1
|
King LA, de Jong M, Veth M, Lutje Hulsik D, Yousefi P, Iglesias-Guimarais V, van Helden PM, de Gruijl TD, van der Vliet HJ. Vδ2 T-cell engagers bivalent for Vδ2-TCR binding provide anti-tumor immunity and support robust Vγ9Vδ2 T-cell expansion. Front Oncol 2024; 14:1474007. [PMID: 39493452 PMCID: PMC11527600 DOI: 10.3389/fonc.2024.1474007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024] Open
Abstract
Background Vγ9Vδ2 T-cells are antitumor immune effector cells that can detect metabolic dysregulation in cancer cells through phosphoantigen-induced conformational changes in the butyrophilin (BTN) 2A1/3A1 complex. In order to clinically exploit the anticancer properties of Vγ9Vδ2 T-cells, various approaches have been studied including phosphoantigen stimulation, agonistic BTN3A-specific antibodies, adoptive transfer of expanded Vγ9Vδ2 T-cells, and more recently bispecific antibodies. While Vγ9Vδ2 T-cells constitute a sizeable population, typically making up ~1-10% of the total T cell population, lower numbers have been observed with increasing age and in the context of disease. Methods We evaluated whether bivalent single domain antibodies (VHHs) that link Vδ2-TCR specific VHHs with different affinities could support Vγ9Vδ2 T-cell expansion and could be incorporated in a bispecific engager format when additionally linked to a tumor antigen specific VHH. Results Bivalent VHHs that link a high and low affinity Vδ2-TCR specific VHH can support Vγ9Vδ2 T-cell expansion. The majority of Vγ9Vδ2 T-cells that expanded following exposure to these bivalent VHHs had an effector or central memory phenotype and expressed relatively low levels of PD-1. Bispecific engagers that incorporated the bivalent Vδ2-TCR specific VHH as well as a tumor antigen specific VHH triggered antitumor effector functions and supported expansion of Vγ9Vδ2 T-cells in vitro and in an in vivo model in NOG-hIL-15 mice. Conclusion By enhancing the number of Vγ9Vδ2 T-cells available to exert antitumor effector functions, these novel Vδ2-bivalent bispecific T cell engagers may promote the overall efficacy of bispecific Vγ9Vδ2 T-cell engagement, particularly in patients with relatively low levels of Vγ9Vδ2 T-cells.
Collapse
Affiliation(s)
- Lisa A. King
- Department of Medical Oncology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Milon de Jong
- Department of Medical Oncology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Myrthe Veth
- Department of Medical Oncology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | | | | | | | | | - Tanja D. de Gruijl
- Department of Medical Oncology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Hans J. van der Vliet
- Department of Medical Oncology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Lava Therapeutics NV, Utrecht, Netherlands
| |
Collapse
|
2
|
Kuenzel NA, Dobner J, Reichert D, Rossi A, Boukamp P, Esser C. Vδ1 T Cells Integrated in Full-Thickness Skin Equivalents: A Model for the Role of Human Skin-Resident γδT Cells. J Invest Dermatol 2024:S0022-202X(24)02173-0. [PMID: 39384018 DOI: 10.1016/j.jid.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 10/11/2024]
Abstract
Vδ1 T cells are a subpopulation of γδT cells found in human dermis. Much less is known regarding their role and function in skin health and disease than regarding the roles of murine skin-resident γδT cells. In this study, we report the successful integration of Vδ1 T cells into long-term fibroblast-derived matrix skin equivalents. We isolated Vδ1 T cells from human blood, where they are rare, and established conditions for the integration and maintenance of the freshly isolated Vδ1 T cells in the skin equivalents. Plated on top of the dermal equivalents, almost all Vδ1 T cells migrated into the dermal matrix where they exerted their influence on both the dermal equivalents and the epithelium. Vδ1 T cells contributed to epidermal differentiation of HaCaT cells as indicated by histology, expression of epidermal differentiation markers, and RNA-sequencing expression profile. When complemented with the carcinoma-derived SCC13 cells instead of HaCaT, our data suggest a role for Vδ1 T cells in slowing growth of the tumor cells, as indicated by reduced stratification and changes in gene expression profiles. Together, we demonstrate the successful establishment of human Vδ1 T cell-competent skin equivalents and skin carcinoma equivalents and provide evidence for molecular and functional consequences of the Vδ1 T cells on their respective environment.
Collapse
Affiliation(s)
| | - Jochen Dobner
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Doreen Reichert
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andrea Rossi
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Petra Boukamp
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; German Cancer Research Centre, Heidelberg, Germany
| | - Charlotte Esser
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
3
|
Wu Y, Yang J, Xu G, Chen X, Qu X. Integrated analysis of single-cell and bulk RNA sequencing data reveals prognostic characteristics of lysosome-dependent cell death-related genes in osteosarcoma. BMC Genomics 2024; 25:379. [PMID: 38632516 PMCID: PMC11022332 DOI: 10.1186/s12864-024-10283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Tumor cells exhibit a heightened susceptibility to lysosomal-dependent cell death (LCD) compared to normal cells. However, the role of LCD-related genes (LCD-RGs) in Osteosarcoma (OS) remains unelucidated. This study aimed to elucidate the role of LCD-RGs and their mechanisms in OS using several existing OS related datasets, including TCGA-OS, GSE16088, GSE14359, GSE21257 and GSE162454. RESULTS Analysis identified a total of 8,629 DEGs1, 2,777 DEGs2 and 21 intersection genes. Importantly, two biomarkers (ATP6V0D1 and HDAC6) linked to OS prognosis were identified to establish the prognostic model. Significant differences in risk scores for OS survival were observed between high and low-risk cohorts. Additionally, scores of dendritic cells (DC), immature DCs and γδT cells differed significantly between the two risk cohorts. Cell annotations from GSE162454 encompassed eight types (myeloid cells, osteoblastic OS cells and plasma cells). ATP6V0D1 was found to be significantly over-expressed in myeloid cells and osteoclasts, while HDAC6 was under-expressed across all cell types. Moreover, single-cell trajectory mapping revealed that myeloid cells and osteoclasts differentiated first, underscoring their pivotal role in patients with OS. Furthermore, ATP6V0D1 expression progressively decreased with time. CONCLUSIONS A new prognostic model for OS, associated with LCD-RGs, was developed and validated, offering a fresh perspective for exploring the association between LCD and OS.
Collapse
Affiliation(s)
- Yueshu Wu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning province, 116011, Dalian, Liaoning, PR China
| | - Jun Yang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning province, 116011, Dalian, Liaoning, PR China
| | - Gang Xu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning province, 116011, Dalian, Liaoning, PR China
| | - Xiaolin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Yuzhong District, 400010, Chongqing, China.
| | - Xiaochen Qu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning province, 116011, Dalian, Liaoning, PR China.
| |
Collapse
|
4
|
Di Simone M, Corsale AM, Toia F, Shekarkar Azgomi M, Di Stefano AB, Lo Presti E, Cordova A, Montesano L, Dieli F, Meraviglia S. Tumor-infiltrating γδ T cells as targets of immune checkpoint blockade in melanoma. J Leukoc Biol 2024; 115:760-770. [PMID: 38324004 DOI: 10.1093/jleuko/qiae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/21/2023] [Accepted: 12/31/2023] [Indexed: 02/08/2024] Open
Abstract
Melanoma is one of the most sensitive tumors to immune modulation, and the major challenge for melanoma patients' survival is immune checkpoint inhibitor (ICI) therapy. γδ T lymphocytes play an antitumoral role in a broad variety of tumors including melanoma and they are optimal candidates for cellular immunotherapy. Thus, a comprehensive analysis of the correlation between γδ T cells and immune checkpoint receptors in the context of melanoma was conducted, with the aim of devising an innovative combined immunotherapeutic strategy. In this study, using the GEPIA2.0 database, a significant positive correlation was observed between the expression of γδ T cell-related genes (TRGC1, TRGC2, TCRD) and immune checkpoint genes (PDCD1, HAVCR2, LAG3), highlighting the potential role of γδ T cells in the immune response within melanoma. Moreover, flow cytometry analysis unveiled a significant augmentation in the population of γδ T cells within melanoma lesions, which exhibited the expression of immune checkpoint receptors including LAG3, TIM3, and PD1. Analysis of single-cell RNA sequencing data revealed a significant enrichment and functional reprogramming of γδ T cell clusters in response to ICIs. Interestingly, the effects of ICI therapy varied between Vδ1 and Vδ2 γδ T cell subsets, with distinct changes in gene expression patterns. Last, a correlation analysis between γδ T cell abundance, immune checkpoint gene expression, and clinical outcomes in melanoma patients showed that low expression of immune checkpoint genes, including LAG3, HAVCR2, and PDCD1, was associated with improved 1-year overall survival, emphasizing the significance of these genes in predicting patient outcomes, potentially outweighing the impact of γδ T cell abundance. This study offers critical insights into the dynamic interaction between γδ T cells, immune checkpoint receptors, and melanoma, providing valuable perspectives for potential therapeutic avenues and predictive markers in this intricate interplay.
Collapse
Affiliation(s)
- Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Anna Maria Corsale
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Francesca Toia
- Laboratory of Biology and Regenerative Medicine-Plastic Surgery, Plastic and Reconstructive Surgery, Department of Surgical Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Anna Barbara Di Stefano
- Laboratory of Biology and Regenerative Medicine-Plastic Surgery, Plastic and Reconstructive Surgery, Department of Surgical Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Elena Lo Presti
- National Research Council Institute for Biomedical Research and Innovation, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Adriana Cordova
- Laboratory of Biology and Regenerative Medicine-Plastic Surgery, Plastic and Reconstructive Surgery, Department of Surgical Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Luigi Montesano
- Laboratory of Biology and Regenerative Medicine-Plastic Surgery, Plastic and Reconstructive Surgery, Department of Surgical Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| |
Collapse
|
5
|
Verkerk T, Pappot AT, Jorritsma T, King LA, Duurland MC, Spaapen RM, van Ham SM. Isolation and expansion of pure and functional γδ T cells. Front Immunol 2024; 15:1336870. [PMID: 38426099 PMCID: PMC10902048 DOI: 10.3389/fimmu.2024.1336870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
γδ T cells are important components of the immune system due to their ability to elicit a fast and strong response against infected and transformed cells. Because they can specifically and effectively kill target cells in an MHC independent fashion, there is great interest to utilize these cells in anti-tumor therapies where antigen presentation may be hampered. Since only a small fraction of T cells in the blood or tumor tissue are γδ T cells, they require extensive expansion to allow for fundamental, preclinical and ex vivo research. Although expansion protocols can be successful, most are based on depletion of other cell types rather than γδ T cell specific isolation, resulting in unpredictable purity of the isolated fraction. Moreover, the primary focus only lies with expansion of Vδ2+ T cells, while Vδ1+ T cells likewise have anti-tumor potential. Here, we investigated whether γδ T cells directly isolated from blood could be efficiently expanded while maintaining function. γδ T cell subsets were isolated using MACS separation, followed by FACS sorting, yielding >99% pure γδ T cells. Isolated Vδ1+ and Vδ2+ T cells could effectively expand immediately after isolation or upon freeze/thawing and reached expansion ratios between 200 to 2000-fold starting from varying numbers using cytokine supported feeder stimulations. MACS/FACS isolated and PHA stimulated γδ T cells expanded as good as immobilized antibody mediated stimulated cells in PBMCs, but delivered purer cells. After expansion, potential effector functions of γδ T cells were demonstrated by IFN-γ, TNF-α and granzyme B production upon PMA/ionomycin stimulation and effective killing capacity of multiple tumor cell lines was confirmed in killing assays. In conclusion, pure γδ T cells can productively be expanded while maintaining their anti-tumor effector functions against tumor cells. Moreover, γδ T cells could be expanded from low starting numbers suggesting that this protocol may even allow for expansion of cells extracted from tumor biopsies.
Collapse
Affiliation(s)
- Tamara Verkerk
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Anouk T Pappot
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tineke Jorritsma
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Lisa A King
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Mariël C Duurland
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Lien SC, Ly D, Yang SYC, Wang BX, Clouthier DL, St Paul M, Gadalla R, Noamani B, Garcia-Batres CR, Boross-Harmer S, Bedard PL, Pugh TJ, Spreafico A, Hirano N, Razak ARA, Ohashi PS. Tumor reactive γδ T cells contribute to a complete response to PD-1 blockade in a Merkel cell carcinoma patient. Nat Commun 2024; 15:1094. [PMID: 38321065 PMCID: PMC10848161 DOI: 10.1038/s41467-024-45449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Immunotherapies targeting PD-1/PD-L1 are now widely used in the clinic to treat a variety of malignancies. While most of the research on T cell exhaustion and PD-1 blockade has been focused on conventional αβ T cells, the contribution of innate-like T cells such as γδ T cells to anti-PD-1/PD-L1 mediated therapy is limited. Here we show that tumor reactive γδ T cells respond to PD-1 blockade in a Merkel cell carcinoma (MCC) patient experiencing a complete response to therapy. We find clonally expanded γδ T cells in the blood and tumor after pembrolizumab treatment, and this Vγ2Vδ1 clonotype recognizes Merkel cancer cells in a TCR-dependent manner. Notably, the intra-tumoral γδ T cells in the MCC patient are characterized by higher expression of PD-1 and TIGIT, relative to conventional CD4 and CD8 T cells. Our results demonstrate that innate-like T cells could also contribute to an anti-tumor response after PD-1 blockade.
Collapse
Affiliation(s)
- Scott C Lien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Dalam Ly
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - S Y Cindy Yang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ben X Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Derek L Clouthier
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael St Paul
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ramy Gadalla
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Babak Noamani
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Sarah Boross-Harmer
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Philippe L Bedard
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Naoto Hirano
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Albiruni R A Razak
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Deng S, Jiang Y, Luo L, Tang H, Hu X, Wu C, Tang J, Ge H, Gong X, Cai R, Wang G, Li X, Feng J. C5a enhances inflammation and chemotaxis of γδ T cells in malignant pleural effusion. Int Immunopharmacol 2024; 127:111332. [PMID: 38071913 DOI: 10.1016/j.intimp.2023.111332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND The inhibitory effect of γδT17 cells on the formation of murine malignant pleural effusions (MPE) has been established. However, there is limited understanding regarding the phenotypic characterization of γδ T cells in MPE patients and their recruitment to the pleural cavity. METHODS We quantified γδ T cell prevalence in pleural effusions and corresponding peripheral blood from malignant and benign patients using immunohistochemistry and flow cytometry. The expression of effector memory phenotype, stimulatory/inhibitory/chemokine receptors and cytokines on γδ T cells in MPE was analyzed using multicolor flow cytometry. The infiltration of γδ T cells in MPE was assessed through immunofluorescence, ELISA, flow cytometry and transwell migration assay. RESULTS We observed a significant infiltration of γδ T cells in MPE, surpassing the levels found in blood and benign pleural effusion. γδ T cells in MPE exhibited heightened expression of CD56 and an effector memory phenotype, while displaying lower levels of PD-1. Furthermore, γδ T cells in MPE showed higher levels of cytokines (IFN-γ, IL-17A and IL-22) and chemokine receptors (CCR2, CCR5 and CCR6). CCR2 expression was notably higher in the Vδ2 subtype compared to Vδ1 cells. Moreover, the complement C5a enhanced cytokine release by γδ T cells, upregulated CCR2 expression in Vδ2 subsets, and stimulated the production of chemokines (CCL2, CCL7 and CCL20) in MPE. In vitro utilizing CCR2 neutralising and C5aR antagonist significantly reduced the recruitment of γδ T cells. CONCLUSIONS γδ T cells infiltrate MPE by overexpressing CCR2 and exhibit hightened inflammation, which is further augmented by C5a.
Collapse
Affiliation(s)
- Shuanglinzi Deng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanyuan Jiang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lisha Luo
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huan Tang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyue Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chendong Wu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiale Tang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huan Ge
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxiao Gong
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Runjin Cai
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guo Wang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Juntao Feng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Wang CQ, Lim PY, Tan AHM. Gamma/delta T cells as cellular vehicles for anti-tumor immunity. Front Immunol 2024; 14:1282758. [PMID: 38274800 PMCID: PMC10808317 DOI: 10.3389/fimmu.2023.1282758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Adoptive cellular immunotherapy as a new paradigm to treat cancers is exemplified by the FDA approval of six chimeric antigen receptor-T cell therapies targeting hematological malignancies in recent years. Conventional αβ T cells applied in these therapies have proven efficacy but are confined almost exclusively to autologous use. When infused into patients with mismatched human leukocyte antigen, αβ T cells recognize tissues of such patients as foreign and elicit devastating graft-versus-host disease. Therefore, one way to overcome this challenge is to use naturally allogeneic immune cell types, such as γδ T cells. γδ T cells occupy the interface between innate and adaptive immunity and possess the capacity to detect a wide variety of ligands on transformed host cells. In this article, we review the fundamental biology of γδ T cells, including their subtypes, expression of ligands, contrasting roles in and association with cancer prognosis or survival, as well as discuss the gaps in knowledge pertaining to this cell type which we currently endeavor to elucidate. In addition, we propose how to harness the unique properties of γδ T cells for cellular immunotherapy based on lessons gleaned from past clinical trials and provide an update on ongoing trials involving these cells. Lastly, we elaborate strategies that have been tested or can be explored to improve the anti-tumor activity and durability of γδ T cells in vivo.
Collapse
Affiliation(s)
- Chelsia Qiuxia Wang
- Immune Cell Manufacturing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pei Yu Lim
- Immune Cell Manufacturing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Andy Hee-Meng Tan
- Immune Cell Manufacturing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology (SIT), Singapore, Singapore
| |
Collapse
|
9
|
King LA, Toffoli EC, Veth M, Iglesias-Guimarais V, Slot MC, Amsen D, van de Ven R, Derks S, Fransen MF, Tuynman JB, Riedl T, Roovers RC, Adang AEP, Ruben JM, Parren PWHI, de Gruijl TD, van der Vliet HJ. A Bispecific γδ T-cell Engager Targeting EGFR Activates a Potent Vγ9Vδ2 T cell-Mediated Immune Response against EGFR-Expressing Tumors. Cancer Immunol Res 2023; 11:1237-1252. [PMID: 37368791 DOI: 10.1158/2326-6066.cir-23-0189] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
Vγ9Vδ2 T cells are effector cells with proven antitumor efficacy against a broad range of cancers. This study aimed to assess the antitumor activity and safety of a bispecific antibody directing Vγ9Vδ2 T cells to EGFR-expressing tumors. An EGFR-Vδ2 bispecific T-cell engager (bsTCE) was generated, and its capacity to activate Vγ9Vδ2 T cells and trigger antitumor activity was tested in multiple in vitro, in vivo, and ex vivo models. Studies to explore safety were conducted using cross-reactive surrogate engagers in nonhuman primates (NHP). We found that Vγ9Vδ2 T cells from peripheral blood and tumor specimens of patients with EGFR+ cancers had a distinct immune checkpoint expression profile characterized by low levels of PD-1, LAG-3, and TIM-3. Vγ9Vδ2 T cells could be activated by EGFR-Vδ2 bsTCEs to mediate lysis of various EGFR+ patient-derived tumor samples, and substantial tumor growth inhibition and improved survival were observed in in vivo xenograft mouse models using peripheral blood mononuclear cells (PBMC) as effector cells. EGFR-Vδ2 bsTCEs exerted preferential activity toward EGFR+ tumor cells and induced downstream activation of CD4+ and CD8+ T cells and natural killer (NK) cells without concomitant activation of suppressive regulatory T cells observed with EGFR-CD3 bsTCEs. Administration of fully cross-reactive and half-life extended surrogate engagers to NHPs did not trigger signals in the safety parameters that were assessed. Considering the effector and immune-activating properties of Vγ9Vδ2 T cells, the preclinical efficacy data and acceptable safety profile reported here provide a solid basis for testing EGFR-Vδ2 bsTCEs in patients with EGFR+ malignancies.
Collapse
Affiliation(s)
- Lisa A King
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Elisa C Toffoli
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Myrthe Veth
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | | | - Manon C Slot
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Derk Amsen
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rieneke van de Ven
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Otolaryngology and Head and Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Sarah Derks
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Marieke F Fransen
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Pulmonary Diseases, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Jurriaan B Tuynman
- Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thilo Riedl
- Lava Therapeutics NV, Utrecht, the Netherlands
| | | | | | | | - Paul W H I Parren
- Lava Therapeutics NV, Utrecht, the Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Lava Therapeutics NV, Utrecht, the Netherlands
| |
Collapse
|
10
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Rancan C, Arias-Badia M, Dogra P, Chen B, Aran D, Yang H, Luong D, Ilano A, Li J, Chang H, Kwek SS, Zhang L, Lanier LL, Meng MV, Farber DL, Fong L. Exhausted intratumoral Vδ2 - γδ T cells in human kidney cancer retain effector function. Nat Immunol 2023; 24:612-624. [PMID: 36928415 PMCID: PMC10063448 DOI: 10.1038/s41590-023-01448-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 02/03/2023] [Indexed: 03/18/2023]
Abstract
Gamma delta (γδ) T cells reside within human tissues including tumors, but their function in mediating antitumor responses to immune checkpoint inhibition is unknown. Here we show that kidney cancers are infiltrated by Vδ2- γδ T cells, with equivalent representation of Vδ1+ and Vδ1- cells, that are distinct from γδ T cells found in normal human tissues. These tumor-resident Vδ2- T cells can express the transcriptional program of exhausted αβ CD8+ T cells as well as canonical markers of terminal T-cell exhaustion including PD-1, TIGIT and TIM-3. Although Vδ2- γδ T cells have reduced IL-2 production, they retain expression of cytolytic effector molecules and co-stimulatory receptors such as 4-1BB. Exhausted Vδ2- γδ T cells are composed of three distinct populations that lack TCF7, are clonally expanded and express cytotoxic molecules and multiple Vδ2- T-cell receptors. Human tumor-derived Vδ2- γδ T cells maintain cytotoxic function and pro-inflammatory cytokine secretion in vitro. The transcriptional program of Vδ2- T cells in pretreatment tumor biopsies was used to predict subsequent clinical responses to PD-1 blockade in patients with cancer. Thus, Vδ2- γδ T cells within the tumor microenvironment can contribute to antitumor efficacy.
Collapse
Affiliation(s)
- Chiara Rancan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Marcel Arias-Badia
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Pranay Dogra
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Brandon Chen
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Dvir Aran
- The Taub Faculty of Computer Science and Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hai Yang
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Diamond Luong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Arielle Ilano
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jacky Li
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Hewitt Chang
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Serena S Kwek
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Li Zhang
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Lewis L Lanier
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Maxwell V Meng
- Department of Urology, University of California, San Francisco, CA, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, CA, USA.
| |
Collapse
|
12
|
NKG2A Immune Checkpoint in Vδ2 T Cells: Emerging Application in Cancer Immunotherapy. Cancers (Basel) 2023; 15:cancers15041264. [PMID: 36831606 PMCID: PMC9954046 DOI: 10.3390/cancers15041264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
Immune regulation has revolutionized cancer treatment with the introduction of T-cell-targeted immune checkpoint inhibitors (ICIs). This successful immunotherapy has led to a more complete view of cancer that now considers not only the cancer cells to be targeted and destroyed but also the immune environment of the cancer cells. Current challenges associated with the enhancement of ICI effects are increasing the fraction of responding patients through personalized combinations of multiple ICIs and overcoming acquired resistance. This requires a complete overview of the anti-tumor immune response, which depends on a complex interplay between innate and adaptive immune cells with the tumor microenvironment. The NKG2A was revealed to be a key immune checkpoint for both Natural Killer (NK) cells and T cells. Monalizumab, a humanized anti-NKG2A antibody, enhances NK cell activity against various tumor cells and rescues CD8 αβ T cell function in combination with PD-1/PD-L1 blockade. In this review, we discuss the potential for targeting NKG2A expressed on tumor-sensing human γδ T cells, mostly on the specific Vδ2 T cell subset, in order to emphasize its importance and potential in the development of new ICI-based therapeutic approaches.
Collapse
|
13
|
Ridgley LA, Caron J, Dalgleish A, Bodman-Smith M. Releasing the restraints of Vγ9Vδ2 T-cells in cancer immunotherapy. Front Immunol 2023; 13:1065495. [PMID: 36713444 PMCID: PMC9880221 DOI: 10.3389/fimmu.2022.1065495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Objectives Vγ9Vδ2 T-cells are a subset of T-cells with a crucial role in immunosurveillance which can be activated and expanded by multiple means to stimulate effector responses. Little is known about the expression of checkpoint molecules on this cell population and whether the ligation of these molecules can regulate their activity. The aim of this study was to assess the expression of both activatory and inhibitory receptors on Vγ9Vδ2 T-cells to assess potential avenues of regulation to target with immunotherapy. Methods Expression of various activatory and inhibitory receptors was assessed on Vγ9Vδ2 T-cells by flow cytometry following activation and expansion using zoledronic acid (ZA) and Bacillus Calmette-Guérin (BCG). Expression of these markers and production of effector molecules was also examined following co-culture with various tumour cell targets. The effect of immune checkpoint blockade on Vγ9Vδ2 T-cells was also explored. Results Vγ9Vδ2 T-cells expressed high levels of activatory markers both at baseline and following stimulation. Vγ9Vδ2 T-cells expressed variable levels of inhibitory checkpoint receptors with many being upregulated following stimulation. Expression of these markers is further modulated upon co-culture with tumour cells with changes reflecting activation and effector functions. Despite their high expression of inhibitory receptors when cultured with tumour cells expressing cognate ligands there was no effect on Vδ2+ T-cell cytotoxic capacity or cytokine production with immune checkpoint blockade. Conclusions Our work suggests the expression of checkpoint receptors present on Vγ9Vδ2 T-cells which may provide a mechanism with the potential to be utilised by tumour cells to subvert Vγ9Vδ2 T-cell cytotoxicity. This work suggests important candidates for blockade by ICI therapy in order to increase the successful use of Vγ9Vδ2 T-cells in immunotherapy.
Collapse
|
14
|
Corsale AM, Di Simone M, Lo Presti E, Dieli F, Meraviglia S. γδ T cells and their clinical application in colon cancer. Front Immunol 2023; 14:1098847. [PMID: 36793708 PMCID: PMC9923022 DOI: 10.3389/fimmu.2023.1098847] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
In recent years, research has focused on colorectal cancer to implement modern treatment approaches to improve patient survival. In this new era, γδ T cells constitute a new and promising candidate to treat many types of cancer because of their potent killing activity and their ability to recognize tumor antigens independently of HLA molecules. Here, we focus on the roles that γδ T cells play in antitumor immunity, especially in colorectal cancer. Furthermore, we provide an overview of small-scale clinical trials in patients with colorectal cancer employing either in vivo activation or adoptive transfer of ex vivo expanded γδ T cells and suggest possible combinatorial approaches to treat colon cancer.
Collapse
Affiliation(s)
- Anna Maria Corsale
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| | - Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| | - Elena Lo Presti
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR)I, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| |
Collapse
|
15
|
Zhou B, Basu J, Kazmi HR, Chitrala KN, Mo X, Preston-Alp S, Cai KQ, Kappes D, Zaidi MR. Interferon-gamma signaling promotes melanoma progression and metastasis. Oncogene 2023; 42:351-363. [PMID: 36463370 PMCID: PMC9991867 DOI: 10.1038/s41388-022-02561-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022]
Abstract
Interferon-gamma (IFNG) has long been regarded as the flag-bearer for the anti-cancer immunosurveillance mechanisms. However, relatively recent studies have suggested a dual role of IFNG, albeit there is no direct experimental evidence for its potential pro-tumor functions. Here we provide in vivo evidence that treatment of mouse melanoma cell lines with Ifng enhances their tumorigenicity and metastasis in lung colonization allograft assays performed in immunocompetent syngeneic host mice, but not in immunocompromised host mice. We also show that this enhancement is dependent on downstream signaling via Stat1 but not Stat3, suggesting an oncogenic function of Stat1 in melanoma. The experimental results suggest that melanoma cell-specific Ifng signaling modulates the tumor microenvironment and its pro-tumorigenic effects are partially dependent on the γδ T cells, as Ifng-enhanced tumorigenesis was inhibited in the TCR-δ knockout mice. Overall, these results show that Ifng signaling may have tumor-promoting effects in melanoma by modulating the immune cell composition of the tumor microenvironment.
Collapse
Affiliation(s)
- Bo Zhou
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,MEI Pharma, San Diego, CA, USA
| | - Jayati Basu
- Fox Chase Cancer Center, Philadelphia, PA, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hasan Raza Kazmi
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kumaraswamy Naidu Chitrala
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Department of Engineering Technology, University of Houston, Houston, TX, USA
| | - Xuan Mo
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sarah Preston-Alp
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kathy Q Cai
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - M Raza Zaidi
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Liou ML, Lahusen T, Li H, Xiao L, Pauza CD. Reducing farnesyl diphosphate synthase levels activates Vγ9Vδ2 T cells and improves tumor suppression in murine xenograft cancer models. Front Immunol 2022; 13:1012051. [PMID: 36275712 PMCID: PMC9581136 DOI: 10.3389/fimmu.2022.1012051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Human Vγ9Vδ2 T cells are attractive candidates for cancer immunotherapy due to their potent capacity for tumor recognition and cytolysis of many tumor cell types. However, efforts to deploy clinical strategies for Vγ9Vδ2 T cell cancer therapy are hampered by insufficient potency. We are pursuing an alternate strategy of modifying tumors to increase the capacity for Vγ9Vδ2 T cell activation, as a means for strengthening the anti-tumor response by resident or ex vivo manufactured Vγ9Vδ2 T cells. Vγ9Vδ2 T cells are activated in vitro by non-peptidic antigens including isopentenyl pyrophosphate (IPP), a substrate of farnesyl diphosphate synthase (FDPS) in the pathway for biosynthesis of isoprenoids. In an effort to improve in vivo potency of Vγ9Vδ2 T cells, we reduced FDPS expression in tumor cells using a lentivirus vector encoding a short-hairpin RNA that targets FDPS mRNA (LV-shFDPS). Prostate (PC3) or hepatocellular carcinoma (Huh-7) cells transduced with LV-shFDPS induced Vγ9Vδ2 T cell stimulation in vitro, resulting in increased cytokine expression and tumor cell cytotoxicity. Immune deficient mice implanted with LV-shFDPS transduced tumor cells showed dramatic responses to intraperitoneal injection of Vγ9Vδ2 T cells with strong suppression of tumor growth. In vivo potency was increased by transducing tumor cells with a vector expressing both shFDPS and human IL-2. Tumor suppression by Vγ9Vδ2 T cells was dose-dependent with greater effects observed in mice injected with 100% LV-shFDPS transduced cells compared to mice injected with a mixture of 50% LV-shFDPS transduced cells and 50% control (no vector) tumor cells. Delivery of LV-shFDPS by intratumoral injection was insufficient to knockdown FDPS in the majority of tumor cells, resulting in insignificant tumor suppression by Vγ9Vδ2 T cells. Thus, Vγ9Vδ2 T cells efficiently targeted and suppressed tumors expressing shFDPS in mouse xenotransplant models. This proof-of-concept study demonstrates the potential for suppression of genetically modified tumors by human Vγ9Vδ2 T cells and indicates that co-expression of cytokines may boost the anti-tumor effect.
Collapse
Affiliation(s)
- Mei-Ling Liou
- American Gene Technologies International Inc., Rockville, MD, United States
| | - Tyler Lahusen
- American Gene Technologies International Inc., Rockville, MD, United States
- *Correspondence: Tyler Lahusen,
| | - Haishan Li
- American Gene Technologies International Inc., Rockville, MD, United States
- Viriom Inc., Rockville, MD, United States
| | - Lingzhi Xiao
- American Gene Technologies International Inc., Rockville, MD, United States
| | - C. David Pauza
- American Gene Technologies International Inc., Rockville, MD, United States
- Viriom Inc., Rockville, MD, United States
| |
Collapse
|
17
|
Nguyen S, Chevalier MF, Benmerzoug S, Cesson V, Schneider AK, Rodrigues-Dias SC, Dartiguenave F, Lucca I, Jichlinski P, Roth B, Nardelli-Haefliger D, Derré L. Vδ2 T cells are associated with favorable clinical outcomes in patients with bladder cancer and their tumor reactivity can be boosted by BCG and zoledronate treatments. J Immunother Cancer 2022; 10:jitc-2022-004880. [PMID: 36002184 PMCID: PMC9413168 DOI: 10.1136/jitc-2022-004880] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/06/2022] Open
Abstract
Background Bladder cancer is an important public health concern due to its prevalence, high risk of recurrence and associated cost of management. Although BCG instillation for urothelial cancer treatment is the gold-standard treatment for this indication, repeated BCG treatments are associated with significant toxicity and failure, underlining the necessity for alternative or complementary immunotherapy and overall for better understanding of T-cell responses generated within bladder mucosa. Tumor-infiltrating lymphocytes (TIL) have long been recognized as a crucial component of the tumor microenvironment for the control of tumor. Among TIL, unconventional γδ T cells sparked interest due to their potent antitumor functions. Although preclinical mouse xenograft models demonstrated the relevance of using γδ T cells as a novel therapy for bladder cancer (BCa), the contribution of γδ T cells in BCa patients’ pathology remains unaddressed. Methods Therefore, we first determined the proportion of intratumor γδ T cells in muscle-invasive patients with BCa by deconvoluting data from The Cancer Genome Atlas (TCGA) and the frequency of blood Vδ1, Vδ2, and total γδ T cells, by flow cytometry, from 80 patients with BCa (40 non-muscle and 40 muscle-invasive patients with BCa), as well as from 20 age-matched non-tumor patients. Then we investigated in vitro which treatment may promote BCa tumor cell recognition by γδ T cells. Results We observed a decrease of γδ T-cell abundance in the tumor compared with corresponding normal adjacent tissue, suggesting that the tumor microenvironment may alter γδ T cells. Yet, high intratumor γδ T-cell proportions were significantly associated with better patient survival outcomes, potentially due to Vδ2 T cells. In the blood of patients with BCa, we observed a lower frequency of total γδ, Vδ1, and Vδ2 T cells compared with non-tumor patients, similarly to the TCGA analysis. In addition, a favorable clinical outcome is associated with a high frequency of circulating γδ T cells, which might be mainly attributed to the Vδ2 T-cell subset. Furthermore, in vitro assays revealed that either BCG, Zoledronate, or anti-BTN3 agonistic antibody treatment of bladder tumor cells induced Vδ2 T-cell cytolytic (CD107a+) and cytokine-production (IFN-γ and TNF-α). Strikingly, combining BCG and Zoledronate treatments significantly elicited the most quantitative and qualitative response by increasing the frequency and the polyfunctionality of bladder tumor-reactive Vδ2 T cells. Conclusions Overall, our results suggest that (1) Vδ2 T cells might play a prominent role in bladder tumor control and (2) non-muscle invasive patients with BCa undergoing BCG therapy may benefit from Zoledronate administration by boosting Vδ2 T cells’ antitumor activity.
Collapse
Affiliation(s)
- Sylvain Nguyen
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Mathieu F Chevalier
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,INSERM U976, HIPI Unit (Human Immunology, Pathophysiology and Immunotherapy), Hôpital Saint-Louis, Paris, France
| | - Sulayman Benmerzoug
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Valérie Cesson
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Anna K Schneider
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sonia-Cristina Rodrigues-Dias
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Florence Dartiguenave
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Ilaria Lucca
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Patrice Jichlinski
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Beat Roth
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Denise Nardelli-Haefliger
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Laurent Derré
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
18
|
Chan KF, Duarte JDG, Ostrouska S, Behren A. γδ T Cells in the Tumor Microenvironment-Interactions With Other Immune Cells. Front Immunol 2022; 13:894315. [PMID: 35880177 PMCID: PMC9307934 DOI: 10.3389/fimmu.2022.894315] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
A growing number of studies have shown that γδ T cells play a pivotal role in mediating the clearance of tumors and pathogen-infected cells with their potent cytotoxic, cytolytic, and unique immune-modulating functions. Unlike the more abundant αβ T cells, γδ T cells can recognize a broad range of tumors and infected cells without the requirement of antigen presentation via major histocompatibility complex (MHC) molecules. Our group has recently demonstrated parts of the mechanisms of T-cell receptor (TCR)-dependent activation of Vγ9Vδ2+ T cells by tumors following the presentation of phosphoantigens, intermediates of the mevalonate pathway. This process is mediated through the B7 immunoglobulin family-like butyrophilin 2A1 (BTN2A1) and BTN3A1 complexes. Such recognition results in activation, a robust immunosurveillance process, and elicits rapid γδ T-cell immune responses. These include targeted cell killing, and the ability to produce copious quantities of cytokines and chemokines to exert immune-modulating properties and to interact with other immune cells. This immune cell network includes αβ T cells, B cells, dendritic cells, macrophages, monocytes, natural killer cells, and neutrophils, hence heavily influencing the outcome of immune responses. This key role in orchestrating immune cells and their natural tropism for tumor microenvironment makes γδ T cells an attractive target for cancer immunotherapy. Here, we review the current understanding of these important interactions and highlight the implications of the crosstalk between γδ T cells and other immune cells in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- Kok Fei Chan
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Jessica Da Gama Duarte
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
19
|
Nezhad Shamohammadi F, Yazdanifar M, Oraei M, Kazemi MH, Roohi A, Mahya Shariat Razavi S, Rezaei F, Parvizpour F, Karamlou Y, Namdari H. Controversial role of γδ T cells in pancreatic cancer. Int Immunopharmacol 2022; 108:108895. [PMID: 35729831 DOI: 10.1016/j.intimp.2022.108895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022]
Abstract
γδ T cells are rare lymphocytes with cogent impact on immune responses. These cells are one of the earliest cells to be recruited in the sites of infection or tumors and play a critical role in coordinating innate and adaptive immune responses. The anti-tumor activity of γδ T cells have been numerously reported; nonetheless, there is controversy among published studies regarding their anti-tumor vs pro-tumor effect- especially in pancreatic cancer. A myriad of studies has confirmed that activated γδ T cells can potently lyse a broad variety of solid tumors and leukemia/lymphoma cells and produce an array of cytokines; however, early γδ T cell-based clinical trials did not lead to optimal efficacy, despite acceptable safety. Depending on the local micromilieu, γδ T cells can differentiate into tumor promoting or suppressing cells such as Th1-, Th2-, or Th17-like cells and produce prototypical cytokines such as interferon-γ (IFNγ) and interleukin (IL)-4/-10, IL-9, or IL-17. In an abstruse tumor such as pancreatic cancer- also known as immunologically cold tumor- γδ T cells are more likely to switch to their immunosuppressive phenotype. In this review we will adduce the accumulated knowledge on these two controversial aspects of γδ T cells in cancers- with a focus on solid tumors and pancreatic cancer. In addition, we propose strategies for enhancing the anti-tumor function of γδ T cells in cancers and discuss the potential future directions.
Collapse
Affiliation(s)
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mona Oraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Roohi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Karamlou
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Fenn J, Ridgley LA, White A, Sarfas C, Dennis M, Dalgleish A, Reljic R, Sharpe S, Bodman-Smith M. Bacillus Calmette-Guerin (BCG) induces superior anti-tumour responses by Vδ2+ T cells compared with the aminobisphosphonate drug zoledronic acid. Clin Exp Immunol 2022; 208:301-315. [PMID: 35404420 PMCID: PMC9226146 DOI: 10.1093/cei/uxac032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2022] [Accepted: 04/08/2022] [Indexed: 11/14/2022] Open
Abstract
Vδ2+ T cells can recognize malignantly transformed cells as well as those infected with mycobacteria. This cross-reactivity supports the idea of using mycobacteria to manipulate Vδ2+ T cells in cancer immunotherapy. To date, therapeutic interventions using Vδ2+ T cells in cancer have involved expanding these cells in or ex vivo using zoledronic acid (ZA). Here, we show that the mycobacterium Bacillus Calmette–Guérin (BCG) also causes Vδ2+ T-cell expansion in vitro and that resulting Vδ2+ cell populations are cytotoxic toward tumour cell lines. We show that both ZA and BCG-expanded Vδ2+ cells effectively killed both Daudi and THP-1 cells. THP-1 cell killing by both ZA and BCG-expanded Vδ2+ cells was enhanced by treatment of targets cells with ZA. Although no difference in cytotoxic activity between ZA- and BCG-expanded Vδ2+ cells was observed, BCG-expanded cells degranulated more and produced a more diverse range of cytokines upon tumour cell recognition compared to ZA-expanded cells. ZA-expanded Vδ2+ cells were shown to upregulate exhaustion marker CD57 to a greater extent than BCG-expanded Vδ2+ cells. Furthermore, ZA expansion was associated with upregulation of inhibitory markers PD-1 and TIM3 in a dose-dependent manner whereas PD-1 expression was not increased following expansion using BCG. Intradermal BCG vaccination of rhesus macaques caused in vivo expansion of Vδ2+ cells. In combination with the aforementioned in vitro data, this finding suggests that BCG treatment could induce expansion of Vδ2+ T cells with enhanced anti-tumour potential compared to ZA treatment and that either ZA or BCG could be used intratumourally as a means to potentiate stronger anti-tumour Vδ2+ T-cell responses.
Collapse
Affiliation(s)
- J Fenn
- Institute for Infection and Immunity, St. George's, University of London, London, UK.,NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, UK
| | - L A Ridgley
- Institute for Infection and Immunity, St. George's, University of London, London, UK
| | - A White
- UK Health Security Agency, Porton Down, UK
| | - C Sarfas
- UK Health Security Agency, Porton Down, UK
| | - M Dennis
- UK Health Security Agency, Porton Down, UK
| | - A Dalgleish
- Institute for Infection and Immunity, St. George's, University of London, London, UK
| | - R Reljic
- Institute for Infection and Immunity, St. George's, University of London, London, UK
| | - S Sharpe
- UK Health Security Agency, Porton Down, UK
| | - M Bodman-Smith
- Institute for Infection and Immunity, St. George's, University of London, London, UK
| |
Collapse
|
21
|
Yang R, He Q, Zhou H, Gong C, Wang X, Song X, Luo F, Lei Y, Ni Q, Wang Z, Xu S, Xue Y, Zhang M, Wen H, Fang L, Zeng L, Yan Y, Shi J, Zhang J, Yi J, Zhou P. Vγ2 x PD-L1, a Bispecific Antibody Targeting Both the Vγ2 TCR and PD-L1, Improves the Anti-Tumor Response of Vγ2Vδ2 T Cell. Front Immunol 2022; 13:923969. [PMID: 35784353 PMCID: PMC9247338 DOI: 10.3389/fimmu.2022.923969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/24/2022] [Indexed: 12/03/2022] Open
Abstract
The potent cytotoxic property of Vγ2Vδ2 T cells makes them attractive for adoptive T cell transfer therapy. The transfusing of the expanded Vγ2Vδ2 T cells into cancer patients shows well-tolerated, but the clinical response rates are required to be improved, implying that there is still an unmet efficacy with low toxicity for this novel anti-tumor therapy. In this study, we test the anti-tumor efficacy of a Y-body-based bispecific antibody (bsAb) Vγ2 x PD-L1 that preferentially redirects Vγ2Vδ2 T cells to combat PD-L1 positive tumor cells. With nanomolar affinity levels to Vγ2Vδ2 T cells and PD-L1+ tumor cells, Vγ2 x PD-L1 bridges a Vγ2Vδ2 T cell with a SKOV3 tumor cell to form a cell-to-cell conjugation. In a PD-L1-dependent manner, the bsAb elicits effective activation (CD25+CD69+), IFNγ releasing, degranulation (CD107a+), and cytokine production (IFNγ+ and TNFα+) of expanded Vγ2Vδ2 T cells. The activations of the Vγ2Vδ2 T cells eliminate PD-L1-expressing human cancer cell lines, including H1975, SKOV3, A375, H1299, and H2228 cells, but not PD-L1 negative cells including HEK-293 (293) cells and healthy PBMCs. Finally, we show that combining Vγ2 x PD-L1 with adoptively transferring Vγ2Vδ2 T cells inhibits the growth of existing tumor xenografts and increases the number of Vγ2Vδ2 T cells into the tumor bed. Vγ2 x PD-L1 represents a promising reagent for increasing the efficacy of adoptively transferred Vγ2Vδ2 T cells in the treatment of PD-L1 positive malignant tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jizu Yi
- *Correspondence: Pengfei Zhou, ; Jizu Yi,
| | | |
Collapse
|
22
|
Weimer P, Wellbrock J, Sturmheit T, Oliveira-Ferrer L, Ding Y, Menzel S, Witt M, Hell L, Schmalfeldt B, Bokemeyer C, Fiedler W, Brauneck F. Tissue-Specific Expression of TIGIT, PD-1, TIM-3, and CD39 by γδ T Cells in Ovarian Cancer. Cells 2022; 11:cells11060964. [PMID: 35326415 PMCID: PMC8946192 DOI: 10.3390/cells11060964] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/19/2022] Open
Abstract
Phenotypic characterization of γδ T cells in the MALs (malignant ascites lymphocytes), TILs (tumor infiltrating lymphocytes), and PBLs (peripheral blood lymphocytes) of ovarian cancer (OvCA) patients is lacking. Therefore, we quantified γδ T cell prevalence in MAL, TIL, and PBL specimens from n = 18 OvCA patients and PBL from age-matched healthy donors (HD, n = 14). Multicolor flow cytometry was performed to evaluate the expression of inhibitory receptors (TIGIT, PD-1 and TIM-3), stimulatory receptors (Ox40), and purinergic ectoenzymes (CD39 and CD73) on γδ T cell subsets. We identified an abundant infiltration of Vδ1 T cells in the MALs and TILs. These cells varied in their differentiation: The majority of Vδ1 TILs displayed an effector memory (EM) phenotype, whereas Vδ1 MALs had a more mature phenotype of terminally differentiated effector memory cells (TEMRA) with high CD45RA expression. TIGIT and TIM-3 were abundantly expressed in both MALs and PBLs, whereas Vδ1 TILs exhibited the highest levels of PD-1, CD39, and Ox40. We also observed specific clusters on mature differentiation stages for the analyzed molecules. Regarding co-expression, Vδ1 TILs showed the highest levels of cells co-expressing TIGIT with PD-1 or CD39 compared to MALs and PBLs. In conclusion, the Vδ1 T cell population showed a high prevalence in the MALs and primary tumors of OvCA patients. Due to their (co-)expression of targetable immune receptors, in particular TIGIT with PD-1 and CD39 in TILs, Vδ1 T cell-based approaches combined with the inhibition of these targets might represent a promising strategy for OvCA.
Collapse
Affiliation(s)
- Pauline Weimer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (P.W.); (T.S.); (M.W.); (C.B.); (W.F.)
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (P.W.); (T.S.); (M.W.); (C.B.); (W.F.)
- Correspondence: (J.W.); (F.B.)
| | - Tabea Sturmheit
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (P.W.); (T.S.); (M.W.); (C.B.); (W.F.)
- 2cureX GmbH, 20251 Hamburg, Germany;
| | - Leticia Oliveira-Ferrer
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (L.O.-F.); (Y.D.); (B.S.)
| | - Yi Ding
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (L.O.-F.); (Y.D.); (B.S.)
| | - Stephan Menzel
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Marius Witt
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (P.W.); (T.S.); (M.W.); (C.B.); (W.F.)
| | | | - Barbara Schmalfeldt
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (L.O.-F.); (Y.D.); (B.S.)
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (P.W.); (T.S.); (M.W.); (C.B.); (W.F.)
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (P.W.); (T.S.); (M.W.); (C.B.); (W.F.)
| | - Franziska Brauneck
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (P.W.); (T.S.); (M.W.); (C.B.); (W.F.)
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
- Correspondence: (J.W.); (F.B.)
| |
Collapse
|
23
|
Kortekaas Krohn I, Aerts JL, Breckpot K, Goyvaerts C, Knol E, Van Wijk F, Gutermuth J. T-cell subsets in the skin and their role in inflammatory skin disorders. Allergy 2022; 77:827-842. [PMID: 34559894 DOI: 10.1111/all.15104] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/11/2021] [Indexed: 12/20/2022]
Abstract
T lymphocytes (T cells) are major players of the adaptive immune response. Naive T cells are primed in the presence of cytokines, leading to polarization into distinct T-cell subsets with specific functions. These subsets are classified based on their T-cell receptor profile, expression of transcription factors, surface cytokine and chemokine receptors, and their cytokine production, which together determine their specific function. This review provides an overview of the various T-cell subsets and their function in several inflammatory skin disorders ranging from allergic inflammation to skin tumors. Moreover, we highlight similarities of T-cell responses across different skin disorders, demonstrating the presence of similar and opposing functions for the different T-cell subsets. Finally, we discuss the effects of currently available and promising therapeutic approaches to harness T cells in inflammatory skin diseases for which efficacy next to unwanted side effects provide new insights into the pathophysiology of skin disorders.
Collapse
Affiliation(s)
- Inge Kortekaas Krohn
- Vrije Universiteit Brussel (VUB)Skin Immunology & Immune Tolerance (SKIN) Research Group Brussels Belgium
- Vrije Universiteit Brussel (VUB)Universitair Ziekenhuis Brussel (UZ Brussel)Department of DermatologyUniversitair Ziekenhuis Brussel Brussels Belgium
| | - Joeri L. Aerts
- Vrije Universiteit Brussel (VUB)Neuro‐Aging and Viro‐Immunotherapy (NAVI) Research Group Brussels Belgium
| | - Karine Breckpot
- Vrije Universiteit Brussel (VUB)Laboratory for Molecular and Cellular Therapy (LMCT)Department of Biomedical Sciences Brussels Belgium
| | - Cleo Goyvaerts
- Vrije Universiteit Brussel (VUB)Laboratory for Molecular and Cellular Therapy (LMCT)Department of Biomedical Sciences Brussels Belgium
| | - Edward Knol
- Center for Translational Immunology University Medical Center Utrecht Utrecht The Netherlands
- Department Dermatology/Allergology University Medical Center Utrecht Utrecht The Netherlands
| | - Femke Van Wijk
- Center for Translational Immunology University Medical Center Utrecht Utrecht The Netherlands
| | - Jan Gutermuth
- Vrije Universiteit Brussel (VUB)Skin Immunology & Immune Tolerance (SKIN) Research Group Brussels Belgium
- Vrije Universiteit Brussel (VUB)Universitair Ziekenhuis Brussel (UZ Brussel)Department of DermatologyUniversitair Ziekenhuis Brussel Brussels Belgium
| |
Collapse
|
24
|
Association between γδ T cells and clinicopathological features of breast cancer. Int Immunopharmacol 2022; 103:108457. [DOI: 10.1016/j.intimp.2021.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022]
|
25
|
Immune tumoral microenvironment in gliomas: focus on CD3 + T cells, Vδ1 + T cells, and microglia/macrophages. Immunol Res 2022; 70:224-239. [PMID: 35006549 DOI: 10.1007/s12026-022-09260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 12/31/2021] [Indexed: 11/05/2022]
Abstract
Gliomas are histologically defined as low-grade gliomas (LGG) and high-grade gliomas (HGG). The most common type of HGG is the glioblastoma (GBM). We aimed to determine the immunological characteristics of CD3 T-cells, Vδ1 T-cells, and microglia/macrophages infiltrating brain gliomas. We collected 24 formalin-fixed paraffin-embedded samples issued from 19 cases of GBM and 5 cases of LGG. An immunohistochemical analysis was performed using anti-CD3, anti-Vδ1, and anti-iba-1 antibodies. Labelling indexes (LI) of CD3 and Vδ1 were evaluated quantitatively, and other CD3, Vδ1, and iba-1 staining characteristics were evaluated qualitatively. The median age of patients was 49 years in GBM and 52 years in LGG. The sex ratio was 1.4 and GBM predominated in males (p = 0.05). In GBM, the medians of CD3-LI and Vδ1-LI were 30 and 3.5 respectively. CD3-LI inversely correlated with survival in GBM cases (r = - 0.543; p = 0.016). CD3 staining intensity correlated with CD3-LI (p < 0.0001) and with the survival in GBM cases (p = 0.003). Compared to LGG, the CD3-LI, the intensity of intra-tumoral Vδ1 staining, and the amount of iba-1 were higher in GBM (p = 0.042; p = 0.014; and p = 0.001 respectively). The iba-1 organization was more amoeboid in older patients and more branched in younger patients (p = 0.028) and tended to be more amoeboid in cases with high iba-1 amount (p = 0.09). Our results suggest that a high level of CD3-LI and a strong intra-tumoral infiltration of Vδ1 T-cells as well as a high involvement of TAM can be considered potential markers of poor prognosis of GBM. However, this requires further studies on more balanced GBM-LGG sample, including an expanded panel of biomarkers.
Collapse
|
26
|
Ji N, Mukherjee N, Shu ZJ, Reyes RM, Meeks JJ, McConkey DJ, Gelfond JA, Curiel TJ, Svatek RS. γδ T Cells Support Antigen-Specific αβ T cell-Mediated Antitumor Responses during BCG Treatment for Bladder Cancer. Cancer Immunol Res 2021; 9:1491-1503. [PMID: 34607803 PMCID: PMC8691423 DOI: 10.1158/2326-6066.cir-21-0285] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Bacillus Calmette-Guérin (BCG) is the most effective intravesical agent at reducing recurrence for patients with high-grade, non-muscle-invasive bladder cancer. Nevertheless, response to BCG is variable and strategies to boost BCG efficacy have not materialized. Prior work demonstrated a requirement for either conventional αβ or nonconventional γδ T cells in mediating BCG treatment efficacy, yet the importance of T-cell antigen specificity for BCG's treatment effect is unclear. Here, we provide direct evidence to show that BCG increases the number of tumor antigen-specific αβ T cells in patients with bladder cancer and protects mice from subsequent same-tumor challenge, supporting BCG induction of tumor-specific memory and protection. Adoptive T-cell transfers of antigen-specific αβ T cells into immunodeficient mice challenged with syngeneic MB49 bladder tumors showed that both tumor and BCG antigen-specific αβ T cells contributed to BCG efficacy. BCG-specific antitumor immunity, however, also required nonconventional γδ T cells. Prior work shows that the mTOR inhibitor rapamycin induces the proliferation and effector function of γδ T cells. Here, rapamycin increased BCG efficacy against both mouse and human bladder cancer in vivo in a γδ T cell-dependent manner. Thus, γδ T cells augment antitumor adaptive immune effects of BCG and support rapamycin as a promising approach to boost BCG efficacy in the treatment of non-muscle-invasive bladder cancer.
Collapse
Affiliation(s)
- Niannian Ji
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Neelam Mukherjee
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Zhen-Ju Shu
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Ryan M Reyes
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas
- Division of Hematology/Medical Oncology at UT Health San Antonio, San Antonio, Texas
| | - Joshua J Meeks
- Departments of Urology, and Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - David J McConkey
- Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, Maryland
| | - Jonathan A Gelfond
- Department of Epidemiology and Biostatistics, UT Health San Antonio, San Antonio, Texas
| | - Tyler J Curiel
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas.
- Division of Hematology/Medical Oncology at UT Health San Antonio, San Antonio, Texas
| | - Robert S Svatek
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas.
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| |
Collapse
|
27
|
Brauneck F, Weimer P, Schulze Zur Wiesch J, Weisel K, Leypoldt L, Vohwinkel G, Fritzsche B, Bokemeyer C, Wellbrock J, Fiedler W. Bone Marrow-Resident Vδ1 T Cells Co-express TIGIT With PD-1, TIM-3 or CD39 in AML and Myeloma. Front Med (Lausanne) 2021; 8:763773. [PMID: 34820398 PMCID: PMC8606547 DOI: 10.3389/fmed.2021.763773] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Background: γδ T cells represent a unique T cell subpopulation due to their ability to recognize cancer cells in a T cell receptor- (TCR) dependent manner, but also in a non-major histocompatibility complex- (MHC) restricted way via natural killer receptors (NKRs). Endowed with these features, they represent attractive effectors for immuno-therapeutic strategies with a better safety profile and a more favorable anti-tumor efficacy in comparison to conventional αβ T cells. Also, remarkable progress has been achieved re-activating exhausted T lymphocytes with inhibitors of co-regulatory receptors e.g., programmed cell death protein 1 (PD-1), T cell immunoreceptor with Ig and ITIM domains (TIGIT) and of the adenosine pathway (CD39, CD73). Regarding γδ T cells, little evidence is available. This study aimed to immunophenotypically characterize γδ T cells from patients with diagnosed acute myeloid leukemia (AML) in comparison to patients with multiple myeloma (MM) and healthy donors (HD). Methods: The frequency, differentiation, activation, and exhaustion status of bone marrow- (BM) derived γδ T cells from patients with AML (n = 10) and MM (n = 11) were assessed in comparison to corresponding CD4+ and CD8+ T cells and peripheral blood- (PB) derived γδ T cells from HDs (n = 16) using multiparameter flow cytometry. Results: BM-infiltrating Vδ1 T cells showed an increased terminally differentiated cell population (TEMRAs) in AML and MM in comparison to HDs with an aberrant subpopulation of CD27−CD45RA++ cells. TIGIT, PD-1, TIM-3, and CD39 were more frequently expressed by γδ T cells in comparison to the corresponding CD4+ T cell population, with expression levels that were similar to that on CD8+ effector cells in both hematologic malignancies. In comparison to Vδ2 T cells, the increased frequency of PD-1+-, TIGIT+-, TIM-3+, and CD39+ cells was specifically observed on Vδ1 T cells and related to the TEMRA Vδ1 population with a significant co-expression of PD-1 and TIM-3 together with TIGIT. Conclusion: Our results revealed that BM-resident γδ T cells in AML and MM express TIGIT, PD-1, TIM-3 and CD39. As effector population for autologous and allogeneic strategies, inhibition of co-inhibitory receptors on especially Vδ1 γδ T cells may lead to re-invigoration that could further increase their cytotoxic potential.
Collapse
Affiliation(s)
- Franziska Brauneck
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pauline Weimer
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Weisel
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Leypoldt
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabi Vohwinkel
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Britta Fritzsche
- University Cancer Center Hamburg (UCCH)-Biobank, Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Girard P, Sosa Cuevas E, Ponsard B, Mouret S, Gil H, Col E, De Fraipont F, Sturm N, Charles J, Manches O, Chaperot L, Aspord C. Dysfunctional BTN3A together with deregulated immune checkpoints and type I/II IFN dictate defective interplay between pDCs and γδ T cells in melanoma patients, which impacts clinical outcomes. Clin Transl Immunology 2021; 10:e1329. [PMID: 34786191 PMCID: PMC8577077 DOI: 10.1002/cti2.1329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives pDCs and γδ T cells emerge as potent immune players participating in the pathophysiology of cancers, yet still remaining enigmatic while harbouring a promising potential for clinical translations. Despite strategic and closed missions, crosstalk between pDCs and γδ T cells has not been deciphered yet in cancers, especially in melanoma where the long‐term control of the tumor still remains a challenge. Methods This prompted us to explore the interplay between pDCs and γδ T cells in the context of melanoma, investigating the reciprocal features of pDCs or γδ T cells, the underlying molecular mechanisms and its impact on clinical outcomes. Results TLRL‐activated pDCs from the blood and tumor infiltrate of melanoma patients displayed an impaired ability to activate, to modulate immune checkpoints and trigger the functionality of γδ T cells. Conversely, γδ T cells from the blood or tumor infiltrate of melanoma patients activated by PAg were defective in triggering pDCs’ activation and modulation of immune checkpoints, and failed to elicit the functionality of pDCs. Reversion of the dysfunctional cross‐talks could be achieved by specific cytokine administration and immune checkpoint targeting. Strikingly, we revealed an increased expression of BTN3A on circulating and tumor‐infiltrating pDCs and γδ T cells from melanoma patients, but stressed out the potential impairment of this molecule. Conclusion Our study uncovered that melanoma hijacked the bidirectional interplay between pDCs and γδ T cells to escape from immune control, and revealed BTN3A dysfunction. Such understanding will help harness and synergise the power of these potent immune cells to design new therapeutic approaches exploiting their antitumor potential while counteracting their skewing by tumors to improve patient outcomes.
Collapse
Affiliation(s)
- Pauline Girard
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Benedicte Ponsard
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Stephane Mouret
- Dermatology Clinic Grenoble University Hospital Grenoble France
| | - Hugo Gil
- Pathology Department Institut de Biologie et Pathologie CHU Grenoble Alpes Grenoble France
| | - Edwige Col
- Pathology Department Institut de Biologie et Pathologie CHU Grenoble Alpes Grenoble France
| | - Florence De Fraipont
- Medical Unit of Molecular Genetic (Hereditary Diseases and Oncology) Grenoble University Hospital Grenoble France
| | - Nathalie Sturm
- Pathology Department Institut de Biologie et Pathologie CHU Grenoble Alpes Grenoble France
| | - Julie Charles
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Dermatology Clinic Grenoble University Hospital Grenoble France
| | - Olivier Manches
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Laurence Chaperot
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| |
Collapse
|
29
|
Foord E, Arruda LCM, Gaballa A, Klynning C, Uhlin M. Characterization of ascites- and tumor-infiltrating γδ T cells reveals distinct repertoires and a beneficial role in ovarian cancer. Sci Transl Med 2021; 13:13/577/eabb0192. [PMID: 33472952 DOI: 10.1126/scitranslmed.abb0192] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 09/15/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
The role of γδ T cells in antitumor immunity has been under investigation for the past two decades, but little is known about their contribution to clinical outcomes in patients. Here, we set out to define the clonotypic, phenotypic, and functional features of γδ T cells in peripheral blood, ascites, and metastatic tumor tissue from patients with advanced epithelial ovarian cancer. T cell receptor (TCR) sequencing of the γ chain revealed that tumor-infiltrating γδ T cells have a unique and skewed repertoire with high TCR diversity and low clonality. In contrast, ascites-derived γδ T cells presented a lower TCR diversity and higher clonality, suggesting a TCR-dependent clonal focusing at this site. Further investigation showed that tumor samples had abundant γδ T cells with a tissue-resident, activation-associated phenotype, less usage of Vγ9 and an impaired response to adaptive-associated stimuli, implying an innate-like activation pathway, rather than an adaptive TCR-engaging pathway, at these tumor sites. Furthermore, high γδ T cell cytokine responsiveness upon stimulation was associated with a favorable outcome for patients in terms of both overall survival and reduced residual tumor burden after primary surgery. Last, the functionality of γδ T cells and patient survival were negatively affected by the proportions of CD39-expressing T cells, highlighting the potential of CD39 as a target to improve γδ T cell responses and unleash their antitumor capabilities.
Collapse
Affiliation(s)
- Emelie Foord
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Lucas C M Arruda
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ahmed Gaballa
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 171 77 Stockholm, Sweden.,Department of Clinical Biochemistry, National Liver Institute, Menoufia University, 511 32 Shebin Elkom, Egypt
| | - Charlotte Klynning
- Department of Gynecological Oncology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 171 77 Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, 141 86 Stockholm, Sweden.,Department of Applied Physics, Royal Institute of Technology, 100 44 Stockholm, Sweden
| |
Collapse
|
30
|
Galati D, Zanotta S, Bocchino M, De Filippi R, Pinto A. The subtle interplay between gamma delta T lymphocytes and dendritic cells: is there a role for a therapeutic cancer vaccine in the era of combinatorial strategies? Cancer Immunol Immunother 2021; 70:1797-1809. [PMID: 33386466 PMCID: PMC10991494 DOI: 10.1007/s00262-020-02805-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
Human gamma delta (γδ) T cells represent heterogeneous subsets of unconventional lymphocytes with an HLA-unrestricted target cell recognition. γδ T cells display adaptive clonally restricted specificities coupled to a powerful cytotoxic function against transformed/injured cells. Dendritic cells (DCs) are documented to be the most potent professional antigen-presenting cells (APCs) able to induce adaptive immunity and support the innate immune response independently from T cells. Several data show that the cross-talk of γδ T lymphocytes with DCs can play a crucial role in the orchestration of immune response by bridging innate to adaptive immunity. In the last decade, DCs, as well as γδ T cells, have been of increasing clinical interest, especially as monotherapy for cancer immunotherapy, even though with unpredictable results mainly due to immune suppression and/or tumor-immune escape. For these reasons, new vaccine strategies have to be explored to reach cancer immunotherapy's full potential. The effect of DC-based vaccines on γδ T cell is less extensively investigated, and a combinatorial approach using DC-based vaccines with γδ T cells might promote a strong synergy for long-term tumor control and protection against escaping tumor clones. Here, we discuss the therapeutic potential of the interaction between DCs and γδ T cells to improve cancer vaccination. In particular, we describe the most relevant and updated evidence of such combinatorial approaches, including the use of Zoledronate, Interleukin-15, and protamine RNA, also looking towards future strategies such as CAR therapies.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Developmental Therapeutics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy.
| | - Serena Zanotta
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Developmental Therapeutics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Marialuisa Bocchino
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Rosaria De Filippi
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Antonio Pinto
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Developmental Therapeutics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
31
|
Giri S, Lal G. Differentiation and functional plasticity of gamma-delta (γδ) T cells under homeostatic and disease conditions. Mol Immunol 2021; 136:138-149. [PMID: 34146759 DOI: 10.1016/j.molimm.2021.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/29/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022]
Abstract
Gamma-delta (γδ) T cells are a heterogeneous population of immune cells, which constitute <5% of total T cells in mice lymphoid tissue and human peripheral blood. However, they comprise a higher proportion of T cells in the epithelial and mucosal barrier, where they perform immune functions, help in tissue repair, and maintaining homeostasis. These tissues resident γδ T cells possess properties of innate and adaptive immune cells which enables them to perform a variety of functions during homeostasis and disease. Emerging data suggest the involvement of γδ T cells during transplant rejection and survival. Interestingly, several functions of γδ T cells can be modulated through their interaction with other immune cells. This review provides an overview of development, differentiation plasticity into regulatory and effector phenotypes of γδ T cells during homeostasis and various diseases.
Collapse
Affiliation(s)
- Shilpi Giri
- National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Ganeshkhind, Pune, MH-411007, India.
| |
Collapse
|
32
|
Kent A, Longino NV, Christians A, Davila E. Naturally Occurring Genetic Alterations in Proximal TCR Signaling and Implications for Cancer Immunotherapy. Front Immunol 2021; 12:658611. [PMID: 34012443 PMCID: PMC8126620 DOI: 10.3389/fimmu.2021.658611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
T cell-based immunotherapies including genetically engineered T cells, adoptive transfer of tumor-infiltrating lymphocytes, and immune checkpoint blockade highlight the impressive anti-tumor effects of T cells. These successes have provided new hope to many cancer patients with otherwise poor prognoses. However, only a fraction of patients demonstrates durable responses to these forms of therapies and many develop significant immune-mediated toxicity. These heterogeneous clinical responses suggest that underlying nuances in T cell genetics, phenotypes, and activation states likely modulate the therapeutic impact of these approaches. To better characterize known genetic variations that may impact T cell function, we 1) review the function of early T cell receptor-specific signaling mediators, 2) offer a synopsis of known mutations and genetic alterations within the associated molecules, 3) discuss the link between these mutations and human disease and 4) review therapeutic strategies under development or in clinical testing that target each of these molecules for enhancing anti-tumor T cell activity. Finally, we discuss novel engineering approaches that could be designed based on our understanding of the function of these molecules in health and disease.
Collapse
Affiliation(s)
- Andrew Kent
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
| | - Natalie V. Longino
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Allison Christians
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
| | - Eduardo Davila
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
33
|
Ascierto PA, Atkins MB, Eggermont AM, Gershenwald JE, Grob JJ, Hamid O, Sondak VK, Sosman JA, Tawbi HA, Weber JS, Caracò C, Osman I, Puzanov I. The "Great Debate" at Melanoma Bridge 2020: December, 5th, 2020. J Transl Med 2021; 19:142. [PMID: 33827575 PMCID: PMC8028182 DOI: 10.1186/s12967-021-02808-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/24/2021] [Indexed: 01/11/2023] Open
Abstract
The Great Debate session at the 2020 Melanoma Bridge virtual congress (December 3rd-5th, Italy) featured counterpoint views from experts on five specific controversial issues in melanoma. The debates considered whether or not innate immunity is important in the response to cancer and immunotherapy, how useful are the revised American Joint Committee on Cancer (AJCC) classification for the staging of patients, the use of sentinel node biopsy for staging patients, the use of triplet combination of targeted therapy plus immunotherapy versus combined immunotherapy, and the respective benefits of neoadjuvant versus adjuvant therapy. As is usual with Bridge congresses, the debates were assigned by meeting Chairs and positions taken by experts during the debates may not have necessarily reflected their own personal opinion.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy.
| | - Michael B Atkins
- Georgetown-Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Alexander M Eggermont
- Princess Maxima Center and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jean-Jacques Grob
- Service de Dermatologie et Cancérologie CutanéeHôpital de la Timone, Aix-Marseille Université, Marseille Cedex 5, France
| | - Omid Hamid
- The Angeles Clinic and Research Institute, Los Angeles, CA, USA
| | - Vernon K Sondak
- Department of Cutaneous Oncology, Richard M. Schulze Family Foundation, Moffitt Cancer Center , Tampa, FL, USA
- Departments of Oncologic Sciences and Surgery, University of South Florida Morsani School of Medicine, Tampa, FL, USA
| | - Jeffrey A Sosman
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Hussein A Tawbi
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey S Weber
- Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Corrado Caracò
- Unit of Melanoma and Skin Tumor Surgery, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Iman Osman
- New York University Langone Medical Center, New York, NY, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
34
|
Schick J, Ritchie RP, Restini C. Breast Cancer Therapeutics and Biomarkers: Past, Present, and Future Approaches. Breast Cancer (Auckl) 2021; 15:1178223421995854. [PMID: 33994789 PMCID: PMC8100889 DOI: 10.1177/1178223421995854] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) is the leading cause of cancer death in women and the second-most common cancer. An estimated 281 550 new cases of invasive BC will be diagnosed in women in the United States, and about 43 600 will die during 2021. Continual research has shed light on all disease areas, including tumor classification and biomarkers for diagnosis/prognosis. As research investigations evolve, new classes of drugs are emerging with potential benefits in BC treatment that are covered in this manuscript. The initial sections present updated classification and terminology used for diagnosis and prognosis, which leads to the following topics, discussing the past and present treatments available for BC. Our review will generate interest in exploring the complexity of the cell cycle and its association with cancer biology as part of the plethora of target factors toward developing newer drugs and effective therapeutic management of BC.
Collapse
Affiliation(s)
- Jason Schick
- College of Osteopathic Medicine, Michigan State University, Clinton Township, MI, USA
| | - Raquel P Ritchie
- College of Osteopathic Medicine, Michigan State University, Clinton Township, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Carolina Restini
- College of Osteopathic Medicine, Michigan State University, Clinton Township, MI, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
35
|
Gherardin NA, Waldeck K, Caneborg A, Martelotto LG, Balachander S, Zethoven M, Petrone PM, Pattison A, Wilmott JS, Quiñones-Parra SM, Rossello F, Posner A, Wong A, Weppler AM, Shannon KF, Hong A, Ferguson PM, Jakrot V, Raleigh J, Hatzimihalis A, Neeson PJ, Deleso P, Johnston M, Chua M, Becker JC, Sandhu S, McArthur GA, Gill AJ, Scolyer RA, Hicks RJ, Godfrey DI, Tothill RW. γδ T Cells in Merkel Cell Carcinomas Have a Proinflammatory Profile Prognostic of Patient Survival. Cancer Immunol Res 2021; 9:612-623. [PMID: 33674358 DOI: 10.1158/2326-6066.cir-20-0817] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/14/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Merkel cell carcinomas (MCC) are immunogenic skin cancers associated with viral infection or UV mutagenesis. To study T-cell infiltrates in MCC, we analyzed 58 MCC lesions from 39 patients using multiplex-IHC/immunofluorescence (m-IHC/IF). CD4+ or CD8+ T cells comprised the majority of infiltrating T lymphocytes in most tumors. However, almost half of the tumors harbored prominent CD4/CD8 double-negative (DN) T-cell infiltrates (>20% DN T cells), and in 12% of cases, DN T cells represented the majority of T cells. Flow cytometric analysis of single-cell suspensions from fresh tumors identified DN T cells as predominantly Vδ2- γδ T cells. In the context of γδ T-cell inflammation, these cells expressed PD-1 and LAG3, which is consistent with a suppressed or exhausted phenotype, and CD103, which indicates tissue residency. Furthermore, single-cell RNA sequencing (scRNA-seq) identified a transcriptional profile of γδ T cells suggestive of proinflammatory potential. T-cell receptor (TCR) analysis confirmed clonal expansion of Vδ1 and Vδ3 clonotypes, and functional studies using cloned γδ TCRs demonstrated restriction of these for CD1c and MR1 antigen-presenting molecules. On the basis of a 13-gene γδ T-cell signature derived from scRNA-seq analysis, gene-set enrichment on bulk RNA-seq data showed a positive correlation between enrichment scores and DN T-cell infiltrates. An improved disease-specific survival was evident for patients with high enrichment scores, and complete responses to anti-PD-1/PD-L1 treatment were observed in three of four cases with high enrichment scores. Thus, γδ T-cell infiltration may serve as a prognostic biomarker and should be explored for therapeutic interventions.See related Spotlight on p. 600.
Collapse
Affiliation(s)
- Nicholas A Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria, Australia
| | - Kelly Waldeck
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Alex Caneborg
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Luciano G Martelotto
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Shiva Balachander
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Magnus Zethoven
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Pasquale M Petrone
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Andrew Pattison
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sergio M Quiñones-Parra
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Fernando Rossello
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Atara Posner
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Annie Wong
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Alison M Weppler
- Medical Oncology Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kerwin F Shannon
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Angela Hong
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Valerie Jakrot
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Jeanette Raleigh
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Athena Hatzimihalis
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Paul J Neeson
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Paolo Deleso
- Radiation Oncology Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Meredith Johnston
- Radiation Oncology Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Liverpool Hospital, Sydney, New South Wales, Australia
| | - Margaret Chua
- Radiation Oncology Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Juergen C Becker
- German Cancer Consortium (DKTK), Translational Skin Cancer Research, University Medicine Essen, Essen and DKFZ, Heidelberg, Germany
| | - Shahneen Sandhu
- Medical Oncology Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Grant A McArthur
- Medical Oncology Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical, Research and The University of Sydney, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,New South Wales Health Pathology, Sydney, New South Wales, Australia
| | - Rodney J Hicks
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Cancer Imaging Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard W Tothill
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Clinicopathological Correlates of γδ T Cell Infiltration in Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13040765. [PMID: 33673133 PMCID: PMC7918092 DOI: 10.3390/cancers13040765] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The prognostic impact of the different tumor-infiltrating lymphocyte (TIL) subpopulations remains debated in solid cancers. We investigated the clinicopathological correlates and prognostic impact of TILs, particularly of γδ T cells, in 162 triple-negative breast cancer (TNBC) patients. A high γδ T cell density was significantly associated with younger age, higher tumor histological grade, adjuvant chemotherapy, BRCA1 promoter methylation, TIL density, and PD-L1 and PD-1 expression. In multivariate analyses, γδ T cell infiltration was an independent prognostic factor. However, this prognostic impact varied according to the tumor PIK3CA mutational status. High γδ T cell infiltration was associated with better survival in patients with PIK3CA wild-type tumors, without significant difference in the PIK3CA-mutated tumor subgroup. Altogether, these data suggest that high γδ T cell infiltrate is correlated with immune infiltration and might represent a prognostic tool in TNBC patients. Abstract The prognostic impact of the different tumor-infiltrating lymphocyte (TIL) subpopulations in solid cancers is still debated. Here, we investigated the clinicopathological correlates and prognostic impact of TILs, particularly of γδ T cells, in 162 patients with triple-negative breast cancer (TNBC). A high γδ T cell density (>6.625 γδ T cells/mm2) was associated with younger age (p = 0.008), higher tumor histological grade (p = 0.002), adjuvant chemotherapy (p = 0.010), BRCA1 promoter methylation (p = 0.010), TIL density (p < 0.001), and PD-L1 (p < 0.001) and PD-1 expression (p = 0.040). In multivariate analyses, γδ T cell infiltration (cutoff = 6.625 γδ T cells/mm2) was an independent prognostic factor (5-year relapse-free survival: 63.3% vs. 89.8%, p = 0.027; 5-year overall survival: 73.8% vs. 89.9%, p = 0.031, for low vs. high infiltration). This prognostic impact varied according to the tumor PIK3CA mutational status. High γδ T cell infiltration was associated with better survival in patients with PIK3CA wild-type tumors, but the difference was not significant in the subgroup with PIK3CA-mutated tumors. Altogether, these data suggest that high γδ T cell infiltrate is correlated with immune infiltration and might represent a candidate prognostic tool in patients with TNBC.
Collapse
|
37
|
Ruf B, Heinrich B, Greten TF. Immunobiology and immunotherapy of HCC: spotlight on innate and innate-like immune cells. Cell Mol Immunol 2021; 18:112-127. [PMID: 33235387 PMCID: PMC7852696 DOI: 10.1038/s41423-020-00572-w] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
Immune-based therapies such as immune checkpoint inhibitors have revolutionized the systemic treatment of various cancer types. The therapeutic application of monoclonal antibodies targeting inhibitory pathways such as programmed cell death-1(PD-1)/programmed cell death ligand 1 (PD-L1) and CTLA-4 to cells of the adaptive immune system has recently been shown to generate meaningful improvement in the clinical outcome of hepatocellular carcinoma (HCC). Nevertheless, current immunotherapeutic approaches induce durable responses in only a subset of HCC patients. Since immunologic mechanisms such as chronic inflammation due to chronic viral hepatitis or alcoholic and nonalcoholic fatty liver disease play a crucial role in the initiation, development, and progression of HCC, it is important to understand the underlying mechanisms shaping the unique tumor microenvironment of liver cancer. The liver is an immunologic organ with large populations of innate and innate-like immune cells and is exposed to bacterial, viral, and fungal antigens through the gut-liver axis. Here, we summarize and highlight the role of these cells in liver cancer and propose strategies to therapeutically target them. We also discuss current immunotherapeutic strategies in HCC and outline recent advances in our understanding of how the therapeutic potential of these agents might be enhanced.
Collapse
Affiliation(s)
- Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
38
|
Castillo-González R, Cibrian D, Sánchez-Madrid F. Dissecting the complexity of γδ T-cell subsets in skin homeostasis, inflammation, and malignancy. J Allergy Clin Immunol 2020; 147:2030-2042. [PMID: 33259837 DOI: 10.1016/j.jaci.2020.11.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
γδ T cells are much less common than αβ T cells, accounting for 0.5% to 5% of all T lymphocytes in the peripheral blood and lymphoid tissues in mice and humans. However, they are the most abundant T-lymphocyte subset in some epithelial barriers such as mouse skin. γδ T cells are considered innate lymphocytes because of their non-MHC restricted antigen recognition, as well as because of their rapid response to cytokines, invading pathogens, and malignant cells. Exacerbated expansion and activation of γδ T cells in the skin is a common feature of acute and chronic skin inflammation such as psoriasis and contact or atopic dermatitis. Different γδ T-cell subsets showing differential developmental and functional features are found in mouse and human skin. This review discusses the state of the art of research and future perspectives about the role of the different subsets of γδ T-cells detected in the skin in steady-state, psoriasis, dermatitis, infection, and malignant skin diseases. Also, we highlight the differences between human and mouse γδ T cells in skin homeostasis and inflammation, as understanding the differential role of each subtype of skin γδ T cells will improve the discovery of new therapies.
Collapse
Affiliation(s)
- Raquel Castillo-González
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Danay Cibrian
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain.
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
39
|
Clark BL, Thomas PG. A Cell for the Ages: Human γδ T Cells across the Lifespan. Int J Mol Sci 2020; 21:E8903. [PMID: 33255339 PMCID: PMC7727649 DOI: 10.3390/ijms21238903] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
The complexity of the human immune system is exacerbated by age-related changes to immune cell functionality. Many of these age-related effects remain undescribed or driven by mechanisms that are poorly understood. γδ T cells, while considered an adaptive subset based on immunological ontogeny, retain both innate-like and adaptive-like characteristics. This T cell population is small but mighty, and has been implicated in both homeostatic and disease-induced immunity within tissues and throughout the periphery. In this review, we outline what is known about the effect of age on human peripheral γδ T cells, and call attention to areas of the field where further research is needed.
Collapse
Affiliation(s)
- Brandi L. Clark
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
40
|
Wesch D, Kabelitz D, Oberg HH. Tumor resistance mechanisms and their consequences on γδ T cell activation. Immunol Rev 2020; 298:84-98. [PMID: 33048357 DOI: 10.1111/imr.12925] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Human γδ T lymphocytes are predominated by two major subsets, defined by the variable domain of the δ chain. Both, Vδ1 and Vδ2 T cells infiltrate in tumors and have been implicated in cancer immunosurveillance. Since the localization and distribution of tumor-infiltrating γδ T cell subsets and their impact on survival of cancer patients are not completely defined, this review summarizes the current knowledge about this issue. Different intrinsic tumor resistance mechanisms and immunosuppressive molecules of immune cells in the tumor microenvironment have been reported to negatively influence functional properties of γδ T cell subsets. Here, we focus on selected tumor resistance mechanisms including overexpression of cyclooxygenase (COX)-2 and indolamine-2,3-dioxygenase (IDO)-1/2, regulation by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/TRAIL-R4 pathway and the release of galectins. These inhibitory mechanisms play important roles in the cross-talk of γδ T cell subsets and tumor cells, thereby influencing cytotoxicity or proliferation of γδ T cells and limiting a successful γδ T cell-based immunotherapy. Possible future directions of a combined therapy of adoptively transferred γδ T cells together with γδ-targeting bispecific T cell engagers and COX-2 or IDO-1/2 inhibitors or targeting sialoglycan-Siglec pathways will be discussed and considered as attractive therapeutic options to overcome the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
41
|
Sato Y, Ogawa E, Okuyama R. Role of Innate Immune Cells in Psoriasis. Int J Mol Sci 2020; 21:ijms21186604. [PMID: 32917058 PMCID: PMC7554918 DOI: 10.3390/ijms21186604] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin condition caused by a combination of hereditary and environmental factors. Its development is closely related to the adaptive immune response. T helper 17 cells are major IL-17-producing cells, a function that plays an important role in the pathogenesis of psoriasis. However, recent findings have demonstrated that innate immune cells also contribute to the development of psoriasis. Innate lymphoid cells, γδ T cells, natural killer T cells, and natural killer cells are activated in psoriasis, contributing to disease pathology through IL-17-dependent and -independent mechanisms. The present review provides an overview of recent findings, demonstrating a role for innate immunity in psoriasis.
Collapse
Affiliation(s)
| | | | - Ryuhei Okuyama
- Correspondence: ; Tel.: +81-263-37-2645; Fax: +81-263-37-2646
| |
Collapse
|
42
|
Kabelitz D, Serrano R, Kouakanou L, Peters C, Kalyan S. Cancer immunotherapy with γδ T cells: many paths ahead of us. Cell Mol Immunol 2020; 17:925-939. [PMID: 32699351 PMCID: PMC7609273 DOI: 10.1038/s41423-020-0504-x] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022] Open
Abstract
γδ T cells play uniquely important roles in stress surveillance and immunity for infections and carcinogenesis. Human γδ T cells recognize and kill transformed cells independently of human leukocyte antigen (HLA) restriction, which is an essential feature of conventional αβ T cells. Vγ9Vδ2 γδ T cells, which prevail in the peripheral blood of healthy adults, are activated by microbial or endogenous tumor-derived pyrophosphates by a mechanism dependent on butyrophilin molecules. γδ T cells expressing other T cell receptor variable genes, notably Vδ1, are more abundant in mucosal tissue. In addition to the T cell receptor, γδ T cells usually express activating natural killer (NK) receptors, such as NKp30, NKp44, or NKG2D which binds to stress-inducible surface molecules that are absent on healthy cells but are frequently expressed on malignant cells. Therefore, γδ T cells are endowed with at least two independent recognition systems to sense tumor cells and to initiate anticancer effector mechanisms, including cytokine production and cytotoxicity. In view of their HLA-independent potent antitumor activity, there has been increasing interest in translating the unique potential of γδ T cells into innovative cellular cancer immunotherapies. Here, we discuss recent developments to enhance the efficacy of γδ T cell-based immunotherapy. This includes strategies for in vivo activation and tumor-targeting of γδ T cells, the optimization of in vitro expansion protocols, and the development of gene-modified γδ T cells. It is equally important to consider potential synergisms with other therapeutic strategies, notably checkpoint inhibitors, chemotherapy, or the (local) activation of innate immunity.
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany.
| | - Ruben Serrano
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Léonce Kouakanou
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Shirin Kalyan
- Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
43
|
Diversity of Tumor-Infiltrating, γδ T-Cell Abundance in Solid Cancers. Cells 2020; 9:cells9061537. [PMID: 32599843 PMCID: PMC7348937 DOI: 10.3390/cells9061537] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/27/2022] Open
Abstract
γδ T-cells contribute to the immune response against many tumor types through their direct cytolytic functions and their capacity to recruit and regulate the biological functions of other immune cells. As potent effectors of the anti-tumor immune response, they are considered an attractive therapeutic target for immunotherapies, but their presence and abundance in the tumor microenvironment are not routinely assessed in patients with cancer. Here, we validated an antibody for immunohistochemistry analysis that specifically detects all γδ T-cell subpopulations in healthy tissues and in the microenvironment of different cancer types. Tissue microarray analysis of breast, colon, ovarian, and pancreatic tumors showed that γδ T-cell density varies among cancer types. Moreover, the abundance of γδ tumor-infiltrating lymphocytes was variably associated with the outcome depending on the cancer type, suggesting that γδ T-cell recruitment is influenced by the context. These findings also suggest that γδ T-cell detection and analysis might represent a new and interesting diagnostic or prognostic marker.
Collapse
|
44
|
Vidovic D, Giacomantonio C. Insights into the Molecular Mechanisms Behind Intralesional Immunotherapies for Advanced Melanoma. Cancers (Basel) 2020; 12:cancers12051321. [PMID: 32455916 PMCID: PMC7281646 DOI: 10.3390/cancers12051321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence of cutaneous melanoma, a highly malignant skin cancer, is increasing yearly. While surgical removal of the tumor is the mainstay of treatment for patients with locally confined disease, those with metastases face uncertainty when it comes to their treatment. As melanoma is a relatively immunogenic cancer, current guidelines suggest using immunotherapies that can rewire the host immune response to target melanoma tumor cells. Intralesional therapy, where immunomodulatory agents are injected directly into the tumor, are an emerging aspect of treatment for in-transit melanoma because of their ability to mitigate severe off-target immune-related adverse events. However, their immunomodulatory mechanisms are poorly understood. In this review, we will summarize and discuss the different intralesional therapies for metastatic melanoma with respect to their clinical outcomes and immune molecular mechanisms.
Collapse
|
45
|
Chabab G, Barjon C, Abdellaoui N, Salvador-Prince L, Dejou C, Michaud HA, Boissière-Michot F, Lopez-Crapez E, Jacot W, Pourquier D, Bonnefoy N, Lafont V. Identification of a regulatory Vδ1 gamma delta T cell subpopulation expressing CD73 in human breast cancer. J Leukoc Biol 2020; 107:1057-1067. [PMID: 32362028 DOI: 10.1002/jlb.3ma0420-278rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/27/2022] Open
Abstract
γδ T cells contribute to the immune response against many cancers, notably through their powerful effector functions that lead to the elimination of tumor cells and the recruitment of other immune cells. However, their presence in the tumor microenvironment has been associated with poor prognosis in breast, colon, and pancreatic cancer, suggesting that γδ T cells may also display pro-tumor activities. Here, we identified in blood from healthy donors a subpopulation of Vδ1T cells that represents around 20% of the whole Vδ1 population, expresses CD73, and displays immunosuppressive phenotype and functions (i.e., production of immunosuppressive molecules, such as IL-10, adenosine, and the chemotactic factor IL-8, and inhibition of αβ T cell proliferation). We then found that in human breast tumors, γδ T cells were present particularly in late stage breast cancer samples, and that ∼20% of tumor-infiltrating γδ T cells expressed CD73. Taken together, these results suggest that regulatory γδ T cells are present in the breast cancer microenvironment and may display immunosuppressive functions through the production of immunosuppressive molecules, such as IL-10, IL-8, and adenosine, thus promoting tumor growth.
Collapse
Affiliation(s)
- Ghita Chabab
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Clément Barjon
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France.,Current address: Duve Institute, UCLouvain, Brussels, Belgium
| | - Naoill Abdellaoui
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Lucie Salvador-Prince
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Cécile Dejou
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Henri-Alexandre Michaud
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | | | - Evelyne Lopez-Crapez
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France.,Translational Research Department, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - William Jacot
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France.,Medical Oncology Department, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Didier Pourquier
- Anatomopathology Department, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Nathalie Bonnefoy
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Virginie Lafont
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
46
|
Lee HW, Chung YS, Kim TJ. Heterogeneity of Human γδ T Cells and Their Role in Cancer Immunity. Immune Netw 2020; 20:e5. [PMID: 32158593 PMCID: PMC7049581 DOI: 10.4110/in.2020.20.e5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 12/24/2022] Open
Abstract
The γδ T cells are unconventional lymphocytes that function in both innate and adaptive immune responses against various intracellular and infectious stresses. The γδ T cells can be exploited as cancer-killing effector cells since γδ TCRs recognize MHC-like molecules and growth factor receptors that are upregulated in cancer cells, and γδ T cells can differentiate into cytotoxic effector cells. However, γδ T cells may also promote tumor progression by secreting IL-17 or other cytokines. Therefore, it is essential to understand how the differentiation and homeostasis of γδ T cells are regulated and whether distinct γδ T cell subsets have different functions. Human γδ T cells are classified into Vδ2 and non-Vδ2 γδ T cells. The majority of Vδ2 γδ T cells are Vγ9δ2 T cells that recognize pyrophosphorylated isoprenoids generated by the dysregulated mevalonate pathway. In contrast, Vδ1 T cells expand from initially diverse TCR repertoire in patients with infectious diseases and cancers. The ligands of Vδ1 T cells are diverse and include the growth factor receptors such as endothelial protein C receptor. Both Vδ1 and Vδ2 γδ T cells are implicated to have immunotherapeutic potentials for cancers, but the detailed elucidation of the distinct characteristics of 2 populations will be required to enhance the immunotherapeutic potential of γδ T cells. Here, we summarize recent progress regarding cancer immunology of human γδ T cells, including their development, heterogeneity, and plasticity, the putative mechanisms underlying ligand recognition and activation, and their dual effects on tumor progression in the tumor microenvironment.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Hospital Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yun Shin Chung
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Tae Jin Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| |
Collapse
|
47
|
In the Absence of a TCR Signal IL-2/IL-12/18-Stimulated γδ T Cells Demonstrate Potent Anti-Tumoral Function Through Direct Killing and Senescence Induction in Cancer Cells. Cancers (Basel) 2020; 12:cancers12010130. [PMID: 31947966 PMCID: PMC7017313 DOI: 10.3390/cancers12010130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Abundant IFN-γ secretion, potent cytotoxicity, and major histocompatibility complex-independent targeting of a large spectrum of tumors make γδ T cells attractive candidates for cancer immunotherapy. Upon tumor recognition through the T-cell receptor (TCR), NK-receptors, or NKG2D, γδ T cells generate the pro-inflammatory cytokines TNF-α and IFN-γ, or granzymes and perforin that mediate cellular apoptosis. Despite these favorable potentials, most clinical trials testing the adoptive transfer of pharmacologically TCR-targeted and expanded γδ T cells resulted in a limited response. Recently, the TCR-independent activation of γδ T cells was identified. However, the modulation of γδ T cell’s effector functions solely by cytokines remains to be elucidated. In the present study, we systematically analyzed the impact of IL-2, IL-12, and IL-18 in parallel with TCR stimulation on proliferation, cytokine production, and anti-tumor activity of γδ T cells. Our results demonstrate that IL-12 and IL-18, when combined, constitute the most potent stimulus to enhance anti-tumor activity and induce proliferation and IFN-γ production by γδ T cells in the absence of TCR signaling. Intriguingly, stimulation with IL-12 and IL-18 without TCR stimulus induces a comparable degree of anti-tumor activity in γδ T cells to TCR crosslinking by killing tumor cells and driving cancer cells into senescence. These findings approve the use of IL-12/IL-18-stimulated γδ T cells for adoptive cell therapy to boost anti-tumor activity by γδ T cells.
Collapse
|
48
|
Zhou Q, Tao X, Xia S, Guo F, Pan C, Xiang H, Shang D. T Lymphocytes: A Promising Immunotherapeutic Target for Pancreatitis and Pancreatic Cancer? Front Oncol 2020; 10:382. [PMID: 32266154 PMCID: PMC7105736 DOI: 10.3389/fonc.2020.00382] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/04/2020] [Indexed: 01/18/2023] Open
Abstract
Pancreatic disorders cause a broad spectrum of clinical diseases, mainly including acute and chronic pancreatitis and pancreatic cancer, and are associated with high global rates of morbidity and mortality. Unfortunately, the pathogenesis of pancreatic disease remains obscure, and there is a lack of specific treatments. T lymphocytes (T cells) play a vital role in the adaptive immune systems of multicellular organisms. During pancreatic disease development, local imbalances in T-cell subsets in inflammatory and tumor environments and the circulation have been observed. Furthermore, agents targeting T cells have been shown to reverse the natural course of pancreatic diseases. In this review, we have discussed the clinical relevance of T-cell alterations as a potential outcome predictor and the underlying mechanisms, as well as the present status of immunotherapy targeting T cells in pancreatitis and neoplasms. The breakthrough findings summarized in this review have important implications for innovative drug development and the prospective use of immunotherapy for pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Qi Zhou
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xufeng Tao
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Shilin Xia
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Chen Pan
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hong Xiang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Hong Xiang
| | - Dong Shang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dong Shang
| |
Collapse
|
49
|
Imbert C, Olive D. γδ T Cells in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1273:91-104. [PMID: 33119877 DOI: 10.1007/978-3-030-49270-0_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gamma delta (γδ) T cells which combine both innate and adaptive potential have extraordinary properties. Indeed, their strong cytotoxic and pro-inflammatory activity allows them to kill a broad range of tumor cells. Several studies have demonstrated that γδ T cells are an important component of tumor-infiltrated lymphocytes in patients affected by different types of cancer. Tumor-infiltrating γδ T cells are also considered as a good prognostic marker in many studies, though the presence of these cells is associated with poor prognosis in breast and colon cancers. The tumor microenvironment seems to drive γδ T-cell differentiation toward a tumor-promoting or a tumor-controlling phenotype, which suggests that some tumor microenvironments can limit the effectiveness of γδ T cells.The major γδ T-cell subsets in human are the Vγ9Vδ2 T cells that are specifically activated by phosphoantigens. This unique antigenic activation process operates in a framework that requires the expression of butyrophilin 3A (BTN3A) molecules. Interestingly, there is some evidence that BTN3A expression may be regulated by the tumor microenvironment. Given their strong antitumoral potential, Vγ9Vδ2 T cells are used in therapeutic approaches either by ex vivo culture and amplification, and then adoptive transfer to patients or by direct stimulation to propagate in vivo. These strategies have demonstrated promising initial results, but greater potency is needed. Combining Vγ9Vδ2 T-cell immunotherapy with systemic approaches to restore antitumor immune response in tumor microenvironment may improve efficacy.In this chapter, we first review the basic features of γδ T cells and their roles in the tumor microenvironment and then analyze the advances about the understanding of these cells' activation in tumors and why this represent unique challenges for therapeutics, and finally we discuss γδ T-cell-based therapeutic strategies and future perspectives of their development.
Collapse
Affiliation(s)
- Caroline Imbert
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity and Cancer, Institut Paoli Calmettes, Aix Marseille Université, Marseille, France.,Immunomonitoring Platform, Institut Paoli Calmettes, Marseille, France
| | - Daniel Olive
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity and Cancer, Institut Paoli Calmettes, Aix Marseille Université, Marseille, France. .,Immunomonitoring Platform, Institut Paoli Calmettes, Marseille, France.
| |
Collapse
|
50
|
Abstract
Advances in academic and clinical studies during the last several years have resulted in practical outcomes in adoptive immune therapy of cancer. Immune cells can be programmed with molecular modules that increase their therapeutic potency and specificity. It has become obvious that successful immunotherapy must take into account the full complexity of the immune system and, when possible, include the use of multifactor cell reprogramming that allows fast adjustment during the treatment. Today, practically all immune cells can be stably or transiently reprogrammed against cancer. Here, we review works related to T cell reprogramming, as the most developed field in immunotherapy. We discuss factors that determine the specific roles of αβ and γδ T cells in the immune system and the structure and function of T cell receptors in relation to other structures involved in T cell target recognition and immune response. We also discuss the aspects of T cell engineering, specifically the construction of synthetic T cell receptors (synTCRs) and chimeric antigen receptors (CARs) and the use of engineered T cells in integrative multifactor therapy of cancer.
Collapse
Affiliation(s)
- Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|