dysplasia). Therapeutic NLGP treatment delayed pre-neoplastic changes promoting normalization of mucosa by maintaining normal structure. Flow-cytometric evidences suggest that NLGP treatment upregulated CD8+, IFNγ+, granzyme B+, CD11c+ cells in comparison to 4NQO treated mice with a decrease in Ki67+ and CD4+FoxP3+ cells in NLGP treated cohort. RT-PCR demonstrated a marked reduction of MMP9, IL-6, IL-2, CD31 and an upregulation in CCR5 in tongues from 4NQO+NLGP treated mice in comparison to 4NQO treated group. Moreover, 4NQO mediated changes were associated with reduction of e-cadherin and simultaneous up-regulation of vimentin expression in epithelium that was partially reversed by NLGP. Discussion Efficacy of NLGP was tested first time in sequential carcinogenesis model and proved effective in delaying the initial progression. NLGP normalizes type 1 immunity including activation of the CD8+T effector functions, reduction of regulatory T cell functions, along with changes in EMT to make the host systemically alert to combat the carcinogenic threat.
Collapse
Affiliation(s)
- Juhina Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Saurav Bera
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Tithi Ghosh Halder
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Partha Nandi
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Mohona Chakravarti
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sukanya Dhar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anirban Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Tapasi Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sandip Ghose
- Department of Oral Pathology, Dr. R. Ahmed Dental College and Hospital, Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sahibzada Ajit Singh Nagar, Punjab, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
6
|
Vaidya AD. Integrative vision in cancer research, prevention and therapy. J Ayurveda Integr Med 2024; 15:100856. [PMID: 38176303 PMCID: PMC10805757 DOI: 10.1016/j.jaim.2023.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
There is already a significant global initiative to explore the synergy between traditional medicine (TM) and oncology, for holistic best care of cancer patients. Integrative oncology clinics have emerged with operational efficiency. What is needed now is an integrative vision that inspires to seamlessly coordinate the trans-system efforts in cancer research and rapidly translate the positive outcomes into prevention and treatment of cancer. The current dominant paradigm to consider TM only for complementary and alternative adjunct usage cannot inspire state-of-the art research and development on TM leads and serendipitous discoveries. Ayurvedic concepts of Vyadhi-kshamatwa (Immune resistance), Shatkriyakala (Six stages of a disease) and Hetuviparya Chikitsa (Reversal of pathogenetic factors) need to be synergized with ayurvedic pharmacoepidemiology, reverse pharmacology, observational therapeutics, ayurgenomics, ayurvedic biology, and reverse ayurceutics. Such a paradigm-shifting vision may lead to pragmatic translational research/practice and system obstacles and novel bridges in Integrative Oncology.
Collapse
Affiliation(s)
- Ashok Db Vaidya
- Kasturba Health Society- Medical Research Centre, Mumbai, India.
| |
Collapse
|
7
|
Mishra D, Kulkarni A, Shrinivas, Jalaluddin M, Mahapatra N, Mailankote S. Antimicrobial Efficacy of Three Different Mouthwashes on Periodontal Pathogens-An In vitro Study. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:S459-S462. [PMID: 37654410 PMCID: PMC10466574 DOI: 10.4103/jpbs.jpbs_612_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 09/02/2023] Open
Abstract
Aim The aim of this research was to identify the antimicrobial effectiveness of three different mouthwashes on periodontal pathogenic microorganisms. Materials and Methods 2 periodontal disease-causing microorganisms, i.e., Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis, were chosen for this investigation. Prior to commencing this research, a variety of branded and commercially obtainable mouthwashes were procured. Three oral rinses, namely HiOra, Hexidine, and Amflor, were chosen for the current research. The subculture of A. actinomycetemcomitans as well as P. gingivalis was performed by subjecting them to incubation for 48 to 72 hours at 35-37°C. The disk diffusion method was employed to evaluate the antibacterial efficiency of the extract in opposition to the pathogens tested. The zone of inhibition was calculated in millimeters. The mean value of every sample was documented. Results Hexidine oral rinse in pursuit by Amflor as well as HiOra oral rinse exhibited the highest zone of inhibition in opposition to A. Actinomycetemcomitans and P. gingivalis. The differences amid the groups were statistically significant with a P value < 0.001. Conclusion The current research concluded that amid the three different oral rinses employed in the current research, Hexidine oral rinse exhibited greatest antimicrobial effectiveness versus Amflor and HiOra mouthrinse.
Collapse
Affiliation(s)
- Debasish Mishra
- Department of Periodontology, Kalinga Institute of Dental Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| | - Avdhoot Kulkarni
- Department of Pharmacology, Bharati Vidyapeeth (Deemed to be) University Medical College and Hospital, Sangli, Maharashtra, India
| | - Shrinivas
- Department of Dentistry, Koppal Institute of Medical Sciences, Koppal, Karnataka, India
| | - Mohammad Jalaluddin
- Department of Periodontology, Kalinga Institute of Dental Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| | - Niva Mahapatra
- Department of Oral and Maxillofacial Pathology, Kalinga Institute of Dental Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| | - Shilpa Mailankote
- Department of Public Health Dentistry, AB Shetty Memorial Institute of Dental Sciences (ABSMIDS), Nitte (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
8
|
Bose A, Baral R. COVID-19 imparted immune manifestation can be combated by NLGP: Lessons from cancer research. Cytokine 2022; 158:155980. [PMID: 35921791 PMCID: PMC9339246 DOI: 10.1016/j.cyto.2022.155980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 easily infects human monocytes, macrophages and possibly dendritic cells (DCs), causing dysfunctions of these important antigen presenting cells (APCs). Observed DC dysfunctions facilitate improper antigen presentation, which obviously results T cell anergy, exhaustion and apoptosis, thus, may be contributing significantly in SARS-CoV-2 infection associated lymphopenia. Neem Leaf Glycoprotein or NLGP has enormous role in altered DC functions, thereby, offering optimum T cell mediated cytotoxicity, as experienced from cancer system. Such NLGP guided correction of altered DCs might also be effective to generate proper SARS-CoV-2-specific effector and central memory T cells.
Collapse
Affiliation(s)
- Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
9
|
Singh A, Chatterjee A, Rakshit S, Shanmugam G, Mohanty LM, Sarkar K. Neem Leaf Glycoprotein in immunoregulation of cancer. Hum Immunol 2022; 83:768-777. [DOI: 10.1016/j.humimm.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/04/2022]
|
10
|
Dasgupta S, Saha A, Ganguly N, Bhuniya A, Dhar S, Guha I, Ghosh T, Sarkar A, Ghosh S, Roy K, Das T, Banerjee S, Pal C, Baral R, Bose A. NLGP regulates RGS5-TGFβ axis to promote pericyte-dependent vascular normalization during restricted tumor growth. FASEB J 2022; 36:e22268. [PMID: 35363396 DOI: 10.1096/fj.202101093r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/05/2022] [Accepted: 03/09/2022] [Indexed: 12/25/2022]
Abstract
Altered RGS5-associated intracellular pericyte signaling and its abnormal crosstalk with endothelial cells (ECs) result chaotic tumor-vasculature, prevent effective drug delivery, promote immune-evasion and many more to ensure ultimate tumor progression. Moreover, the frequency of lethal-RGS5high pericytes within tumor was found to increase with disease progression, which signifies the presence of altered cell death pathway within tumor microenvironment (TME). In this study, we checked whether and how neem leaf glycoprotein (NLGP)-immunotherapy-mediated tumor growth restriction is associated with modification of pericytes' signaling, functions and its interaction with ECs. Analysis of pericytes isolated from tumors of NLGP treated mice suggested that NLGP treatment promotes apoptosis of NG2+ RGS5high -fuctionally altered pericytes by downregulating intra-tumoral TGFβ, along with maintenance of more matured RGS5neg pericytes. NLGP-mediated inhibition of TGFβ within TME rescues binding of RGS5 with Gαi and thereby termination of PI3K-AKT mediated survival signaling by downregulating Bcl2 and initiating pJNK mediated apoptosis. Limited availability of TGFβ also prevents complex-formation between RGS5 and Smad2 and rapid RGS5 nuclear translocation to mitigate alternate immunoregulatory functions of RGS5high tumor-pericytes. We also observed binding of Ang1 from pericytes with Tie2 on ECs in NLGP-treated tumor, which support re-association of pericytes with endothelium and subsequent vessel stabilization. Furthermore, NLGP-therapy- associated RGS5 deficiency relieved CD4+ and CD8+ T cells from anergy by regulating 'alternate-APC-like' immunomodulatory characters of tumor-pericytes. Taken together, present study described the mechanisms of NLGP's effectiveness in normalizing tumor-vasculature by chiefly modulating pericyte-biology and EC-pericyte interactions in tumor-host to further strengthen its translational potential as single modality treatment.
Collapse
Affiliation(s)
- Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sukanya Dhar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anirban Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Kamalika Roy
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Tapasi Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Chiranjib Pal
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
11
|
Sarkar S, Singh RP, Bhattacharya G. Exploring the role of Azadirachta indica (neem) and its active compounds in the regulation of biological pathways: an update on molecular approach. 3 Biotech 2021; 11:178. [PMID: 33927969 PMCID: PMC7981372 DOI: 10.1007/s13205-021-02745-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 03/13/2021] [Indexed: 01/26/2023] Open
Abstract
In ethnomedicine, plant parts and compounds are used traditionally to treat different diseases. Neem (Azadirachta indica A. Juss) is the most versatile and useful medicinal plant ever found. Its every part is rich in bioactive compounds, which have traditionally been used to treat different ailments including infectious diseases. Bioactive compounds such as nimbolide, azarirachtin, and gedunin of neem are reported to have a tremendous ability to regulate numerous biological processes in vitro and in vivo. The present review article aims to explore the importance of neem extracts and bioactive compounds in the regulation of different biological pathways. We have reviewed research articles up to March 2020 on the role of neem in antioxidant, anti-inflammatory, antiangiogenic, immunomodulatory, and apoptotic activities. Studies on the concerned fields demonstrate that the bioactive compounds and extracts of neem have a regulatory effect on several biological mechanisms. It has been unveiled that extensive research is carried out on limonoids such as nimbolide and azarirachtin. It is evidenced by different studies that neem extracts are the potential to scavenge free radicals and reduce ROS-mediated damage to cells. Neem can be used to normalize lipid peroxidation and minimize ROS-mediated cell death. Besides, neem extracts can significantly reduce the release of proinflammatory cytokines and elevate the count of CD4 + and CD8 + T-cells. This review indicates the pivotal roles of A. indica in the regulation of different biological pathways. However, future investigations on other bioactive compounds of neem may reveal different therapeutic potentials.
Collapse
Affiliation(s)
- Subendu Sarkar
- Department of Surgery, University School of Medicine, Indiana University, Indianapolis, IN 46202 USA
| | - Rajender Pal Singh
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Gorachand Bhattacharya
- Jagannath Gupta Institute of Medical Sciences & Hospital, KP Mondal Road, Buita, Nishchintapur, Budge Budge, Kolkata 700137 India
| |
Collapse
|
12
|
Neem leaf glycoprotein salvages T cell functions from Myeloid-derived suppressor cells-suppression by altering IL-10/STAT3 axis in melanoma tumor microenvironment. Melanoma Res 2021; 31:130-139. [PMID: 33625102 DOI: 10.1097/cmr.0000000000000721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) suppress antitumor immune functions. We have observed that an immunomodulator, neem leaf glycoprotein (NLGP), inhibits tumor-resident MDSCs and enhances antitumor CD8+ T cell immunity. NLGP inhibits the number as well as functions of tumor-resident MDSCs (Gr1±CD11b±) and enhances antitumor CD8± T cell immunity by downregulating arginase 1 and inducible nitric oxide synthase production in MDSCs. Accordingly, decreased T cell anergy and helper to regulatory T cell conversion have been observed in the presence of NLGP, which ultimately augments T cell functions. Mechanistically, NLGP-mediated rectification of T cell suppressive functions of MDSCs was primarily associated with downregulation of the interleukin (IL)-10/signal transducer and activator of transcription 3 (STAT3) signaling axis within the tumor microenvironment, as confirmed by knockdown of STAT3 (by STAT3-siRNA) and using IL-10-/- mice. Thus, NLGP-mediated suppression of MDSC functions in tumor hosts is appeared to be another associated effective mechanism for the eradication of murine melanoma by NLGP.
Collapse
|
13
|
Kharwar RN, Sharma VK, Mishra A, Kumar J, Singh DK, Verma SK, Gond SK, Kumar A, Kaushik N, Revuru B, Kusari S. Harnessing the Phytotherapeutic Treasure Troves of the Ancient Medicinal Plant Azadirachta indica (Neem) and Associated Endophytic Microorganisms. PLANTA MEDICA 2020; 86:906-940. [PMID: 32126583 DOI: 10.1055/a-1107-9370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Azadirachta indica, commonly known as neem, is an evergreen tree of the tropics and sub-tropics native to the Indian subcontinent with demonstrated ethnomedicinal value and importance in agriculture as well as in the pharmaceutical industry. This ancient medicinal tree, often called the "wonder tree", is regarded as a chemical factory of diverse and complex compounds with a plethora of structural scaffolds that is very difficult to mimic by chemical synthesis. Such multifaceted chemical diversity leads to a fantastic repertoire of functional traits, encompassing a wide variety of biological activity and unique modes of action against specific and generalist pathogens and pests. Until now, more than 400 compounds have been isolated from different parts of neem including important bioactive secondary metabolites such as azadirachtin, nimbidin, nimbin, nimbolide, gedunin, and many more. In addition to its insecticidal property, the plant is also known for antimicrobial, antimalarial, antiviral, anti-inflammatory, analgesic, antipyretic, hypoglycaemic, antiulcer, antifertility, anticarcinogenic, hepatoprotective, antioxidant, anxiolytic, molluscicidal, acaricidal, and antifilarial properties. Notwithstanding the chemical and biological virtuosity of neem, it has also been extensively explored for associated microorganisms, especially a class of mutualists called endophytic microorganisms (or endophytes). More than 30 compounds, including neem "mimetic" compounds, have been reported from endophytes harbored in the neem trees in different ecological niches. In this review, we provide an informative and in-depth overview of the topic that can serve as a point of reference for an understanding of the functions and applications of a medicinal plant such as neem, including associated endophytes, within the overall theme of phytopathology. Our review further exemplifies the already-noted current surge of interest in plant and microbial natural products for implications both within the ecological and clinical settings, for a more secure and sustainable future.
Collapse
Affiliation(s)
- Ravindra N Kharwar
- Mycopathology and Microbial Technology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vijay K Sharma
- Mycopathology and Microbial Technology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Medical School of Kunming University of Science and Technology, Kunming, P. R. China
| | - Ashish Mishra
- Mycopathology and Microbial Technology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Jitendra Kumar
- Mycopathology and Microbial Technology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Medical School of Kunming University of Science and Technology, Kunming, P. R. China
| | - Dheeraj K Singh
- Mycopathology and Microbial Technology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Satish K Verma
- Mycopathology and Microbial Technology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | | | - Anuj Kumar
- Department of Botany, Buddha PG College, Kushinagar, India
| | - Nutan Kaushik
- Amity Food and Agriculture Foundation, Amity University, Noida, India
| | - Bharadwaj Revuru
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund, Germany
| | - Souvik Kusari
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund, Germany
| |
Collapse
|
14
|
Guha I, Bhuniya A, Nandi P, Dasgupta S, Sarkar A, Saha A, Das J, Ganguly N, Ghosh S, Ghosh T, Sarkar M, Ghosh S, Majumdar S, Baral R, Bose A. Neem leaf glycoprotein reverses tumor-induced and age-associated thymic involution to maintain peripheral CD8 + T cell pool. Immunotherapy 2020; 12:799-818. [PMID: 32698648 DOI: 10.2217/imt-2019-0168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aim: As tumor causes atrophy in the thymus to target effector-T cells, this study is aimed to decipher the efficacy of neem leaf glycoprotein (NLGP) in tumor- and age-associated thymic atrophy. Materials & methods: Different thymus parameters were studied using flow cytometry, reverse transcriptase PCR and immunocyto-/histochemistry in murine melanoma and sarcoma models. Results: Longitudinal NLGP therapy in tumor hosts show tumor-reduction along with significant normalization of thymic alterations. NLGP downregulates intrathymic IL-10, which eventually promotes Notch1 to rescue blockade in CD25+CD44+c-Kit+DN2 to CD25+CD44-c-Kit-DN3 transition in T cell maturation and suppress Ikaros/IRF8/Pu.1 to prevent DN2-T to DC differentiation in tumor hosts. The CD5intTCRαβhigh DP3 population was also increased to endorse CD8+ T cell generation. Conclusion: NLGP rescues tumor-induced altered thymic events to generate more effector T cells to restrain tumor.
Collapse
Affiliation(s)
- Ipsita Guha
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Avishek Bhuniya
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Partha Nandi
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Shayani Dasgupta
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Anirban Sarkar
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Akata Saha
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Juhina Das
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Nilanjan Ganguly
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Sarbari Ghosh
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Tithi Ghosh
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Madhurima Sarkar
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Sweta Ghosh
- Department of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Subrata Majumdar
- Department of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Rathindranath Baral
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Anamika Bose
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| |
Collapse
|
15
|
Bhuniya A, Guha I, Ganguly N, Saha A, Dasgupta S, Nandi P, Das A, Ghosh S, Ghosh T, Haque E, Banerjee S, Bose A, Baral R. NLGP Attenuates Murine Melanoma and Carcinoma Metastasis by Modulating Cytotoxic CD8 + T Cells. Front Oncol 2020; 10:201. [PMID: 32211313 PMCID: PMC7076076 DOI: 10.3389/fonc.2020.00201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Neem leaf glycoprotein (NLGP), a natural immunomodulator, attenuates murine carcinoma and melanoma metastasis, independent of primary tumor growth and alterations in basic cellular properties (cell proliferation, cytokine secretion, etc.). Colonization event of invasion–metastasis cascade was primarily inhibited by NLGP, with no effect on metastasis-related invasion, migration, and extravasation. High infiltration of interferon γ (IFN-γ)–secreting cytotoxic CD8+ T cells [CD44+, CD69+, GranB+, IFN-γ+, and interleukin 2+] was documented in the metastatic site of NLGP-treated mice. Systemic CD8+ T cell depletion abolished NLGP-mediated metastasis inhibition and reappeared upon adoptive transfer of NLGP-activated CD8+ T cells. Interferon γ-secreting from CD8+ T cells inhibit the expression of angiogenesis regulatory vascular endothelial growth factor and transforming growth factor β and have an impact on the prevention of colonization. Neem leaf glycoprotein modulates dendritic cells (DCs) for proper antigen presentation by its DC surface binding and upregulation of MHC-I/II, CD86, and CCR7. Neem leaf glycoprotein–treated DCs specifically imprint CXCR3 and CCR4 homing receptors on activated CD8+ T cells, which helps to infiltrate into metastatic sites to restrain colonization. Such NLGP's effect on DCs is translation dependent and transcription independent. Studies using ovalbumin, OVA257−264, and crude B16F10 antigen indicate MHC-I upregulation depends on the quantity of proteasome degradable peptide and only stimulates CD8+ T cells in the presence of antigen. Overall data suggest NLGP inhibits metastasis, in conjunction with tumor growth restriction, and thus might appear as a promising next-generation cancer immunotherapeutic.
Collapse
Affiliation(s)
- Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Partha Nandi
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Arnab Das
- RNA Biology and Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Enamul Haque
- Department of Zoology, Barasat Government College, Barasat, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
16
|
Saha A, Nandi P, Dasgupta S, Bhuniya A, Ganguly N, Ghosh T, Guha I, Banerjee S, Baral R, Bose A. Neem Leaf Glycoprotein Restrains VEGF Production by Direct Modulation of HIF1α-Linked Upstream and Downstream Cascades. Front Oncol 2020; 10:260. [PMID: 32211322 PMCID: PMC7067891 DOI: 10.3389/fonc.2020.00260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Neem Leaf Glycoprotein (NLGP) is a natural immunomodulator, have shown sustained tumor growth restriction as well as angiogenic normalization chiefly by activating CD8+ T cells. Here, we have investigated the direct role of NLGP as a regulator of tumor microenvironmental hypoxia and associated vascular endothelial growth factor (VEGF) production. We observed a significant reduction in VEGF level in both in vivo murine tumor and in vitro cancer cells (B16Mel, LLC) and macrophages after NLGP treatment. Interestingly, NLGP mediated VEGF downregulation in tumor cells or macrophages within hypoxic chamber was found at an early 4 h and again at late 24 h in mRNA level. Our data suggested that NLGP prevented hypoxia-induced strong binding of HIF1α with its co-factors, CBP/p300 and Sp3, but not with Sp1, which eventually limit the binding of HIF1α-transcriptional complex to hypoxia responsive element of VEGF promoter and results in restricted early VEGF transcription. On the otherhand, suppressed phosphorylation of Stat3 by NLGP results reduction of HIF1α at 24 h of hypoxia that further support sustained VEGF down-regulation. However, NLGP fails to regulate VHL activity as observed by both in vivo and in vitro studies. Therefore, this study for the first time reveals a mechanistic insight of NLGP mediated inhibition of angiogenesis by suppressing VEGF, which might help in vascular normalization to influence better drug delivery.
Collapse
Affiliation(s)
- Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Partha Nandi
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| |
Collapse
|
17
|
Ghosh T, Nandi P, Ganguly N, Guha I, Bhuniya A, Ghosh S, Sarkar A, Saha A, Dasgupta S, Baral R, Bose A. NLGP counterbalances the immunosuppressive effect of tumor-associated mesenchymal stem cells to restore effector T cell functions. Stem Cell Res Ther 2019; 10:296. [PMID: 31547863 PMCID: PMC6757425 DOI: 10.1186/s13287-019-1349-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background A dynamic interaction between tumor cells and its surrounding stroma promotes the initiation, progression, metastasis, and chemoresistance of solid tumors. Emerging evidences suggest that targeting the stromal events could improve the efficacies of current therapeutics. Within tumor microenvironment (TME), stromal progenitor cells, i.e., MSCs, interact and eventually modulate the biology and functions of cancer and immune cells. Our recent finding disclosed a novel mechanism stating that tumor-associated MSCs inhibit the T cell proliferation and effector functions by blocking cysteine transport to T cells by dendritic cells (DCs), which makes MSCs as a compelling candidate as a therapeutic target. Immunomodulation by nontoxic neem leaf glycoprotein (NLGP) on dysfunctional cancer immunity offers significant therapeutic benefits to murine tumor host; however, its modulation on MSCs and its impact on T cell functions need to be elucidated. Methods Bone marrow-derived primary MSCs or murine 10 T1/2 MSCs were tumor-conditioned (TC-MSCs) and co-cultured with B16 melanoma antigen-specific DCs and MACS purified CD4+ and CD8+ T cells. T cell proliferation of T cells was checked by Ki67-based flow-cytometric and thymidine-incorporation assays. Cytokine secretion was measured by ELISA. The expression of cystathionase in DCs was assessed by RT-PCR. The STAT3/pSTAT3 levels in DCs were assessed by western blot, and STAT3 function was confirmed using specific SiRNA. Solid B16 melanoma tumor growth was monitored following adoptive transfer of conditioned CD8+ T cells. Results NLGP possesses an ability to restore anti-tumor T cell functions by modulating TC-MSCs. Supplementation of NLGP in DC-T cell co-culture significantly restored the inhibition in T cell proliferation and IFNγ secretion almost towards normal in the presence of TC-MSCs. Adoptive transfer of NLGP-treated TC-MSC supernatant educated CD8+ T cells in solid B16 melanoma bearing mice resulted in better tumor growth restriction than TC-MSC conditioned CD8+ T cells. NLGP downregulates IL-10 secretion by TC-MSCs, and concomitantly, pSTAT3 expression was downregulated in DCs in the presence of NLGP-treated TC-MSC supernatant. As pSTAT3 negatively regulates cystathionase expression in DCs, NLGP indirectly helps to maintain an almost normal level of cystathionase gene expression in DCs making them able to export sufficient amount of cysteine required for optimum T cell proliferation and effector functions within TME. Conclusions NLGP could be a prospective immunotherapeutic agent to control the functions and behavior of highly immunosuppressive TC-MSCs providing optimum CD8+ T cell functions to showcase an important new approach that might be effective in overall cancer treatment. Electronic supplementary material The online version of this article (10.1186/s13287-019-1349-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Partha Nandi
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Anirban Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India.
| |
Collapse
|
18
|
Tsukahara T, Nakamura SI, Romero-Pèrez GA, Ohwaki M, Yanagisawa T, Kan T. Stimulation of murine cell-mediated immunity by dietary administration of a cell preparation of Enterococcus faecalis strain KH-2 and its possible activity against tumour development in mice. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2018; 37:49-57. [PMID: 30094120 PMCID: PMC6081610 DOI: 10.12938/bmfh.17-021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/09/2018] [Indexed: 01/09/2023]
Abstract
It is well known that dietary lactic acid bacteria (LAB) stimulate cell-mediated immunity such as natural killer (NK) activity in mice. Here, we aimed to assay the immunomodulatory effects of a cell preparation of Enterococcus faecalis strain KH-2 (CPEF). We further evaluated the possibility of antitumour activity caused by CPEF administration, because NK cells actively participate in the prevention of tumour formation. NK cell activity and gene expression of IFN-γ and Perforin 1, which were induced most likely by a synergetic action of their cytotoxic activity, were higher in splenocytes of CPEF-administered mice than they were in control mice. Moreover, unlike those of control mice, the splenocytes of CPEF-administered mice had significantly higher CD28+CD69+/CD4+ and CD28+CD69+/CD8+ ratios that resulted in a survival rate with a tendency toward improvement after 47 days of CPEF administration (p=0.1) in Meth-A fibrosarcoma-bearing mice. In conclusion, we showed that CPEF might be effective in treating Meth-A fibrosarcoma in mice, as it helped increase their survival rate via stimulation of an immune response in splenocytes, which involved systemic cellular immunity processes such as cytotoxic activity, and active T cells.
Collapse
Affiliation(s)
- Takamitsu Tsukahara
- Kyoto Institute of Nutrition and Pathology, 7-2 Furuikedani, Ujitawara-cho, Tsuzuki-gun, Kyoto 610-0231, Japan
| | - Shin-Ichi Nakamura
- Kyoto Institute of Nutrition and Pathology, 7-2 Furuikedani, Ujitawara-cho, Tsuzuki-gun, Kyoto 610-0231, Japan
| | - Gustavo A Romero-Pèrez
- Kyoto Institute of Nutrition and Pathology, 7-2 Furuikedani, Ujitawara-cho, Tsuzuki-gun, Kyoto 610-0231, Japan
| | - Makoto Ohwaki
- Non-Profit Organisation, The Japanese Association of Clinical Research on Supplements, 1-9-24 Shihogi, Hidaka-shi, Saitama 350-1248, Japan
| | - Takaharu Yanagisawa
- Broma Laboratory Ltd., 1-26 Kandasuda-cho, Chiyoda-ku, Tokyo 101-0041, Japan
| | - Tatsuhiko Kan
- Bio-Lab Co., Ltd., 2-1-3 Komagawa, Hidaka-shi, Saitama 350-1249, Japan
| |
Collapse
|
19
|
Ghosh S, Sarkar M, Ghosh T, Guha I, Bhuniya A, Saha A, Dasgupta S, Barik S, Bose A, Baral R. Neem leaf glycoprotein generates superior tumor specific central memory CD8+ T cells than cyclophosphamide that averts post-surgery solid sarcoma recurrence. Vaccine 2017; 35:4421-4429. [DOI: 10.1016/j.vaccine.2017.05.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/05/2017] [Accepted: 05/21/2017] [Indexed: 01/06/2023]
|
20
|
Kormi SMA, Seghatchian J. Taming the immune system through transfusion in oncology patients. Transfus Apher Sci 2017; 56:310-316. [PMID: 28651910 DOI: 10.1016/j.transci.2017.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blood transfusion is a clinical replacement therapy with many successes with some benefit and, also, some harm. Cancer is a multifaceted disease potentially associated with the immune system's weakness where the cancerous tumor cells escape from the immune system. Allogeneic blood transfusion, through five major mechanisms including the lymphocyte-T set, myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), natural killer cells (NKCs), and dendritic cells (DCs) can help the recipient's defense mechanisms. On the other hand, the role for each of the listed items includes activation of the antitumor CD8+ cytotoxic T lymphocytes (CD8+/CTL), temporal inactivation of Tregs, inactivation of the STAT3 signaling pathway, the use of bacteria to enhance the antitumor immune response and cellular immunotherapy. The above issues are concisely addressed in this manuscript based on a literature survey on this topic carried out by the first author.
Collapse
Affiliation(s)
- Seyed Mohammad Amin Kormi
- Cancer Genetics Research Unit, Reza Radiation Oncology Center, Mashhad, Iran; Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran.
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/ Safety Improvement, Audit/ Inspection and DDR Strategies, London, United Kingdom.
| |
Collapse
|
21
|
Sarkar M, Ghosh S, Bhuniya A, Ghosh T, Guha I, Barik S, Biswas J, Bose A, Baral R. Neem leaf glycoprotein prevents post-surgical sarcoma recurrence in Swiss mice by differentially regulating cytotoxic T and myeloid-derived suppressor cells. PLoS One 2017; 12:e0175540. [PMID: 28414726 PMCID: PMC5393573 DOI: 10.1371/journal.pone.0175540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
Post-surgical tumor recurrence is a common problem in cancer treatment. In the present study, the role of neem leaf glycoprotein (NLGP), a novel immunomodulator, in prevention of post-surgical recurrence of solid sarcoma was examined. Data suggest that NLGP prevents tumor recurrence after surgical removal of sarcoma in Swiss mice and increases their tumor-free survival time. In NLGP-treated tumor-free mice, increased cytotoxic CD8+ T cells and a decreased population of suppressor cells, especially myeloid-derived suppressor cells (MDSCs) was observed. NLGP-treated CD8+ T cells showed greater cytotoxicity towards tumor-derived MDSCs and supernatants from the same CD8+ T cell culture caused upregulation of FasR and downregulation of cFLIP in MDSCs. To elucidate the role of CD8+ T cells, specifically in association with the downregulation in MDSCs, CD8+ T cells were depleted in vivo before NLGP immunization in surgically tumor removed mice and tumor recurrence was noted. These mice also exhibited increased MDSCs along with decreased levels of Caspase 3, Caspase 8 and increased cFLIP expression. In conclusion, it can be stated that NLGP, by activating CD8+ T cells, down regulates the proportion of MDSCs. Accordingly, suppressive effects of MDSCs on CD8+ T cells are minimized and optimum immune surveillance in tumor hosts is maintained to eliminate the residual tumor mass appearing during recurrence.
Collapse
Affiliation(s)
- Madhurima Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Subhasis Barik
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Jaydip Biswas
- Department of Surgical Oncology and Medical Oncology, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
- * E-mail: ,
| |
Collapse
|
22
|
Neem leaf glycoprotein regulates function of tumor associated M2 macrophages in hypoxic tumor core: Critical role of IL-10/STAT3 signaling. Mol Immunol 2016; 80:1-10. [DOI: 10.1016/j.molimm.2016.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 01/01/2023]
|
23
|
Potential of neem ( Azadirachta indica L.) for prevention and treatment of oncologic diseases. Semin Cancer Biol 2016; 40-41:100-115. [DOI: 10.1016/j.semcancer.2016.03.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 01/05/2023]
|
24
|
An overlooked tumor promoting immunoregulation by non-hematopoietic stromal cells. Immunol Lett 2016; 176:114-21. [PMID: 27311851 DOI: 10.1016/j.imlet.2016.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/26/2016] [Accepted: 06/10/2016] [Indexed: 01/14/2023]
Abstract
Multidirectional complex communication between tumor-residing hematopoietic and non-hematopoietic stromal cells (NHSCs) decisively regulates cancer development, progression and therapeutic responses. HSCs predominantly participate in the immune regulations, while, NHSCs, provide parenchymal support or serve as a conduit for other cells or support angiogenesis. However, recent reports suggest NHSCs can additionally participate in ongoing tumor promoting immune reactions within tumor-microenvironment (TME). In this review, based on the state-of-art knowledge and accumulated evidence by us, we discuss the role of quite a few NHSCs in tumor from immunological perspectives. Understanding such consequence of NHSCs will surely pave the way in crafting effective cancer management.
Collapse
|
25
|
Ghosh S, Sarkar M, Ghosh T, Guha I, Bhuniya A, Biswas J, Mallick A, Bose A, Baral R. Absence of CD4(+) T cell help generates corrupt CD8(+) effector T cells in sarcoma-bearing Swiss mice treated with NLGP vaccine. Immunol Lett 2016; 175:31-9. [PMID: 27178306 DOI: 10.1016/j.imlet.2016.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 12/19/2022]
Abstract
One of the prime objectives of cancer immunology and immunotherapy is to study the issues related to rescue and/or maintenance of the optimum effector CD8(+) T cell functions by minimizing tumor-induced negative factors. In this regard the influence of host intrinsic CD4(+) helper T cells towards generation and maintenance of CD8(+) effector T cells appears controversial in different experimental settings. Therefore, the present study was aimed to re-analyze the influence of CD4(+) helper T cells towards effector T cells during neem leaf glycoprotein (NLGP)-vaccine-mediated tumor growth restriction. CD4 depletion (mAb; Clone GK1.5) surprisingly resulted in significant increase in CD8(+) T cells in different immune organs from NLGP-treated sarcoma-bearing mice. However, such CD8 surge could not restrict the sarcoma growth in NLGP-treated CD4-depleted mice. Furthermore, CD4 depletion in early phase hinders CD8(+) T cell activation and terminal differentiation by targeting crucial transcription factor Runx3. CD4 depletion decreases accumulation of CD8α(+) dendritic cells within tumor draining lymph node, hampers antigen cross priming and CD86-CD28 interactions for optimum CD8(+) T cell functions. In order to search the mechanism of CD4(+) T cell help on NLGP-mediated CD8 effector functions, the role of CD4(+) helper T cell-derived IL-2 on optimization of CD8 functions was found using STAT5 signaling, but complete response requires physical contact of CD4(+) helper T cells with its CD8 counterpart. In conclusion, it was found that CD4(+) T cell help is not required to generate CD8(+) T cells but was found to be an integral phenomenon in maintenance of its anti-tumor functions even in NLGP-vaccine-mediated sarcoma growth restriction.
Collapse
Affiliation(s)
- Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Madhurima Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Jaydip Biswas
- Department of Surgical Oncology and Medical Oncology, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Atanu Mallick
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India.
| |
Collapse
|
26
|
Neem leaf glycoprotein promotes dual generation of central and effector memory CD8(+) T cells against sarcoma antigen vaccine to induce protective anti-tumor immunity. Mol Immunol 2016; 71:42-53. [PMID: 26851529 DOI: 10.1016/j.molimm.2016.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/08/2016] [Accepted: 01/20/2016] [Indexed: 11/22/2022]
Abstract
We have previously shown that Neem Leaf Glycoprotein (NLGP) mediates sustained tumor protection by activating host immune response. Now we report that adjuvant help from NLGP predominantly generates CD44(+)CD62L(high)CCR7(high) central memory (TCM; in lymph node) and CD44(+)CD62L(low)CCR7(low) effector memory (TEM; in spleen) CD8(+) T cells of Swiss mice after vaccination with sarcoma antigen (SarAg). Generated TCM and TEM participated either to replenish memory cell pool for sustained disease free states or in rapid tumor eradication respectively. TCM generated after SarAg+NLGP vaccination underwent significant proliferation and IL-2 secretion following SarAg re-stimulation. Furthermore, SarAg+NLGP vaccination helps in greater survival of the memory precursor effector cells at the peak of the effector response and their maintenance as mature memory cells, in comparison to single modality treatment. Such response is corroborated with the reduced phosphorylation of FOXO in the cytosol and increased KLF2 in the nucleus associated with enhanced CD62L, CCR7 expression of lymph node-resident CD8(+) T cells. However, spleen-resident CD8(+) T memory cells show superior efficacy for immediate memory-to-effector cell conversion. The data support in all aspects that SarAg+NLGP demonstrate superiority than SarAg vaccination alone that benefits the host by rapid effector functions whenever required, whereas, central-memory cells are thought to replenish the memory cell pool for ultimate sustained disease free survival till 60 days following post-vaccination tumor inoculation.
Collapse
|
27
|
Das A, Mondal B, Bose A, Biswas J, Baral R, Pal S. Therapeutic anti-NLGP monoclonal antibody for carcinoembryonic antigen expressing tumors is nontoxic to Swiss and BALB/c mice. Int Immunopharmacol 2015; 28:785-93. [PMID: 26283593 DOI: 10.1016/j.intimp.2015.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/25/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
A murine monoclonal antibody (mAb), 1C8 was developed against a novel glycoprotein NLGP and its unique property to recognize carcinoembryonic antigen (CEA) was reported. Utilizing this CEA recognizing property, 1C8 is successful to restrict the growth of CEA(+) murine and human cancers both in vitro and in vivo. Here, we have thoroughly evaluated the toxicity profile of this mAb 1C8 on different physiological systems of both tumor-free and tumor-bearing Swiss and BALB/c mice. Effective concentration (25 μg/mice) of 1C8 caused no behavioral changes in animals and no death was recorded. Moreover, little increase in the body and organ weights in all mice groups was noted. MAb 1C8 showed no adverse effect on the hematological system, but little hematostimulation was noticed, as evidenced by increased hemoglobin content, leukocyte count and lymphocyte numbers. Liver enzymes like alkaline phosphatase, SGOT, SGPT and nephrological products like urea and creatinine assessment confirmed no abnormalities in both hepatic and renal functions. Number of T cells, B cells, NK cells, macrophages and dendritic cells was upregulated in vivo by mAb treatment with significant downregulation of regulatory T cells. During this treatment serum levels of type 1 cytokines were upregulated over type 2 cytokines. This mAb 1C8 also did not induce any significant increase in antibody titer following treatment. Accumulated evidences from Swiss and BALB/c mice strongly suggest that this mAb 1C8 is completely safe, thus, can be recommended for further clinical trial for the therapy of CEA(+) tumors.
Collapse
Affiliation(s)
- Arnab Das
- Clinical Biochemistry Unit, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata 700026, India; Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Bipasa Mondal
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Jaydip Biswas
- Department of Surgical Oncology and Medical Oncology, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Smarajit Pal
- Clinical Biochemistry Unit, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
28
|
Barik S, Banerjee S, Sarkar M, Bhuniya A, Roy S, Bose A, Baral R. Neem leaf glycoprotein optimizes effector and regulatory functions within tumor microenvironment to intervene therapeutically the growth of B16 melanoma in C57BL/6 mice. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.trivac.2013.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Sharma RK, Chheda ZS, Jala VR, Haribabu B. Regulation of cytotoxic T-Lymphocyte trafficking to tumors by chemoattractants: implications for immunotherapy. Expert Rev Vaccines 2014; 14:537-49. [PMID: 25482400 DOI: 10.1586/14760584.2015.982101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cancer immunotherapy has recently emerged as an important treatment modality. FDA approval of provenge, ipilimumab and pembrolizumab has started to deliver on the long awaited promise of cancer immunotherapy. Many new modalities of immunotherapies targeting cytotoxic T lymphocytes (CTLs) responses, such as adoptive cell therapies and vaccines, are in advanced clinical trials. In all these immunotherapies, migration of CTLs to the tumor site is a critical step for achieving therapeutic efficacy. However, inefficient infiltration of activated CTLs into established tumors is increasingly being recognized as one of the major hurdles limiting efficacy. Mechanisms that control migration of CTLs to tumors are poorly defined. In this review, the authors discuss the chemoattractants and their receptors that have been implicated in endogenous- or immunotherapy-induced CTL recruitment to tumors and the potential for targeting these pathways for therapeutic efficacy.
Collapse
Affiliation(s)
- Rajesh K Sharma
- James Graham Brown Cancer Center, University of Louisville Health Sciences, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
30
|
Banerjee S, Ghosh T, Barik S, Das A, Ghosh S, Bhuniya A, Bose A, Baral R. Neem leaf glycoprotein prophylaxis transduces immune dependent stop signal for tumor angiogenic switch within tumor microenvironment. PLoS One 2014; 9:e110040. [PMID: 25391149 PMCID: PMC4229107 DOI: 10.1371/journal.pone.0110040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/12/2014] [Indexed: 01/27/2023] Open
Abstract
We have reported that prophylactic as well as therapeutic administration of neem leaf glycoprotein (NLGP) induces significant restriction of solid tumor growth in mice. Here, we investigate whether the effect of such pretreatment (25µg/mice; weekly, 4 times) benefits regulation of tumor angiogenesis, an obligate factor for tumor progression. We show that NLGP pretreatment results in vascular normalization in melanoma and carcinoma bearing mice along with downregulation of CD31, VEGF and VEGFR2. NLGP pretreatment facilitates profound infiltration of CD8+ T cells within tumor parenchyma, which subsequently regulates VEGF-VEGFR2 signaling in CD31+ vascular endothelial cells to prevent aberrant neovascularization. Pericyte stabilization, VEGF dependent inhibition of VEC proliferation and subsequent vascular normalization are also experienced. Studies in immune compromised mice confirmed that these vascular and intratumoral changes in angiogenic profile are dependent upon active adoptive immunity particularly those mediated by CD8+ T cells. Accumulated evidences suggest that NLGP regulated immunomodulation is active in tumor growth restriction and normalization of tumor angiogenesis as well, thereby, signifying its clinical translation.
Collapse
Affiliation(s)
- Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Subhasis Barik
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Arnab Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| |
Collapse
|
31
|
A Monoclonal Antibody Against Neem Leaf Glycoprotein Recognizes Carcinoembryonic Antigen (CEA) and Restricts CEA Expressing Tumor Growth. J Immunother 2014; 37:394-406. [DOI: 10.1097/cji.0000000000000050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
32
|
Murine carcinoma expressing carcinoembryonic antigen-like protein is restricted by antibody against neem leaf glycoprotein. Immunol Lett 2014; 162:132-9. [PMID: 25128841 DOI: 10.1016/j.imlet.2014.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 01/21/2023]
Abstract
We have generated a polyclonal antibody against a novel immunomodulator, neem leaf glycoprotein (NLGP) that can react to a specific 47 kDa subunit of NLGP. Generated anti-NLGP antibody (primarily IgG2a) was tested for its anti-tumor activity in murine carcinoma (EC, CT-26), sarcoma (S180) and melanoma (B16Mel) tumor models. Surprisingly, tumor growth restriction was only observed in CT-26 carcinoma models, without any alteration in other tumor systems. Comparative examination of antigenicity between four different tumor models revealed high expression of CEA-like protein on the surface of CT-26 tumors. Subsequent examination of the cross-reactivity of anti-NLGP antibody with purified or cell bound CEA revealed prominent recognition of CEA by anti-NLGP antibody, as detected by ELISA, Western Blotting and immunohistochemistry. This recognition seems to be responsible for anti-tumor function of anti-NLGP antibody only on CEA-like protein expressing CT-26 tumor models, as confirmed by ADCC reaction in CEA(+) tumor systems where dependency to anti-NLGP antibody is equivalent to anti-CEA antibody. Obtained result with enormous therapeutic potential for CEA(+) tumors may be explained in view of the epitope spreading concept, however, further investigation is crucial.
Collapse
|
33
|
Mallick A, Barik S, Ghosh S, Roy S, Sarkar K, Bose A, Baral R. Immunotherapeutic targeting of established sarcoma in Swiss mice by tumor-derived antigen-pulsed NLGP matured dendritic cells is CD8+ T-cell dependent. Immunotherapy 2014; 6:821-31. [DOI: 10.2217/imt.14.53] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Neem leaf glycoprotein (NLGP) matures human myeloid and mouse bone marrow-derived dendritic cells (DCs). (NLGP) also therapeutically restricts the mouse established sarcoma growth by activating CD8+ T cells along with increased proportion of tumor residing CD11c+ DCs. Here, we intended to find out whether CD8+ T cells become cytotoxic to sarcoma cells after presentation of sarcoma antigen by NLGP-matured DCs to restrict murine sarcoma growth. Materials & methods: NLGP was prepared from matured neem(Azadirachta indica) leaves. Solid sarcoma tumor in Swiss mice was developed by subcutaneous inoculation of sarcoma cells. GMCSF-IL-4 generated DCs were matured with NLGP and pulsed with sarcoma antigen for immunotherapy. Status of CD8+CD69+T cells was studied by flow cytometry and secretion of cytokines was measured by ELISA. RT-PCR was used to monitor the status of perforin, granzyme B. Results: NLGP-matured sarcoma antigen-pulsed DCs (DCNLGPTAg) inhibit mouse sarcoma growth. DCNLGPTAg immunization enhances CD8+ T-cell number within tumor-infiltrating lymphocytes and tumor-draining lymph nodes along with increased perforin and granzyme B expression. Antigen-specific T-cell proliferation and IFN-γ secretion were significantly higher in DCNLGP- and DCNLGPTAg-immunized mice groups. In vivo CD8+ T-cell depletion abrogated the DCNLGPTAg-mediated tumor growth restriction. Conclusion: DCNLGPTAg restricts CD8+ T-cell-dependent mouse established sarcoma growth, related to the optimum antigen presentation by DCs to CD8+ T cells.
Collapse
Affiliation(s)
- Atanu Mallick
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Subhasis Barik
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Sarbari Ghosh
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Soumyabrata Roy
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Koustav Sarkar
- Pediatric Hematology Oncology, University of Iowa Children’s Hospital, IA, USA
| | - Anamika Bose
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Rathindranath Baral
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| |
Collapse
|
34
|
Goswami K, Barik S, Sarkar M, Bhowmick A, Biswas J, Bose A, Baral R. Targeting STAT3 phosphorylation by neem leaf glycoprotein prevents immune evasion exerted by supraglottic laryngeal tumor induced M2 macrophages. Mol Immunol 2014; 59:119-27. [DOI: 10.1016/j.molimm.2014.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/11/2014] [Accepted: 01/27/2014] [Indexed: 01/01/2023]
|
35
|
Xiao-Ai-Ping, a TCM Injection, Enhances the Antigrowth Effects of Cisplatin on Lewis Lung Cancer Cells through Promoting the Infiltration and Function of CD8(+) T Lymphocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:879512. [PMID: 23956781 PMCID: PMC3730189 DOI: 10.1155/2013/879512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/17/2013] [Accepted: 06/28/2013] [Indexed: 12/20/2022]
Abstract
Objectives. To investigate how Xiao-Ai-Ping injection, a traditional Chinese medicine and an ancillary drug in tumor treatment, enhances the antitumor effects of cisplatin on Lewis lung cancer (LLC) cells. Methods. LLC-bearing mice were daily intraperitoneally injected with various doses of cisplatin, Xiao-Ai-Ping, or cisplatin plus Xiao-Ai-Ping, respectively. Body weight and tumor volumes were measured every three days. Results. Combination of Xiao-Ai-Ping and cisplatin yielded significantly better antigrowth and proapoptotic effects on LLC xenografts than sole drug treatment did. In addition, we found that Xiao-Ai-Ping triggered the infiltration of CD8+ T cells, a group of cytotoxic T cells, to LLC xenografts. Furthermore, the mRNA levels of interferon-γ (ifn-γ), perforin-1 (prf-1), and granzyme B (gzmb) in CD8+ T cells were significantly increased after combination treatment of Xiao-Ai-Ping and cisplatin. In vitro studies showed that Xiao-Ai-Ping markedly upregulated the mRNA levels of ifn-γ, prf-1, and gzmb in CD8+ T cells in a concentration-dependent manner, suggesting that Xiao-Ai-Ping augments the function of CD8+ T cells. Conclusions. Xiao-Ai-Ping promotes the infiltration and function of CD8+ T cells and thus enhances the antigrowth effects of cisplatin on LLC xenografts, which provides new evidence for the combination of Xiao-Ai-Ping and cisplatin in clinic in China.
Collapse
|
36
|
Barik S, Banerjee S, Mallick A, Goswami KK, Roy S, Bose A, Baral R. Normalization of tumor microenvironment by neem leaf glycoprotein potentiates effector T cell functions and therapeutically intervenes in the growth of mouse sarcoma. PLoS One 2013; 8:e66501. [PMID: 23785504 PMCID: PMC3681973 DOI: 10.1371/journal.pone.0066501] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/06/2013] [Indexed: 11/18/2022] Open
Abstract
We have observed restriction of the murine sarcoma growth by therapeutic intervention of neem leaf glycoprotein (NLGP). In order to evaluate the mechanism of tumor growth restriction, here, we have analyzed tumor microenvironment (TME) from sarcoma bearing mice with NLGP therapy (NLGP-TME, in comparison to PBS-TME). Analysis of cytokine milieu within TME revealed IL-10, TGFβ, IL-6 rich type 2 characters was switched to type 1 microenvironment with dominance of IFNγ secretion within NLGP-TME. Proportion of CD8(+) T cells was increased within NLGP-TME and these T cells were protected from TME-induced anergy by NLGP, as indicated by higher expression of pNFAT and inhibit related downstream signaling. Moreover, low expression of FasR(+) cells within CD8(+) T cell population denotes prevention from activation induced cell death. Using CFSE as a probe, better migration of T cells was noted within TME from NLGP treated mice than PBS cohort. CD8(+) T cells isolated from NLGP-TME exhibited greater cytotoxicity to sarcoma cells in vitro and these cells show higher expression of cytotoxicity related molecules, perforin and granzyme B. Adoptive transfer of NLGP-TME exposed T cells, but not PBS-TME exposed cells in mice, is able to significantly inhibit the growth of sarcoma in vivo. Such tumor growth inhibition by NLGP-TME exposed T cells was not observed when mice were depleted for CD8(+) T cells. Accumulated evidences strongly suggest NLGP mediated normalization of TME allows T cells to perform optimally to inhibit the tumor growth.
Collapse
Affiliation(s)
- Subhasis Barik
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI); Kolkata, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI); Kolkata, India
| | - Atanu Mallick
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI); Kolkata, India
| | - Kuntal Kanti Goswami
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI); Kolkata, India
| | - Soumyabrata Roy
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI); Kolkata, India
| | - Anamika Bose
- Department of Molecular Medicine, Bose Institute, C.I.T. Scheme, Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI); Kolkata, India
- * E-mail:
| |
Collapse
|
37
|
Barik S, Bhuniya A, Banerjee S, Das A, Sarkar M, Paul T, Ghosh T, Ghosh S, Roy S, Pal S, Bose A, Baral R. Neem leaf glycoprotein is superior than cisplatin and sunitinib malate in restricting melanoma growth by normalization of tumor microenvironment. Int Immunopharmacol 2013; 17:42-9. [PMID: 23747315 DOI: 10.1016/j.intimp.2013.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/27/2013] [Accepted: 05/07/2013] [Indexed: 12/21/2022]
Abstract
We have observed earlier that therapeutic treatment with neem leaf glycoprotein (NLGP) inhibits murine B16-melanoma growth in vivo and improves survivability of treated mice. Anti-tumor effect of NLGP is directly associated with enhanced CD8(+) T cell activity and downregulation of suppressive cellular functions. Objective of this present study is to know the efficacy of NLGP in comparison to two popular drugs, Cisplatin and Sunitinib malate (Sutent) in relation to the modulation of tumor microenvironment (TME). Analysis of cytokine milieu within TME revealed IL-10, TGFβ, IL-6 rich type 2 characters was significantly switched to type 1 microenvironment with dominance of IFNγ and IL-2 within NLGP-TME, which was not found in other cases; however Cisplatin-TME appeared better in type 2 to type 1 conversion than Sutent-TME as evidenced by RT-PCR, ELISA and immunohistochemical analysis. NLGP-TME educated CD8(+) T cells exhibited greater cytotoxicity to B16 Melanoma cells in vitro and these cells showed comparatively higher expression of cytotoxicity related molecules, perforin and granzyme B than Cisplatin-TME and Sutent-TME educated T cells. Adoptive transfer of NLGP-TME exposed T cells, but not PBS-TME exposed cells in mice, is able to significantly inhibit the growth of melanoma in vivo. Such tumor growth inhibition was in significantly lower extent when therapeutic CD8(+) T cells were exposed to either Cisplatin-TME or Sutent-TME or control-TME. Accumulated evidences strongly suggest that non toxic NLGP normalized TME allows T cells to perform optimally than other TMEs under study to inhibit the melanoma growth.
Collapse
Affiliation(s)
- Subhasis Barik
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata 700026, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mallick A, Ghosh S, Banerjee S, Majumder S, Das A, Mondal B, Barik S, Goswami KK, Pal S, Laskar S, Sarkar K, Bose A, Baral R. Neem leaf glycoprotein is nontoxic to physiological functions of Swiss mice and Sprague Dawley rats: histological, biochemical and immunological perspectives. Int Immunopharmacol 2012. [PMID: 23178577 DOI: 10.1016/j.intimp.2012.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have evaluated the toxicity profile of a unique immunomodulator, neem leaf glycoprotein (NLGP) on different physiological systems of Swiss mice and Sprague Dawley rats. NLGP injection, even in higher doses than effective concentration caused no behavioral changes in animals and no death. NLGP injection increased the body weights of mice slightly without any change in organ weights. NLGP showed no adverse effect on the hematological system. Moreover, little hematostimulation was noticed, as evidenced by increased hemoglobin content, leukocyte count and lymphocyte numbers. Histological assessment of different organs revealed no alterations in the organ microstructure of the NLGP treated mice and rats. Histological normalcy of liver and kidney was further confirmed by the assessment of liver enzymes like alkaline phosphatase, SGOT, SGPT and nephrological products like urea and creatinine. NLGP has no apoptotic effect on immune cells but induces proliferation of mononuclear cells collected from mice and rats. Number of CD4(+), CD8(+) T cells, DX5(+) NK cells, CD11b(+) macrophages and CD11c(+) dendritic cells is upregulated by NLGP without a significant change in CD4(+)CD25(+)Foxp3(+) regulatory T cells. Type 1 cytokines, like IFNγ also increased in serum with a decrease in type 2 cytokines. Total IgG content, especially IgG2a increased in NLGP treated mice. These type 1 directed changes help to create an anti-tumor immune environment that results in the restriction of carcinoma growth in mice. Accumulated evidence strongly suggests the non-toxic nature of NLGP. Thus, it can be recommended for human use in anti-cancer therapy.
Collapse
Affiliation(s)
- Atanu Mallick
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|