1
|
Albuquerque P, de Sousa HR, de Oliveira Frazão S, do Nascimento Miranda LV, Paes HC, Pereira IS, Nicola AM. Measuring Laccase Activity and Melanin Production in Cryptococcus neoformans. Methods Mol Biol 2024; 2775:257-268. [PMID: 38758323 DOI: 10.1007/978-1-0716-3722-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Melanin is a complex dark pigment synthetized by the phenoloxidase enzyme laccase in Cryptococcus neoformans. In vitro, this enzyme oxidizes exogenous catecholamines to produce melanin that may be secreted or incorporated into the fungal cell wall. This pigment has multiple roles in C. neoformans virulence during its interaction with different hosts and probably also in protecting fungal cells in the environment against predation and oxidative and radiation stresses, among others. However, it is important to note that laccase also has melanin-independent roles in C. neoformans interactions with host cells. In this chapter, we describe a quantitative laccase assay and a method for evaluating the kinetics of melanin production in C. neoformans colonies.
Collapse
Affiliation(s)
| | | | | | | | - Hugo Costa Paes
- Faculty of Medicine, University of Brasília, Brasília, DF, Brazil
| | - Ildinete Silva Pereira
- Institute of Biology, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | | |
Collapse
|
2
|
Lanser DM, Bennett AB, Vu K, Gelli A. Macropinocytosis as a potential mechanism driving neurotropism of Cryptococcus neoformans. Front Cell Infect Microbiol 2023; 13:1331429. [PMID: 38149006 PMCID: PMC10750359 DOI: 10.3389/fcimb.2023.1331429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Cryptococcus neoformans can invade the central nervous system by crossing the blood-brain barrier via a transcellular mechanism that relies on multiple host factors. In this narrative, we review the evidence that a direct interplay between C. neoformans and brain endothelial cells forms the basis for invasion and transmigration across the brain endothelium. Adherence and internalization of C. neoformans is dependent on transmembrane proteins, including a hyaluronic acid receptor and an ephrin receptor tyrosine kinase. We consider the role of EphA2 in facilitating the invasion of the central nervous system by C. neoformans and highlight experimental evidence supporting macropinocytosis as a potential mechanism of internalization and transcytosis. How macropinocytosis might be conclusively demonstrated in the context of C. neoformans is also discussed.
Collapse
Affiliation(s)
| | | | | | - Angie Gelli
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Julian JULIAN, Robiatul ADAWIYAH, Sri WAHDINI. BIOMOLECULAR ACTIVITY OF CRYPTOCOCCUS DURING CRYPTOCOCCOSIS: A REVIEW OF MOLECULAR INTERACTIONS OF CRYPTOCOCCUS WITH HUMAN IMMUNE SYSTEM AND BLOOD-BRAIN-BARRIER. Afr J Infect Dis 2023; 18:11-22. [PMID: 38058414 PMCID: PMC10696652 DOI: 10.21010/ajidv18i1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 12/08/2023] Open
Abstract
Global mycosis is still a problem. One of these is the cryptococcal disease. A systemic mycosis brought on by Cryptococcus is called cryptococcosis. Host immunological conditions influence infection with Cryptococcosis. When environmental spores are inhaled by the host, the spores get to the lungs, an infection is created. Alveolar macrophages and other immune cells recognize Cryptococcus in the lung. The initial line of defense against pathogens in the phagolysosome is provided by alveolar macrophages found in the lungs. When the immune system is weak, Cryptococcus uses the evasion system as a molecular interaction with the immune system and persists in the lungs without causing any symptoms such as Factor Transcription, Cell masking, N-glycan structure, Extracellular molecule, and Antioxidant system. The evasion mechanism protects and makes Cryptococcus disseminate throughout the other organs, especially CNS. If Cryptococcus escapes against the host immune system, it will disseminate to other organs, especially Cerebrospinal System by Three mechanisms. There are Trojan Horse, Paracellular, and Transcellular interactions with Blood-Brain Barrier. Disease severity is determined by the Interaction between the host's immune system and the fungus.
Collapse
Affiliation(s)
- JULIAN Julian
- Master’s Programme in biomedical science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - ADAWIYAH Robiatul
- Master’s Programme in biomedical science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - WAHDINI Sri
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
4
|
Muselius B, Roux-Dalvai F, Droit A, Geddes-McAlister J. Resolving the Temporal Splenic Proteome during Fungal Infection for Discovery of Putative Dual Perspective Biomarker Signatures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1928-1940. [PMID: 37222660 PMCID: PMC10487597 DOI: 10.1021/jasms.3c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Fungal pathogens are emerging threats to global health with the rise of incidence associated with climate change and increased geographical distribution; factors also influencing host susceptibility to infection. Accurate detection and diagnosis of fungal infections is paramount to offer rapid and effective therapeutic options. For improved diagnostics, the discovery and development of protein biomarkers presents a promising avenue; however, this approach requires a priori knowledge of infection hallmarks. To uncover putative novel biomarkers of disease, profiling of the host immune response and pathogen virulence factor production is indispensable. In this study, we use mass-spectrometry-based proteomics to resolve the temporal proteome of Cryptococcus neoformans infection of the spleen following a murine model of infection. Dual perspective proteome profiling defines global remodeling of the host over a time course of infection, confirming activation of immune associated proteins in response to fungal invasion. Conversely, pathogen proteomes detect well-characterized C. neoformans virulence determinants, along with novel mapped patterns of pathogenesis during the progression of disease. Together, our innovative systematic approach confirms immune protection against fungal pathogens and explores the discovery of putative biomarker signatures from complementary biological systems to monitor the presence and progression of cryptococcal disease.
Collapse
Affiliation(s)
- Benjamin Muselius
- Department
of Molecular and Cellular Biology, University
of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Florence Roux-Dalvai
- Proteomics
platform, CHU de Québec - Université
Laval Research Center, Québec
City, Québec G1
V 4G2, Canada
- Computational
Biology Laboratory, CHU de Québec
- Université Laval Research Center, Québec City, Québec G1 V 4G2, Canada
- Canadian
Proteomics and Artificial Intelligence Consortium, Guelph, Ontario N1G 2W1, Canada
| | - Arnaud Droit
- Proteomics
platform, CHU de Québec - Université
Laval Research Center, Québec
City, Québec G1
V 4G2, Canada
- Computational
Biology Laboratory, CHU de Québec
- Université Laval Research Center, Québec City, Québec G1 V 4G2, Canada
- Canadian
Proteomics and Artificial Intelligence Consortium, Guelph, Ontario N1G 2W1, Canada
| | - Jennifer Geddes-McAlister
- Department
of Molecular and Cellular Biology, University
of Guelph, Guelph, Ontario N1G 2W1, Canada
- Canadian
Proteomics and Artificial Intelligence Consortium, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
5
|
Cryptococcus neoformans Infection in the Central Nervous System: The Battle between Host and Pathogen. J Fungi (Basel) 2022; 8:jof8101069. [PMID: 36294634 PMCID: PMC9605252 DOI: 10.3390/jof8101069] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cryptococcus neoformans (C. neoformans) is a pathogenic fungus with a global distribution. Humans become infected by inhaling the fungus from the environment, and the fungus initially colonizes the lungs. If the immune system fails to contain C. neoformans in the lungs, the fungus can disseminate to the blood and invade the central nervous system, resulting in fatal meningoencephalitis particularly in immunocompromised individuals including HIV/AIDS patients. Following brain invasion, C. neoformans will encounter host defenses involving resident as well as recruited immune cells in the brain. To overcome host defenses, C. neoformans possesses multiple virulence factors capable of modulating immune responses. The outcome of the interactions between the host and C. neoformans will determine the disease progression. In this review, we describe the current understanding of how C. neoformans migrates to the brain across the blood–brain barrier, and how the host immune system responds to the invading organism in the brain. We will also discuss the virulence factors that C. neoformans uses to modulate host immune responses.
Collapse
|
6
|
Dang EV, Lei S, Radkov A, Volk RF, Zaro BW, Madhani HD. Secreted fungal virulence effector triggers allergic inflammation via TLR4. Nature 2022; 608:161-167. [PMID: 35896747 PMCID: PMC9744105 DOI: 10.1038/s41586-022-05005-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/21/2022] [Indexed: 12/14/2022]
Abstract
Invasive fungal pathogens are major causes of human mortality and morbidity1,2. Although numerous secreted effector proteins that reprogram innate immunity to promote virulence have been identified in pathogenic bacteria, so far, there are no examples of analogous secreted effector proteins produced by human fungal pathogens. Cryptococcus neoformans, the most common cause of fungal meningitis and a major pathogen in AIDS, induces a pathogenic type 2 response characterized by pulmonary eosinophilia and alternatively activated macrophages3-8. Here, we identify CPL1 as an effector protein secreted by C. neoformans that drives alternative activation (also known as M2 polarization) of macrophages to enable pulmonary infection in mice. We observed that CPL1-enhanced macrophage polarization requires Toll-like receptor 4, which is best known as a receptor for bacterial endotoxin but is also a poorly understood mediator of allergen-induced type 2 responses9-12. We show that this effect is caused by CPL1 itself and not by contaminating lipopolysaccharide. CPL1 is essential for virulence, drives polarization of interstitial macrophages in vivo, and requires type 2 cytokine signalling for its effect on infectivity. Notably, C. neoformans associates selectively with polarized interstitial macrophages during infection, suggesting a mechanism by which C. neoformans generates its own intracellular replication niche within the host. This work identifies a circuit whereby a secreted effector protein produced by a human fungal pathogen reprograms innate immunity, revealing an unexpected role for Toll-like receptor 4 in promoting the pathogenesis of infectious disease.
Collapse
Affiliation(s)
- Eric V. Dang
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Susan Lei
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Atanas Radkov
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Regan F. Volk
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, United States of America,Cardiovascular Research Institute, University of California, San Francisco, CA, United States of America
| | - Balyn W. Zaro
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, United States of America,Cardiovascular Research Institute, University of California, San Francisco, CA, United States of America
| | - Hiten D. Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America,Chan-Zuckerberg Biohub, San Francisco, CA, United States of America,
| |
Collapse
|
7
|
Yang YL, Fan YB, Gao L, Zhang C, Gu JL, Pan WH, Fang W. Cryptococcus neoformans Csn1201 Is Associated With Pulmonary Immune Responses and Disseminated Infection. Front Immunol 2022; 13:890258. [PMID: 35720283 PMCID: PMC9201341 DOI: 10.3389/fimmu.2022.890258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Cryptococcus neoformans is a major etiological agent of fungal meningoencephalitis. The outcome of cryptococcosis depends on the complex interactions between the pathogenic fungus and host immunity. The understanding of how C. neoformans manipulates the host immune response through its pathogenic factors remains incomplete. In this study, we defined the roles of a previously uncharacterized protein, Csn1201, in cryptococcal fitness and host immunity. Use of both inhalational and intravenous mouse models demonstrated that the CSN1201 deletion significantly blocked the pulmonary infection and extrapulmonary dissemination of C. neoformans. The in vivo hypovirulent phenotype of the csn1201Δ mutant was attributed to a combination of multiple factors, including preferential dendritic cell accumulation, enhanced Th1 and Th17 immune responses, decreased intracellular survival inside macrophages, and attenuated blood–brain barrier transcytosis rather than exclusively to pathogenic fitness. The csn1201Δ mutant exhibited decreased tolerance to various stressors in vitro, along with reduced capsule production and enhanced cell wall thickness under host-relevant conditions, indicating that the CSN1201 deletion might promote the exposure of cell wall components and thus induce a protective immune response. Taken together, our results strongly support the importance of cryptococcal Csn1201 in pulmonary immune responses and disseminated infection.
Collapse
Affiliation(s)
- Ya-Li Yang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology and Venereology, Changzheng Hospital, Naval Military Medical University, Shanghai, China
| | - Yi-Bin Fan
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lei Gao
- Microscopy Core Facility, Biomedical Research Core Facilities, Westlake University, Hangzhou, China
| | - Chao Zhang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology and Venereology, Changzheng Hospital, Naval Military Medical University, Shanghai, China
| | - Ju-Lin Gu
- Department of Dermatology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Wei-Hua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology and Venereology, Changzheng Hospital, Naval Military Medical University, Shanghai, China
| | - Wei Fang
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology and Venereology, Changzheng Hospital, Naval Military Medical University, Shanghai, China
| |
Collapse
|
8
|
Cryptococcus spp. and Cryptococcosis: focusing on the infection in Brazil. Braz J Microbiol 2022; 53:1321-1337. [PMID: 35486354 PMCID: PMC9433474 DOI: 10.1007/s42770-022-00744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/25/2022] [Indexed: 11/02/2022] Open
Abstract
Cryptococcosis is a global fungal infection caused by the Cryptococcus neoformans/Cryptococcus gattii yeast complex. This infection is acquired by inhalation of propagules such as basidiospores or dry yeast, initially causing lung infections with the possibility of progressing to the meninges. This infection mainly affects immunocompromised HIV and transplant patients; however, immunocompetent patients can also be affected. This review proposes to evaluate cryptococcosis focusing on studies of this mycosis in Brazilian territory; moreover, recent advances in the understanding of its virulence mechanism, animal models in research are also assessed. For this, literature review as realized in PubMed, Scielo, and Brazilian legislation. In Brazil, cryptococcosis has been identified as one of the most lethal fungal infections among HIV patients and C. neoformans VNI and C. gattii VGII are the most prevalent genotypes. Moreover, different clinical settings published in Brazil were described. As in other countries, cryptococcosis is difficult to treat due to a limited therapeutic arsenal, which is highly toxic and costly. The presence of a polysaccharide capsule, thermo-tolerance, production of melanin, biofilm formation, mechanisms for iron use, and morphological alterations is an important virulence mechanism of these yeasts. The introduction of cryptococcosis as a compulsory notification disease could improve data regarding incidence and help in the management of these infections.
Collapse
|
9
|
Gibson JF, Bojarczuk A, Evans RJ, Kamuyango AA, Hotham R, Lagendijk AK, Hogan BM, Ingham PW, Renshaw SA, Johnston SA. Blood vessel occlusion by Cryptococcus neoformans is a mechanism for haemorrhagic dissemination of infection. PLoS Pathog 2022; 18:e1010389. [PMID: 35446924 PMCID: PMC9022829 DOI: 10.1371/journal.ppat.1010389] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Meningitis caused by infectious pathogens is associated with vessel damage and infarct formation, however the physiological cause is often unknown. Cryptococcus neoformans is a human fungal pathogen and causative agent of cryptococcal meningitis, where vascular events are observed in up to 30% of patients, predominantly in severe infection. Therefore, we aimed to investigate how infection may lead to vessel damage and associated pathogen dissemination using a zebrafish model that permitted noninvasive in vivo imaging. We find that cryptococcal cells become trapped within the vasculature (dependent on their size) and proliferate there resulting in vasodilation. Localised cryptococcal growth, originating from a small number of cryptococcal cells in the vasculature was associated with sites of dissemination and simultaneously with loss of blood vessel integrity. Using a cell-cell junction tension reporter we identified dissemination from intact blood vessels and where vessel rupture occurred. Finally, we manipulated blood vessel tension via cell junctions and found increased tension resulted in increased dissemination. Our data suggest that global vascular vasodilation occurs following infection, resulting in increased vessel tension which subsequently increases dissemination events, representing a positive feedback loop. Thus, we identify a mechanism for blood vessel damage during cryptococcal infection that may represent a cause of vascular damage and cortical infarction during cryptococcal meningitis. Meningitis is a life threatening form of infection in the brain that is difficult to treat. How infection spreads from the blood to cause meningitis is not well understood. Here we have shown how infection with the fungus Cryptococcus neoformans can be spread from the blood by blocking and bursting blood vessels. Using zebrafish larvae, we were able to follow the same infections over a period of days to understand how this infection behaves in blood vessels. We found that fungal cells become stuck within blood vessels depending on their size. These cells grow within blood vessels, resulting in the blood vessels becoming wider. We measured increased tension in blood vessels suggesting that, with the bloackage and widening of vessels, there was increased local blood pressure. We found that vessel blockage was associated with their rupture and spreading of fungus into the surround tissue. Finally, by increasing the tension in vessels we could increase the number of blood bursting events supporting our conclusion that blood vessel blockage leads to the spread of the infection outside of blood vessels.
Collapse
Affiliation(s)
- Josie F. Gibson
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
- Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A-Star), Singapore
| | - Aleksandra Bojarczuk
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Robert J. Evans
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
| | - Alfred Alinafe Kamuyango
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
| | - Richard Hotham
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
| | - Anne K. Lagendijk
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Benjamin M. Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Philip W. Ingham
- Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A-Star), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Stephen A. Renshaw
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
| | - Simon A. Johnston
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Wang Y, Pawar S, Dutta O, Wang K, Rivera A, Xue C. Macrophage Mediated Immunomodulation During Cryptococcus Pulmonary Infection. Front Cell Infect Microbiol 2022; 12:859049. [PMID: 35402316 PMCID: PMC8987709 DOI: 10.3389/fcimb.2022.859049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Macrophages are key cellular components of innate immunity, acting as the first line of defense against pathogens to modulate homeostatic and inflammatory responses. They help clear pathogens and shape the T-cell response through the production of cytokines and chemokines. The facultative intracellular fungal pathogen Cryptococcus neoformans has developed a unique ability to interact with and manipulate host macrophages. These interactions dictate how Cryptococcus infection can remain latent or how dissemination within the host is achieved. In addition, differences in the activities of macrophages have been correlated with differential susceptibilities of hosts to Cryptococcus infection, highlighting the importance of macrophages in determining disease outcomes. There is now abundant information on the interaction between Cryptococcus and macrophages. In this review we discuss recent advances regarding macrophage origin, polarization, activation, and effector functions during Cryptococcus infection. The importance of these strategies in pathogenesis and the potential of immunotherapy for cryptococcosis treatment is also discussed.
Collapse
Affiliation(s)
- Yan Wang
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Department of Microbiology and Immunology , Guangdong Medical University, Dongguan, China
| | - Siddhi Pawar
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Orchi Dutta
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Keyi Wang
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Chaoyang Xue
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| |
Collapse
|
11
|
Dangarembizi R. Reimagining the future of African brain health: Perspectives for basic research on the pathogenesis of cryptococcal meningitis. Brain Behav Immun Health 2021; 18:100388. [PMID: 34825235 PMCID: PMC8605210 DOI: 10.1016/j.bbih.2021.100388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022] Open
Abstract
Cryptococcal meningitis is a fatal opportunistic infection of the brain and a leading cause of neurological damage and death in immunocompromised individuals. This neglected fungal disease of the brain is a huge burden on the health systems of developing countries, especially in Sub-Saharan Africa, where up to 25% of people living with HIV/AIDS succumb to it. Cryptococcal fungal cells have a predilection for the brain and they are capable of traversing the blood brain barrier and invade the brain where they cause infection, inflammation and a disruption of normal brain function. A robust host neuroimmune response is critical for pathogen clearance and survival, and a good understanding of the mechanisms underlying its development in the host is critical for the development of effective treatments. However, past basic research studies have been focussed on the characteristics of the fungus and its effect on the peripheral immune system; with little attention paid to how it interacts with brain immune cells. This mini review briefly discusses the paucity of basic research data on the neuroimmune response to cryptococcal infection, raises pertinent questions on how the brain cells respond to the fungal infection, and thereafter discusses models, techniques and advanced technologies that could be useful for carrying out high-throughput research on the pathogenesis of cryptococcal meningitis.
Collapse
Affiliation(s)
- R Dangarembizi
- Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Liposomal Ellagic Acid Alleviates Cyclophosphamide-Induced Toxicity and Eliminates the Systemic Cryptococcus neoformans Infection in Leukopenic Mice. Pharmaceutics 2021; 13:pharmaceutics13060882. [PMID: 34203688 PMCID: PMC8232310 DOI: 10.3390/pharmaceutics13060882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Cryptococcus neoformans infections rose sharply due to rapid increase in the numbers of immunocompromised individuals in recent years. Treatment of Cryptococcosis in immunocompromised persons is largely very challenging and hopeless. Hence, this study aimed to determine the activity of ellagic acid (EA) in the treatment of C. neoformans in cyclophosphamide injected leukopenic mice. A liposomal formulation of ellagic acid (Lip-EA) was prepared and characterized, and its antifungal activity was assessed in comparison to fluconazole (FLZ). The efficacy of the drug treatment was tested by assessing survival rate, fungal burden, and histological analysis in lung tissues. The safety of the drug formulations was tested by investigating hepatic, renal function, and antioxidant levels. The results of the present work demonstrated that Lip-EA, not FLZ, effectively eliminated C. neoformans infection in the leukopenic mice. Mice treated with Lip-EA (40 mg/kg) showed 70% survival rate and highly reduced fungal burden in their lung tissues, whereas the mice treated with FLZ (40 mg/kg) had 20% survival rate and greater fungal load in their lungs. Noteworthy, Lip-EA treatment alleviated cyclophosphamide-induced toxicity and restored hepatic and renal function parameters. Moreover, Lip-EA treatment restored the levels of superoxide dismutase and reduced glutathione and catalase in the lung tissues. The effect of FLZ or EA or Lip-EA against C. neoformans infection was assessed by the histological analysis of lung tissues. Lip-EA effectively reduced influx of inflammatory cells, thickening of alveolar walls, congestion, and hemorrhage. The findings of the present study suggest that Lip-EA may prove to be a promising therapeutic formulation against C. neoformans in immunocompromised persons.
Collapse
|
13
|
Zhao J, Yang Y, Fan Y, Yi J, Zhang C, Gu Z, Pan W, Gu J, Liao W, Fang W. Ribosomal Protein L40e Fused With a Ubiquitin Moiety Is Essential for the Vegetative Growth, Morphological Homeostasis, Cell Cycle Progression, and Pathogenicity of Cryptococcus neoformans. Front Microbiol 2020; 11:570269. [PMID: 33224112 PMCID: PMC7674629 DOI: 10.3389/fmicb.2020.570269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin is a highly conserved protein required for various fundamental cellular processes in eukaryotes. Herein, we first report the contribution of the ubiquitin fusion protein Ubi1 (a ubiquitin monomer fused with the ribosome protein L40e, Rpl40e) in the growth and pathogenicity of Cryptococcus neoformans. UBI1 deletion resulted in severe growth restriction of C. neoformans, whose growth rate was positively correlated with UBI1 expression level. The growth defect of the ubi1Δ strain could be closely associated with its morphological abnormalities, such as its reduced ribosome particles. In addition, the ubi1Δ mutant also displayed increased cell ploidy, cell cycle arrest, and decreased intracellular survival inside macrophages. All these phenotypes were reversed by the reconstitution of the full-length UBI1 gene or RPL40a domain. Mouse survival and fungal burden assays further revealed a severely attenuated pathogenicity for the ubi1Δ mutant, which is probably associated with its reduced stress tolerance and the induction of T-helper 1-type immune response. Taken together, Ubi1 is required for maintaining the vegetative growth, morphological homeostasis, cell cycle progression, and pathogenicity in vivo of C. neoformans. The pleiotropic roles of Ubi1 are dependent on the presence of Rpl40e and associated with its regulation of cryptococcal ribosome biogenesis.
Collapse
Affiliation(s)
- Jingyu Zhao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Department of Dermatology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yali Yang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Department of Dermatology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yibin Fan
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jiu Yi
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chao Zhang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhongkai Gu
- The Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Julin Gu
- Department of Dermatology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
14
|
Yu QK, Han LT, Wu YJ, Liu TB. The Role of Oxidoreductase-Like Protein Olp1 in Sexual Reproduction and Virulence of Cryptococcus neoformans. Microorganisms 2020; 8:microorganisms8111730. [PMID: 33158259 PMCID: PMC7694259 DOI: 10.3390/microorganisms8111730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
Cryptococcus neoformans is a basidiomycete human fungal pathogen causing lethal meningoencephalitis, mainly in immunocompromised patients. Oxidoreductases are a class of enzymes that catalyze redox, playing a crucial role in biochemical reactions. In this study, we identified one Cryptococcus oxidoreductase-like protein-encoding gene OLP1 and investigated its role in the sexual reproduction and virulence of C. neoformans. Gene expression patterns analysis showed that the OLP1 gene was expressed in each developmental stage of Cryptococcus, and the Olp1 protein was located in the cytoplasm of Cryptococcus cells. Although it produced normal major virulence factors such as melanin and capsule, the olp1Δ mutants showed growth defects on the yeast extract peptone dextrose (YPD) medium supplemented with lithium chloride (LiCl) and 5-fluorocytosine (5-FC). The fungal mating analysis showed that Olp1 is also essential for fungal sexual reproduction, as olp1Δ mutants show significant defects in hyphae growth and basidiospores production during bisexual reproduction. The fungal nuclei imaging showed that during the bilateral mating of olp1Δ mutants, the nuclei failed to undergo meiosis after fusion in the basidia, indicating that Olp1 is crucial for regulating meiosis during mating. Moreover, Olp1 was also found to be required for fungal virulence in C. neoformans, as the olp1Δ mutants showed significant virulence attenuation in a murine inhalation model. In conclusion, our results showed that the oxidoreductase-like protein Olp1 is required for both fungal sexual reproduction and virulence in C. neoformans.
Collapse
Affiliation(s)
- Qi-Kun Yu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (Q.-K.Y.); (L.-T.H.); (Y.-J.W.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Lian-Tao Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (Q.-K.Y.); (L.-T.H.); (Y.-J.W.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Yu-Juan Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (Q.-K.Y.); (L.-T.H.); (Y.-J.W.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Tong-Bao Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (Q.-K.Y.); (L.-T.H.); (Y.-J.W.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel.: +86-23-6825-1088
| |
Collapse
|
15
|
Hansakon A, Jeerawattanawart S, Pattanapanyasat K, Angkasekwinai P. IL-25 Receptor Signaling Modulates Host Defense against Cryptococcus neoformans Infection. THE JOURNAL OF IMMUNOLOGY 2020; 205:674-685. [PMID: 32561567 DOI: 10.4049/jimmunol.2000073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/21/2020] [Indexed: 01/10/2023]
Abstract
Cryptococcal meningitis is one of the most common life-threatening diseases caused by Cryptococcus infection. Increasing evidence indicates that type 2 immunity is associated with disease progression by promoting fungal growth and dissemination. However, factors that govern this pathogenic response during infection are still elusive. In this study, we investigated the role of IL-25, one of the type 2-inducing cytokines produced by epithelial cells, in contributing to the pathogenesis of cryptococcosis. We found that pulmonary but not systemic infection with a high-virulence strain of C. neoformans significantly induced pulmonary IL-25 expression in the lungs but not brains. In response to pulmonary infection, mice deficient in the surface IL-17 receptor B, a component of the IL-25R, exhibited improved survival with a decreased brain fungal burden. The absence of IL-25R signaling diminished the type 2 and enhanced the type 1 immune response that directed macrophage polarization toward M1 macrophages. Interestingly, Cryptococcus-mediated IL-25 signaling suppressed the expression of cytokines and chemokines associated with protection in the brain, including Ifng, Il1b, Ip10, and Nos2, without affecting brain cellular inflammation and microglia cell activation. Il17rb-/- mice receiving cryptococcal-specific CD4+ T cells from wild-type had a shorter survival time with higher fungal burden within the brain and an elevated expression of M2 macrophage markers than those receiving cryptococcal-specific CD4+ T cells from Il17rb-/- mice. Taken together, our data indicated that IL-25 signaling subverts the induction of protective immunity and amplifies the type 2 immune response that may favor the development of cryptococcal disease and the fungal dissemination to the CNS.
Collapse
Affiliation(s)
- Adithap Hansakon
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand.,Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand; and
| | - Siranart Jeerawattanawart
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand.,Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand; and
| | - Kovit Pattanapanyasat
- Center of Excellence for Flow Cytometry, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand;
| |
Collapse
|
16
|
Coelho C, Farrer RA. Pathogen and host genetics underpinning cryptococcal disease. ADVANCES IN GENETICS 2020; 105:1-66. [PMID: 32560785 DOI: 10.1016/bs.adgen.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryptococcosis is a severe fungal disease causing 220,000 cases of cryptococcal meningitis yearly. The etiological agents of cryptococcosis are taxonomically grouped into at least two species complexes belonging to the genus Cryptococcus. All of these yeasts are environmentally ubiquitous fungi (often found in soil, leaves and decaying wood, tree hollows, and associated with bird feces especially pigeon guano). Infection in a range of animals including humans begins following inhalation of spores or aerosolized yeasts. Recent advances provide fundamental insights into the factors from both the pathogen and its hosts which influence pathogenesis and disease. The complex interactions leading to disease in mammalian hosts have also updated from the availability of better genomic tools and datasets. In this review, we discuss recent genetic research on Cryptococcus, covering the epidemiology, ecology, and evolution of Cryptococcus pathogenic species. We also discuss the insights into the host immune response obtained from the latest genetic modified host models as well as insights from monogenic disorders in humans. Finally we highlight outstanding questions that can be answered in the near future using bioinformatics and genomic tools.
Collapse
Affiliation(s)
- Carolina Coelho
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Rhys A Farrer
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
17
|
Contribution of Laccase Expression to Immune Response against Cryptococcus gattii Infection. Infect Immun 2020; 88:IAI.00712-19. [PMID: 31871099 DOI: 10.1128/iai.00712-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
Cryptococcosis is an infectious disease caused by two fungal species, Cryptococcus neoformans and Cryptococcus gattii While C. neoformans affects mainly immunocompromised patients, C. gattii infects both immunocompetent and immunocompromised individuals. Laccase is an important virulence factor that contributes to the virulence of C. neoformans by promoting pulmonary growth and dissemination to the brain. The presence of laccase in C. neoformans can shift the host immune response toward a nonprotective Th2-type response. However, the role of laccase in the immune response against C. gattii remains unclear. In this study, we characterized laccase activity in C. neoformans and C. gattii isolates from Thailand and investigated whether C. gattii that is deficient in laccase might modulate immune responses during infection. C. gattii was found to have higher laccase activity than C. neoformans, indicating the importance of laccase in the pathogenesis of C. gattii infection. The expression of laccase promoted intracellular proliferation in macrophages and inhibited in vitro fungal clearance. Mice infected with a lac1Δ mutant strain of C. gattii had reduced lung burdens at the early but not the late stage of infection. Without affecting type-1 and type-2 responses, the deficiency of laccase in C. gattii induced cryptococcus-specific interleukin-17 (IL-17) cytokine, neutrophil accumulation, and expression of the neutrophil-associated cytokine gene Csf3 and chemokine genes Cxcl1, Cxcl2, and Cxcl5 in vivo, as well as enhanced neutrophil-mediated phagocytosis and killing in vitro Thus, our data suggest that laccase constitutes an important virulence factor of C. gattii that plays roles in attenuating Th17-type immunity, neutrophil recruitment, and function during the early stage of infection.
Collapse
|
18
|
Abstract
Macrophages are well known for their phagocytic activity and their role in innate immune responses. Macrophages eat non-self particles, via a variety of mechanisms, and typically break down internalized cargo into small macromolecules. However, some pathogenic agents have the ability to evade this endosomal degradation through a nonlytic exocytosis process termed vomocytosis. Macrophages are well known for their phagocytic activity and their role in innate immune responses. Macrophages eat non-self particles, via a variety of mechanisms, and typically break down internalized cargo into small macromolecules. However, some pathogenic agents have the ability to evade this endosomal degradation through a nonlytic exocytosis process termed vomocytosis. This phenomenon has been most often studied for Cryptococcus neoformans, a yeast that causes roughly 180,000 deaths per year, primarily in immunocompromised (e.g., human immunodeficiency virus [HIV]) patients. Existing dogma purports that vomocytosis involves distinctive cellular pathways and intracellular physicochemical cues in the host cell during phagosomal maturation. Moreover, it has been observed that the immunological state of the individual and macrophage phenotype affect vomocytosis outcomes. Here we compile the current knowledge on the factors (with respect to the phagocytic cell) that promote vomocytosis of C. neoformans from macrophages.
Collapse
|
19
|
Setianingrum F, Rautemaa-Richardson R, Denning DW. Pulmonary cryptococcosis: A review of pathobiology and clinical aspects. Med Mycol 2019; 57:133-150. [PMID: 30329097 DOI: 10.1093/mmy/myy086] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023] Open
Abstract
Pulmonary cryptococcosis is an important opportunistic invasive mycosis in immunocompromised patients, but it is also increasingly seen in immunocompetent patients. The main human pathogens are Cryptococcus neoformans and C. gattii, which have a worldwide distribution. In contrast to cryptococcal meningitis, pulmonary cryptococcosis is still underdiagnosed because of limitations in diagnostic tools. It can mimic lung cancer, pulmonary tuberculosis, bacterial pneumonia, and other pulmonary mycoses both clinically and radiologically. Pulmonary nodules are the most common radiological feature, but these are not specific to pulmonary cryptococcosis. The sensitivity of culture of respiratory samples for Cryptococcus is poor and a positive result may also reflect colonisation. Cryptococcal antigen (CrAg) with lateral flow device is a fast and sensitive test and widely used on serum and cerebrospinal fluid, but sera from patients with pulmonary cryptococcosis are rarely positive in the absence of disseminated disease. Detection of CrAg from respiratory specimens might assist the diagnosis of pulmonary cryptococcosis but there are very few data. Molecular detection techniques such as multiplex reverse transcription polymerase chain reaction (RT-PCR) could also provide better sensitivity but these still require validation for respiratory specimens. The first line of treatment for pulmonary cryptococcosis is fluconazole, or amphotericin B and flucytosine for those with central nervous system involvement. Pulmonary cryptococcosis worsens the prognosis of cryptococcal meningitis. In this review, we summarize the biological aspects of Cryptococcus and provide an update on the diagnosis and management of pulmonary cryptococcosis.
Collapse
Affiliation(s)
- Findra Setianingrum
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Parasitology Department, Universitas Indonesia, Jakarta, Indonesia
| | - Riina Rautemaa-Richardson
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Mycology Reference Centre Manchester, ECMM Centre of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Department of Infectious Diseases, Wythenshawe Hospital Manchester University NHS Foundation Trust, Manchester, UK
| | - David W Denning
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Department of Infectious Diseases, Wythenshawe Hospital Manchester University NHS Foundation Trust, Manchester, UK
- National Aspergillosis Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
20
|
Fa Z, Xu J, Yi J, Sang J, Pan W, Xie Q, Yang R, Fang W, Liao W, Olszewski MA. TNF-α-Producing Cryptococcus neoformans Exerts Protective Effects on Host Defenses in Murine Pulmonary Cryptococcosis. Front Immunol 2019; 10:1725. [PMID: 31404168 PMCID: PMC6677034 DOI: 10.3389/fimmu.2019.01725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) plays a critical role in the control of cryptococcal infection, and its insufficiency promotes cryptococcal persistence. To explore the therapeutic potential of TNF-α supplementation as a booster of host anti-cryptococcal responses, we engineered a C. neoformans strain expressing murine TNF-α. Using a murine model of pulmonary cryptococcosis, we demonstrated that TNF-α-producing C. neoformans strain enhances protective elements of host response including preferential T-cell accumulation and improved Th1/Th2 cytokine balance, diminished pulmonary eosinophilia and alternative activation of lung macrophages at the adaptive phase of infection compared to wild type strain-infected mice. Furthermore, TNF-α expression by C. neoformans enhanced the fungicidal activity of macrophages in vitro. Finally, mice infected with the TNF-α-producing C. neoformans strain showed improved fungal control and considerably prolonged survival compared to wild type strain-infected mice, but could not induce sterilizing immunity. Taken together, our results support that TNF-α expression by an engineered C. neoformans strain while insufficient to drive complete immune protection, strongly enhanced protective responses during primary cryptococcal infection.
Collapse
Affiliation(s)
- Zhenzong Fa
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China.,Department of Dermatology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI, United States
| | - Jiu Yi
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Junjun Sang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qun Xie
- Department of Anesthesiology, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Runping Yang
- Department of Dermatology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Wei Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI, United States
| |
Collapse
|
21
|
Evans RJ, Pline K, Loynes CA, Needs S, Aldrovandi M, Tiefenbach J, Bielska E, Rubino RE, Nicol CJ, May RC, Krause HM, O’Donnell VB, Renshaw SA, Johnston SA. 15-keto-prostaglandin E2 activates host peroxisome proliferator-activated receptor gamma (PPAR-γ) to promote Cryptococcus neoformans growth during infection. PLoS Pathog 2019; 15:e1007597. [PMID: 30921435 PMCID: PMC6438442 DOI: 10.1371/journal.ppat.1007597] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus neoformans is one of the leading causes of invasive fungal infection in humans worldwide. C. neoformans uses macrophages as a proliferative niche to increase infective burden and avoid immune surveillance. However, the specific mechanisms by which C. neoformans manipulates host immunity to promote its growth during infection remain ill-defined. Here we demonstrate that eicosanoid lipid mediators manipulated and/or produced by C. neoformans play a key role in regulating pathogenesis. C. neoformans is known to secrete several eicosanoids that are highly similar to those found in vertebrate hosts. Using eicosanoid deficient cryptococcal mutants Δplb1 and Δlac1, we demonstrate that prostaglandin E2 is required by C. neoformans for proliferation within macrophages and in vivo during infection. Genetic and pharmacological disruption of host PGE2 synthesis is not required for promotion of cryptococcal growth by eicosanoid production. We find that PGE2 must be dehydrogenated into 15-keto-PGE2 to promote fungal growth, a finding that implicated the host nuclear receptor PPAR-γ. C. neoformans infection of macrophages activates host PPAR-γ and its inhibition is sufficient to abrogate the effect of 15-keto-PGE2 in promoting fungal growth during infection. Thus, we describe the first mechanism of reliance on pathogen-derived eicosanoids in fungal pathogenesis and the specific role of 15-keto-PGE2 and host PPAR-γ in cryptococcosis. Cryptococcus neoformans is an opportunistic fungal pathogen that is responsible for significant numbers of deaths in the immunocompromised population worldwide. Here we address whether eicosanoids produced by C. neoformans manipulate host innate immune cells during infection. Cryptococcus neoformans produces several eicosanoids that are notable for their similarity to vertebrate eicosanoids, it is therefore possible that fungal-derived eicosanoids may provoke physiological effects in the host. Using a combination of in vitro and in vivo infection models we identify a specific eicosanoid species—prostaglandin E2 –that is required by C. neoformans for growth during infection. We subsequently show that prostaglandin E2 must be converted to 15-keto-prostaglandin E2 within the host before it has these effects. Furthermore, we find that prostaglandin E2/15-keto-prostaglandin E2 mediated virulence is via activation of host PPAR-γ –an intracellular eicosanoid receptor known to interact with 15-keto-PGE2.
Collapse
Affiliation(s)
- Robert J. Evans
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Katherine Pline
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Catherine A. Loynes
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Sarah Needs
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Maceler Aldrovandi
- Systems Immunity Research Institute, and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, South Glamorgan, United Kingdom
| | - Jens Tiefenbach
- Banting and Best Department of Medical Research, The Terrence Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario, Canada
- InDanio Bioscience Inc., Toronto, Ontario, Canada
| | - Ewa Bielska
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Rachel E. Rubino
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Christopher J. Nicol
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Robin C. May
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Henry M. Krause
- Banting and Best Department of Medical Research, The Terrence Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario, Canada
- InDanio Bioscience Inc., Toronto, Ontario, Canada
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute, and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, South Glamorgan, United Kingdom
| | - Stephen A. Renshaw
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Simon A. Johnston
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Vu K, Garcia JA, Gelli A. Cryptococcal Meningitis and Anti-virulence Therapeutic Strategies. Front Microbiol 2019; 10:353. [PMID: 30863389 PMCID: PMC6399105 DOI: 10.3389/fmicb.2019.00353] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/11/2019] [Indexed: 01/31/2023] Open
Abstract
Fungal infections of the central nervous system are responsible for significant morbidity and mortality. Cryptococcus neoformans (Cn) is the primary cause of fungal meningitis. Infection begins in the lung after inhalation of fungal spores but often spreads to other organs, particularly the brain in immunosuppressed individuals. Cn’s ability to survive phagocytosis and endure the onslaught of oxidative attack imposed by the innate immune response facilitates dissemination to the central nervous system (CNS). Despite the success of Cn at bypassing innate immunity, entry into the heavily protected brain requires that Cn overwhelm the highly restricted blood-brain barrier (BBB). This is a formidable task but mounting evidence suggests that Cn expresses surface-bound and secreted virulence factors including urease, metalloprotease, and hyaluronic acid that can undermine the BBB. In addition, Cn can exploit multiple routes of entry to gain access to the CNS. In this review, we discuss the cellular and molecular interface of Cn and the BBB, and we propose that the virulence factors mediating BBB crossing could be targeted for the development of anti-virulence drugs aimed at preventing fungal colonization of the CNS.
Collapse
Affiliation(s)
- Kiem Vu
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Javier A Garcia
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Angie Gelli
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
23
|
Sakamoto Y, Nakade K, Sato S, Yoshimi A, Sasaki K, Konno N, Abe K. Cell wall structure of secreted laccase-silenced strain in Lentinula edodes. Fungal Biol 2018; 122:1192-1200. [DOI: 10.1016/j.funbio.2018.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022]
|
24
|
Lerm B, Kenyon C, Schwartz IS, Kroukamp H, de Witt R, Govender NP, de Hoog GS, Botha A. First report of urease activity in the novel systemic fungal pathogen Emergomyces africanus: a comparison with the neurotrope Cryptococcus neoformans. FEMS Yeast Res 2018; 17:4093074. [PMID: 28934415 DOI: 10.1093/femsyr/fox069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 08/22/2017] [Indexed: 12/23/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic pathogen responsible for the AIDS-defining illness, cryptococcal meningitis. During the disease process, entry of cryptococcal cells into the brain is facilitated by virulence factors that include urease enzyme activity. A novel species of an Emmonsia-like fungus, recently named Emergomyces africanus, was identified as a cause of disseminated mycosis in HIV-infected persons in South Africa. However, in contrast to C. neoformans, the enzymes produced by this fungus, some of which may be involved in pathogenesis, have not been described. Using a clinical isolate of C. neoformans as a reference, the study aim was to confirm, characterise and quantify urease activity in E. africanus clinical isolates. Urease activity was tested using Christensen's urea agar, after which the presence of a urease gene in the genome of E. africanus was confirmed using gene sequence analysis. Subsequent evaluation of colorimetric enzyme assay data, using Michaelis-Menten enzyme kinetics, revealed similarities between the substrate affinity of the urease enzyme produced by E. africanus (Km ca. 26.0 mM) and that of C. neoformans (Km ca. 20.6 mM). However, the addition of 2.5 g/l urea to the culture medium stimulated urease activity of E. africanus, whereas nutrient limitation notably increased cryptococcal urease activity.
Collapse
Affiliation(s)
- Barbra Lerm
- Department of Microbiology, Stellenbosch University, Stellenbosch 7602, Western Cape, South Africa
| | - Chris Kenyon
- Sexually Transmitted Infection Unit, Institute of Tropical Medicine, 2000 Antwerp, Belgium.,Department of Medicine, University of Cape Town, Cape Town 7925, Western Cape, South Africa
| | - Ilan S Schwartz
- Epidemiology for Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, 2000 Antwerp, Belgium.,Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Heinrich Kroukamp
- Department of Microbiology, Stellenbosch University, Stellenbosch 7602, Western Cape, South Africa
| | - Riaan de Witt
- Department of Microbiology, Stellenbosch University, Stellenbosch 7602, Western Cape, South Africa
| | - Nelesh P Govender
- Department of Medicine, University of Cape Town, Cape Town 7925, Western Cape, South Africa.,National Institute for Communicable Diseases, 2131 Johannesburg, South Africa
| | - G Sybren de Hoog
- CBS-KNAW Fungal Biodiversity Centre, 3508 AD, Utrecht, The Netherlands
| | - Alfred Botha
- Department of Microbiology, Stellenbosch University, Stellenbosch 7602, Western Cape, South Africa
| |
Collapse
|
25
|
Muñoz M, Camargo M, Ramírez JD. Estimating the Intra-taxa Diversity, Population Genetic Structure, and Evolutionary Pathways of Cryptococcus neoformans and Cryptococcus gattii. Front Genet 2018; 9:148. [PMID: 29740480 PMCID: PMC5928140 DOI: 10.3389/fgene.2018.00148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022] Open
Abstract
Members of the Cryptococcus complex, includes Cryptococcus neoformans (most common fungal infection of the brain) and Cryptococcus gattii (high-impact emerging pathogen worldwide). Currently, the fungal multilocus sequence typing database (Fungal MLST Database) constitutes a valuable data repository of the genes used for molecular typing of these pathogens. We analyzed the data available in the Fungal MLST Database for seven housekeeping genes, with the aim to evaluate its contribution in the description of intra-taxa diversity, population genetic structure, and evolutionary patterns. Although the Fungal MLST Database has a greater number of reports for C. neoformans (n = 487) than for C. gattii (n = 344), similar results were obtained for both species in terms of allelic diversity. Phylogenetic reconstructions revealed grouping by molecular type in both species and allowed us to propose differences in evolutionary patterns (gradualism in the case of C. neoformans and punctuated evolution in the case of C. gattii). In addition, C. neoformans showed a population genetic structure consisting of 37 clonal complexes (CCs; CC1 being predominant), high crosslinking [without sequence type (ST) grouping by molecular type], marked divergence events in phylogenetic analysis, and few introgression events (mainly between VNI and VNIV). By contrast, C. gattii showed 50 CCs (with greater homogeneity in ST number by CC) and clustering by molecular type with marked crosslinking events in phylogenetic networks being less evident. Understanding relationships at the molecular level for species of the Cryptococcus complex, based on the sequences of the housekeeping genes, provides information for describing the evolutionary history of these emerging pathogens.
Collapse
Affiliation(s)
- Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Upqua SAS, Bogotá, Colombia
- Posgrado Interfacultades Doctorado en Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Milena Camargo
- Centro de Tecnología en Salud (CETESA), Upqua SAS, Bogotá, Colombia
- Departamento de Biología Molecular e Inmunología, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia
- Doctorado en Ciencias Biomédicas y Biológicas, Universidad del Rosario, Bogotá, Colombia
| | - Juan D. Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
26
|
Campuzano A, Wormley FL. Innate Immunity against Cryptococcus, from Recognition to Elimination. J Fungi (Basel) 2018. [PMID: 29518906 PMCID: PMC5872336 DOI: 10.3390/jof4010033] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cryptococcus species, the etiological agents of cryptococcosis, are encapsulated fungal yeasts that predominantly cause disease in immunocompromised individuals, and are responsible for 15% of AIDS-related deaths worldwide. Exposure follows the inhalation of the yeast into the lung alveoli, making it incumbent upon the pattern recognition receptors (PRRs) of pulmonary phagocytes to recognize highly conserved pathogen-associated molecular patterns (PAMPS) of fungi. The main challenges impeding the ability of pulmonary phagocytes to effectively recognize Cryptococcus include the presence of the yeast's large polysaccharide capsule, as well as other cryptococcal virulence factors that mask fungal PAMPs and help Cryptococcus evade detection and subsequent activation of the immune system. This review will highlight key phagocyte cell populations and the arsenal of PRRs present on these cells, such as the Toll-like receptors (TLRs), C-type lectin receptors, NOD-like receptors (NLRs), and soluble receptors. Additionally, we will highlight critical cryptococcal PAMPs involved in the recognition of Cryptococcus. The question remains as to which PRR-ligand interaction is necessary for the recognition, phagocytosis, and subsequent killing of Cryptococcus.
Collapse
Affiliation(s)
- Althea Campuzano
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Floyd L Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
27
|
Dutra FF, Albuquerque PC, Rodrigues ML, Fonseca FL. Warfare and defense: The host response to Cryptococcus infection. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Identification of T helper (Th)1- and Th2-associated antigens of Cryptococcus neoformans in a murine model of pulmonary infection. Sci Rep 2018; 8:2681. [PMID: 29422616 PMCID: PMC5805727 DOI: 10.1038/s41598-018-21039-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/29/2018] [Indexed: 12/24/2022] Open
Abstract
Cryptococcosis, caused by Cryptococcus neoformans, has been demonstrated to be controlled by T helper (Th)1 cells while Th2 cells are associated with fungal growth and dissemination. Although cryptococcal immunoreactive protein antigens were previously identified, their association with Th1 or Th2 immune responses was not provided. In mice, Th1-dependent IFN-γ induces the production of IgG2a, whereas the Th2 cytokine IL-4 stimulates the expression of IgG1 rendering each isotype an indicator of the underlying Th cell response. Therefore, we performed an immunoproteomic study that distinguishes Th1- and Th2-associated antigens by their reactivity with Th1-dependent IgG2a or Th2-dependent IgG1 antibodies in sera from C. neoformans-infected wild-type mice. We additionally analysed sera from Th2-prone IL-12-deficient and Th1-prone IL-4Rα-deficient mice extending the results found in wild-type mice. In total, ten, four, and three protein antigens associated with IgG1, IgG2a, or both isotypes, respectively, were identified. Th2-associated antigens represent promising candidates for development of immunotherapy regimens, whereas Th1-associated antigens may serve as candidates for vaccine development. In conclusion, this study points to intrinsic immunomodulatory effects of fungal antigens on the process of Th cell differentiation based on the identification of cryptococcal protein antigens specifically associated with Th1 or Th2 responses throughout mice of different genotypes.
Collapse
|
29
|
Neuro-Immune Mechanisms of Anti-Cryptococcal Protection. J Fungi (Basel) 2017; 4:jof4010004. [PMID: 29371497 PMCID: PMC5872307 DOI: 10.3390/jof4010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/10/2017] [Accepted: 12/23/2017] [Indexed: 12/15/2022] Open
Abstract
Cryptococcal meningitis (CM) is a life-threatening fungal disease affecting both immunosuppressed and immunocompetent people. The main causative agent of CM is Cryptococcus neoformans, a basidiomycete fungus prevalent in the environment. Our understanding of the immune mechanisms controlling C. neoformans growth within the central nervous system (CNS) is poor. However, there have been several recent advances in the field of neuroimmunology regarding how cells resident within the CNS, such as microglia and neurons, can participate in immune surveillance and control of infection. In this mini-review, the cells of the CNS are discussed with reference to what is currently known about how they control C. neoformans infection.
Collapse
|
30
|
Boral H, Metin B, Döğen A, Seyedmousavi S, Ilkit M. Overview of selected virulence attributes in Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Exophiala dermatitidis. Fungal Genet Biol 2017; 111:92-107. [PMID: 29102684 DOI: 10.1016/j.fgb.2017.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
The incidence of fungal diseases has been increasing since 1980, and is associated with excessive morbidity and mortality, particularly among immunosuppressed patients. Of the known 625 pathogenic fungal species, infections caused by the genera Aspergillus, Candida, Cryptococcus, and Trichophyton are responsible for more than 300 million estimated episodes of acute or chronic infections worldwide. In addition, a rather neglected group of opportunistic fungi known as black yeasts and their filamentous relatives cause a wide variety of recalcitrant infections in both immunocompetent and immunosuppressed hosts. This article provides an overview of selected virulence factors that are known to suppress host immunity and enhance the infectivity of these fungi.
Collapse
Affiliation(s)
- Hazal Boral
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Aylin Döğen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, Turkey
| | - Seyedmojtaba Seyedmousavi
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Center of Excellence for Infection Biology and Antimicrobial Pharmacology, Tehran, Iran
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey.
| |
Collapse
|
31
|
Roussey JA, Viglianti SP, Teitz-Tennenbaum S, Olszewski MA, Osterholzer JJ. Anti-PD-1 Antibody Treatment Promotes Clearance of Persistent Cryptococcal Lung Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2017; 199:3535-3546. [PMID: 29038249 DOI: 10.4049/jimmunol.1700840] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023]
Abstract
Activation of immunomodulatory pathways in response to invasive fungi can impair clearance and promote persistent infections. The programmed cell death protein-1 (PD-1) signaling pathway inhibits immune effector responses against tumors, and immune checkpoint inhibitors that block this pathway are being increasingly used as cancer therapy. The objective of this study was to investigate whether this pathway contributes to persistent fungal infection and to determine whether anti-PD-1 Ab treatment improves fungal clearance. Studies were performed using C57BL/6 mice infected with a moderately virulent strain of Cryptococcus neoformans (52D), which resulted in prolonged elevations in fungal burden and histopathologic evidence of chronic lung inflammation. Persistent infection was associated with increased and sustained expression of PD-1 on lung lymphocytes, including a mixed population of CD4+ T cells. In parallel, expression of the PD-1 ligands, PD-1 ligands 1 and 2, was similarly upregulated on specific subsets of resident and recruited lung dendritic cells and macrophages. Treatment of persistently infected mice for 4 wk by repetitive administration of neutralizing anti-PD-1 Ab significantly improved pulmonary fungal clearance. Treatment was well tolerated without evidence of morbidity. Immunophenotyping revealed that anti-PD-1 Ab treatment did not alter immune effector cell numbers or myeloid cell activation. Treatment did reduce gene expression of IL-5 and IL-10 by lung leukocytes and promoted sustained upregulation of OX40 by Th1 and Th17 cells. Collectively, this study demonstrates that PD-1 signaling promotes persistent cryptococcal lung infection and identifies this pathway as a potential target for novel immune-based treatments of chronic fungal disease.
Collapse
Affiliation(s)
- Jonathan A Roussey
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, University of Michigan Health System, Ann Arbor, MI 48103.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48103
| | - Steven P Viglianti
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, University of Michigan Health System, Ann Arbor, MI 48103
| | - Seagal Teitz-Tennenbaum
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, University of Michigan Health System, Ann Arbor, MI 48103.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48103
| | - Michal A Olszewski
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, University of Michigan Health System, Ann Arbor, MI 48103.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48103.,Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48103; and
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48103; .,Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48103; and.,Pulmonary Section, Medical Service, University of Michigan Health System, Ann Arbor, MI 48103
| |
Collapse
|
32
|
Xu J, Flaczyk A, Neal LM, Fa Z, Cheng D, Ivey M, Moore BB, Curtis JL, Osterholzer JJ, Olszewski MA. Exploitation of Scavenger Receptor, Macrophage Receptor with Collagenous Structure, by Cryptococcus neoformans Promotes Alternative Activation of Pulmonary Lymph Node CD11b + Conventional Dendritic Cells and Non-Protective Th2 Bias. Front Immunol 2017; 8:1231. [PMID: 29033946 PMCID: PMC5624996 DOI: 10.3389/fimmu.2017.01231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022] Open
Abstract
Macrophage receptor with collagenous structure (MARCO) contributes to fungal containment during the early/innate phase of cryptococcal infection; however, its role in adaptive antifungal immunity remains unknown. Using a murine model of cryptococcosis, we compared host adaptive immune responses in wild-type and MARCO−/− mice throughout an extended time course post-infection. Unlike in early infection, MARCO deficiency resulted in improved pulmonary fungal clearance and diminished cryptococcal dissemination during the efferent phase. Improved fungal control in the absence of MARCO expression was associated with enhanced hallmarks of protective Th1-immunity, including higher frequency of pulmonary TNF-α-producing T cells, increased cryptococcal-antigen-triggered IFN-γ and TNF-α production by splenocytes, and enhanced expression of M1 polarization genes by pulmonary macrophages. Concurrently, we found lower frequencies of IL-5- and IL-13-producing T cells in the lungs, impaired production of IL-4 and IL-10 by cryptococcal antigen-pulsed splenocytes, and diminished serum IgE, which were hallmarks of profoundly suppressed efferent Th2 responses in MARCO-deficient mice compared to WT mice. Mechanistically, we found that MARCO expression facilitated early accumulation and alternative activation of CD11b+ conventional DC (cDC) in the lung-associated lymph nodes (LALNs), which contributed to the progressive shift of the immune response from Th1 toward Th2 at the priming site (LALNs) and local infection site (lungs) during the efferent phase of cryptococcal infection. Taken together, our study shows that MARCO can be exploited by the fungal pathogen to promote accumulation and alternative activation of CD11b+ cDC in the LALN, which in turn alters Th1/Th2 balance to promote fungal persistence and dissemination.
Collapse
Affiliation(s)
- Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Adam Flaczyk
- Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Lori M Neal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Zhenzong Fa
- Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Daphne Cheng
- Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Mike Ivey
- Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| |
Collapse
|
33
|
Na Pombejra S, Salemi M, Phinney BS, Gelli A. The Metalloprotease, Mpr1, Engages AnnexinA2 to Promote the Transcytosis of Fungal Cells across the Blood-Brain Barrier. Front Cell Infect Microbiol 2017; 7:296. [PMID: 28713781 PMCID: PMC5492700 DOI: 10.3389/fcimb.2017.00296] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/16/2017] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic pathogens display multiple mechanisms for breaching the blood-brain barrier (BBB) and invading the central nervous system (CNS). Of the fungal spp., that cause disease in mammals, only some cross brain microvascular endothelial cells which constitute the BBB, and invade the brain. Cryptococcus neoformans, the leading cause of fungal meningoencephalitis, crosses the BBB directly by transcytosis or by co-opting monocytes. We previously determined that Mpr1, a secreted fungal metalloprotease, facilitates association of fungal cells to brain microvascular endothelial cells and we confirmed that the sole expression of CnMPR1 endowed S. cerevisiae with an ability to cross the BBB. Here, the gain of function conferred onto S. cerevisiae by CnMPR1 (i.e., Sc<CnMPR1> strain) was used to identify targets of Mpr1 that might reside on the surface of the BBB. Following biotin-labeling of BBB surface proteins, Sc<CnMPR1>-associated proteins were identified by LC-MS/MS. Of the 62 proteins identified several were cytoskeleton-endocytosis-associated including AnnexinA2 (AnxA2). Using an in vitro model of the human BBB where AnxA2 activity was blocked, we found that the lack of AnxA2 activity prevented the movement of S. cerevisiae across the BBB (i.e., transcytosis of Sc<CnMPR1> strain) but unexpectedly, TEM analysis revealed that AnxA2 was not required for the association or the internalization of Sc<CnMPR1>. Additionally, the co-localization of AnxA2 and Sc<CnMPR1> suggest that successful crossing of the BBB is dependent on an AxnA2-Mpr1-mediated interaction. Collectively the data suggest that AnxA2 plays a central role in fungal transcytosis in human brain microvascular endothelial cells. The movement and exocytosis of Sc<CnMPR1> is dependent on membrane trafficking events that involve AnxA2 but these events appear to be independent from the actions of AnxA2 at the host cell surface. We propose that Mpr1 activity promotes cytoskeleton remodeling in brain microvascular endothelial cells and thereby engages AnxA2 in order to facilitate fungal transcytosis of the BBB.
Collapse
Affiliation(s)
- Sarisa Na Pombejra
- Department of Pharmacology, School of Medicine, Genome and Biomedical Sciences Facility, University of California, DavisDavis, CA, United States
| | - Michelle Salemi
- Proteomics Core Facility, Genome and Biomedical Sciences Facility, University of California, DavisDavis, CA, United States
| | - Brett S Phinney
- Proteomics Core Facility, Genome and Biomedical Sciences Facility, University of California, DavisDavis, CA, United States
| | - Angie Gelli
- Department of Pharmacology, School of Medicine, Genome and Biomedical Sciences Facility, University of California, DavisDavis, CA, United States
| |
Collapse
|
34
|
Neal LM, Qiu Y, Chung J, Xing E, Cho W, Malachowski AN, Sandy-Sloat AR, Osterholzer JJ, Maillard I, Olszewski MA. T Cell-Restricted Notch Signaling Contributes to Pulmonary Th1 and Th2 Immunity during Cryptococcus neoformans Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:643-655. [PMID: 28615417 DOI: 10.4049/jimmunol.1601715] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/17/2017] [Indexed: 12/31/2022]
Abstract
Cryptococcus neoformans is a ubiquitous, opportunistic fungal pathogen but the cell signaling pathways that drive T cell responses regulating antifungal immunity are incompletely understood. Notch is a key signaling pathway regulating T cell development, and differentiation and functional responses of mature T cells in the periphery. The targeting of Notch signaling within T cells has been proposed as a potential treatment for alloimmune and autoimmune disorders, but it is unknown whether disturbances to T cell immunity may render these patients vulnerable to fungal infections. To elucidate the role of Notch signaling during fungal infections, we infected mice expressing the pan-Notch inhibitor dominant negative mastermind-like within mature T cells with C. neoformans Inhibition of T cell-restricted Notch signaling increased fungal burdens in the lungs and CNS, diminished pulmonary leukocyte recruitment, and simultaneously impaired Th1 and Th2 responses. Pulmonary leukocyte cultures from T cell Notch-deprived mice produced less IFN-γ, IL-5, and IL-13 than wild-type cells. This correlated with lower frequencies of IFN-γ-, IL-5-, and IL-13-producing CD4+ T cells, reduced expression of Th1 and Th2 associated transcription factors, Tbet and GATA3, and reduced production of IFN-γ by CD8+ T cells. In contrast, Th17 responses were largely unaffected by Notch signaling. The changes in T cell responses corresponded with impaired macrophage activation and reduced leukocyte accumulation, leading to diminished fungal control. These results identify Notch signaling as a previously unappreciated regulator of Th1 and Th2 immunity and an important element of antifungal defenses against cryptococcal infection and CNS dissemination.
Collapse
Affiliation(s)
- Lori M Neal
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109.,Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| | - Yafeng Qiu
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| | - Jooho Chung
- Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI 48109.,Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109
| | - Enze Xing
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| | - Woosung Cho
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| | | | | | - John J Osterholzer
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109.,Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| | - Ivan Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109.,Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Michal A Olszewski
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109; .,Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| |
Collapse
|
35
|
Bloom ALM, Leipheimer J, Panepinto JC. mRNA decay: an adaptation tool for the environmental fungal pathogen Cryptococcus neoformans. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28524625 DOI: 10.1002/wrna.1424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022]
Abstract
Fungi are ubiquitous in the environment and humans constantly encounter them in the soil, air, water, and food. The vast majority of these interactions are inconsequential. However, in the context of immunodeficiency precipitated by HIV infection, hematologic malignancy, or transplantation, a small subset of fungi can cause devastating, systemic infection. The most deadly of the opportunistic environmental fungi, Cryptococcus neoformans, is estimated to cause hundreds of thousands of deaths per year, mostly in the context of HIV co-infection. The cellular processes that mediate adaptation to the host environment are of great interest as potential novel therapeutic targets. One such cellular process important for host adaptation is mRNA decay, which mediates the specific degradation of subsets of functionally related mRNAs in response to stressors relevant to pathogenesis, including human core body temperature, carbon limitation, and reactive oxygen stress. Thus, for C. neoformans, host adaptation requires mRNA decay to mediate rapid transcriptome remodeling in the face of stressors encountered in the host. Several nodes of stress-responsive signaling that govern the stress-responsive transcriptome also control the decay rate of mRNAs cleared from the ribosome during stress, suggesting an additional layer of coupling between mRNA synthesis and decay that allows C. neoformans to be a successful pathogen of humans. WIREs RNA 2017, 8:e1424. doi: 10.1002/wrna.1424 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Amanda L M Bloom
- Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Jay Leipheimer
- Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - John C Panepinto
- Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
36
|
Ding Y, Li P, He Q, Wei H, Wu T, Xia D, Tan M, Shi Y, Su X. The CD4 + T-lymphocyte count is an important predictor for the prognosis of cryptococcosis. Eur J Clin Microbiol Infect Dis 2016; 36:897-904. [PMID: 28035481 PMCID: PMC5395594 DOI: 10.1007/s10096-016-2880-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/14/2016] [Indexed: 12/01/2022]
Abstract
There is great heterogeneity of immunity among patients with cryptococcosis, and severe immunodeficiency can lead to negative clinical outcomes. Underlying disease is a poor surrogate for immune status and inferior in predicting an individual’s prognosis. This study was intended to determine whether T-lymphocyte subgroups would be more suitable indicators regarding the severity of infection and clinical outcomes of such patients. We retrieved clinical data on 101 patients with cryptococcosis and compared the validity of multiple parameters (underlying disease and T-lymphocyte subgroups) in predicting the severity of infection and clinical outcome in these patients. For patients with CD4+ T-lymphocyte counts lower than 400/μL, the odds ratio of disseminated cryptococcosis was 23.3 (P = 0.005). There was a moderate negative correlation between CD4+ T-cell count and Apache II score (−0.609, P < 0.001). Mortality among patients with low levels of CD4+ T lymphocytes was significantly higher than among those with normal levels (23.8% vs 5.3%, P = 0.016). However, the difference was not significant if the patients were grouped by underlying disease (P = 0.067). The CD4+ T-lymphocyte count in peripheral blood is a simple and more accurate biomarker for predicting severity of infection and clinical outcome in patients with cryptococcosis.
Collapse
Affiliation(s)
- Y Ding
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China, 210002
| | - P Li
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China, 210002
| | - Q He
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Southern Medical University, Nanjing, China, 210002
| | - H Wei
- Department of Infectious Disease, Nanjing Second Hospital, Nanjing, China, 210002
| | - T Wu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China, 210002
| | - D Xia
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China, 210002
| | - M Tan
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China, 210002
| | - Y Shi
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China, 210002
| | - X Su
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China, 210002.
| |
Collapse
|
37
|
Malachowski AN, Yosri M, Park G, Bahn YS, He Y, Olszewski MA. Systemic Approach to Virulence Gene Network Analysis for Gaining New Insight into Cryptococcal Virulence. Front Microbiol 2016; 7:1652. [PMID: 27833589 PMCID: PMC5081415 DOI: 10.3389/fmicb.2016.01652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/04/2016] [Indexed: 11/13/2022] Open
Abstract
Cryptococcus neoformans is pathogenic yeast, responsible for highly lethal infections in compromised patients around the globe. C. neoformans typically initiates infections in mammalian lung tissue and subsequently disseminates to the central nervous system where it causes significant pathologies. Virulence genes of C. neoformans are being characterized at an increasing rate, however, we are far from a comprehensive understanding of their roles and genetic interactions. Some of these reported virulence genes are scattered throughout different databases, while others are not yet included. This study gathered and analyzed 150 reported virulence associated factors (VAFs) of C. neoformans. Using the web resource STRING database, our study identified different interactions between the total VAFs and those involved specifically in lung and brain infections and identified a new strain specific virulence gene, SHO1, involved in the mitogen-activated protein kinase signaling pathway. As predicted by our analysis, SHO1 expression enhanced C. neoformans virulence in a mouse model of pulmonary infection, contributing to enhanced non-protective immune Th2 bias and progressively enhancing fungal growth in the infected lungs. Sequence analysis indicated 77.4% (116) of total studied VAFs are soluble proteins, and 22.7% (34) are transmembrane proteins. Motifs involved in regulation and signaling such as protein kinases and transcription factors are highly enriched in Cryptococcus VAFs. Altogether, this study represents a pioneering effort in analysis of the virulence composite network of C. neoformans using a systems biology approach.
Collapse
Affiliation(s)
- Antoni N Malachowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann ArborMI, USA; VA Ann Arbor Healthcare System Research Service (11R), Ann ArborMI, USA
| | - Mohamed Yosri
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann ArborMI, USA; VA Ann Arbor Healthcare System Research Service (11R), Ann ArborMI, USA; The Regional Center for Mycology and Biotechnology, Al-Azhar UniversityCairo, Egypt
| | - Goun Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann ArborMI, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann ArborMI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann ArborMI, USA
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann ArborMI, USA; VA Ann Arbor Healthcare System Research Service (11R), Ann ArborMI, USA
| |
Collapse
|
38
|
Eastman AJ, Osterholzer JJ, Olszewski MA. Role of dendritic cell-pathogen interactions in the immune response to pulmonary cryptococcal infection. Future Microbiol 2016; 10:1837-57. [PMID: 26597428 DOI: 10.2217/fmb.15.92] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review discusses the unique contributions of dendritic cells (DCs) to T-cell priming and the generation of effective host defenses against Cryptococcus neoformans (C.neo) infection. We highlight DC subsets involved in the early and later stages of anticryptococcal immune responses, interactions between C.neo pathogen-associated molecular patterns and pattern recognition receptors expressed by DC, and the influence of DC on adaptive immunity. We emphasize recent studies in mouse models of cryptococcosis that illustrate the importance of DC-derived cytokines and costimulatory molecules and the potential role of DC epigenetic modifications that support maintenance of these signals throughout the immune response to C.neo. Lastly, we stipulate where these advances can be developed into new, immune-based therapeutics for treatment of this global pathogen.
Collapse
Affiliation(s)
- Alison J Eastman
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - John J Osterholzer
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Michal A Olszewski
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
Sapmak A, Kaewmalakul J, Nosanchuk JD, Vanittanakom N, Andrianopoulos A, Pruksaphon K, Youngchim S. Talaromyces marneffei laccase modifies THP-1 macrophage responses. Virulence 2016; 7:702-17. [PMID: 27224737 DOI: 10.1080/21505594.2016.1193275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Talaromyces (Penicillium) marneffei is an emerging opportunistic pathogen associated with HIV infection, particularly in Southeast Asia and southern China. The rapid uptake and killing of T. marneffei conidia by phagocytic cells along with the effective induction of an inflammatory response by the host is essential for disease control. T. marneffei produces a number of different laccases linked to fungal virulence. To understand the role of the various laccases in T. marneffei, laccase-encoding genes were investigated. Targeted single, double and triple gene deletions of laccases encoding lacA, lacB, and lacC showed no significant phenotypic effects suggesting redundancy of function. When a fourth laccase-encoding gene, pbrB, was deleted in the ΔlacA ΔlacB ΔlacC background, the quadruple mutant displayed delayed conidiation and the conidia were more sensitive to H2O2, sodium dodecyl sulfate (SDS), and antifungal agents than wild-type and other transformants. Conidia of the quadruple mutant showed marked differences in their interaction with the human monocyte cell line, THP-1 such that phagocytosis was significantly higher when compared with the wild-type at one and 2 hours of incubation while the phagocytic index was significantly different from 15 to 120 minutes. In addition, killing of the quadruple mutant by THP-1 cells was more efficient at 2 and 4 hours of incubation. The levels of the proinflammatory cytokines TNF-α, IL-1β and IL-6 from THP-1 cells infected with the quadruple mutant were also significantly increased in comparison with wild-type. The results demonstrate that production of laccases by T. marneffei actually promotes the pathogen's resistance to innate host defenses.
Collapse
Affiliation(s)
- Ariya Sapmak
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand.,b Faculty of Medical Technology, Nakhon Ratchasima College , Nakhon Ratchasima , Thailand
| | - Jutikul Kaewmalakul
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| | - Joshua D Nosanchuk
- c Department of Medicine, Division of Infectious Diseases, and Department of Microbiology and Immunology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Nongnuch Vanittanakom
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| | - Alex Andrianopoulos
- d Genetics, Genomics and Development, School of BioSciences, The University of Melbourne , Victoria , Australia
| | - Kritsada Pruksaphon
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| | - Sirida Youngchim
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| |
Collapse
|
40
|
Intracellular Action of a Secreted Peptide Required for Fungal Virulence. Cell Host Microbe 2016; 19:849-64. [PMID: 27212659 DOI: 10.1016/j.chom.2016.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/24/2015] [Accepted: 04/28/2016] [Indexed: 01/02/2023]
Abstract
Quorum sensing (QS) is a bacterial communication mechanism in which secreted signaling molecules impact population function and gene expression. QS-like phenomena have been reported in eukaryotes with largely unknown contributing molecules, functions, and mechanisms. We identify Qsp1, a secreted peptide, as a central signaling molecule that regulates virulence in the fungal pathogen Cryptococcus neoformans. QSP1 is a direct target of three transcription factors required for virulence, and qsp1Δ mutants exhibit attenuated infection, slowed tissue accumulation, and greater control by primary macrophages. Qsp1 mediates autoregulatory signaling that modulates secreted protease activity and promotes cell wall function at high cell densities. Peptide production requires release from a secreted precursor, proQsp1, by a cell-associated protease, Pqp1. Qsp1 sensing requires an oligopeptide transporter, Opt1, and remarkably, cytoplasmic expression of mature Qsp1 complements multiple phenotypes of qsp1Δ. Thus, C. neoformans produces an autoregulatory peptide that matures extracellularly but functions intracellularly to regulate virulence.
Collapse
|
41
|
Opportunities for the development of novel therapies based on host-microbial interactions. Pharmacol Res 2016; 112:68-83. [PMID: 27107789 DOI: 10.1016/j.phrs.2016.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/21/2022]
Abstract
Immune responses are fundamental for protecting against most infectious agents. However, there is now much evidence to suggest that the pathogenesis and tissue damage after infection are not usually related to the direct action of the replication of microorganisms, but instead to altered immune responses triggered after the contact with the pathogen. This review article discusses several mechanisms necessary for the host to protect against microbial infection and focuses in aspects that cause altered inflammation and drive immunopathology. These basic findings can ultimately reveal pathways amenable to host-directed therapy in adjunct to antimicrobial therapy for future improved control measures for many infectious diseases. Therefore, modulating the effects of inflammatory pathways may represent a new therapy during infection outcome and disease.
Collapse
|
42
|
Benaducci T, Sardi JDCO, Lourencetti NMS, Scorzoni L, Gullo FP, Rossi SA, Derissi JB, de Azevedo Prata MC, Fusco-Almeida AM, Mendes-Giannini MJS. Virulence of Cryptococcus sp. Biofilms In Vitro and In Vivo using Galleria mellonella as an Alternative Model. Front Microbiol 2016; 7:290. [PMID: 27014214 PMCID: PMC4783715 DOI: 10.3389/fmicb.2016.00290] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/23/2016] [Indexed: 12/26/2022] Open
Abstract
Cryptococcus neoformans and C. gattii are fungal pathogens that are most commonly found in infections of the central nervous system, which cause life-threatening meningoencephalitis and can grow as a biofilm. Biofilms are structures conferring protection and resistance of microorganism to the antifungal drugs. This study compared the virulence of planktonic and biofilm cells of C. neoformans and C. gattii in Galleria mellonella model, as well as, the quantification of gene transcripts LAC1, URE1, and CAP59 by real time PCR. All three of the genes showed significantly increased expressions in the biofilm conditions for two species of Cryptococcus, when compared to planktonic cells. C. neoformans and C. gattii cells in the biofilm forms were more virulent than the planktonic cells in G. mellonella. This suggests that the biofilm conditions may contribute to the virulence profile. Our results contribute to a better understanding of the agents of cryptococcosis in the host-yeast aspects of the interaction.
Collapse
Affiliation(s)
- Tatiane Benaducci
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Janaina de C O Sardi
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Natalia M S Lourencetti
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Liliana Scorzoni
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Fernanda P Gullo
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Suélen A Rossi
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Jaqueline B Derissi
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | | | - Ana M Fusco-Almeida
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| |
Collapse
|
43
|
Abstract
Cryptococcosis is a globally distributed invasive fungal infection that is caused by species within the genus Cryptococcus which presents substantial therapeutic challenges. Although natural human-to-human transmission has never been observed, recent work has identified multiple virulence mechanisms that enable cryptococci to infect, disseminate within and ultimately kill their human host. In this Review, we describe these recent discoveries that illustrate the intricacy of host-pathogen interactions and reveal new details about the host immune responses that either help to protect against disease or increase host susceptibility. In addition, we discuss how this improved understanding of both the host and the pathogen informs potential new avenues for therapeutic development.
Collapse
|
44
|
Abstract
Cryptococcus gattii is a fungal pathogen of humans, causing pulmonary infections in otherwise healthy hosts. To characterize genomic variation among the four major lineages of C. gattii (VGI, -II, -III, and -IV), we generated, annotated, and compared 16 de novo genome assemblies, including the first for the rarely isolated lineages VGIII and VGIV. By identifying syntenic regions across assemblies, we found 15 structural rearrangements, which were almost exclusive to the VGI-III-IV lineages. Using synteny to inform orthology prediction, we identified a core set of 87% of C. gattii genes present as single copies in all four lineages. Remarkably, 737 genes are variably inherited across lineages and are overrepresented for response to oxidative stress, mitochondrial import, and metal binding and transport. Specifically, VGI has an expanded set of iron-binding genes thought to be important to the virulence of Cryptococcus, while VGII has expansions in the stress-related heat shock proteins relative to the other lineages. We also characterized genes uniquely absent in each lineage, including a copper transporter absent from VGIV, which influences Cryptococcus survival during pulmonary infection and the onset of meningoencephalitis. Through inclusion of population-level data for an additional 37 isolates, we identified a new transcontinental clonal group that we name VGIIx, mitochondrial recombination between VGII and VGIII, and positive selection of multidrug transporters and the iron-sulfur protein aconitase along multiple branches of the phylogenetic tree. Our results suggest that gene expansion or contraction and positive selection have introduced substantial variation with links to mechanisms of pathogenicity across this species complex. The genetic differences between phenotypically different pathogens provide clues to the underlying mechanisms of those traits and can lead to new drug targets and improved treatments for those diseases. In this paper, we compare 16 genomes belonging to four highly differentiated lineages of Cryptococcus gattii, which cause pulmonary infections in otherwise healthy humans and other animals. Half of these lineages have not had their genomes previously assembled and annotated. We identified 15 ancestral rearrangements in the genome and over 700 genes that are unique to one or more lineages, many of which are associated with virulence. In addition, we found evidence for recent transcontinental spread, mitochondrial genetic exchange, and positive selection in multidrug transporters. Our results suggest that gene expansion/contraction and positive selection are diversifying the mechanisms of pathogenicity across this species complex.
Collapse
|
45
|
Eastman AJ, He X, Qiu Y, Davis MJ, Vedula P, Lyons DM, Park YD, Hardison SE, Malachowski AN, Osterholzer JJ, Wormley FL, Williamson PR, Olszewski MA. Cryptococcal heat shock protein 70 homolog Ssa1 contributes to pulmonary expansion of Cryptococcus neoformans during the afferent phase of the immune response by promoting macrophage M2 polarization. THE JOURNAL OF IMMUNOLOGY 2015; 194:5999-6010. [PMID: 25972480 DOI: 10.4049/jimmunol.1402719] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/19/2015] [Indexed: 12/13/2022]
Abstract
Numerous virulence factors expressed by Cryptococcus neoformans modulate host defenses by promoting nonprotective Th2-biased adaptive immune responses. Prior studies demonstrate that the heat shock protein 70 homolog, Ssa1, significantly contributes to serotype D C. neoformans virulence through the induction of laccase, a Th2-skewing and CNS tropic factor. In the present study, we sought to determine whether Ssa1 modulates host defenses in mice infected with a highly virulent serotype A strain of C. neoformans (H99). To investigate this, we assessed pulmonary fungal growth, CNS dissemination, and survival in mice infected with either H99, an SSA1-deleted H99 strain (Δssa1), and a complement strain with restored SSA1 expression (Δssa1::SSA1). Mice infected with the Δssa1 strain displayed substantial reductions in lung fungal burden during the innate phase (days 3 and 7) of the host response, whereas less pronounced reductions were observed during the adaptive phase (day 14) and mouse survival increased only by 5 d. Surprisingly, laccase activity assays revealed that Δssa1 was not laccase deficient, demonstrating that H99 does not require Ssa1 for laccase expression, which explains the CNS tropism we still observed in the Ssa1-deficient strain. Lastly, our immunophenotyping studies showed that Ssa1 directly promotes early M2 skewing of lung mononuclear phagocytes during the innate phase, but not the adaptive phase, of the immune response. We conclude that Ssa1's virulence mechanism in H99 is distinct and laccase-independent. Ssa1 directly interferes with early macrophage polarization, limiting innate control of C. neoformans, but ultimately has no effect on cryptococcal control by adaptive immunity.
Collapse
Affiliation(s)
- Alison J Eastman
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109; Veterans Affairs Hospital, Ann Arbor, MI 48105
| | - Xiumiao He
- Veterans Affairs Hospital, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Yafeng Qiu
- Veterans Affairs Hospital, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Michael J Davis
- Veterans Affairs Hospital, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109
| | | | | | - Yoon-Dong Park
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sarah E Hardison
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78458; South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249; and
| | - Antoni N Malachowski
- Veterans Affairs Hospital, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109
| | - John J Osterholzer
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109; Veterans Affairs Hospital, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Floyd L Wormley
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78458; South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249; and
| | - Peter R Williamson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL 60612
| | - Michal A Olszewski
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109; Veterans Affairs Hospital, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
46
|
The Granuloma Response Controlling Cryptococcosis in Mice Depends on the Sphingosine Kinase 1-Sphingosine 1-Phosphate Pathway. Infect Immun 2015; 83:2705-13. [PMID: 25895971 DOI: 10.1128/iai.00056-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2015] [Indexed: 12/31/2022] Open
Abstract
Cryptococcus neoformans is a fungal pathogen that causes pulmonary infections, which may progress into life-threatening meningitis. In commonly used mouse models of C. neoformans infections, fungal cells are not contained in the lungs, resulting in dissemination to the brain. We have previously reported the generation of an engineered C. neoformans strain (C. neoformans Δgcs1) which can be contained in lung granulomas in the mouse model and have shown that granuloma formation is dependent upon the enzyme sphingosine kinase 1 (SK1) and its product, sphingosine 1-phosphate (S1P). In this study, we have used four mouse models, CBA/J and C57BL6/J (both immunocompetent), Tgε26 (an isogenic strain of strain CBA/J lacking T and NK cells), and SK(-/-) (an isogenic strain of strain C57BL6/J lacking SK1), to investigate how the granulomatous response and SK1-S1P pathway are interrelated during C. neoformans infections. S1P and monocyte chemotactic protein-1 (MCP-1) levels were significantly elevated in the bronchoalveolar lavage fluid of all mice infected with C. neoformans Δgcs1 but not in mice infected with the C. neoformans wild type. SK1(-/-) mice did not show elevated levels of S1P or MCP-1. Primary neutrophils isolated from SK1(-/-) mice showed impaired antifungal activity that could be restored by the addition of extracellular S1P. In addition, high levels of tumor necrosis factor alpha were found in the mice infected with C. neoformans Δgcs1 in comparison to the levels found in mice infected with the C. neoformans wild type, and their levels were also dependent on the SK1-S1P pathway. Taken together, these results suggest that the SK1-S1P pathway promotes host defense against C. neoformans infections by regulating cytokine levels, promoting extracellular killing by phagocytes, and generating a granulomatous response.
Collapse
|
47
|
Jarvis JN, Meintjes G, Bicanic T, Buffa V, Hogan L, Mo S, Tomlinson G, Kropf P, Noursadeghi M, Harrison TS. Cerebrospinal fluid cytokine profiles predict risk of early mortality and immune reconstitution inflammatory syndrome in HIV-associated cryptococcal meningitis. PLoS Pathog 2015; 11:e1004754. [PMID: 25853653 PMCID: PMC4390200 DOI: 10.1371/journal.ppat.1004754] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 02/19/2015] [Indexed: 11/18/2022] Open
Abstract
Understanding the host immune response during cryptococcal meningitis (CM) is of critical importance for the development of immunomodulatory therapies. We profiled the cerebrospinal fluid (CSF) immune-response in ninety patients with HIV-associated CM, and examined associations between immune phenotype and clinical outcome. CSF cytokine, chemokine, and macrophage activation marker concentrations were assayed at disease presentation, and associations between these parameters and microbiological and clinical outcomes were examined using principal component analysis (PCA). PCA demonstrated a co-correlated CSF cytokine and chemokine response consisting primarily of Th1, Th2, and Th17-type cytokines. The presence of this CSF cytokine response was associated with evidence of increased macrophage activation, more rapid clearance of Cryptococci from CSF, and survival at 2 weeks. The key components of this protective immune-response were interleukin (IL)-6 and interferon-γ, IL-4, IL-10 and IL-17 levels also made a modest positive contribution to the PC1 score. A second component of co-correlated chemokines was identified by PCA, consisting primarily of monocyte chemotactic protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α). High CSF chemokine concentrations were associated with low peripheral CD4 cell counts and CSF lymphocyte counts and were predictive of immune reconstitution inflammatory syndrome (IRIS). In conclusion CSF cytokine and chemokine profiles predict risk of early mortality and IRIS in HIV-associated CM. We speculate that the presence of even minimal Cryptococcus-specific Th1-type CD4+ T-cell responses lead to increased recruitment of circulating lymphocytes and monocytes into the central nervous system (CNS), more effective activation of CNS macrophages and microglial cells, and faster organism clearance; while high CNS chemokine levels may predispose to over recruitment or inappropriate recruitment of immune cells to the CNS and IRIS following peripheral immune reconstitution with ART. These results provide a rational basis for future studies of immune modulation in CM, and demonstrate the potential of baseline immune profiling to identify CM patients most at risk of mortality and subsequent IRIS. Cryptococcal meningitis is a severe opportunistic infection, estimated to kill several hundred thousand HIV-infected individuals each year. One of the factors contributing to this high death toll is the inadequacy of antifungal treatments. As few novel antifungal drugs are being developed, several groups have started to investigate the potential of immune modulation, with treatments designed to change the patient’s immune response to infection. However, our understanding of the immune response to cryptococcal infection in HIV-infected patients, and how these responses impact on clinical outcomes, is limited. In this study, we took advantage of the fact that we can sample cerebrospinal fluid (CSF) from the site of the infection in patients when they develop cryptococcal meningitis. We undertook a detailed analysis measuring levels of immune response parameters in the CSF of these patients, and demonstrated that there were several distinct components of the immune response. Variations in these responses were associated with both the rate at which patients cleared their infection during treatment, and with mortality. Our results provide a basis for the development of future immunomodulatory therapies, and may allow identification of patients most at risk of dying, enabling more intensive treatments to be given to those at highest risk.
Collapse
Affiliation(s)
- Joseph N. Jarvis
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Botswana-UPenn Partnership, Gaborone, Botswana
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Desmond Tutu HIV Centre, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- * E-mail:
| | - Graeme Meintjes
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, South Africa
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Tihana Bicanic
- Research Centre for Infection and Immunity, Division of Clinical Sciences, St. George’s University of London, London, United Kingdom
| | - Viviana Buffa
- Research Centre for Infection and Immunity, Division of Clinical Sciences, St. George’s University of London, London, United Kingdom
| | - Louise Hogan
- Research Centre for Infection and Immunity, Division of Clinical Sciences, St. George’s University of London, London, United Kingdom
| | - Stephanie Mo
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Gillian Tomlinson
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Pascale Kropf
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Thomas S. Harrison
- Research Centre for Infection and Immunity, Division of Clinical Sciences, St. George’s University of London, London, United Kingdom
| |
Collapse
|
48
|
Davis MJ, Eastman AJ, Qiu Y, Gregorka B, Kozel TR, Osterholzer JJ, Curtis JL, Swanson JA, Olszewski MA. Cryptococcus neoformans-induced macrophage lysosome damage crucially contributes to fungal virulence. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:2219-31. [PMID: 25637026 PMCID: PMC4379045 DOI: 10.4049/jimmunol.1402376] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Upon ingestion by macrophages, Cryptococcus neoformans can survive and replicate intracellularly unless the macrophages become classically activated. The mechanism enabling intracellular replication is not fully understood; neither are the mechanisms that allow classical activation to counteract replication. C. neoformans-induced lysosome damage was observed in infected murine bone marrow-derived macrophages, increased with time, and required yeast viability. To demonstrate lysosome damage in the infected host, we developed a novel flow cytometric method for measuring lysosome damage. Increased lysosome damage was found in C. neoformans-containing lung cells compared with C. neoformans-free cells. Among C. neoformans-containing myeloid cells, recently recruited cells displayed lower damage than resident cells, consistent with the protective role of recruited macrophages. The magnitude of lysosome damage correlated with increased C. neoformans replication. Experimental induction of lysosome damage increased C. neoformans replication. Activation of macrophages with IFN-γ abolished macrophage lysosome damage and enabled increased killing of C. neoformans. We conclude that induction of lysosome damage is an important C. neoformans survival strategy and that classical activation of host macrophages counters replication by preventing damage. Thus, therapeutic strategies that decrease lysosomal damage, or increase resistance to such damage, could be valuable in treating cryptococcal infections.
Collapse
Affiliation(s)
- Michael J Davis
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Alison J Eastman
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Yafeng Qiu
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109; VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| | - Brian Gregorka
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Thomas R Kozel
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV 89557
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109; VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109; VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| | - Joel A Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109; VA Ann Arbor Healthcare System, Ann Arbor, MI 48105;
| |
Collapse
|
49
|
Wozniak KL, Olszewski MA, Wormley FL. Molecules at the interface of Cryptococcus and the host that determine disease susceptibility. Fungal Genet Biol 2014; 78:87-92. [PMID: 25445308 DOI: 10.1016/j.fgb.2014.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/22/2014] [Accepted: 10/25/2014] [Indexed: 10/24/2022]
Abstract
Cryptococcus neoformans and Cryptococcus gattii, the predominant etiological agents of cryptococcosis, are fungal pathogens that cause disease ranging from a mild pneumonia to life-threatening infections of the central nervous system (CNS). Resolution or exacerbation of Cryptococcus infection is determined following complex interactions of several host and pathogen derived factors. Alternatively, interactions between the host and pathogen may end in an impasse resulting in the establishment of a sub-clinical Cryptococcus infection. The current review addresses the delicate interaction between the host and Cryptococcus-derived molecules that determine resistance or susceptibility to infection. An emphasis will be placed on data highlighted at the recent 9th International Conference on Cryptococcus and Cryptococcosis (ICCC).
Collapse
Affiliation(s)
- Karen L Wozniak
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States; South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Michal A Olszewski
- Veterans Affairs Ann Arbor Health System, Ann Arbor, MI, United States; University of Michigan Medical School, Ann Arbor, MI, United States
| | - Floyd L Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States; South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States.
| |
Collapse
|
50
|
Murdock BJ, Teitz-Tennenbaum S, Chen GH, Dils AJ, Malachowski AN, Curtis JL, Olszewski MA, Osterholzer JJ. Early or late IL-10 blockade enhances Th1 and Th17 effector responses and promotes fungal clearance in mice with cryptococcal lung infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:4107-16. [PMID: 25225664 DOI: 10.4049/jimmunol.1400650] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The potent immunoregulatory properties of IL-10 can counteract protective immune responses and, thereby, promote persistent infections, as evidenced by studies of cryptococcal lung infection in IL-10-deficient mice. To further investigate how IL-10 impairs fungal clearance, the current study used an established murine model of C57BL/6J mice infected with Cryptococcus neoformans strain 52D. Our results demonstrate that fungal persistence is associated with an early and sustained expression of IL-10 by lung leukocytes. To examine whether IL-10-mediated immune modulation occurs during the early or late phase of infection, assessments of fungal burden and immunophenotyping were performed on mice treated with anti-IL-10R-blocking Ab at 3, 6, and 9 d postinfection (dpi) (early phase) or at 15, 18, and 21 dpi (late phase). We found that both early and late IL-10 blockade significantly improved fungal clearance within the lung compared with isotype control treatment when assessed 35 dpi. Immunophenotyping identified that IL-10 blockade enhanced several critical effector mechanisms, including increased accumulation of CD4(+) T cells and B cells, but not CD8(+) T cells; specific increases in the total numbers of Th1 and Th17 cells; and increased accumulation and activation of CD11b(+) dendritic cells and exudate macrophages. Importantly, IL-10 blockade effectively abrogated dissemination of C. neoformans to the brain. Collectively, this study identifies early and late cellular and molecular mechanisms through which IL-10 impairs fungal clearance and highlights the therapeutic potential of IL-10 blockade in the treatment of fungal lung infections.
Collapse
Affiliation(s)
- Benjamin J Murdock
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Seagal Teitz-Tennenbaum
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Gwo-Hsiao Chen
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Anthony J Dils
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Antoni N Malachowski
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Pulmonary Section, Medical Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109
| | - Michal A Olszewski
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Pulmonary Section, Medical Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109
| |
Collapse
|