1
|
Koushki M, Farrokhi Yekta R, Amiri-Dashatan N. Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
2
|
de Moura NA, Caetano BFR, Bidinotto LT, Rodrigues MAM, Barbisan LF. Synbiotic supplementation attenuates the promoting effect of indole-3-carbinol on colon tumorigenesis. Benef Microbes 2021; 12:493-501. [PMID: 34463193 DOI: 10.3920/bm2020.0209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Indole-3 carbinol (I3C) has shown dual effects on the promotion and progression stages of colon carcinogenesis while synbiotics (Syn) have exerted anti-carcinogenic activities in most rodent studies. This study aimed to investigate the effects of I3C given alone or together with a Syn intervention on 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis. All animals were given four subcutaneous DMH injections (4×40 mg/kg bodyweight, twice a week for two weeks) and then received either basal diet (G1), basal diet containing I3C (1g/kg chow) (G2) or basal diet containing I3C+Syn (I3C + inulin 50g/kg chow + Bifidobacterium lactis BB-12®), 2.5×1010 cfu/g of basal diet), (G3) for 21 weeks. Dietary I3C (G2) significantly increased tumour volume and cell proliferation when compared to the DMH control group (G1). Syn intervention (G3) significantly reduced tumour volume and cell proliferation when compared to I3C (G2). The colon tumours found were classified into well-differentiated tubular adenomas or adenocarcinomas. Dietary I3C or I3C+Syn did not significantly affect the incidence and the multiplicity of tumours in comparison with the DMH control group. Furthermore, Syn intervention (G3) increased Gstm1 and reduced Mapk9 gene expression in colonic tumours. The findings of the present study show that the dietary I3C shows a weak promoting activity, while the combination with Syn ameliorates I3C effects.
Collapse
Affiliation(s)
- N A de Moura
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Prof. Dr. Antônio Celso Wagner Zanin 250, Distrito de Rubião Junior, Botucatu, SP, Brazil
| | - B F R Caetano
- Department of Pathology, School of Medicine, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - L T Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil.,Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, SP, Brazil.,Department of Pathology, School of Medicine, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - M A M Rodrigues
- Department of Pathology, School of Medicine, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - L F Barbisan
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Prof. Dr. Antônio Celso Wagner Zanin 250, Distrito de Rubião Junior, Botucatu, SP, Brazil
| |
Collapse
|
3
|
George BP, Chandran R, Abrahamse H. Role of Phytochemicals in Cancer Chemoprevention: Insights. Antioxidants (Basel) 2021; 10:antiox10091455. [PMID: 34573087 PMCID: PMC8466984 DOI: 10.3390/antiox10091455] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer is a condition where the body cells multiply in an uncontrollable manner. Chemoprevention of cancer is a broad term that describes the involvement of external agents to slow down or suppress cancer growth. Synthetic and natural compounds are found useful in cancer chemoprevention. The occurrence of global cancer type varies, depending on many factors such as environmental, lifestyle, genetic etc. Cancer is often preventable in developed countries with advanced treatment modalities, whereas it is a painful death sentence in developing and low-income countries due to the lack of modern therapies and awareness. One best practice to identify cancer control measures is to study the origin and risk factors associated with common types. Based on these factors and the health status of patients, stage, and severity of cancer, type of treatment is decided. Even though there are well-established therapies, cancer still stands as one of the major causes of death and a public health burden globally. Research shows that most cancers can be prevented, treated, or the incidence can be delayed. Phytochemicals from various medicinal plants were reported to reduce various risk factors associated with different types of cancer through their chemopreventive role. This review highlights the role of bioactive compounds or natural products from plants in the chemoprevention of cancer. There are many plant based dietary factors involved in the chemoprevention process. The review discusses the process of carcinogenesis and chemoprevention using plants and phytocompounds, with special reference to five major chemopreventive phytocompounds. The article also summarizes the important chemopreventive mechanisms and signaling molecules involved in the process. Since the role of antioxidants in chemoprevention is inevitable, an insight into plant-based antioxidant compounds that fight against this dreadful disease at various stages of carcinogenesis and disease progression is discussed. This will fill the research gap in search of chemopreventive natural compounds and encourage scientists in clinical trials of anticancer agents from plants.
Collapse
|
4
|
Biological Impact of Phenolic Compounds from Coffee on Colorectal Cancer. Pharmaceuticals (Basel) 2021; 14:ph14080761. [PMID: 34451858 PMCID: PMC8401378 DOI: 10.3390/ph14080761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer is one of the leading death-related diseases worldwide, usually induced by a multifactorial and complex process, including genetic and epigenetic abnormalities and the impact of diet and lifestyle. In the present study, we evaluated the biological impact of two of the main coffee polyphenols, chlorogenic acid (CGA) and caffeic acid (CA), as well as two polyphenol-rich coffee extracts (green coffee extract and toasted coffee Extract) against SW480 and SW620 colorectal cancer cells. First, the total phenolic content and the antioxidant capability of the extracts were determined. Then, cytotoxicity was evaluated by MTT and SBR. Finally, a wound healing assay was performed to determine the impact on the cell migration process. The results showed a cytotoxic effect of all treatments in a time and dose-dependent manner, which decreased the viability in both cell lines at 24 h and 48 h; likewise, the migration capability of cells decreased with low doses of treatments. These results suggest the potential of coffee to modulate biological mechanisms involved in colorectal cancer development; however, more studies are required to understand the mechanistic insights of these observations.
Collapse
|
5
|
Barati N, Tafrihi M, A Najafi SM. Membrane Localization of β-Catenin in Prostate Cancer PC3 Cells Treated with Teucrium persicum Boiss. Extract. Nutr Cancer 2021; 74:1819-1828. [PMID: 34343037 DOI: 10.1080/01635581.2021.1961829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Teucrium persicum Boiss. is an Iranian endemic plant which belongs to the Lamiaceae family and has been used to relieve pains in traditional Iranian medicine. We have previously found that treatment of prostate cancer PC3 cells with Teucrium persicum extract leads to the formation of small populations of epithelial cells. β-Catenin is a component of cell adherens junctions in epithelial cells and therefore, in this study, we have investigated the effect of Teucrium persicum extract on expression, cellular localization, and transcriptional activity of β-Catenin protein in PC-3 cells. Indirect immunofluorescence microscopy results showed that the cells treated with T. persicum extract had higher levels of β-Catenin protein at the cell membrane. Western blotting experiments produced consistent results. Gene expression studies by using a few β-Catenin-target genes including c-MYC, CYCLIN D1, and a reporter Luciferase gene under the control of several β-Catenin/TCF binding elements showed that treatment of PC3 cells with the methanolic extract of T. persicum decreases the transcriptional activities of β-Catenin. The results of this study provide further support for the anticancer properties of T. persicum. Definitely, more detailed molecular investigations are needed to find the mechanism(s) behind these effects. Highlightsβ-Catenin protein is a main component of Wnt signaling pathway and adherens junction.Activation of Wnt signaling pathway affects translocation of β-Catenin.Teucrium persicum extract induces β-Catenin localization at cell membrane.Teucrium persicum affects the transcriptional activity of β-Catenin.It stabilizes E-cadherin/β-Catenin protein complex and adherens junction.
Collapse
Affiliation(s)
- Narges Barati
- Department of Cell and Molecular Biology, School of Biology, University of Tehran, Tehran, Iran
| | - Majid Tafrihi
- Department of Molecular and Cell Biology, Faculty of Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - S Mahmoud A Najafi
- Department of Cell and Molecular Biology, School of Biology, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Guo H, Wu H, Sajid A, Li Z. Whole grain cereals: the potential roles of functional components in human health. Crit Rev Food Sci Nutr 2021; 62:8388-8402. [PMID: 34014123 DOI: 10.1080/10408398.2021.1928596] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Whole grain cereals have been the basis of human diet since ancient times. Due to rich in a variety of unique bioactive ingredients, they play an important role in human health. This review highlights the contents and distribution of primary functional components and their health effects in commonly consumed whole grain cereals, especially dietary fiber, protein, polyphenols, and alkaloids. In general, cereals exert positive effects in the following ways: 1) Restoring intestinal flora diversity and increasing intestinal short-chain fatty acids. 2) Regulating plasma glucose and lipid metabolism, thereby the improvement of obesity, cardiovascular and cerebrovascular diseases, diabetes, and other chronic metabolic diseases. 3) Exhibiting antioxidant activity by scavenging free radicals. 4) Preventing gastrointestinal cancer via the regulation of classical signaling pathways. In summary, this review provides a scientific basis for the formulation of whole-grain cereals-related dietary guidelines, and guides people to form scientific dietary habits, so as to promote the development and utilization of whole-grain cereals.
Collapse
Affiliation(s)
- Huiqin Guo
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China
| | - Haili Wu
- College of Life Science, Shanxi University, Taiyuan, PR China
| | - Amin Sajid
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China;,College of Life Science, Shanxi University, Taiyuan, PR China
| |
Collapse
|
7
|
Murthy SS, Narsaiah TB. Cytotoxic Effect of Bromelain on HepG2 Hepatocellular Carcinoma Cell Line. Appl Biochem Biotechnol 2021; 193:1873-1897. [PMID: 33735410 DOI: 10.1007/s12010-021-03505-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/07/2021] [Indexed: 01/17/2023]
Abstract
Cancer is a complicated long-term disease due to computable key molecular players involved in aggravating the disease. Among various kinds of cancer, hepatocellular carcinoma (HCC) is the ninth leading cause of cancer. Recently, plant-based products are gaining a lot of attention in the field of research because of their anti-tumor properties. In our previous study, we reported based on in-silico method that bromelain, a cysteine protease extracted from the stem of the pineapple, has high binding affinity with the transcription factors p53 and β-catenin proteins which are key players in controlling the progression of hepatocellular carcinoma. Bromelain, isolated mainly from the stem of Pineapple (Ananas comosus), belongs to the family Bromeliaceae. The present study deals with preclinical analysis of bromelain as an anti-cancer agent and its intracellular effect on the expression of p53 and β-catenin protein. Our study reports cytotoxic activity, cell proliferation, migration, invasion, arrest in the S-phase, and G2/M phase in cell cycle analysis by treating with bromelain in HepG2 cell lines. We also report up-regulation of p53 protein by drug-induced impediment leading to apoptotic process in HepG2 cells and down-regulation of β-catenin protein in HepG2 cells which interferes in β-catenin/TCF-DNA interaction further, down-regulating Wnt genes and suppressing the canonical pathway. Finally, we conclude that bromelain inhibits tumorigenic potential in HepG2 cell lines.
Collapse
Affiliation(s)
- Sushma S Murthy
- Department of Biotechnology, JNTUA College of Engineering, Ananthapuram, 515002, Andhra Pradesh, India.
| | - T Bala Narsaiah
- Department of Chemical Engineering, JNTUA College of Engineering, Ananthapuram, 515002, Andhra Pradesh, India
| |
Collapse
|
8
|
Villota H, Röthlisberger S, Pedroza-Díaz J. Modulation of the Canonical Wnt Signaling Pathway by Dietary Polyphenols, an Opportunity for Colorectal Cancer Chemoprevention and Treatment. Nutr Cancer 2021; 74:384-404. [PMID: 33596716 DOI: 10.1080/01635581.2021.1884730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the last few decades there has been a rise in the worldwide incidence of colorectal cancer which can be traced back to the influence of well-known modifiable risk factors such as lifestyle, diet and obesity. Conversely, the consumption of fruits, vegetables and fiber decreases the risk of CRC, which is why dietary polyphenols have aroused interest in recent years as potentially anti-carcinogenic compounds. One of the driving forces of colorectal carcinogenesis, in both sporadic and hereditary CRC, is the aberrant activation/regulation of the Wnt/β-catenin pathway. This review discusses reports of modulation of the Wnt/β-Catenin signaling pathway by dietary polyphenols (resveratrol, avenanthramides, epigallocatechinin, curcumin, quercetin, silibinin, genistein and mangiferin) specifically focusing on CRC, and proposes a model as to how this modulation occurs. There is potential for implementing these dietary polyphenols into preventative and therapeutic therapies for CRC as evidenced by some clinical trials that have been carried out with promising results.
Collapse
Affiliation(s)
- Hernan Villota
- Biomedical Innovation and Research Group, Faculty of Applied and Exact Sciences, Instituto Tecnologico Metropolitano, Medellin, Colombia
| | - Sarah Röthlisberger
- Biomedical Innovation and Research Group, Faculty of Applied and Exact Sciences, Instituto Tecnologico Metropolitano, Medellin, Colombia
| | - Johanna Pedroza-Díaz
- Biomedical Innovation and Research Group, Faculty of Applied and Exact Sciences, Instituto Tecnologico Metropolitano, Medellin, Colombia
| |
Collapse
|
9
|
Manandhar S, Kabekkodu SP, Pai KSR. Aberrant canonical Wnt signaling: Phytochemical based modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153243. [PMID: 32535482 DOI: 10.1016/j.phymed.2020.153243] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/07/2020] [Accepted: 05/10/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Wnt signaling pathway plays a major role during development like gastrulation, axis formation, organ development and organization of body plan development. Wnt signaling aberration has been linked with various disease conditions like osteoporosis, colon cancer, hair follicle tumor, Leukemia, and Alzheimer's disease. Phytochemicals like flavonoid, glycosides, polyphenols, have been reported to directly target the markers of Wnt signaling in different disease models. PURPOSE The study deals in detail about the different phytochemical targeting key players of Wnt signaling pathway in diseases like Cancer, Osteoporosis, and Alzheimer's disease. We have focused on the Pharmacological basis of disease alleviation by phytochemical specifically targeting the Wnt signaling markers in this study. METHODS The study focused on the published articles from the preclinical rodent and invitro cell line studies related to Wnt signaling and Phytochemicals related to Cancer, Alzheimer's and Osteoporosis. The electronic databases Scopus, Web of Science and Pubmed database were used for the systematic search of literatures from 2005 up to 2019 using keywords Canonical Wnt signaling pathway, Cancer, Alzheimer's disease, Osteoporosis, Phytochemicals. The focus was to identify the target specific modulation of Wnt signaling mediated by phytochemicals. RESULTS Approximately 30 phytochemicals of different class have been identified to modulate Wnt signaling pathway acting through Axin, β-catenin translocation, GSK-3β, AKT, Wif-1 in various experimental studies. The down regulation of Wnt signaling is observed in Cancer mostly colorectal cancer, breast cancer mediated through mutations in APC and Axin genes. Different class of Phytochemicals such as flavonoid, glycosides, polyphenol, alkaloids etc. have been found to target Wnt signaling markers and alleviate Cancer. Similarly, Up regulation of Wnt signaling has been reported in Osteoporosis and neurodegenerative disease like Alzheimer's disease. CONCLUSION This review highlights the possibility of the Phytochemicals to target Wnt markers and its potential to either activate or deactivate the Wnt signaling pathway. It also describes the challenges in proper targeting of Wnt signaling and the potential risk and consequences of either up regulation or down regulation of the signaling pathway. This article highlights the possibility of Wnt signaling pathway as a therapeutic option in different diseases.
Collapse
Affiliation(s)
- Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
10
|
Ceccanti C, Landi M, Rocchetti G, Miras Moreno MB, Lucini L, Incrocci L, Pardossi A, Guidi L. Hydroponically Grown Sanguisorba minor Scop.: Effects of Cut and Storage on Fresh-Cut Produce. Antioxidants (Basel) 2019; 8:E631. [PMID: 31818034 PMCID: PMC6943539 DOI: 10.3390/antiox8120631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/23/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Wild edible plants have been used in cooking since ancient times. Recently, their value has improved as a result of the scientific evidence for their nutraceutical properties. Sanguisorba minor Scop. (salad burnet) plants were hydroponically grown and two consecutive cuts took place at 15 (C1) and 30 (C2) days after sowing. An untargeted metabolomics approach was utilized to fingerprint phenolics and other health-related compounds in this species; this approach revealed the different effects of the two cuts on the plant. S. minor showed a different and complex secondary metabolite profile, which was influenced by the cut. In fact, flavonoids increased in leaves obtained from C2, especially flavones. However, other secondary metabolites were downregulated in leaves from C2 compared to those detected in leaves from C1, as evidenced by the combination of the variable important in projections (VIP score > 1.3) and the fold-change (FC > 2). The storage of S. minor leaves for 15 days as fresh-cut products did not induce significant changes in the phenolic content and antioxidant capacity, which indicates that the nutraceutical value was maintained. The only difference evidenced during storage was that leaves obtained from C2 showed a lower constitutive content of nutraceutical compounds than leaves obtained from C1; except for chlorophylls and carotenoids. In conclusion, the cut was the main influence on the modulation of secondary metabolites in leaves, and the effects were independent of storage.
Collapse
Affiliation(s)
- Costanza Ceccanti
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.C.); (L.I.); (A.P.); (L.G.)
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.C.); (L.I.); (A.P.); (L.G.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29121 Piacenza, Italy; (G.R.); (M.B.M.M.); (L.L.)
| | - Maria Begoña Miras Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29121 Piacenza, Italy; (G.R.); (M.B.M.M.); (L.L.)
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29121 Piacenza, Italy; (G.R.); (M.B.M.M.); (L.L.)
| | - Luca Incrocci
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.C.); (L.I.); (A.P.); (L.G.)
| | - Alberto Pardossi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.C.); (L.I.); (A.P.); (L.G.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.C.); (L.I.); (A.P.); (L.G.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
11
|
Overview of the Anticancer Profile of Avenanthramides from Oat. Int J Mol Sci 2019; 20:ijms20184536. [PMID: 31540249 PMCID: PMC6770293 DOI: 10.3390/ijms20184536] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer represents one of the leading causes of death worldwide. Progresses in treatment of cancer have continued at a rapid pace. However, undesirable side effects and drug resistance remain major challenges for therapeutic success. Natural products represent a valuable starting point to develop new anticancer strategies. Polyphenols, well-known as antioxidant, exert anticancer effects through the modulation of multiple pathways and mechanisms. Oat (Avena sativa L., Poaceae) is a unique source of avenanthramides (AVAs), a group of polyphenolic alkaloids, considered as its signature compounds. The present review aims to offer a comprehensive and critical perspective on the chemopreventive and chemotherapeutic potential of AVAs. AVAs prevent cancer mainly by blocking reactive species. Moreover, they exhibit potential therapeutic activity through the modulation of different pathways including the activation of apoptosis and senescence, the block of cell proliferation, and the inhibition of epithelial mesenchymal transition and metastatization. AVAs are promising chemopreventive and anticancer phytochemicals, which need further clinical trials and toxicological studies to define their efficacy in preventing and reducing the burden of cancer diseases.
Collapse
|
12
|
Rao S, Santhakumar AB, Chinkwo KA, Vanniasinkam T, Luo J, Blanchard CL. Chemopreventive Potential of Cereal Polyphenols. Nutr Cancer 2018; 70:913-927. [PMID: 30273076 DOI: 10.1080/01635581.2018.1491609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has been identified that diet is one of the major contributing factors associated with the development of cancer and other chronic pathologies. In the recent years, supplementing regular diet with food and/or its components that contain chemopreventive properties has been considered an effective approach in reducing the incidence of cancer and other lifestyle associated diseases. This systematic review provides an exhaustive summary of the chemopreventive properties exhibited by everyday dietary ingredients such as rice, barley, oats, and sorghum. The studies both in vitro and in vivo reviewed have highlighted the potential role of their polyphenolic content as chemopreventive agents. Polyphenolic compounds including anthocyanins, tricin, protocatechualdehyde, avenanthramide, and 3-deoxyanthocyanins found in rice, barley, oats, and sorghum, respectively, were identified as compounds with potent bioactivity. Studies demonstrated that cereal polyphenols are likely to have chemopreventive activities, particularly those found in pigmented varieties. In conclusion, findings suggest that the consumption of pigmented cereals could potentially have an important role as a natural complementary cancer preventive therapeutic. However, further studies to develop a complete understanding of the mechanisms by which phenolic compounds inhibit cancerous cell proliferation are warranted.
Collapse
Affiliation(s)
- Shiwangni Rao
- a School of Biomedical Sciences , Charles Sturt University , Wagga Wagga , New South Wales , Australia.,b Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University , Wagga Wagga , New South Wales , Australia
| | - Abishek B Santhakumar
- a School of Biomedical Sciences , Charles Sturt University , Wagga Wagga , New South Wales , Australia.,b Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University , Wagga Wagga , New South Wales , Australia
| | - Kenneth A Chinkwo
- a School of Biomedical Sciences , Charles Sturt University , Wagga Wagga , New South Wales , Australia.,b Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University , Wagga Wagga , New South Wales , Australia
| | - Thiru Vanniasinkam
- a School of Biomedical Sciences , Charles Sturt University , Wagga Wagga , New South Wales , Australia
| | - Jixun Luo
- c New South Wales Department of Primary Industries , Yanco Agricultural Institute , Yanco , New South Wales , Australia
| | - Christopher L Blanchard
- a School of Biomedical Sciences , Charles Sturt University , Wagga Wagga , New South Wales , Australia.,b Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University , Wagga Wagga , New South Wales , Australia
| |
Collapse
|
13
|
Antonini E, Iori R, Ninfali P, Scarpa ES. A Combination of Moringin and Avenanthramide 2f Inhibits the Proliferation of Hep3B Liver Cancer Cells Inducing Intrinsic and Extrinsic Apoptosis. Nutr Cancer 2018; 70:1159-1165. [PMID: 30204484 DOI: 10.1080/01635581.2018.1497672] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Moringin (MOR), a glycosyl-isothiocyanate obtained by myrosinase-catalyzed hydrolysis of the precursor 4-(α-l-rhamnosyloxy)-benzyl glucosinolate (glucomoringin), found predominantly in the seeds of Moringa oleifera, shows anticancer effects against several cancer cell lines. Avenanthramide (AVN) 2f is a phytochemical purified from oats with antioxidant and anticancer properties. The aim of this study was to investigate the antiproliferative and proapoptotic effects of MOR and AVN 2f used alone and in combination on Hep3B cancer cells, which are highly resistant to conventional anticancer drugs. We found that a cocktail of MOR and AVN 2f significantly inhibited the Hep3B proliferation rate by markedly increasing the activity of caspases 2, 8, 9, and 3. Extrinsic apoptosis was induced by the AVN 2f-mediated activation of caspase 8, while the intrinsic apoptotic pathway was triggered by MOR-induced increase in the levels of intracellular reactive oxygen species, MOR-mediated activation of caspases 2 and 9 and the MOR-mediated downregulation of the prosurvival gene BIRC5. Our results suggest that the combination MOR + AVN 2f could be an effective chemopreventive cocktail against the development of hepatocarcinoma.
Collapse
Affiliation(s)
- Elena Antonini
- a Department of Biomolecular Sciences , University of Urbino "Carlo Bo," Urbino (PU) , Italy
| | - Renato Iori
- b Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Agricoltura e Ambiente (CREA-AA) , Bologna , Italy
| | - Paolino Ninfali
- a Department of Biomolecular Sciences , University of Urbino "Carlo Bo," Urbino (PU) , Italy
| | | |
Collapse
|
14
|
Chen H, Liu RH. Potential Mechanisms of Action of Dietary Phytochemicals for Cancer Prevention by Targeting Cellular Signaling Transduction Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3260-3276. [PMID: 29498272 DOI: 10.1021/acs.jafc.7b04975] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cancer is a severe health problem that significantly undermines life span and quality. Dietary approach helps provide preventive, nontoxic, and economical strategies against cancer. Increased intake of fruits, vegetables, and whole grains are linked to reduced risk of cancer and other chronic diseases. The anticancer activities of plant-based foods are related to the actions of phytochemicals. One potential mechanism of action of anticancer phytochemicals is that they regulate cellular signal transduction pathways and hence affects cancer cell behaviors such as proliferation, apoptosis, and invasion. Recent publications have reported phytochemicals to have anticancer activities through targeting a wide variety of cell signaling pathways at different levels, such as transcriptional or post-transcriptional regulation, protein activation and intercellular messaging. In this review, we discuss major groups of phytochemicals and their regulation on cell signaling transduction against carcinogenesis via key participators, such as Nrf2, CYP450, MAPK, Akt, JAK/STAT, Wnt/β-catenin, p53, NF-κB, and cancer-related miRNAs.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Food Science , Cornell University , Ithaca , New York 14853-7201 , United States
- Institute of Edible Fungi , Shanghai Academy of Agriculture Science , Shanghai 201403 , China
| | - Rui Hai Liu
- Department of Food Science , Cornell University , Ithaca , New York 14853-7201 , United States
| |
Collapse
|
15
|
Yang M, Wang M, Li X, Xie Y, Xia X, Tian J, Zhang K, Tang A. Wnt signaling in cervical cancer? J Cancer 2018; 9:1277-1286. [PMID: 29675109 PMCID: PMC5907676 DOI: 10.7150/jca.22005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer (CC) is the second most common malignant cancer in women. CC is difficult to diagnose, has a high recurrence rate, and is resistant to systemic therapies; as a result, CC patients have a relatively poor prognosis. One potential link to CC is the Wnt signaling pathway and its downstream effectors, which regulate cell differentiation, proliferation, migration, and fate. The aberrant activation of Wnt signaling is associated with various cancers, including CC. Recent studies have shown that activating or inhibiting the intracellular signal transduction in this pathway can regulate cancer cell growth and viability. This review will summarize the experimental evidence supporting the significance of the Wnt signaling pathway in CC, and will also discuss the current clinical role of Wnt signaling in CC diagnosis, therapy, and prognosis.
Collapse
Affiliation(s)
- Min Yang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Min Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xianping Li
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yixin Xie
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jingjing Tian
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Kan Zhang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Aiguo Tang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
16
|
Sang S, Chu Y. Whole grain oats, more than just a fiber: Role of unique phytochemicals. Mol Nutr Food Res 2017; 61. [PMID: 28067025 DOI: 10.1002/mnfr.201600715] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/11/2016] [Accepted: 12/30/2016] [Indexed: 11/12/2022]
Abstract
Oats are a good source of soluble dietary fiber, especially β-glucan, which has outstanding functional and nutritional properties. β-Glucan is considered to be the major active component of oats because of its cholesterol-lowering and antidiabetic effects. However, the nutritional benefits of oats appear to go beyond fiber to bioactive phytochemicals with strong antioxidant and anti-inflammatory effects. In this review, we summarize current knowledge on the chemistry, stability, bioavailability, and health effects of two unique phytochemicals in oats, avenanthramides, and avenacosides A and B. We conclude that studies on the beneficial effects of avenanthramides and avenacosides A and B are still in their infancy, and additional health benefits of these unique oat components may yet be identified.
Collapse
Affiliation(s)
- Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - YiFang Chu
- Quaker Oats Center of Excellence, PepsiCo R&D Nutrition, Barrington, IL, USA
| |
Collapse
|
17
|
Triptonide Effectively Inhibits Wnt/β-Catenin Signaling via C-terminal Transactivation Domain of β-catenin. Sci Rep 2016; 6:32779. [PMID: 27596363 PMCID: PMC5011721 DOI: 10.1038/srep32779] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/15/2016] [Indexed: 01/16/2023] Open
Abstract
Abnormal activation of canonical Wnt/β-catenin signaling is implicated in many diseases including cancer. As a result, therapeutic agents that disrupt this signaling pathway have been highly sought after. Triptonide is a key bioactive small molecule identified in a traditional Chinese medicine named Tripterygium wilfordii Hook F., and it has a broad spectrum of biological functions. Here we show that triptonide can effectively inhibit canonical Wnt/β-catenin signaling by targeting the downstream C-terminal transcription domain of β-catenin or a nuclear component associated with β-catenin. In addition, triptonide treatment robustly rescued the zebrafish “eyeless” phenotype induced by GSK-3β antagonist 6-bromoindirubin-30-oxime (BIO) for Wnt signaling activation during embryonic gastrulation. Finally, triptonide effectively induced apoptosis of Wnt-dependent cancer cells, supporting the therapeutic potential of triptonide.
Collapse
|
18
|
Liu Y, Ren S, Xie L, Cui C, Xing Y, Liu C, Cao B, Yang F, Li Y, Chen X, Wei Y, Lu H, Jiang J. Mutation of N-linked glycosylation at Asn548 in CD133 decreases its ability to promote hepatoma cell growth. Oncotarget 2016; 6:20650-60. [PMID: 26029999 PMCID: PMC4653032 DOI: 10.18632/oncotarget.4115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/20/2015] [Indexed: 01/10/2023] Open
Abstract
The membrane glycoprotein CD133 is a popular marker for cancer stem cells and contributes to cancer initiation and invasion in a number of tumor types. CD133 promotes tumorigenesis partly through an interaction between its phosphorylated Y828 residue and the PI3K regulatory subunit p85, and the interaction with β-catenin. Although CD133 glycosylation is supposed to be associated with its function, the contribution of N-glycosylation to its functions remains unclear. Here we analyzed the exact site(s) of N-glycosylation in CD133 by mass spectrometry and found that all eight potential N-glycosylation sites of CD133 could be indeed occupied by N-glycans. Loss of individual N-glycosylation sites had no effect on the level of expression or membrane localization of CD133. However, mutation at glycosylation site Asn548 significantly decreased the ability of CD133 to promote hepatoma cell growth. Furthermore, mutation of Asn548 reduced the interaction between CD133 and β-catenin and inhibited the activation of β-catenin signaling by CD133 overexpression. Our results identified the characteristics and function of CD133 glycosylation sites. These data could potentially shed light on molecular regulation of CD133 by glycosylation and enhance our understanding of the utility of glycosylated CD133 as a target for cancer therapies.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Shifang Ren
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Liqi Xie
- Institutes of Biomedical Sciences of Fudan University, Shanghai, People's Republic of China
| | - Chunhong Cui
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Yang Xing
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Chanjuan Liu
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Benjin Cao
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Fan Yang
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Yinan Li
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Xiaoning Chen
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Yuanyan Wei
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Haojie Lu
- Institutes of Biomedical Sciences of Fudan University, Shanghai, People's Republic of China
| | - Jianhai Jiang
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Pellegrini GG, Morales CC, Wallace TC, Plotkin LI, Bellido T. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner. Nutrients 2016; 8:E423. [PMID: 27409635 PMCID: PMC4963899 DOI: 10.3390/nu8070423] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/11/2023] Open
Abstract
Oats contain unique bioactive compounds known as avenanthramides (AVAs) with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin) in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT) and Nrf2 Knockout (KO) osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast apoptosis; further, these regulatory actions are independent of Nrf2.
Collapse
Affiliation(s)
- Gretel G Pellegrini
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA.
| | - Cynthya C Morales
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Taylor C Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA.
- Think Healthy Group, LLC, Washington, DC 20001, USA.
- National Osteoporosis Foundation, Arlington, VA 22202, USA.
| | - Lilian I Plotkin
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA.
| | - Teresita Bellido
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA.
- Department of Medicine, Division of Endocrinology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
20
|
Eo HJ, Park GH, Jeong JB. Inhibition of Wnt Signaling by Silymarin in Human Colorectal Cancer Cells. Biomol Ther (Seoul) 2016; 24:380-6. [PMID: 27068260 PMCID: PMC4930281 DOI: 10.4062/biomolther.2015.154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/22/2015] [Accepted: 12/11/2015] [Indexed: 11/12/2022] Open
Abstract
Silymarin from milk thistle (Silybum marianum) has been reported to show an anti-cancer activity. In previous study, we reported that silymarin induces cyclin D1 proteasomal degradation through NF-κB-mediated threonine-286 phosphorylation. However, mechanism for the inhibition of Wnt signaling by silymarin still remains unanswered. Thus, we investigated whether silymarin affects Wnt signaling in human colorectal cancer cells to elucidate the additional anti-cancer mechanism of silymarin. Transient transfection with a TOP and FOP FLASH luciferase construct indicated that silymarin suppressed the transcriptional activity of β-catenin/TCF. Silymarin treatment resulted in a decrease of intracellular β-catenin protein but not mRNA. The inhibition of proteasome by MG132 and GSK3β inhibition by SB216763 blocked silymarin-mediated downregulation of β-catenin. In addition, silymarin increased phosphorylation of β-catenin and a point mutation of S33Y attenuated silymarin-mediated β-catenin downregulation. In addition, silymarin decreased TCF4 and increased Axin expression in both protein and mRNA level. From these results, we suggest that silymarin-mediated downregulation of β-catenin and TCF4 may result in the inhibition of Wnt signaling in human colorectal cancer cells.
Collapse
Affiliation(s)
- Hyun Ji Eo
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Gwang Hun Park
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Jin Boo Jeong
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
21
|
Yang G, Xue Y, Zhang H, Du M, Zhu MJ. Favourable effects of grape seed extract on intestinal epithelial differentiation and barrier function in IL10-deficient mice. Br J Nutr 2015; 114:15-23. [PMID: 25990915 DOI: 10.1017/s0007114515001415] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The impairment in the rate of cell proliferation and differentiation leads to a negative consequence on the renewal of the intestinal epithelium, which is the aetiological factor of a number of digestive diseases. Grape seed extract (GSE), a rich source of proanthocyanidins, is known for its beneficial health effects. The present study evaluated the beneficial effects of GSE on colonic cell differentiation and barrier function in IL10-deficient mice. Female mice aged 6 weeks were randomised into two groups and given drinking-water containing 0 or 0.1 % GSE (w/v) for 12 weeks. GSE supplementation decreased serum TNF-α level and intestinal permeability, and increased the colonic goblet cell density that was associated with increased mRNA expression of mucin (Muc)-2. Immunohistochemical analyses showed lower accumulation of β-catenin in the crypts of colon tissues of the GSE-supplemented mice, which was associated with a decreased mRNA expression of two downstream effectors of Wingless and Int (Wnt)/catenin signalling, myelocytomatosis oncogene protein (Myc) and cyclin D1 (Ccnd1). Consistently, GSE supplementation decreased the number of colonic proliferating cell nuclear antigen-positive cells, a well-known cell proliferation marker, and a weakened extracellular signal-regulated kinases 1 and 2 (ERK1/2) signalling. In summary, these data indicate that supplementation of 0.1 % GSE for 12 weeks improved gut barrier function and colonic cell differentiation in the IL10-deficient mice probably via inhibiting Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Guan Yang
- School of Food Science, Washington State University,Pullman,WA99164,USA
| | - Yansong Xue
- School of Food Science, Washington State University,Pullman,WA99164,USA
| | - Hanying Zhang
- School of Food Science, Washington State University,Pullman,WA99164,USA
| | - Min Du
- Department of Animal Science,Washington State University,Pullman,WA99164,USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University,Pullman,WA99164,USA
| |
Collapse
|
22
|
XU JIAJUN, SUN TAO, HU XUEBING. microRNA-513c suppresses the proliferation of human glioblastoma cells by repressing low-density lipoprotein receptor-related protein 6. Mol Med Rep 2015; 12:4403-4409. [DOI: 10.3892/mmr.2015.3913] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 04/14/2015] [Indexed: 11/06/2022] Open
|
23
|
MiR-939 promotes the proliferation of human ovarian cancer cells by repressing APC2 expression. Biomed Pharmacother 2015; 71:64-9. [DOI: 10.1016/j.biopha.2015.02.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/15/2015] [Indexed: 12/30/2022] Open
|
24
|
Kowshik J, Baba AB, Giri H, Deepak Reddy G, Dixit M, Nagini S. Astaxanthin inhibits JAK/STAT-3 signaling to abrogate cell proliferation, invasion and angiogenesis in a hamster model of oral cancer. PLoS One 2014; 9:e109114. [PMID: 25296162 PMCID: PMC4189964 DOI: 10.1371/journal.pone.0109114] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/08/2014] [Indexed: 12/13/2022] Open
Abstract
Identifying agents that inhibit STAT-3, a cytosolic transcription factor involved in the activation of various genes implicated in tumour progression is a promising strategy for cancer chemoprevention. In the present study, we investigated the effect of dietary astaxanthin on JAK-2/STAT-3 signaling in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model by examining the mRNA and protein expression of JAK/STAT-3 and its target genes. Quantitative RT-PCR, immunoblotting and immunohistochemical analyses revealed that astaxanthin supplementation inhibits key events in JAK/STAT signaling especially STAT-3 phosphorylation and subsequent nuclear translocation of STAT-3. Furthermore, astaxanthin downregulated the expression of STAT-3 target genes involved in cell proliferation, invasion and angiogenesis, and reduced microvascular density, thereby preventing tumour progression. Molecular docking analysis confirmed inhibitory effects of astaxanthin on STAT signaling and angiogenesis. Cell culture experiments with the endothelial cell line ECV304 substantiated the role of astaxanthin in suppressing angiogenesis. Taken together, our data provide substantial evidence that dietary astaxanthin prevents the development and progression of HBP carcinomas through the inhibition of JAK-2/STAT-3 signaling and its downstream events. Thus, astaxanthin that functions as a potent inhibitor of tumour development and progression by targeting JAK/STAT signaling may be an ideal candidate for cancer chemoprevention.
Collapse
Affiliation(s)
- J. Kowshik
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Abdul Basit Baba
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Hemant Giri
- Laboratory of Vascular Biology, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tami Nadu, India
| | - G. Deepak Reddy
- Medicinal Chemistry Research Division, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, India
| | - Madhulika Dixit
- Laboratory of Vascular Biology, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tami Nadu, India
| | - Siddavaram Nagini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
25
|
Manzo-Merino J, Contreras-Paredes A, Vázquez-Ulloa E, Rocha-Zavaleta L, Fuentes-Gonzalez AM, Lizano M. The Role of Signaling Pathways in Cervical Cancer and Molecular Therapeutic Targets. Arch Med Res 2014; 45:525-39. [DOI: 10.1016/j.arcmed.2014.10.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/29/2014] [Indexed: 12/24/2022]
|
26
|
Pooja T, Karunagaran D. Emodin suppresses Wnt signaling in human colorectal cancer cells SW480 and SW620. Eur J Pharmacol 2014; 742:55-64. [PMID: 25205133 DOI: 10.1016/j.ejphar.2014.08.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/16/2014] [Accepted: 08/21/2014] [Indexed: 12/30/2022]
Abstract
Wnt signaling is involved in the regulation of cell proliferation, differentiation and apoptosis. Its aberrant activation is a key event in the pathogenesis and progression of human colorectal cancers. Dietary phytochemicals are gaining importance as chemotherapeutic agents owing to their potential to prevent, delay or reverse oncogenesis. Here we demonstrate that emodin (1,3,8-trihydroxy-6-methylanthraquinone), an anthraquinone present in the roots and bark of several medicinal plants, down regulates Wnt signaling pathway in human colorectal cancer cells (SW480 and SW620) by down regulating TCF/LEF transcriptional activity. Emodin significantly down regulated the expression of key players of Wnt signaling (β-catenin and TCF7L2) and also that of its various downstream targets (cyclin D1, c-Myc, snail, vimentin, MMP-2 and MMP-9). Two novel targets of emodin׳s action were discovered namely Wnt co-activator p300 (down regulated) and repressor HBP1 (up regulated). Morphological changes induced by emodin suggest mesenchymal to epithelial transition accompanied by the increase in E-cadherin expression in human colorectal cancer cells but a differentiation marker (alkaline phosphatase) was activated only in SW620 cells (metastatic origin) and not in SW480 cells (primary tumor-derived). Moreover, our data indicate that reactive oxygen species plays a key role in emodin-mediated down regulation of Wnt signaling as emodin-mediated inhibition of migration and induction of growth arrest were partially rescued by the reactive oxygen species scavenger ascorbic acid. Effects of emodin shown in this study may provide important insights for the use of this anthraquinone as a potential complementary and integrated medicine for the treatment of human colorectal cancer.
Collapse
Affiliation(s)
- Thacker Pooja
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
27
|
Affiliation(s)
- M. Dey
- South Dakota State University, Brookings, SD, U.S.A
- Corresponding author. Health and Nutritional Sciences, Box 2203, South Dakota State University, Brookings, SD 57007, U.S.A.Tel: +1.605.688.4050; Fax: +1.605.688.5603
| |
Collapse
|