1
|
Gupta A, Gomes I, Osman A, Fujita W, Devi LA. Regulation of Cannabinoid and Opioid Receptor Levels by Endogenous and Pharmacological Chaperones. J Pharmacol Exp Ther 2024; 391:279-288. [PMID: 39103231 PMCID: PMC11493451 DOI: 10.1124/jpet.124.002187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Cannabinoid and opioid receptor activities can be modulated by a variety of post-translational mechanisms including the formation of interacting complexes. This study examines the involvement of endogenous and exogenous chaperones in modulating the abundance and activity of cannabinoid CB1 receptor (CB1R), δ opioid receptor (DOR), and CB1R-DOR interacting complexes. Focusing on endogenous protein chaperones, namely receptor transporter proteins (RTPs), we examined relative mRNA expression in the mouse spinal cord and found RTP4 to be expressed at higher levels compared with other RTPs. Next, we assessed the effect of RTP4 on receptor abundance by manipulating RTP4 expression in cell lines. Overexpression of RTP4 causes an increase and knock-down causes a decrease in the levels of CB1R, DOR, and CB1R-DOR interacting complexes; this is accompanied by parallel changes in signaling. The ability of small molecule lipophilic ligands to function as exogenous chaperones was examined using receptor-selective antagonists. Long-term treatment leads to increases in receptor abundance and activity with no changes in mRNA supporting a role as pharmacological chaperones. Finally, the effect of cannabidiol (CBD), a small molecule ligand and a major active component of cannabis, on receptor abundance and activity in mice was examined. We find that CBD administration leads to increases in receptor abundance and activity in mouse spinal cord. Together, these results highlight a role for chaperones (proteins and small molecules) in modulating levels and activity of CB1R, DOR, and their interacting complexes potentially through mechanisms including receptor maturation and trafficking. SIGNIFICANCE STATEMENT: This study highlights a role for chaperones (endogenous and small membrane-permeable molecules) in modulating levels of cannabinoid CB1 receptor, delta opioid receptor, and their interacting complexes. These chaperones could be developed as therapeutics for pathologies involving these receptors.
Collapse
MESH Headings
- Animals
- Mice
- Molecular Chaperones/metabolism
- Receptor, Cannabinoid, CB1/metabolism
- Mice, Inbred C57BL
- Spinal Cord/metabolism
- Spinal Cord/drug effects
- Humans
- Cannabidiol/pharmacology
- Receptors, Opioid, delta/metabolism
- Male
- Receptors, Opioid/metabolism
- Receptors, Opioid/genetics
- HEK293 Cells
- Receptors, Cannabinoid/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Achla Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aya Osman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Wakako Fujita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
2
|
Zhang M, Li C, Xue Q, Lu CB, Zhao H, Meng FC, Zhang Y, Wu SX, Zhang Y, Xu H. Activation of Cannabinoid Receptor 1 in GABAergic Neurons in the Rostral Anterior Insular Cortex Contributes to the Analgesia Following Common Peroneal Nerve Ligation. Neurosci Bull 2023; 39:1348-1362. [PMID: 36773215 PMCID: PMC10465468 DOI: 10.1007/s12264-023-01029-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/25/2022] [Indexed: 02/12/2023] Open
Abstract
The rostral agranular insular cortex (RAIC) has been associated with pain modulation. Although the endogenous cannabinoid system (eCB) has been shown to regulate chronic pain, the roles of eCBs in the RAIC remain elusive under the neuropathic pain state. Neuropathic pain was induced in C57BL/6 mice by common peroneal nerve (CPN) ligation. The roles of the eCB were tested in the RAIC of ligated CPN C57BL/6J mice, glutamatergic, or GABAergic neuron cannabinoid receptor 1 (CB1R) knockdown mice with the whole-cell patch-clamp and pain behavioral methods. The E/I ratio (amplitude ratio between mEPSCs and mIPSCs) was significantly increased in layer V pyramidal neurons of the RAIC in CPN-ligated mice. Depolarization-induced suppression of inhibition but not depolarization-induced suppression of excitation in RAIC layer V pyramidal neurons were significantly increased in CPN-ligated mice. The analgesic effect of ACEA (a CB1R agonist) was alleviated along with bilateral dorsolateral funiculus lesions, with the administration of AM251 (a CB1R antagonist), and in CB1R knockdown mice in GABAergic neurons, but not glutamatergic neurons of the RAIC. Our results suggest that CB1R activation reinforces the function of the descending pain inhibitory pathway via reducing the inhibition of glutamatergic layer V neurons by GABAergic neurons in the RAIC to induce an analgesic effect in neuropathic pain.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Basic Medical Laboratory, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Cong Li
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Anesthesiology, Heze Municipal Hospital, Heze, 274031, China
| | - Qian Xue
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chang-Bo Lu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Huan Zhao
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fan-Cheng Meng
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Zhang
- Department of Cardiovascular Surgery, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Sheng-Xi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Zhang
- Department of Anesthesiology, Heze Municipal Hospital, Heze, 274031, China.
| | - Hui Xu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Farkas DJ, Cooper ZD, Heydari LN, Hughes AC, Rawls SM, Ward SJ. Kratom Alkaloids, Cannabinoids, and Chronic Pain: Basis of Potential Utility and Role in Therapy. Cannabis Cannabinoid Res 2023. [PMID: 37466474 DOI: 10.1089/can.2023.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Introduction: Chronic neuropathic pain is as a severe detriment to overall quality of life for millions of Americans. Current pharmacological treatment options for chronic neuropathic pain are generally limited in efficacy and may pose serious adverse effects such as risk of abuse, nausea, dizziness, and cardiovascular events. Therefore, many individuals have resorted to methods of pharmacological self-treatment. This narrative review summarizes the existing literature on the utilization of two novel approaches for the treatment of chronic pain, cannabinoid constituents of Cannabis sativa and alkaloid constituents of Mitragyna speciosa (kratom), and speculates on the potential therapeutic benefits of co-administration of these two classes of compounds. Methods: We conducted a narrative review summarizing the primary motivations for use of both kratom and cannabis products based on epidemiological data and summarize the pre-clinical evidence supporting the application of both kratom alkaloids and cannabinoids for the treatment of chronic pain. Data collection was performed using the PubMed electronic database. The following word combinations were used: kratom and cannabis, kratom and pain, cannabis and pain, kratom and chronic pain, and cannabis and chronic pain. Results: Epidemiological evidence reports that the self-treatment of pain is a primary motivator for use of both kratom and cannabinoid products among adult Americans. Further evidence shows that use of cannabinoid products may precede kratom use, and that a subset of individuals concurrently uses both kratom and cannabinoid products. Despite its growing popularity as a form of self-treatment of pain, there remains an immense gap in knowledge of the therapeutic efficacy of kratom alkaloids for chronic pain in comparison to that of cannabis-based products, with only three pre-clinical studies having been conducted to date. Conclusion: There is sufficient epidemiological evidence to suggest that both kratom and cannabis products are used to self-treat pain, and that some individuals actively use both drugs, which may produce potential additive or synergistic therapeutic benefits that have not yet been characterized. Given the lack of pre-clinical investigation into the potential therapeutic benefits of kratom alkaloids against forms of chronic pain, further research is warranted to better understand its application as a treatment alternative.
Collapse
Affiliation(s)
- Daniel J Farkas
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Ziva D Cooper
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California, USA
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, USA
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, California, USA
| | - Laila N Heydari
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Amanda C Hughes
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Sara Jane Ward
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Gaborit M, Massotte D. Therapeutic potential of opioid receptor heteromers in chronic pain and associated comorbidities. Br J Pharmacol 2023; 180:994-1013. [PMID: 34883528 DOI: 10.1111/bph.15772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/07/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022] Open
Abstract
Chronic pain affects 20% to 45% of the global population and is often associated with the development of anxio-depressive disorders. Treatment of this debilitating condition remains particularly challenging with opioids prescribed to alleviate moderate to severe pain. However, despite strong antinociceptive properties, numerous adverse effects limit opioid use in the clinic. Moreover, opioid misuse and abuse have become a major health concern worldwide. This prompted efforts to design original strategies that would efficiently and safely relieve pain. Targeting of opioid receptor heteromers is one of these. This review summarizes our current knowledge on the role of heteromers involving opioid receptors in the context of chronic pain and anxio-depressive comorbidities. It also examines how heteromerization in native tissue affects ligand binding, receptor signalling and trafficking properties. Finally, the therapeutic potential of ligands designed to specifically target opioid receptor heteromers is considered. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Marion Gaborit
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Dominique Massotte
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| |
Collapse
|
5
|
Peng B, Jiao Y, Zhang Y, Li S, Chen S, Xu S, Gao P, Fan Y, Yu W. Bulbospinal nociceptive ON and OFF cells related neural circuits and transmitters. Front Pharmacol 2023; 14:1159753. [PMID: 37153792 PMCID: PMC10157642 DOI: 10.3389/fphar.2023.1159753] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
The rostral ventromedial medulla (RVM) is a bulbospinal nuclei in the descending pain modulation system, and directly affects spinal nociceptive transmission through pronociceptive ON cells and antinociceptive OFF cells in this area. The functional status of ON and OFF neurons play a pivotal role in pain chronification. As distinct pain modulative information converges in the RVM and affects ON and OFF cell excitability, neural circuits and transmitters correlated to RVM need to be defined for an in-depth understanding of central-mediated pain sensitivity. In this review, neural circuits including the role of the periaqueductal gray, locus coeruleus, parabrachial complex, hypothalamus, amygdala input to the RVM, and RVM output to the spinal dorsal horn are discussed. Meanwhile, the role of neurotransmitters is concluded, including serotonin, opioids, amino acids, cannabinoids, TRPV1, substance P and cholecystokinin, and their dynamic impact on both ON and OFF cell activities in modulating pain transmission. Via clarifying potential specific receptors of ON and OFF cells, more targeted therapies can be raised to generate pain relief for patients who suffer from chronic pain.
Collapse
Affiliation(s)
- Bingxue Peng
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yunchun Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Shian Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Sihan Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yinghui Fan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- *Correspondence: Yinghui Fan, ; Weifeng Yu,
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- *Correspondence: Yinghui Fan, ; Weifeng Yu,
| |
Collapse
|
6
|
Jakubík J, Randáková A. Insights into the operational model of agonism of receptor dimers. Expert Opin Drug Discov 2022; 17:1181-1191. [PMID: 36369915 DOI: 10.1080/17460441.2023.2147502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Accurate ranking of efficacies and potencies of agonists is essential in the discovery of new selective agonists. For the purpose of system-independent ranking of agonists, the operational model of agonism (OMA) has become a standard. Many receptors function as oligomers which makes functional responses more complex, requiring an extension of the original OMA. AREAS COVERED Explicit equations of the operational model of agonism of receptor dimers (OMARD) were derived. The OMARD can be applied to any receptor possessing two orthosteric sites. The behavior of OMARD was analyzed to demonstrate its complexity and relation to experimental data. Properties of OMARD and OMA equations were compared to demonstrate their pros and cons. EXPERT OPINION Extension of OMA by slope factors gives simple equations of functional response that are easy to fit experimental data but results may be inaccurate because of exponentiation of operational efficacy. Also, such equations cannot accommodate bell-shaped curves. Explicit equations of OMARD give accurate results but are complex and tedious to fit experimental data. All operational models use inter-dependent parameters that are a hurdle in the fitting. A good understanding of OMARD behavior helps to overcome such obstacles.
Collapse
Affiliation(s)
- Jan Jakubík
- Laboratory of Neurochemistry, Institute of Physiology CAS, Prague, Czech Republic
| | - Alena Randáková
- Laboratory of Neurochemistry, Institute of Physiology CAS, Prague, Czech Republic
| |
Collapse
|
7
|
Toniolo EF, Gupta A, Franciosi AC, Gomes I, Devi LA, Dale CS. Interactions between cannabinoid and opioid receptors in a mouse model of diabetic neuropathy. Pain 2022; 163:1414-1423. [PMID: 34724682 PMCID: PMC9043031 DOI: 10.1097/j.pain.0000000000002527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Diabetic neuropathy, often associated with diabetes mellitus, is a painful condition with no known effective treatment except glycemic control. Studies with neuropathic pain models report alterations in cannabinoid and opioid receptor expression levels; receptors whose activation induces analgesia. We examined whether interactions between CB1R and opioid receptors could be targeted for the treatment of diabetic neuropathy. For this, we generated antibodies that selectively recognize native CB1R-MOR and CB1R-DOR heteromers using a subtractive immunization strategy. We assessed the levels of CB1R, MOR, DOR, and interacting complexes using a model of streptozotocin-induced diabetic neuropathy and detected increased levels of CB1R, MOR, DOR, and CB1R-MOR complexes compared with those in controls. An examination of G-protein signaling revealed that activity induced by the MOR, but not the DOR agonist, was potentiated by low nanomolar doses of CB1R ligands, including antagonists, suggesting an allosteric modulation of MOR signaling by CB1R ligands within CB1R-MOR complexes. Because the peptide endocannabinoid, hemopressin, caused a significant potentiation of MOR activity, we examined its effect on mechanical allodynia and found that it blocked allodynia in wild-type mice and mice with diabetic neuropathy lacking DOR (but have CB1R-MOR complexes). However, hemopressin does not alter the levels of CB1R-MOR complexes in diabetic mice lacking DOR but increases the levels of CB1R-DOR complexes in diabetic mice lacking MOR. Together, these results suggest the involvement of CB1R-MOR and CB1R-DOR complexes in diabetic neuropathy and that hemopressin could be developed as a potential therapeutic for the treatment of this painful condition.
Collapse
Affiliation(s)
- Elaine F. Toniolo
- Department of Pharmacology, University of Sao Paulo, Sao Paulo, Brazil
- Department of Anatomy, Laboratory of Neuromodulation and Experimental Pain, University of Sao Paulo, Sao Paulo, Brazil
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Hospital Sírio-Libanês, São Paulo, Brasil
| | - Achla Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Adriano C. Franciosi
- Department of Pharmacology, University of Sao Paulo, Sao Paulo, Brazil
- Department of Anatomy, Laboratory of Neuromodulation and Experimental Pain, University of Sao Paulo, Sao Paulo, Brazil
- Hospital Sírio-Libanês, São Paulo, Brasil
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lakshmi A. Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Camila S. Dale
- Department of Anatomy, Laboratory of Neuromodulation and Experimental Pain, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
8
|
Casadó-Anguera V, Casadó V. Unmasking allosteric binding sites: Novel targets for GPCR drug discovery. Expert Opin Drug Discov 2022; 17:897-923. [PMID: 35649692 DOI: 10.1080/17460441.2022.2085684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Unexpected non-apparent and hidden allosteric binding sites are non-classical and non-apparent allosteric centers in 3-D X-ray protein structures until orthosteric or allosteric ligands bind to them. The orthosteric center of one protomer that modulates binding centers of the other protomers within an oligomer is also an unexpected allosteric site. Furthermore, another partner protein can also produce these effects, acting as an unexpected allosteric modulator. AREAS COVERED This review summarizes both classical and non-classical allosterism. The authors focus on G protein-coupled receptor (GPCR) oligomers as a paradigm of allosteric molecules. Moreover, they show several examples of unexpected allosteric sites such as hidden allosteric sites in a protomer that appear after the interaction with other molecules and the allosterism exerted between orthosteric sites within GPCR oligomer, emphasizing on the allosteric modulations that can occur between binding sites. EXPERT OPINION The study of these new non-classical allosteric sites will expand the diversity of allosteric control on the function of orthosteric sites within proteins, whether GPCRs or other receptors, enzymes or transporters. Moreover, the design of new drugs targeting these hidden allosteric sites or already known orthosteric sites acting as allosteric sites in protein homo- or hetero-oligomers will increase the therapeutic potential of allosterism.
Collapse
Affiliation(s)
- Verònica Casadó-Anguera
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, and Institute of Biomedicine of the Universitat de Barcelona, Barcelona, Spain.,Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vicent Casadó
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, and Institute of Biomedicine of the Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Guidolin D, Tortorella C, Marcoli M, Maura G, Agnati LF. Intercellular Communication in the Central Nervous System as Deduced by Chemical Neuroanatomy and Quantitative Analysis of Images: Impact on Neuropharmacology. Int J Mol Sci 2022; 23:5805. [PMID: 35628615 PMCID: PMC9145073 DOI: 10.3390/ijms23105805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
In the last decades, new evidence on brain structure and function has been acquired by morphological investigations based on synergic interactions between biochemical anatomy approaches, new techniques in microscopy and brain imaging, and quantitative analysis of the obtained images. This effort produced an expanded view on brain architecture, illustrating the central nervous system as a huge network of cells and regions in which intercellular communication processes, involving not only neurons but also other cell populations, virtually determine all aspects of the integrative function performed by the system. The main features of these processes are described. They include the two basic modes of intercellular communication identified (i.e., wiring and volume transmission) and mechanisms modulating the intercellular signaling, such as cotransmission and allosteric receptor-receptor interactions. These features may also open new possibilities for the development of novel pharmacological approaches to address central nervous system diseases. This aspect, with a potential major impact on molecular medicine, will be also briefly discussed.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Manuela Marcoli
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (G.M.)
| | - Guido Maura
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
10
|
Liu WM, Hall NK, Liu HSY, Hood FL, Dalgleish AG. Combination of cannabidiol with low‑dose naltrexone increases the anticancer action of chemotherapy in vitro and in vivo. Oncol Rep 2022; 47:76. [PMID: 35179218 DOI: 10.3892/or.2022.8287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 11/06/2022] Open
Abstract
We previously reported that both cannabidiol (CBD) and low‑dose naltrexone (LDN) exhibit complex effects on G‑protein coupled receptors, which can impact the expression and function of other members of this superfamily. These receptors feed into and interact with central signalling cascades that determine the ease by which cells engage in apoptosis, and can be used as a way to prime cancer cells to other treatments. The present study was designed to investigate the effect of combining these two agents on cancer cell lines in vitro and in a mouse model, and focused on how the sequence of administration may affect the overall action. The results showed both agents had minimal effect on cell numbers when used simultaneously; however, the combination of LDN and CBD, delivered in this specific sequence, significantly reduced the number of cells, and was superior to the regimen where the order of the agents was reversed. For example, there was a 35% reduction in cell numbers when using LDN before CBD compared to a 22% reduction when using CBD before LDN. The two agents also sensitised cells to chemotherapy as significant decreases in cell viability were observed when they were used before chemotherapy. In mouse models, the use of both agents enhanced the effect of gemcitabine, and crucially, their use resulted in no significant toxicity in the mice, which actually gained more weight compared to those without this pre‑treatment (+6.5 vs. 0%). Overall, the results highlight the importance of drug sequence when using these drugs. There is also a need to translate these observations into standard chemotherapy regimens, especially for common tumour types where treatment is often not completed due to toxicities.
Collapse
Affiliation(s)
- Wai M Liu
- Institute for Infection and Immunity, St George's University of London, London SW17 0RE, UK
| | - Nadine K Hall
- Institute for Infection and Immunity, St George's University of London, London SW17 0RE, UK
| | - Harry S Y Liu
- Institute for Infection and Immunity, St George's University of London, London SW17 0RE, UK
| | | | - Angus G Dalgleish
- Institute for Infection and Immunity, St George's University of London, London SW17 0RE, UK
| |
Collapse
|
11
|
Papa A, Pasquini S, Contri C, Gemma S, Campiani G, Butini S, Varani K, Vincenzi F. Polypharmacological Approaches for CNS Diseases: Focus on Endocannabinoid Degradation Inhibition. Cells 2022; 11:cells11030471. [PMID: 35159280 PMCID: PMC8834510 DOI: 10.3390/cells11030471] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Polypharmacology breaks up the classical paradigm of “one-drug, one target, one disease” electing multitarget compounds as potential therapeutic tools suitable for the treatment of complex diseases, such as metabolic syndrome, psychiatric or degenerative central nervous system (CNS) disorders, and cancer. These diseases often require a combination therapy which may result in positive but also negative synergistic effects. The endocannabinoid system (ECS) is emerging as a particularly attractive therapeutic target in CNS disorders and neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), stroke, traumatic brain injury (TBI), pain, and epilepsy. ECS is an organized neuromodulatory network, composed by endogenous cannabinoids, cannabinoid receptors type 1 and type 2 (CB1 and CB2), and the main catabolic enzymes involved in the endocannabinoid inactivation such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The multiple connections of the ECS with other signaling pathways in the CNS allows the consideration of the ECS as an optimal source of inspiration in the development of innovative polypharmacological compounds. In this review, we focused our attention on the reported polypharmacological examples in which FAAH and MAGL inhibitors are involved.
Collapse
Affiliation(s)
- Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Silvia Pasquini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
- Correspondence: ; Tel.: +39-0577-234161
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| |
Collapse
|
12
|
Oyagawa CRM, Grimsey NL. Cannabinoid receptor CB 1 and CB 2 interacting proteins: Techniques, progress and perspectives. Methods Cell Biol 2021; 166:83-132. [PMID: 34752341 DOI: 10.1016/bs.mcb.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cannabinoid receptors 1 and 2 (CB1 and CB2) are implicated in a range of physiological processes and have gained attention as promising therapeutic targets for a number of diseases. Protein-protein interactions play an integral role in modulating G protein-coupled receptor (GPCR) expression, subcellular distribution and signaling, and the identification and characterization of these will not only improve our understanding of GPCR function and biology, but may provide a novel avenue for therapeutic intervention. A variety of techniques are currently being used to investigate GPCR protein-protein interactions, including Förster/fluorescence and bioluminescence resonance energy transfer (FRET and BRET), proximity ligation assay (PLA), and bimolecular fluorescence complementation (BiFC). However, the reliable application of these methodologies is dependent on the use of appropriate controls and the consideration of the physiological context. Though not as extensively characterized as some other GPCRs, the investigation of CB1 and CB2 interacting proteins is a growing area of interest, and a range of interacting partners have been identified to date. This review summarizes the current state of the literature regarding the cannabinoid receptor interactome, provides commentary on the methodologies and techniques utilized, and discusses future perspectives.
Collapse
Affiliation(s)
- Caitlin R M Oyagawa
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
13
|
Stith SS, Diviant JP, Brockelman F, Keeling K, Hall B, Lucern S, Vigil JM. Alleviative effects of Cannabis flower on migraine and headache. JOURNAL OF INTEGRATIVE MEDICINE 2020; 18:416-424. [PMID: 32758396 DOI: 10.1016/j.joim.2020.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 04/01/2020] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Few studies to date have measured the real-time effects of consumption of common and commercially available Cannabis products for the treatment of headache and migraine under naturalistic conditions. This study examines, for the first time, the effectiveness of using dried Cannabis flower, the most widely used type of Cannabis product in the United States, in actual time for treatment of headache- and migraine-related pain and the associations between different product characteristics and changes in symptom intensity following Cannabis use. METHODS Between 06/10/2016 and 02/12/2019, 699 people used the Releaf Application to record real-time details of their Cannabis use, including product characteristics and symptom intensity levels prior to and following self-administration; data included 1910 session-level attempts to treat headache- (1328 sessions) or migraine-related pain (582 sessions). Changes in headache- or migraine-related pain intensity were measured on a 0-10 scale prior to, and immediately, following Cannabis consumption. RESULTS Ninety-four percent of users experienced symptom relief within a two-hour observation window. The average symptom intensity reduction was 3.3 points on a 0-10 scale (standard deviation = 2.28, Cohen's d = 1.58), with males experiencing greater relief than females (P < 0.001) and a trend that younger users (< 35 years) experience greater relief than older users (P = 0.08). Mixed effects regression models showed that, among the known (i.e., labeled) product characteristics, tetrahydrocannabinol levels 10% and higher are the strongest independent predictors of symptom relief, and this effect is particularly prominent in headache rather than migraine sufferers (P < 0.05), females (P < 0.05) and younger users (P < 0.001). Females and younger users also appear to gain greater symptom relief from flower labeled as "C. indica" rather than "C. sativa" or other hybrid strains. CONCLUSION These results suggest that whole dried Cannabis flower may be an effective medication for treatment of migraine- and headache-related pain, but the effectiveness differs according to characteristics of the Cannabis plant, the combustion methods, and the age and gender of the patient.
Collapse
Affiliation(s)
- Sarah S Stith
- Department of Economics, Faculty of Economics, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Jegason P Diviant
- Department of Psychology, Student of Psychology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Franco Brockelman
- Morebetter Ltd. Software Developer, Hyattsville, Maryland 20781, USA
| | - Keenan Keeling
- Morebetter Ltd. Software Developer, Hyattsville, Maryland 20781, USA
| | - Branden Hall
- Morebetter Ltd. Software Developer, Hyattsville, Maryland 20781, USA
| | - Storri Lucern
- Department of Psychology, Student of Psychology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Jacob M Vigil
- Department of Psychology, Faculty of Psychology, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| |
Collapse
|
14
|
Lu HC, Mackie K. Review of the Endocannabinoid System. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:607-615. [PMID: 32980261 DOI: 10.1016/j.bpsc.2020.07.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 01/02/2023]
Abstract
The endocannabinoid system (ECS) is a widespread neuromodulatory network involved in the developing central nervous system as well as playing a major role in tuning many cognitive and physiological processes. The ECS is composed of endogenous cannabinoids, cannabinoid receptors, and the enzymes responsible for the synthesis and degradation of endocannabinoids. In addition to its endogenous roles, cannabinoid receptors are the primary target of Δ9-tetrahydrocannabinol, the intoxicating component of cannabis. In this review, we summarize our current understanding of the ECS. We start with a description of ECS components and their role in synaptic plasticity and neurodevelopment, and then discuss how phytocannabinoids and other exogenous compounds may perturb the ECS, emphasizing examples relevant to psychosis.
Collapse
Affiliation(s)
- Hui-Chen Lu
- Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, Indiana
| | - Ken Mackie
- Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, Indiana.
| |
Collapse
|
15
|
Bartuzi D, Wróbel TM, Kaczor AA, Matosiuk D. Tuning Down the Pain - An Overview of Allosteric Modulation of Opioid Receptors: Mechanisms of Modulation, Allosteric Sites, Modulator Syntheses. Curr Top Med Chem 2020; 20:2852-2865. [PMID: 32479245 DOI: 10.2174/1568026620666200601155451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 01/09/2023]
Abstract
Opioid signaling plays a central role in pain perception. As such, it remains the main target in the development of antinociceptive agents, despite serious side effects involved. In recent years, hopes for improved opioid painkillers are rising, together with our understanding of allosterism and biased signaling mechanisms. In this review, we focus on recently discovered allosteric modulators of opioid receptors, insights into phenomena underlying their action, as well as on how they extend our understanding of mechanisms of previously known compounds. A brief overlook of their synthesis is also presented.
Collapse
Affiliation(s)
- Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| | - Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
16
|
Tiwari V, He SQ, Huang Q, Liang L, Yang F, Chen Z, Tiwari V, Fujita W, Devi LA, Dong X, Guan Y, Raja SN. Activation of µ-δ opioid receptor heteromers inhibits neuropathic pain behavior in rodents. Pain 2020; 161:842-855. [PMID: 31815916 PMCID: PMC7085422 DOI: 10.1097/j.pain.0000000000001768] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several reports support the idea that µ- and δ-opioid receptors (ORs) may exist as heterodimers in brain regions involved in pain signaling. The unique pharmacology of these heteromers may present a novel analgesic target. However, the role of µ-δ heteromers in sensory neurons involved in pain and opioid analgesia remains unclear, particularly during neuropathic pain. We examined the effects of spinal nerve injury on µ-δ heteromer expression in dorsal root ganglion (DRG) neurons and the effects of a µ-δ heteromer-targeting agonist, CYM51010, on neuropathic pain behavior in rats and mice. An L5 spinal nerve ligation (SNL) in rats significantly decreased µ-δ heteromer expression in L5 DRG but increased heteromer levels in uninjured L4 DRG. Importantly, in SNL rats, subcutaneous injection of CYM51010 inhibited mechanical hypersensitivity in a dose-related manner (EC50: 1.09 mg/kg) and also reversed heat hyperalgesia and attenuated ongoing pain (2 mg/kg, subcutaneously). HEK-293T cell surface-labeled with µ- and δ-ORs internalized both receptors after exposure to CYM51010. By contrast, in cells transfected with µ-OR alone, CYM51010 was significantly less effective at inducing receptor internalization. Electrophysiologic studies showed that CYM51010 inhibited the C-component and windup phenomenon in spinal wide dynamic range neurons of SNL rats. The pain inhibitory effects of CYM51010 persisted in morphine-tolerant rats but was markedly attenuated in µ-OR knockout mice. Our studies show that spinal nerve injury may increase µ-δ heterodimerization in uninjured DRG neurons, and that µ-δ heteromers may be a potential therapeutic target for relieving neuropathic pain, even under conditions of morphine tolerance.
Collapse
Affiliation(s)
- Vinod Tiwari
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Lingli Liang
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Fei Yang
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Zhiyong Chen
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Vineeta Tiwari
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Wakako Fujita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lakshmi A. Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Howard Hughes Medical Institute, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurological Surgery, the Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Srinivasa N. Raja
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
17
|
Wei F, Zhao L, Jing Y. Hemoglobin-derived peptides and mood regulation. Peptides 2020; 127:170268. [PMID: 32070683 DOI: 10.1016/j.peptides.2020.170268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Evidence accumulated over the past decades has revealed that red blood cells and hemoglobin (Hb) in the blood play important roles in modulating moods and emotions. The number of red blood cells affects the mood. Hb is the principal content in the red blood cells besides water. Denatured Hb is hydrolyzed to produce bioactive peptides. RVD-hemopressin α (RVD-Hpα), which is a fragment of α-chain (95-103) in Hb, functions as a negative allosteric modulator of cannabinoid receptor 1 and a positive allosteric modulator of cannabinoid receptor 2. Hemorphins, which are fragments of β-chain in Hb, exert their effects on opioid receptors. Two hemorphins, namely, LVV-hemorphin-6 and LVV-hemorphin-7, could induce anxiolytic-like effects. The use of Hb-derived bioactive peptides for the treatment of mood disorders is desirable due to cannabinoid-opioid cross modulation and the critical roles of the two systems in physiological processes, such as memory, mood and emotion.
Collapse
Affiliation(s)
- Fengmei Wei
- Department of Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Long Zhao
- Department of Orthopaedics, Lanzhou University First Affiliated Hospital, Lanzhou, Gansu, 730000, PR China
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
18
|
Exploring functional consequences of GPCR oligomerization requires a different lens. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:181-211. [DOI: 10.1016/bs.pmbts.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Paulsen RT, Burrell BD. Comparative studies of endocannabinoid modulation of pain. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190279. [PMID: 31544609 PMCID: PMC6790382 DOI: 10.1098/rstb.2019.0279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2019] [Indexed: 01/21/2023] Open
Abstract
Cannabinoid-based therapies have long been used to treat pain, but there remain questions about their actual mechanisms and efficacy. From an evolutionary perspective, the cannabinoid system would appear to be highly conserved given that the most prevalent endogenous cannabinoid (endocannabinoid) transmitters, 2-arachidonyl glycerol and anandamide, have been found throughout the animal kingdom, at least in the species that have been analysed to date. This review will first examine recent findings regarding the potential conservation across invertebrates and chordates of the enzymes responsible for endocannabinoid synthesis and degradation and the receptors that these transmitters act on. Next, comparisons of how endocannabinoids modulate nociception will be examined for commonalities between vertebrates and invertebrates, with a focus on the medicinal leech Hirudo verbana. Evidence is presented that there are distinct, evolutionarily conserved anti-nociceptive and pro-nociceptive effects. The combined studies across various animal phyla demonstrate the utility of using comparative approaches to understand conserved mechanisms for modulating nociception. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
| | - Brian D. Burrell
- Division of Basic Biomedical Sciences, Neuroscience, Nanotechnology, and Networks Program, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
20
|
ZUBRZYCKI M, STASIOLEK M, ZUBRZYCKA M. Opioid and Endocannabinoid System in Orofacial Pain. Physiol Res 2019; 68:705-715. [DOI: 10.33549/physiolres.934159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Orofacial pain disorders are frequent in the general population and their pharmacological treatment is difficult and controversial. Therefore, the search for novel, safe and efficient analgesics is an important but still elusive goal for contemporary medicine. In the recent years, the antinociceptive potential of endocannabinoids and opioids has been emphasized. However, concerns for the safety of their use limit their clinical applications. the possibility of modulating the activity of endocannabinoids by regulation of their synthesis and/or degradation offers an innovative approach to the treatment of pain. A rat model of trigeminal pain, utilizing tongue jerks evoked by electrical tooth pulp stimulation during perfusion of the cerebral ventricles with various neurotransmitter solutions can be used in the pharmacological studies of nociception in the orofacial area. The aim of this review is to present the effects of pharmacological activity of opioids and endocannabinoids affecting the transmission of the sensory information from the orofacial area on the example of trigemino-hypoglossal reflex in rats.
Collapse
Affiliation(s)
- M. ZUBRZYCKI
- Department of Cardiovascular and Thoracic Surgery, University of Ulm, Ulm, Germany,
| | - M. STASIOLEK
- Department of Neurology, Medical University of Lodz, Lodz, Poland
| | - M. ZUBRZYCKA
- Department of Cardiovascular Physiology, Interdepartmental Chair of Experimental and Clinical Physiology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
21
|
Li X, Vigil JM, Stith SS, Brockelman F, Keeling K, Hall B. The effectiveness of self-directed medical cannabis treatment for pain. Complement Ther Med 2019; 46:123-130. [DOI: 10.1016/j.ctim.2019.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/16/2019] [Accepted: 07/26/2019] [Indexed: 12/23/2022] Open
|
22
|
Casadó-Anguera V, Cortés A, Casadó V, Moreno E. Targeting the receptor-based interactome of the dopamine D1 receptor: looking for heteromer-selective drugs. Expert Opin Drug Discov 2019; 14:1297-1312. [DOI: 10.1080/17460441.2019.1664469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Verònica Casadó-Anguera
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Antoni Cortés
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Vicent Casadó
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Estefanía Moreno
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
23
|
Heteromerization fingerprints between bradykinin B2 and thromboxane TP receptors in native cells. PLoS One 2019; 14:e0216908. [PMID: 31086419 PMCID: PMC6516669 DOI: 10.1371/journal.pone.0216908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Bradykinin (BK) and thromboxane-A2 (TX-A2) are two vasoactive mediators that modulate vascular tone and inflammation via binding to their cognate "class A" G-protein coupled receptors (GPCRs), BK-B2 receptors (B2R) and TX-prostanoid receptors (TP), respectively. Both BK and TX-A2 lead to ERK1/2-mediated vascular smooth muscle cell (VSMC) proliferation and/or hypertrophy. While each of B2R and TP could form functional dimers with various GPCRs, the likelihood that B2R-TP heteromerization could contribute to their co-regulation has never been investigated. The main objective of this study was to investigate the mode of B2R and TP interaction in VSMC, and its possible impact on downstream signaling. Our findings revealed synergistically activated ERK1/2 following co-stimulation of rat VSMC with a subthreshold dose of BK and effective doses of the TP stable agonist, IBOP, possibly involving biased agonist signaling. Single detection of each of B2R and TP in VSMC, using in-situ proximity ligation assay (PLA), provided evidence of the constitutive expression of nuclear and extranuclear B2R and TP. Moreover, inspection of B2R-TP PLA signals in VSMC revealed agonist-modulated nuclear and extranuclear proximity between B2R and TP, whose quantification varied substantially following single versus dual agonist stimulations. B2R-TP interaction was further verified by the findings of co-immunoprecipitation (co-IP) analysis of VSMC lysates. To our knowledge, this is the first study that provides evidence supporting the existence of B2R-TP heteromerization fingerprints in primary cultured VSMC.
Collapse
|
24
|
Banister SD, Krishna Kumar K, Kumar V, Kobilka BK, Malhotra SV. Selective modulation of the cannabinoid type 1 (CB 1) receptor as an emerging platform for the treatment of neuropathic pain. MEDCHEMCOMM 2019; 10:647-659. [PMID: 31191856 PMCID: PMC6533890 DOI: 10.1039/c8md00595h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/12/2019] [Indexed: 12/27/2022]
Abstract
Neuropathic pain is caused by a lesion or dysfunction in the nervous system, and it may arise from illness, be drug-induced or caused by toxin exposure. Since the discovery of two G-protein-coupled cannabinoid receptors (CB1 and CB2) nearly three decades ago, there has been a rapid expansion in our understanding of cannabinoid pharmacology. This is currently one of the most active fields of neuropharmacology, and interest has emerged in developing cannabinoids and other small molecule modulators of CB1 and CB2 as therapeutics for neuropathic pain. This short review article provides an overview of the chemotypes currently under investigation for the development of novel neuropathic pain treatments targeting CB1 receptors.
Collapse
Affiliation(s)
- Samuel D Banister
- Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| | - Kaavya Krishna Kumar
- Department of Molecular and Cellular Physiology , Stanford University School of Medicine , Stanford , CA 94305 , USA
| | - Vineet Kumar
- Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology , Stanford University School of Medicine , Stanford , CA 94305 , USA
| | - Sanjay V Malhotra
- Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| |
Collapse
|
25
|
Lesniak A, Chmielewska D, Poznanski P, Bujalska-Zadrozny M, Strzemecka J, Sacharczuk M. Divergent Response to Cannabinoid Receptor Stimulation in High and Low Stress-Induced Analgesia Mouse Lines Is Associated with Differential G-Protein Activation. Neuroscience 2019; 404:246-258. [DOI: 10.1016/j.neuroscience.2019.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022]
|
26
|
Cunningham CW, Elballa WM, Vold SU. Bifunctional opioid receptor ligands as novel analgesics. Neuropharmacology 2019; 151:195-207. [PMID: 30858102 DOI: 10.1016/j.neuropharm.2019.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/30/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Prolonged treatment of chronic severe pain with opioid analgesics is frought with problematic adverse effects including tolerance, dependence, and life-threatening respiratory depression. Though these effects are mediated predominately through preferential activation of μ opioid peptide (μOP) receptors, there is an emerging appreciation that actions at κOP and δOP receptors contribute to the observed pharmacologic and behavioral profile of μOP receptor agonists and may be targeted simultaneously to afford improved analgesic effects. Recent developments have also identified the related nociceptin opioid peptide (NOP) receptor as a key modulator of the effects of μOP receptor signaling. We review here the available literature describing OP neurotransmitter systems and highlight recent drug and probe design strategies.
Collapse
Affiliation(s)
| | - Waleed M Elballa
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| | - Stephanie U Vold
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| |
Collapse
|
27
|
Therapeutic targeting of HER2-CB 2R heteromers in HER2-positive breast cancer. Proc Natl Acad Sci U S A 2019; 116:3863-3872. [PMID: 30733293 DOI: 10.1073/pnas.1815034116] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although human epidermal growth factor receptor 2 (HER2)-targeted therapies have dramatically improved the clinical outcome of HER2-positive breast cancer patients, innate and acquired resistance remains an important clinical challenge. New therapeutic approaches and diagnostic tools for identification, stratification, and treatment of patients at higher risk of resistance and recurrence are therefore warranted. Here, we unveil a mechanism controlling the oncogenic activity of HER2: heteromerization with the cannabinoid receptor CB2R. We show that HER2 physically interacts with CB2R in breast cancer cells, and that the expression of these heteromers correlates with poor patient prognosis. The cannabinoid Δ9-tetrahydrocannabinol (THC) disrupts HER2-CB2R complexes by selectively binding to CB2R, which leads to (i) the inactivation of HER2 through disruption of HER2-HER2 homodimers, and (ii) the subsequent degradation of HER2 by the proteasome via the E3 ligase c-CBL. This in turn triggers antitumor responses in vitro and in vivo. Selective targeting of CB2R transmembrane region 5 mimicked THC effects. Together, these findings define HER2-CB2R heteromers as new potential targets for antitumor therapies and biomarkers with prognostic value in HER2-positive breast cancer.
Collapse
|
28
|
Pacheco DDF, Romero TRL, Duarte IDG. Ketamine induces central antinociception mediated by endogenous cannabinoids and activation of CB 1 receptors. Neurosci Lett 2019; 699:140-144. [PMID: 30716423 DOI: 10.1016/j.neulet.2019.01.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 02/01/2023]
Abstract
The participation of endocannabinoids in central and peripheral antinociception induced by several compounds has been shown by our group. In this study, we investigated the effect of endocannabinoids on the central antinociception induced by ketamine. The nociceptive threshold for thermal stimulation was measured using the tail-flick test in Swiss mice. The drugs were administered intracerebroventricularly. Probabilities less than 5% (p < 0.05) were considered to be statistically significant (Two-way ANOVA/Bonferroni's test). The CB1-selective cannabinoid receptor antagonist AM251 (2 and 4 μg) completely reversed the central antinociception induced by ketamine (4 μg) in a dose-dependent manner. In contrast, the CB2-selective cannabinoid receptor antagonist AM630 (2 and 4 μg) did not antagonize this effect. Additionally, the administration of the anandamide amidase inhibitor MAFP (0.2 μg) and anandamide uptake inhibitor VDM11 (4 μg) significantly enhanced the antinociception induced by a low dose of ketamine (2 μg). It was concluded that central antinociception induced by ketamine involves the activation of CB1 cannabinoid receptors. Mobilization of cannabinoids might be required for the activation of those receptors, since inhibitors of the endogenous cannabinoids potentiate the effect of Ketamine.
Collapse
Affiliation(s)
- Daniela da Fonseca Pacheco
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270.100, Belo Horizonte, Brazil.
| | - Thiago Roberto Lima Romero
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270.100, Belo Horizonte, Brazil.
| | - Igor Dimitri Gama Duarte
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270.100, Belo Horizonte, Brazil.
| |
Collapse
|
29
|
Guidolin D, Marcoli M, Tortorella C, Maura G, Agnati LF. Receptor-Receptor Interactions as a Widespread Phenomenon: Novel Targets for Drug Development? Front Endocrinol (Lausanne) 2019; 10:53. [PMID: 30833931 PMCID: PMC6387912 DOI: 10.3389/fendo.2019.00053] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
The discovery of receptor-receptor interactions (RRI) has expanded our understanding of the role that G protein-coupled receptors (GPCRs) play in intercellular communication. The finding that GPCRs can operate as receptor complexes, and not only as monomers, suggests that several different incoming signals could already be integrated at the plasma membrane level via direct allosteric interactions between the protomers that form the complex. Most research in this field has focused on neuronal populations and has led to the identification of a large number of RRI. However, RRI have been seen to occur not only in neurons but also in astrocytes and, outside the central nervous system, in cells of the cardiovascular and endocrine systems and in cancer cells. Furthermore, RRI involving the formation of macromolecular complexes are not limited to GPCRs, being also observed in other families of receptors. Thus, RRI appear as a widespread phenomenon and oligomerization as a common mechanism for receptor function and regulation. The discovery of these macromolecular assemblies may well have a major impact on pharmacology. Indeed, the formation of receptor complexes significantly broadens the spectrum of mechanisms available to receptors for recognition and signaling, which may be implemented through modulation of the binding sites of the adjacent protomers and of their signal transduction features. In this context, the possible appearance of novel allosteric sites in the receptor complex structure may be of particular relevance. Thus, the existence of RRI offers the possibility of new therapeutic approaches, and novel pharmacological strategies for disease treatment have already been proposed. Several challenges, however, remain. These include the accurate characterization of the role that the receptor complexes identified so far play in pathological conditions and the development of ligands specific to given receptor complexes, in order to efficiently exploit the pharmacological properties of these complexes.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, Padova, Italy
- *Correspondence: Diego Guidolin
| | - Manuela Marcoli
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | | | - Guido Maura
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Derouiche L, Massotte D. G protein-coupled receptor heteromers are key players in substance use disorder. Neurosci Biobehav Rev 2018; 106:73-90. [PMID: 30278192 DOI: 10.1016/j.neubiorev.2018.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptors (GPCR) represent the largest family of membrane proteins in the human genome. Physical association between two different GPCRs is linked to functional interactions which generates a novel entity, called heteromer, with specific ligand binding and signaling properties. Heteromerization is increasingly recognized to take place in the mesocorticolimbic pathway and to contribute to various aspects related to substance use disorder. This review focuses on heteromers identified in brain areas relevant to drug addiction. We report changes at the molecular and cellular levels that establish specific functional impact and highlight behavioral outcome in preclinical models. Finally, we briefly discuss selective targeting of native heteromers as an innovative therapeutic option.
Collapse
Affiliation(s)
- Lyes Derouiche
- Institut des Neurosciences Cellulaires et Integratives, UPR 3212, 5 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Dominique Massotte
- Institut des Neurosciences Cellulaires et Integratives, UPR 3212, 5 rue Blaise Pascal, F-67000 Strasbourg, France.
| |
Collapse
|
31
|
Guidolin D, Marcoli M, Tortorella C, Maura G, Agnati LF. G protein-coupled receptor-receptor interactions give integrative dynamics to intercellular communication. Rev Neurosci 2018; 29:703-726. [DOI: 10.1515/revneuro-2017-0087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/01/2018] [Indexed: 01/14/2023]
Abstract
Abstract
The proposal of receptor-receptor interactions (RRIs) in the early 1980s broadened the view on the role of G protein-coupled receptors (GPCR) in the dynamics of the intercellular communication. RRIs, indeed, allow GPCR to operate not only as monomers but also as receptor complexes, in which the integration of the incoming signals depends on the number, spatial arrangement, and order of activation of the protomers forming the complex. The main biochemical mechanisms controlling the functional interplay of GPCR in the receptor complexes are direct allosteric interactions between protomer domains. The formation of these macromolecular assemblies has several physiologic implications in terms of the modulation of the signaling pathways and interaction with other membrane proteins. It also impacts on the emerging field of connectomics, as it contributes to set and tune the synaptic strength. Furthermore, recent evidence suggests that the transfer of GPCR and GPCR complexes between cells via the exosome pathway could enable the target cells to recognize/decode transmitters and/or modulators for which they did not express the pertinent receptors. Thus, this process may also open the possibility of a new type of redeployment of neural circuits. The fundamental aspects of GPCR complex formation and function are the focus of the present review article.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience , University of Padova, via Gabelli 65 , I-35121 Padova , Italy
| | - Manuela Marcoli
- Department of Pharmacy and Center of Excellence for Biomedical Research , University of Genova , I-16126 Genova , Italy
| | - Cinzia Tortorella
- Department of Neuroscience , University of Padova, via Gabelli 65 , I-35121 Padova , Italy
| | - Guido Maura
- Department of Pharmacy and Center of Excellence for Biomedical Research , University of Genova , I-16126 Genova , Italy
| | - Luigi F. Agnati
- Department of Biomedical Sciences , University of Modena and Reggio Emilia , I-41121 Modena , Italy
- Department of Neuroscience , Karolinska Institutet , S-17177 Stockholm , Sweden
| |
Collapse
|
32
|
Wang L, Yuan Y, Chen X, Chen J, Guo Y, Li M, Li C, Pu X. Probing the cooperative mechanism of the μ–δ opioid receptor heterodimer by multiscale simulation. Phys Chem Chem Phys 2018; 20:29969-29982. [DOI: 10.1039/c8cp06652c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The activation-cooperativity of the μ–δ opioid receptor heterodimer was probed by multiscale simulation coupled with a protein structure network.
Collapse
Affiliation(s)
- Longrong Wang
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Yuan Yuan
- College of Management
- Southwest University for Nationalities
- Chengdu 610041
- P. R. China
| | - Xin Chen
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Jiangfan Chen
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Yanzhi Guo
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Menglong Li
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Chuan Li
- College of Computer Science
- Sichuan University
- Chengdu
- P. R. China
| | - Xuemei Pu
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| |
Collapse
|
33
|
Roeckel LA, Massotte D, Olmstead MC, Befort K. CB1 Agonism Alters Addiction-Related Behaviors in Mice Lacking Mu or Delta Opioid Receptors. Front Psychiatry 2018; 9:630. [PMID: 30542301 PMCID: PMC6277797 DOI: 10.3389/fpsyt.2018.00630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
Opioids are powerful analgesics but the clinical utility of these compounds is reduced by aversive outcomes, including the development of affective and substance use disorders. Opioid systems do not function in isolation so understanding how these interact with other neuropharmacological systems could lead to novel therapeutics that minimize withdrawal, tolerance, and emotional dysregulation. The cannabinoid system is an obvious candidate as anatomical, pharmacological, and behavioral studies point to opioid-cannabinoid interactions in the mediation of these processes. The aim of our study is to uncover the role of specific cannabinoid and opioid receptors in addiction-related behaviors, specifically nociception, withdrawal, anxiety, and depression. To do so, we tested the effects of a selective CB1 agonist, arachidonyl-2-chloroethylamide (ACEA), on mouse behavior in tail immersion, naloxone-precipitated withdrawal, light-dark, and splash tests. We examined cannabinoid-opioid interactions in these tests by comparing responses of wildtype (WT) mice to mutant lines lacking either Mu or Delta opioid receptors. ACEA, both acute or repeated injections, had no effect on nociceptive thresholds in WT or Mu knockout (KO) mice suggesting that analgesic properties of CB1 agonists may be restricted to chronic pain conditions. The opioid antagonist, naloxone, induced similar levels of withdrawal in all three genotypes following ACEA treatment, confirming an opioidergic contribution to cannabinoid withdrawal. Anxiety-like responses in the light-dark test were similar across WT and KO lines; neither acute nor repeated ACEA injections modified this behavior. Similarly, administration of the Delta opioid receptor antagonist, naltrindole, alone or in combination with ACEA, did not alter responses of WT mice in the light-dark test. Thus, there may be a dissociation in the effect of pharmacological blockade vs. genetic deletion of Delta opioid receptors on anxiety-like behavior in mice. Finally, our study revealed a biphasic effect of ACEA on depressive-like behavior in the splash test, with a prodepressive state induced by acute exposure, followed by a shift to an anti-depressive state with repeated injections. The initial pro-depressive effect of ACEA was absent in Mu KO mice. In sum, our findings confirm interactions between opioid and cannabinoid systems in withdrawal and reveal reduced depressive-like symptoms with repeated CB1 receptor activation.
Collapse
Affiliation(s)
- Laurie-Anne Roeckel
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Centre de la Recherche Nationale Scientifique, Université de Strasbourg Faculté de Psychologie, Strasbourg, France
| | - Dominique Massotte
- Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (INCI), Strasbourg, France
| | - Mary C Olmstead
- Department of Psychology, Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Centre de la Recherche Nationale Scientifique, Université de Strasbourg Faculté de Psychologie, Strasbourg, France
| |
Collapse
|
34
|
Liu A, Wang X, Wang H, Lv G, Li Y, Li H. Δ-opioid receptor inhibition prevents remifentanil-induced post-operative hyperalgesia via regulating GluR1 trafficking and AMPA receptor function. Exp Ther Med 2017; 15:2140-2147. [PMID: 29434817 DOI: 10.3892/etm.2017.5652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/13/2017] [Indexed: 01/11/2023] Open
Abstract
The interaction of remifentanil with glutamate systems has an important role in remifentanil-induced thermal and mechanical hyperalgesia. A previous study by our group suggested that the trafficking and function of glutamate receptor 1 (GluR1) subunits contributes to remifentanil-induced hyperalgesia by regulating the phosphorylation of GluR1 in dorsal horn neurons. The present study demonstrated that δ opioid receptor (DOR) inhibition prevented thermal and mechanical hyperalgesia, which was induced by remifentanil infusion via attenuating GluR1 subunit trafficking and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) function in dorsal horn neurons. Sprague Dawley rats received a plantar incision and remifentanil infusion to induce a model of postoperative hyperalgesia. Thermal and mechanical pain was tested at 8 different time-points. Expression of AMPAR subunits GluR1 and DOR, as well as the phosphorylation status of GluR1 were evaluated by western blot analysis. Furthermore, the function of AMPAR in the spinal dorsal horn was measured by whole-cell patch-clamp recording. Remifentanil-induced thermal and mechanical hyperalgesia appeared after the 60-min infusions, reaching a peak level on day 2 and persisting for 5 days. Remifentanil infusion led to upregulation of membrane expression of the AMPAR subunit GluR1 and DOR (P=0.003 and 0.001, respectively) no change in total GluR1 and DOR expression levels (P=0.244 and 0.531, respectively). Selective DOR inhibitor naltrindole caused a reduction of remifentanil-induced hyperalgesia, which was accompanied by downregulation of membrane levels of GluR1 in the spinal cord (P=0.0013). In addition, DOR inhibition led to downregulation of GluR1 phosphorylated at Ser845. Furthermore, the AMPAR-mediated miniature excitatory post-synaptic current was increased in frequency and in amplitude in dorsal horn neurons (P=0.002 and 0.0011, respectively), which was decreased by incubation with naltrindole. Combined behavioral, western blot and electrophysiological evidence indicated that remifentanil-induced hyperalgesia was mediated by DOR activation, followed by phosphorylation-dependent GluR1 trafficking and AMPAR function enhancement in the spinal cord. DOR appears to be required for remifentanil and incision-induced hyperalgesia development and to be a potential biochemical target for treating opioid-induced postoperative hyperalgesia.
Collapse
Affiliation(s)
- Aifen Liu
- Department of Anesthesiology, The Second Hospital Affiliated to Tianjin Medical University, Tianjin 300042, P.R. China
| | - Xiaopeng Wang
- Department of Anesthesiology, Shanxi Academy of Medical Science, Shanxi Dayi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Hui Wang
- Department of General Surgery, Tianjin Public Security Hospital, Tianjin 300042, P.R. China
| | - Guoyi Lv
- Department of Anesthesiology, The Second Hospital Affiliated to Tianjin Medical University, Tianjin 300042, P.R. China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hongmei Li
- Department of Anesthesiology, The Second Hospital Affiliated to Tianjin Medical University, Tianjin 300042, P.R. China
| |
Collapse
|
35
|
Cooper A, Singh S, Hook S, Tyndall JDA, Vernall AJ. Chemical Tools for Studying Lipid-Binding Class A G Protein-Coupled Receptors. Pharmacol Rev 2017; 69:316-353. [PMID: 28655732 DOI: 10.1124/pr.116.013243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/15/2017] [Indexed: 12/16/2022] Open
Abstract
Cannabinoid, free fatty acid, lysophosphatidic acid, sphingosine 1-phosphate, prostanoid, leukotriene, bile acid, and platelet-activating factor receptor families are class A G protein-coupled receptors with endogenous lipid ligands. Pharmacological tools are crucial for studying these receptors and addressing the many unanswered questions surrounding expression of these receptors in normal and diseased tissues. An inherent challenge for developing tools for these lipid receptors is balancing the often lipophilic requirements of the receptor-binding pharmacophore with favorable physicochemical properties to optimize highly specific binding. In this study, we review the radioligands, fluorescent ligands, covalent ligands, and antibodies that have been used to study these lipid-binding receptors. For each tool type, the characteristics and design rationale along with in vitro and in vivo applications are detailed.
Collapse
Affiliation(s)
- Anna Cooper
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sameek Singh
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
36
|
Morales P, Reggio PH. An Update on Non-CB 1, Non-CB 2 Cannabinoid Related G-Protein-Coupled Receptors. Cannabis Cannabinoid Res 2017; 2:265-273. [PMID: 29098189 PMCID: PMC5665501 DOI: 10.1089/can.2017.0036] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) has been shown to be of great importance in the regulation of numerous physiological and pathological processes. To date, two Class A G-protein-coupled receptors (GPCRs) have been discovered and validated as the main therapeutic targets of this system: the cannabinoid receptor type 1 (CB1), which is the most abundant neuromodulatory receptor in the brain, and the cannabinoid receptor type 2 (CB2), predominantly found in the immune system among other organs and tissues. Endogenous cannabinoid receptor ligands (endocannabinoids) and the enzymes involved in their synthesis, cell uptake, and degradation have also been identified as part of the ECS. However, its complex pharmacology suggests that other GPCRs may also play physiologically relevant roles in this therapeutically promising system. In the last years, GPCRs such as GPR18 and GPR55 have emerged as possible missing members of the cannabinoid family. This categorization still stimulates strong debate due to the lack of pharmacological tools to validate it. Because of their close phylogenetic relationship, the Class A orphan GPCRs, GPR3, GPR6, and GPR12, have also been associated with the cannabinoids. Moreover, certain endo-, phyto-, and synthetic cannabinoid ligands have displayed activity at other well-established GPCRs, including the opioid, adenosine, serotonin, and dopamine receptor families. In addition, the cannabinoid receptors have also been shown to form dimers with other GPCRs triggering cross-talk signaling under specific conditions. In this mini review, we aim to provide insight into the non-CB1, non-CB2 cannabinoid-related GPCRs that have been reported thus far. We consider the physiological relevance of these molecular targets in modulating the ECS.
Collapse
Affiliation(s)
- Paula Morales
- Chemistry and Biochemistry Department, UNC Greensboro, Greensboro, North Carolina
| | - Patricia H. Reggio
- Chemistry and Biochemistry Department, UNC Greensboro, Greensboro, North Carolina
| |
Collapse
|
37
|
Zubrzycki M, Janecka A, Liebold A, Ziegler M, Zubrzycka M. Effects of centrally administered endocannabinoids and opioids on orofacial pain perception in rats. Br J Pharmacol 2017; 174:3780-3789. [PMID: 28771697 DOI: 10.1111/bph.13970] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 07/12/2017] [Accepted: 07/27/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoids and opioids play a vital role in mediating pain-induced analgesia. The specific effects of these compounds within the orofacial region are largely unknown. In this study, we tried to determine whether an increase in cannabinoid and opioid concentration in the CSF affects impulse transmission between the motor centres localized in the vicinity of the third and fourth cerebral ventricles. EXPERIMENTAL APPROACH The study objectives were realized on rats using a method that allows the recording of the amplitude of evoked tongue jerks (ETJ) in response to noxious tooth pulp stimulation. The amplitude of ETJ was a measure of the effect of neurotransmitters on neural structures. KEY RESULTS Perfusion of cerebral ventricles with anandamide (AEA), endomorphin-2 (EM-2), URB597, an inhibitor of fatty acid amide hydrolase (FAAH) and JZL195, a dual inhibitor of FAAH and monoacylglycerol lipase (MAGL) reduced the ETJ amplitude. The antinociceptive effect of AEA, EM-2, URB597 and JZL195 was blocked by CB1 receptor antagonist, AM251 and by μ receptor-antagonist, β-funaltrexamine. In contrast to AEA, 2-arachidonoylglycerol alone did not decrease ETJ amplitude. CONCLUSIONS AND IMPLICATIONS We demonstrated that in the orofacial area, analgesic activity is modulated by AEA and that EM-2-induced antinociception was mediated by μ and CB1 receptors. The action of AEA and EM-2 is tightly regulated by FAAH and FAAH/MAGL, by preventing the breakdown of endogenous cannabinoids in regions where they are produced on demand. Therefore, the current findings support the therapeutic potential of FAAH and FAAH/MAGL inhibitors as novel pharmacotherapeutic agents for orofacial pain.
Collapse
Affiliation(s)
- Marek Zubrzycki
- Department of Cardiovascular and Thoracic Surgery, University of Ulm, Ulm, Germany
| | - Anna Janecka
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andreas Liebold
- Department of Cardiovascular and Thoracic Surgery, University of Ulm, Ulm, Germany
| | - Mechthild Ziegler
- Department of Cardiac Anesthesiology, University Hospital Ulm, Ulm, Germany
| | - Maria Zubrzycka
- Department of Cardiovascular Physiology, Interdepartmental Chair of Experimental and Clinical Physiology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
38
|
Khaleghzadeh-Ahangar H, Haghparast A. Intra-accumbal Cannabinoid Agonist Attenuated Reinstatement but not Extinction Period of Morphine-Induced Conditioned Place Preference; Evidence for Different Characteristics of Extinction Period and Reinstatement. Neurochem Res 2017; 42:3321-3330. [DOI: 10.1007/s11064-017-2374-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
|
39
|
Niewiarowska-Sendo A, Polit A, Piwowar M, Tworzydło M, Kozik A, Guevara-Lora I. Bradykinin B2 and dopamine D2 receptors form a functional dimer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1855-1866. [PMID: 28757212 DOI: 10.1016/j.bbamcr.2017.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/19/2017] [Accepted: 07/25/2017] [Indexed: 01/11/2023]
Abstract
In recent years a wide range of studies have shown that G protein-coupled receptors modulate a variety of cell functions through the formation of dimers. For instance, there is growing evidence for the dimerization of bradykinin or dopamine receptors, both as homodimers and heterodimers. A discovery of direct interactions of angiotensin II receptors with bradykinin 2 receptor (B2R) or dopamine D2 (D2R) receptor has led to a hypothesis on a potential dimerization between two latter receptors. In this study, we have demonstrated a constitutive colocalization of receptors on the membranes of HEK293 cells transiently transfected with plasmid vectors encoding B2R and D2R, fused with fluorescent proteins. The receptor colocalization was significantly enhanced by specific agonists of B2R or D2R after 5min following the addition, whereas simultaneous stimulation with these agonists did not influence the B2R/D2R colocalization level. In addition, B2R-D2R heterodimerization was confirmed with FLIM-FRET technique. The most characteristic signaling pathways for B2R and D2R, dependent on intracellular Ca2+ and cAMP concentration, respectively, were analyzed in cells presenting similar endogenous expression of B2R and D2R. Significant changes in receptors' signaling were observed after simultaneous stimulation with agonists, suggesting transformations in proteins' conformation after dimerization. The evidence of B2R-D2R dimerization may open new perspectives in the modulation of diverse cellular functions which depend on their activation.
Collapse
Affiliation(s)
- Anna Niewiarowska-Sendo
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland
| | - Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland
| | - Monika Piwowar
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University in Krakow, Poland
| | - Magdalena Tworzydło
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland
| | - Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland.
| |
Collapse
|
40
|
Remesic M, Hruby VJ, Porreca F, Lee YS. Recent Advances in the Realm of Allosteric Modulators for Opioid Receptors for Future Therapeutics. ACS Chem Neurosci 2017; 8:1147-1158. [PMID: 28368571 DOI: 10.1021/acschemneuro.7b00090] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Opioids, and more specifically μ-opioid receptor (MOR) agonists such as morphine, have long been clinically used as therapeutics for severe pain states but often come with serious side effects such as addiction and tolerance. Many studies have focused on bringing about analgesia from the MOR with attenuated side effects, but its underlying mechanism is not fully understood. Recently, focus has been geared toward the design and elucidation of the orthosteric site with ligands of various biological profiles and mixed subtype opioid activities and selectivities, but targeting the allosteric site is an area of increasing interest. It has been shown that allosteric modulators play key roles in influencing receptor function such as its tolerance to a ligand and affect downstream pathways. There has been a high variance of chemical structures that provide allosteric modulation at a given receptor, but recent studies and reviews tend to focus on the altered cellular mechanisms instead of providing a more rigorous description of the allosteric ligand's structure-function relationship. In this review, we aim to explore recent developments in the structural motifs that potentiate orthosteric binding and their influences on cellular pathways in an effort to present novel approaches to opioid therapeutic design.
Collapse
Affiliation(s)
- Michael Remesic
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Victor J. Hruby
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Frank Porreca
- Department
of Pharmacology, University of Arizona, Tucson, Arizona 85719, United States
| | - Yeon Sun Lee
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
41
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2017; 68:631-700. [PMID: 27343248 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
42
|
Sun L, Tai L, Qiu Q, Mitchell R, Fleetwood-Walker S, Joosten EA, Cheung CW. Endocannabinoid activation of CB 1 receptors contributes to long-lasting reversal of neuropathic pain by repetitive spinal cord stimulation. Eur J Pain 2017; 21:804-814. [PMID: 28107590 DOI: 10.1002/ejp.983] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Spinal cord stimulation (SCS) has been shown to be effective in the management of certain neuropathic pain conditions, however, the underlying mechanisms are incompletely understood. In this study, we investigated repetitive SCS in a rodent neuropathic pain model, revealing long-lasting and incremental attenuation of hyperalgesia and a mechanism of action involving endocannabinoids. METHOD Animals were implanted with monopolar electrodes at the time of partial sciatic nerve injury. Dorsal columns at spinal segments T12/13 were stimulated 3 days later (early SCS), and again at day 7 (late SCS) using low-frequency parameters. Hypersensitivity to cutaneous mechanical stimuli was assessed using von Frey filaments. Pharmacological agents, selected to identify endocannabinoid and opioid involvement, were administered intraperitoneally, 10 min before SCS. RESULTS Early SCS caused partial reversal of mechanical hypersensitivity with corresponding changes in the biomarker of central sensitization, [phospho-Tyr1472 ]-GluN2B. The partial reversal of hyperalgesia by early SCS was amplified by co-administration of LY 2183240, an inhibitor of endocannabinoid reuptake/breakdown. This amplification was inhibited by a CB1 R antagonist, AM251, but not by a CB2 R antagonist, AM630. Early SCS-induced reversal of hyperalgesia was attenuated by naloxone, indicating a role for opioids. Late SCS resulted in an incremental level of reversal of hyperalgesia, which was inhibited by AM251, but not by CB2 or opioid receptor antagonists. CONCLUSION The endocannabinoid system, and in particular the CB1 R, plays a pivotal role in the long-lasting and incremental reversal of hyperalgesia induced by repetitive SCS in a neuropathic pain model. SIGNIFICANCE Alternative parameters for repetitive spinal cord stimulation (SCS) at 25/10 Hz elicit particularly long-lasting and incremental reversal of hyperalgesia in a neuropathic pain model through a mechanism involving endocannabinoids.
Collapse
Affiliation(s)
- L Sun
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, HKSAR, China
| | - L Tai
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, HKSAR, China
| | - Q Qiu
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, HKSAR, China
| | - R Mitchell
- Centre for Integrative Physiology, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, UK
| | - S Fleetwood-Walker
- Centre for Integrative Physiology, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, UK
| | - E A Joosten
- Department of Anesthesiology/Pain Management, The University Pain Center Maastricht, Maastricht University Medical Center, The Netherlands
| | - C W Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, HKSAR, China
| |
Collapse
|
43
|
Farran B. An update on the physiological and therapeutic relevance of GPCR oligomers. Pharmacol Res 2017; 117:303-327. [PMID: 28087443 DOI: 10.1016/j.phrs.2017.01.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/17/2023]
Abstract
The traditional view on GPCRs held that they function as single monomeric units composed of identical subunits. This notion was overturned by the discovery that GPCRs can form homo- and hetero-oligomers, some of which are obligatory, and can further assemble into receptor mosaics consisting of three or more protomers. Oligomerisation exerts significant impacts on receptor function and physiology, offering a platform for the diversification of receptor signalling, pharmacology, regulation, crosstalk, internalization and trafficking. Given their involvement in the modulation of crucial physiological processes, heteromers could constitute important therapeutic targets for a wide range of diseases, including schizophrenia, Parkinson's disease, substance abuse or obesity. This review aims at depicting the current developments in GPCR oligomerisation research, documenting various class A, B and C GPCR heteromers detected in vitro and in vivo using biochemical and biophysical approaches, as well as recently identified higher-order oligomeric complexes. It explores the current understanding of dimerization dynamics and the possible interaction interfaces that drive oligomerisation. Most importantly, it provides an inventory of the wide range of physiological processes and pathophysiological conditions to which GPCR oligomers contribute, surveying some of the oligomers that constitute potential drug targets. Finally, it delineates the efforts to develop novel classes of ligands that specifically target and tether to receptor oligomers instead of a single monomeric entity, thus ameliorating their ability to modulate GPCR function.
Collapse
Affiliation(s)
- Batoul Farran
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
44
|
da Fonseca Pacheco D, Freitas ACN, Pimenta AMC, Duarte IDG, de Lima ME. A spider derived peptide, PnPP-19, induces central antinociception mediated by opioid and cannabinoid systems. J Venom Anim Toxins Incl Trop Dis 2016; 22:34. [PMID: 28031732 PMCID: PMC5175391 DOI: 10.1186/s40409-016-0091-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/30/2016] [Indexed: 11/10/2022] Open
Abstract
Background Some peptides purified from the venom of the spider Phoneutria nigriventer have been identified as potential sources of drugs for pain treatment. In this study, we characterized the antinociceptive effect of the peptide PnPP-19 on the central nervous system and investigated the possible involvement of opioid and cannabinoid systems in its action mechanism. Methods Nociceptive threshold to thermal stimulation was measured according to the tail-flick test in Swiss mice. All drugs were administered by the intracerebroventricular route. Results PnPP-19 induced central antinociception in mice in the doses of 0.5 and 1 μg. The non-selective opioid receptor antagonist naloxone (2.5 and 5 μg), μ-opioid receptor antagonist clocinnamox (2 and 4 μg), δ-opioid receptor antagonist naltrindole (6 and 12 μg) and CB1 receptor antagonist AM251 (2 and 4 μg) partially inhibited the antinociceptive effect of PnPP-19 (1 μg). Additionally, the anandamide amidase inhibitor MAFP (0.2 μg), the anandamide uptake inhibitor VDM11 (4 μg) and the aminopeptidase inhibitor bestatin (20 μg) significantly enhanced the antinociception induced by a low dose of PnPP-19 (0.5 μg). In contrast, the κ-opioid receptor antagonist nor-binaltorphimine (10 μg and 20 μg) and the CB2 receptor antagonist AM630 (2 and 4 μg) do not appear to be involved in this effect. Conclusions PnPP-19-induced central antinociception involves the activation of CB1 cannabinoid, μ- and δ-opioid receptors. Mobilization of endogenous opioids and cannabinoids might be required for the activation of those receptors, since inhibitors of endogenous substances potentiate the effect of PnPP-19. Our results contribute to elucidating the action of the peptide PnPP-19 in the antinociceptive pathway.
Collapse
Affiliation(s)
- Daniela da Fonseca Pacheco
- Departmento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Ana Cristina Nogueira Freitas
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG CEP 31.270.901 Brazil
| | - Adriano Monteiro C Pimenta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG CEP 31.270.901 Brazil
| | - Igor Dimitri Gama Duarte
- Departmento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG CEP 31.270.901 Brazil
| |
Collapse
|
45
|
Gomes I, Sierra S, Devi LA. Detection of Receptor Heteromerization Using In Situ Proximity Ligation Assay. CURRENT PROTOCOLS IN PHARMACOLOGY 2016; 75:2.16.1-2.16.31. [PMID: 27960030 PMCID: PMC5758307 DOI: 10.1002/cpph.15] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although G protein-coupled receptor (GPCR) heteromerization has been extensively demonstrated in vitro using heterologous cells that overexpress epitope-tagged receptors, their presence in endogenous systems is less well established. This is because a criterion to identify receptor heteromerization is the demonstration that the two interacting receptors are present not only in the same cell but also in the same subcellular compartment in close enough proximity to allow for direct receptor-receptor interaction. This has been difficult to study in native tissues due to a lack of sensitive and selective tools not only capable of detecting low-abundance proteins but also of demonstrating that they are in sufficiently close proximity to interact. The latter can be achieved using a proximity ligation assay (PLA). Detailed in this unit are protocols for demonstrating the presence of GPCR heteromers in endogenous cells as well as animal and human tissues, the controls required for these assays, and troubleshooting tips. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Salvador Sierra
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
46
|
Gaitonde SA, González-Maeso J. Contribution of heteromerization to G protein-coupled receptor function. Curr Opin Pharmacol 2016; 32:23-31. [PMID: 27835800 DOI: 10.1016/j.coph.2016.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are a remarkably multifaceted family of transmembrane proteins that exert a variety of physiological effects. Although family A GPCRs are able to operate as monomers, there is increasing evidence that heteromerization represents a fundamental aspect of receptor function, trafficking and pharmacology. Most recently, it has been suggested that GPCR heteromers may play a crucial role as new molecular targets of heteromer-selective and bivalent ligands. The current review summarizes key recent developments in these topics.
Collapse
Affiliation(s)
- Supriya A Gaitonde
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States.
| |
Collapse
|
47
|
Jorand R, Biswas S, Wakefield DL, Tobin SJ, Golfetto O, Hilton K, Ko M, Ramos JW, Small AR, Chu P, Singh G, Jovanovic-Talisman T. Molecular signatures of mu opioid receptor and somatostatin receptor 2 in pancreatic cancer. Mol Biol Cell 2016; 27:3659-3672. [PMID: 27682590 PMCID: PMC5221597 DOI: 10.1091/mbc.e16-06-0427] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a particularly aggressive malignancy, has been linked to atypical levels, certain mutations, and aberrant signaling of G-protein-coupled receptors (GPCRs). GPCRs have been challenging to target in cancer because they organize into complex networks in tumor cells. To dissect such networks with nanometer-scale precision, here we combine traditional biochemical approaches with superresolution microscopy methods. A novel interaction specific to PDAC is identified between mu opioid receptor (MOR) and somatostatin receptor 2 (SSTR2). Although MOR and SSTR2 did not colocalize in healthy pancreatic cells or matching healthy patient tissues, the pair did significantly colocalize in pancreatic cancer cells, multicellular tumor spheroids, and cancerous patient tissues. Moreover, this association in pancreatic cancer cells correlated with functional cross-talk and increased metastatic potential of cells. Coactivation of MOR and SSTR2 in PDAC cells led to increased expression of mesenchymal markers and decreased expression of an epithelial marker. Together these results suggest that the MOR-SSTR2 heteromer may constitute a novel therapeutic target for PDAC.
Collapse
Affiliation(s)
- Raphael Jorand
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Sunetra Biswas
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Devin L Wakefield
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Steven J Tobin
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Ottavia Golfetto
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Kelsey Hilton
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Michelle Ko
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813
| | - Alexander R Small
- Department of Physics and Astronomy, California State Polytechnic University, Pomona, CA 91768
| | - Peiguo Chu
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Gagandeep Singh
- Division of Surgical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Tijana Jovanovic-Talisman
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| |
Collapse
|
48
|
Martinez-Pinilla E, Rabal O, Reyes-Resina I, Zamarbide M, Navarro G, Sanchez-Arias JA, de Miguel I, Lanciego JL, Oyarzabal J, Franco R. Two Affinity Sites of the Cannabinoid Subtype 2 Receptor Identified by a Novel Homogeneous Binding Assay. ACTA ACUST UNITED AC 2016; 358:580-7. [DOI: 10.1124/jpet.116.234948] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/27/2016] [Indexed: 01/24/2023]
|
49
|
Freitas ACN, Pacheco DF, Machado MFM, Carmona AK, Duarte IDG, de Lima ME. PnPP-19, a spider toxin peptide, induces peripheral antinociception through opioid and cannabinoid receptors and inhibition of neutral endopeptidase. Br J Pharmacol 2016; 173:1491-501. [PMID: 26947933 DOI: 10.1111/bph.13448] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The synthetic peptide PnPP-19 has been studied as a new drug candidate to treat erectile dysfunction. However, PnTx2-6, the spider toxin from which the peptide was designed, induces hyperalgesia. Therefore, we intended to investigate the role of PnPP-19 in the nociceptive pathway. EXPERIMENTAL APPROACH Nociceptive thresholds were measured by paw pressure test. PnPP-19 was administered intraplantarly alone or with selective cannabinoid or opioid receptor antagonists. The hydrolysis of PnPP-19 by neutral endopeptidase (NEP) (EC 3.4.24.11), an enzyme that cleaves enkephalin, was monitored by HPLC and the cleavage sites were deduced by LC-MS. Inhibition by PnPP-19 and Leu-enkephalin of NEP enzyme activity was determined spectrofluorimetrically. KEY RESULTS PnPP-19 (5, 10 and 20 μg per paw) induced peripheral antinociception in rats. Specific antagonists of μ opioid receptors (clocinnamox), δ opioid receptors (naltrindole) and CB1 receptors (AM251) partly inhibited the antinociceptive effect of PnPP-19. Inhibition of fatty acid amide hydrolase by MAFP or of anandamide uptake by VDM11 enhanced PnPP-19-induced antinociception. NEP cleaved PnPP-19 only after a long incubation, and Ki values of 35.6 ± 1.4 and 14.6 ± 0.44 μmol·L(-1) were determined for PnPP-19 and Leu-enkephalin respectively as inhibitors of NEP activity. CONCLUSIONS AND IMPLICATIONS Antinociception induced by PnPP-19 appears to involve the inhibition of NEP and activation of CB1, μ and δ opioid receptors. Our data provide a greater understanding of the antinociceptive effects of PnPP-19. This peptide could be useful as a new antinociceptive drug candidate.
Collapse
Affiliation(s)
- A C N Freitas
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - D F Pacheco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - M F M Machado
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - A K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - I D G Duarte
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - M E de Lima
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
50
|
Peppin JF, Raffa RB. Delta opioid agonists: a concise update on potential therapeutic applications. J Clin Pharm Ther 2015; 40:155-66. [PMID: 25726896 DOI: 10.1111/jcpt.12244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/24/2014] [Indexed: 01/23/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE The endogenous opioid system co-evolved with chemical defences, or at times symbiotic relationships, between plants and other autotrophs and heterotrophic predators - thus, it is not surprising that endogenous opioid ligands and exogenous mimetic ligands produce diverse physiological effects. Among the endogenous opioid peptides (endomorphins, enkephalins, dynorphins and nociception/orphanin FQ) derived from the precursors encoded by four genes (PNOC, PENK, PDYN and POMC) are the pentapeptides Met-enkephalin (Tyr-Gly-Gly-Phe-Met) and Leu-enkephalin (Tyr-Gly-Gly-Phe-Leu). The physiological effects of the enkephalins are mediated via 7-transmembrane G protein-coupled receptors, including delta opioid receptor (DOR). We present a concise update on the status of progress and opportunities of this approach. METHODS A literature search of the PUBMED database and a combination of keywords including delta opioid receptor, analgesia, mood and individual compounds identified therein, from industry and other source, and from www.clinicaltrials.com. RESULTS AND DISCUSSION DOR agonist and antagonist ligands have been developed with ever increasing affinity and selectivity for DOR over other opioid receptor subtypes and studied for therapeutic utility, primarily for pain relief, but also for other clinical endpoints. WHAT IS NEW AND CONCLUSION Selective DOR agonists have been designed with a large increase in therapeutic window for a variety of potential CNS applications including pain, depression, and learning and memory among others.
Collapse
Affiliation(s)
- J F Peppin
- Center for Bioethics, Pain Management and Medicine, University City, MO, USA; Mallinckrodt Pharmaceuticals, Hazelwood, MO, USA
| | | |
Collapse
|