1
|
Arima H, Nishimura T, Koirala S, Nakano M, Ito H, Ichikawa T, Pandey K, Pandey BD, Yamamoto T. Sex differences in genotype frequency and the risk of polycythemia associated with rs13419896 and rs2790859 among Tibetan highlanders living in Tsarang, Mustang, Nepal. J Physiol Anthropol 2024; 43:25. [PMID: 39407294 PMCID: PMC11477017 DOI: 10.1186/s40101-024-00372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Tibetan highlanders have adapted to hypoxic environments through genetic mechanisms that avoid hemoglobin concentration increases and prevent polycythemia. Recently, sex differences in hemoglobin dynamics with age have been reported among Tibetan highlanders living in Tsarang. Additionally, concerns have been raised that dietary changes associated with modernization may increase the risk of polycythemia and lifestyle-related diseases among Tibetan highlanders. However, the relationship between genetic polymorphisms and the risk of lifestyle-related diseases in Tibetan highlanders has been investigated in only a few regions. This study aims to elucidate whether polymorphisms in genes related to hypoxic adaptation are associated with the incidence of lifestyle-related diseases and polycythemia and whether these polymorphisms affect hemoglobin dynamics in the residents of Tsarang, Mustang, Nepal. METHODS Health checkup data from individuals living in Tsarang in Mustang District, Nepal, collected in 2017, were used to determine the prevalence of obesity, hypertension, diabetes, hypoxemia, and polycythemia. DNA was extracted from whole-blood samples, and data for the single-nucleotide polymorphisms (SNPs) rs13419896 (EPAS1), rs12619696 (EPAS1), and rs2790859 (EGLN1) were obtained using real-time PCR. The health checkup data were statistically analyzed to determine the associations of these diseases with polymorphisms in genes related to hypoxic adaptation. RESULTS A total of 168 participants, comprising 78 males and 90 females, were included in the final analysis. In terms of the prevalence of each disease, only the prevalence of polycythemia significantly differed between sexes (p < 0.01). Additionally, among the three analyzed SNPs, significant sex differences in genotype frequency were observed for rs13419896 and rs2790859. For rs2790859 in females, Tibetan highlanders with the adaptive genotype had a significantly lower incidence of polycythemia (p < 0.01) and significantly lower hemoglobin concentrations (p < 0.01). CONCLUSIONS This study revealed that there are sex differences in the genotype frequency of gene-related hypoxic adaptations among the residents of Tsarang. The findings also suggested that the rs2790859 polymorphism might be involved in the recent incidence of polycythemia among Tsarang residents. If the frequency of non-Tibetan genotypes increases due to intermixing with other populations in the Mustang District, polycythemia may emerge as a modern disease. It is essential to continue investigating the health status of Mustang residents to elucidate various aspects of hypoxic adaptation and disease susceptibility.
Collapse
Affiliation(s)
- Hiroaki Arima
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Takayuki Nishimura
- Department of Human Life Design and Science, Faculty of Design, Kyusyu University, 4-9-1 Shiobaru, Minami-Ku, Fukuoka, 815-8540, Japan.
| | - Sweta Koirala
- Nepal Development Society, Ward 29, Naubise, Kaski District, Pokhara Metropolitan City, Nepal
| | - Masayuki Nakano
- Department of Nutrition, Faculty of Health Sciences, Kochi Gakuen University, 292-26 Asahitenjin-Cho, Kochi, 780-0955, Japan
| | - Hiromu Ito
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Tomo Ichikawa
- Department of Society and Regional Culture, Okinawa International University, 2-6-1 Ginowan, Okinawa, 901-2701, Japan
| | - Kishor Pandey
- Central Department of Zoology, Tribhuvan University, Kirtipur, Nepal
| | - Basu Dev Pandey
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Taro Yamamoto
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- General Medicine, Medical Office, Saku City Asama General Hospital, 1862-1 Iwamurada, Saku, Nagano, 385-8558, Japan
| |
Collapse
|
2
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Kinota F, Droma Y, Kobayashi N, Horiuchi T, Kitaguchi Y, Yasuo M, Ota M, Hanaoka M. The Contribution of Genetic Variants of the Peroxisome Proliferator-Activated Receptor-Alpha Gene to High-Altitude Hypoxia Adaptation in Sherpa Highlanders. High Alt Med Biol 2023; 24:186-192. [PMID: 30475063 PMCID: PMC10516232 DOI: 10.1089/ham.2018.0052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022] Open
Abstract
Kinota, Fumiya, Yunden Droma, Nobumitsu Kobayashi, Toshimichi Horiuchi, Yoshiaki Kitaguchi, Masanori Yasuo, Masao Ota, and Masayuki Hanaoka. The contribution of genetic variants of the gene encoding peroxisome proliferator-activated receptor-alpha gene (PPARA) to high-altitude hypoxia adaptation in Sherpa highlanders. High Alt Med Biol. 24:186-192, 2023.-Sherpa highlanders, who play invaluable roles in the exploration of Mount Everest, have exceptional tolerance to hypobaric hypoxia. Sherpa people are well known to possess the traits determined by genetic background for high-altitude adaptation. The metabolic adaptation mechanism is one of the biological ways for Sherpa highlanders in protecting them from hypoxia stress at high altitude. Studies have suggested that the gene encoding PPARA is associated with metabolic adaptation in the Himalayan population of Tibetans. This study attempts to investigate the genetic variants of the PPARA in Sherpa highlanders and the association with high-altitude hypoxia adaptation. Seven single-nucleotide polymorphisms (SNPs; rs135547, rs5769178, rs881740, rs4253712, rs5766741, and rs5767700 in introns and rs1800234 in exon 6) in the PPARA were genotyped in 105 Sherpa highlanders who lived in the Khumbu region (3440 m above sea level) and 111 non-Sherpa lowlanders who resided in Kathmandu (1300 m) in Nepal. By means of analyses of genetic distances, genotype distributions, allele frequencies, linkage disequilibrium, and haplotype constructions of the seven SNPs in the Sherpa highlanders versus the non-Sherpa lowlanders, it was revealed that the frequencies of minor alleles of rs4253712, rs5766741, rs5767700, and rs1800234 SNPs, as well as the frequency of haplotype constructed by the minor alleles of rs5766741-rs5767700-rs1800234, were significantly overrepresented in the Sherpa highlanders in comparison with the non-Sherpa lowlanders. The results strongly suggest that the genetic variants of the PPARA are likely to contribute to the high-altitude adaptation in Sherpa highlanders.
Collapse
Affiliation(s)
- Fumiya Kinota
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yunden Droma
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Nobumitsu Kobayashi
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toshimichi Horiuchi
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiaki Kitaguchi
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masanori Yasuo
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masao Ota
- Division of Hepatology and Gastroenterology, Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masayuki Hanaoka
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
4
|
Mairbäurl H, Kilian S, Seide S, Muckenthaler MU, Gassmann M, Benedict RK. The Increase in Hemoglobin Concentration With Altitude Differs Between World Regions and Is Less in Children Than in Adults. Hemasphere 2023; 7:e854. [PMID: 37038466 PMCID: PMC10082317 DOI: 10.1097/hs9.0000000000000854] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/28/2023] [Indexed: 04/12/2023] Open
Abstract
To compensate for decreased oxygen partial pressure, high-altitude residents increase hemoglobin concentrations [Hb]. The elevation varies between world regions, posing problems in defining cutoff values for anemia or polycythemia. The currently used altitude adjustments (World Health Organization [WHO]), however, do not account for regional differences. Data from The Demographic and Health Survey (DHS) Program were analyzed from 32 countries harboring >4% of residents at altitudes above 1000 m. [Hb]-increase, (ΔHb/km altitude) was calculated by linear regression analysis. Tables show 95% reference intervals (RIs) for different altitude ranges, world regions, and age groups. The prevalence of anemia and polycythemia was calculated using regressions in comparison to WHO adjustments. The most pronounced Δ[Hb]/km was found in East Africans and South Americans while [Hb] increased least in South/South-East Asia. In African regions and Middle East, [Hb] was decreased in some altitude regions showing inconsistent changes in different age groups. Of note, in all regions, the Δ[Hb]/km was lower in children than in adults, and in the Middle East, it was even negative. Overall, the Δ[Hb]/km from our analysis differed from the region-independent adjustments currently suggested by the WHO resulting in a lower anemia prevalence at very high altitudes. The distinct patterns of Δ[Hb] with altitude in residents from different world regions imply that one single, region-independent correction factor for altitude is not be applicable for diagnosing abnormal [Hb]. Therefore, we provide regression coefficients and reference-tables that are specific for world regions and altitude ranges to improve diagnosing abnormal [Hb].
Collapse
Affiliation(s)
- Heimo Mairbäurl
- Translational Pneumology, University Hospital Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany
| | - Samuel Kilian
- Institute of Medical Biometry and Informatics (IMBI), University of Heidelberg, Germany
| | - Svenja Seide
- Institute of Medical Biometry and Informatics (IMBI), University of Heidelberg, Germany
| | - Martina U. Muckenthaler
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany
- Pediatric Oncology, Hematology & Immunology, University Hospital Heidelberg, Germany
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology (ZIHP), University of Zürich, Switzerland
- Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | | |
Collapse
|
5
|
Chen W, Chen H, Liao J, Tang M, Qin H, Zhao Z, Liu X, Wu Y, Jiang L, Zhang L, Fang B, Feng X, Zhang B, Reid K, Merilä J. Chromosome-level genome assembly of a high-altitude-adapted frog (Rana kukunoris) from the Tibetan plateau provides insight into amphibian genome evolution and adaptation. Front Zool 2023; 20:1. [PMID: 36604706 PMCID: PMC9817415 DOI: 10.1186/s12983-022-00482-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The high-altitude-adapted frog Rana kukunoris, occurring on the Tibetan plateau, is an excellent model to study life history evolution and adaptation to harsh high-altitude environments. However, genomic resources for this species are still underdeveloped constraining attempts to investigate the underpinnings of adaptation. RESULTS The R. kukunoris genome was assembled to a size of 4.83 Gb and the contig N50 was 1.80 Mb. The 6555 contigs were clustered and ordered into 12 pseudo-chromosomes covering ~ 93.07% of the assembled genome. In total, 32,304 genes were functionally annotated. Synteny analysis between the genomes of R. kukunoris and a low latitude species Rana temporaria showed a high degree of chromosome level synteny with one fusion event between chr11 and chr13 forming pseudo-chromosome 11 in R. kukunoris. Characterization of features of the R. kukunoris genome identified that 61.5% consisted of transposable elements and expansions of gene families related to cell nucleus structure and taste sense were identified. Ninety-five single-copy orthologous genes were identified as being under positive selection and had functions associated with the positive regulation of proteins in the catabolic process and negative regulation of developmental growth. These gene family expansions and positively selected genes indicate regions for further interrogation to understand adaptation to high altitude. CONCLUSIONS Here, we reported a high-quality chromosome-level genome assembly of a high-altitude amphibian species using a combination of Illumina, PacBio and Hi-C sequencing technologies. This genome assembly provides a valuable resource for subsequent research on R. kukunoris genomics and amphibian genome evolution in general.
Collapse
Affiliation(s)
- Wei Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Dongzhi, 247230, China.
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei, 230601, China.
| | - Hongzhou Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Jiahong Liao
- School of Life Science and Technology, Mianyang Normal University, Mianyang, 621000, Sichuan, China
| | - Min Tang
- School of Life Science and Technology, Mianyang Normal University, Mianyang, 621000, Sichuan, China
| | - Haifen Qin
- School of Life Science and Technology, Mianyang Normal University, Mianyang, 621000, Sichuan, China
| | - Zhenkun Zhao
- School of Life Science and Technology, Mianyang Normal University, Mianyang, 621000, Sichuan, China
| | - Xueyan Liu
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Yanfang Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Lichun Jiang
- School of Life Science and Technology, Mianyang Normal University, Mianyang, 621000, Sichuan, China
| | - Lixia Zhang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Bohao Fang
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, USA
| | - Xueyun Feng
- Ecological Genetics Research Unit, Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Baowei Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Juha Merilä
- Ecological Genetics Research Unit, Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Ma Y, Xiang F. Discovery of genomes of Neanderthal, Denisova and its impact on modern human. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-1134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Xi Q, Zhao F, Hu J, Wang J, Liu X, Dang P, Luo Y, Li S. Expression and Variations in EPAS1 Associated with Oxygen Metabolism in Sheep. Genes (Basel) 2022; 13:genes13101871. [PMID: 36292756 PMCID: PMC9602176 DOI: 10.3390/genes13101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022] Open
Abstract
Endothelial PAS domain protein 1 gene (EPAS1) is a member of the HIF gene family. This gene encodes a transcription factor subunit that is involved in the induction of oxygen-regulated genes. Several studies have demonstrated that a mutation in EPAS1 could affect oxygen sensing, polycythemia, and hemoglobin level. However, whether EPAS1 mutation affects sheep oxygen metabolism is still unknown. Therefore, we explored the relationship between the variation of EPAS1 and oxygen metabolism in sheep. In this study, variations in ovine EPAS1 exon 15 were investigated in 332 Tibetan sheep and 339 Hu sheep by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis. In addition, we studied the effect of these variations on blood gas in 176 Tibetan sheep and 231 Hu sheep. Finally, the mRNA expression of EPAS1 in six tissues of Hu sheep and Tibetan sheep living at different altitudes (2500 m, 3500 m, and 4500 m) was analyzed by real-time quantitative PCR (RT-qPCR). Four alleles (A, B, C, and D) were detected, and their distributions highly differed between Tibetan sheep and Hu sheep. In Tibetan sheep, B was the dominant allele, and C and D alleles were rare, whereas all four alleles were common in Hu sheep. Six single nucleotide polymorphisms (SNPs) were identified between the four alleles and one of them was non-synonymous (p.F606L). While studying the blood gas levels in Tibetan sheep and Hu sheep, one variant region was found to be associated with an elevated pO2 and sO2, which suggested that variations in EPAS1 are associated with oxygen metabolism in sheep. RT-qPCR results showed that EPAS1 was expressed in the six tissues of Hu sheep and Tibetan sheep at different altitudes. In addition, the expression of EPAS1 in four tissues (heart, liver, spleen, and longissimus dorsi muscle) of Hu sheep was lower than that in Tibetan sheep from three different altitudes, and the expression of EPAS1 was positively correlated with the altitude. These results indicate that the variations and expression of EPAS1 is closely related to oxygen metabolism.
Collapse
Affiliation(s)
- Qiming Xi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- International Science and Technology Cooperation Base of Meat Sheep and Meat Cattle Genetic Improvement in Northwest of China, Gansu Agricultural University, Lanzhou 730070, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- International Science and Technology Cooperation Base of Meat Sheep and Meat Cattle Genetic Improvement in Northwest of China, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- International Science and Technology Cooperation Base of Meat Sheep and Meat Cattle Genetic Improvement in Northwest of China, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- International Science and Technology Cooperation Base of Meat Sheep and Meat Cattle Genetic Improvement in Northwest of China, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- International Science and Technology Cooperation Base of Meat Sheep and Meat Cattle Genetic Improvement in Northwest of China, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengju Dang
- International Science and Technology Cooperation Base of Meat Sheep and Meat Cattle Genetic Improvement in Northwest of China, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Agriculture Technology College, Lanzhou 730070, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- International Science and Technology Cooperation Base of Meat Sheep and Meat Cattle Genetic Improvement in Northwest of China, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- International Science and Technology Cooperation Base of Meat Sheep and Meat Cattle Genetic Improvement in Northwest of China, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence:
| |
Collapse
|
8
|
Long read genome assemblies complemented by single cell RNA-sequencing reveal genetic and cellular mechanisms underlying the adaptive evolution of yak. Nat Commun 2022; 13:4887. [PMID: 36068211 PMCID: PMC9448747 DOI: 10.1038/s41467-022-32164-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Wild yak (Bos mutus) and domestic yak (Bos grunniens) are adapted to high altitude environment and have ecological, economic, and cultural significances on the Qinghai-Tibetan Plateau (QTP). Currently, the genetic and cellular bases underlying adaptations of yak to extreme conditions remains elusive. In the present study, we assembled two chromosome-level genomes, one each for wild yak and domestic yak, and screened structural variants (SVs) through the long-read data of yak and taurine cattle. The results revealed that 6733 genes contained high-FST SVs. 127 genes carrying special type of SVs were differentially expressed in lungs of the taurine cattle and yak. We then constructed the first single-cell gene expression atlas of yak and taurine cattle lung tissues and identified a yak-specific endothelial cell subtype. By integrating SVs and single-cell transcriptome data, we revealed that the endothelial cells expressed the highest proportion of marker genes carrying high-FST SVs in taurine cattle lungs. Furthermore, we identified pathways which were related to the medial thickness and formation of elastic fibers in yak lungs. These findings provide new insights into the high-altitude adaptation of yak and have important implications for understanding the physiological and pathological responses of large mammals and humans to hypoxia. The genetic bases of yak adaptations to extreme conditions remains elusive. This study compares yak and cattle at a genomic and transcriptomic level, revealing a new type of endothelial cell and candidate genes related with elastic fiber formation in yak lungs that might contribute to high altitude adaptation.
Collapse
|
9
|
Droma Y, Hanaoka M, Kinjo T, Kobayashi N, Yasuo M, Kitaguchi Y, Ota M. The blunted vascular endothelial growth factor-A (VEGF-A) response to high-altitude hypoxia and genetic variants in the promoter region of the VEGFA gene in Sherpa highlanders. PeerJ 2022; 10:e13893. [PMID: 35996666 PMCID: PMC9392454 DOI: 10.7717/peerj.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/22/2022] [Indexed: 01/19/2023] Open
Abstract
Background Sherpa highlanders demonstrate extraordinary tolerance to hypoxia at high altitudes, which may be achieved by mechanisms promoting microcirculatory blood flow and capillary density at high altitudes for restoring oxygen supply to tissues. Vascular endothelial growth factors (VEGFs) are important signaling proteins involved in vasculogenesis and angiogenesis which are stimulated by hypoxia. We hypothesize that the VEGF-A, the major member of the VEGF family, and the gene encoding VEGF-A (VEGFA) play a part in the adaptation to high-altitude hypoxia in Sherpa highlanders. Methods Fifty-one Sherpa highlanders in Namche Bazaar village at a high altitude of 3,440 meters (m) above sea level and 76 non-Sherpa lowlanders in Kathmandu city at 1,300 m in Nepal were recruited for the study. Venous blood was sampled to obtain plasma and extract DNA from each subject. The plasma VEGF-A concentrations were measured and five single-nucleotide polymorphisms (SNPs, rs699947, rs833061, rs1570360, rs2010963, and rs3025039) in the VEGFA were genotyped. The VEGF-A levels and allelic frequencies of the SNPs were compared between the two populations. Results A significant difference in oxygen saturation (SpO2) was observed between the two ethnic groups locating at different elevations (93.7 ± 0.2% in Sherpas at 3,440 m vs. 96.7 ± 0.2% in non-Sherpas at 1,300 m, P < 0.05). The plasma VEGF-A concentration in the Sherpas at high altitude was on the same level as that in the non-Sherpas at low altitude (262.8 ± 17.9 pg/ml vs. 266.8 ± 21.8 pg/ml, P = 0.88). This result suggested that the plasma VEGF-A concentration in Sherpa highlanders was stable despite a high-altitude hypoxic stimulus and that therefore the Sherpas exhibited a phenotype of blunted response to hypoxic stress. Moreover, the allele frequencies of the SNPs rs699947, rs833061, and rs2010963 in the promoter region of the VEGFA were different between the Sherpa highlanders and non-Sherpa lowlanders (corrected P values = 3.30 ×10-5, 4.95 ×10-4, and 1.19 ×10-7, respectively). Conclusions Sherpa highlanders exhibited a blunted VEGF-A response to hypoxia at high altitudes, which was speculated to be associated with the distinctive genetic variations of the SNPs and haplotype in the promoter region of VEGFA in Sherpa highlanders.
Collapse
Affiliation(s)
- Yunden Droma
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Masayuki Hanaoka
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takumi Kinjo
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Nobumitsu Kobayashi
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Masanori Yasuo
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yoshiaki Kitaguchi
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Masao Ota
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
10
|
Xue T, Chiao B, Xu T, Li H, Shi K, Cheng Y, Shi Y, Guo X, Tong S, Guo M, Chew SH, Ebstein RP, Cui D. The heart-brain axis: A proteomics study of meditation on the cardiovascular system of Tibetan Monks. EBioMedicine 2022; 80:104026. [PMID: 35576643 PMCID: PMC9118669 DOI: 10.1016/j.ebiom.2022.104026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Background There have been mixed reports on the beneficial effects of meditation in cardiovascular disease (CVD), which is widely considered the leading cause of death worldwide. Methods To clarify the role of meditation in modulating the heart-brain axis, we implemented an extreme phenotype strategy, i.e., Tibetan monks (BMI > 30) who practised 19.20 ± 7.82 years of meditation on average and their strictly matched non-meditative Tibetan controls. Hypothesis-free advanced proteomics strategies (Data Independent Acquisition and Targeted Parallel Reaction Monitoring) were jointly applied to systematically investigate and target the plasma proteome underlying meditation. Total cholesterol, low-density lipoprotein cholesterol (LDL-C), apolipoprotein B (Apo B) and lipoprotein (a) [Lp(a)] as the potential cardiovascular risk factors were evaluated. Heart rate variability (HRV) was assessed by electrocardiogram. Findings Obesity, hypertension, and reduced HRV is offset by long-term meditation. Notably, meditative monks have blood pressure and HRV comparable to their matched Tibetan controls. Meditative monks have a protective plasma proteome, related to decreased atherosclerosis, enhanced glycolysis, and oxygen release, that confers resilience to the development of CVD. In addition, clinical risk factors in plasma were significantly decreased in monks compared with controls, including total cholesterol, LDL-C, Apo B, and Lp(a). Interpretation To our knowledge, this work is the first well-controlled proteomics investigation of long-term meditation, which opens up a window for individuals characterized by a sedentary lifestyle to improve their cardiovascular health with an accessible method practised for more than two millennia. Funding See the Acknowledgements section.
Collapse
Affiliation(s)
- Ting Xue
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Benjamin Chiao
- China Center for Behavioral Economics and Finance, Southwestern University of Finance and Economics, Chengdu, Sichuan 610074, China; Paris School of Technology and Business, Paris 75011, France
| | - Tianjiao Xu
- Nursing Department, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| | - Han Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Kai Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| | - Ying Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| | - Yuan Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Xiaoli Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Menglin Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Soo Hong Chew
- China Center for Behavioral Economics and Finance, Southwestern University of Finance and Economics, Chengdu, Sichuan 610074, China; Department of Economics, National University of Singapore, 117570, Singapore.
| | - Richard P Ebstein
- China Center for Behavioral Economics and Finance, Southwestern University of Finance and Economics, Chengdu, Sichuan 610074, China.
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 201108, China.
| |
Collapse
|
11
|
Hart DA. Learning From Human Responses to Deconditioning Environments: Improved Understanding of the "Use It or Lose It" Principle. Front Sports Act Living 2021; 3:685845. [PMID: 34927066 PMCID: PMC8677937 DOI: 10.3389/fspor.2021.685845] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Physical activity, mobility or patterned mobility (i.e., exercise) is intrinsic to the functioning of Homo sapiens, and required for maintenance of health. Thus, systems such as the musculoskeletal and cardiovascular systems appear to require constant reinforcement or conditioning to maintain integrity. Loss of conditioning or development of chronic deconditioning can have multiple consequences. The study of different types of deconditioning and their prevention or reversal can offer a number of clues to the regulation of these systems and point to how deconditioning poses risk for disease development and progression. From the study of deconditioning associated with spaceflight, a condition not predicted by evolution, prolonged bedrest, protracted sedentary behavior, as well as menopause and obesity and their consequences, provide a background to better understand human heterogeneity and how physical fitness may impact the risks for chronic conditions subsequent to the deconditioning. The effectiveness of optimized physical activity and exercise protocols likely depend on the nature of the deconditioning, the sex and genetics of the individual, whether one is addressing prevention of deconditioning-associated disease or disease-associated progression, and whether it is focused on acute or chronic deconditioning associated with different forms of deconditioning. While considerable research effort has gone into preventing deconditioning, the study of the process of deconditioning and its endpoints can provide clues to the regulation of the affected systems and their contributions to human heterogeneity that have been framed by the boundary conditions of Earth during evolution and the "use it or lose it" principle of regulation. Such information regarding heterogeneity that is elaborated by the study of deconditioning environments could enhance the effectiveness of individualized interventions to prevent deconditions or rescue those who have become deconditioned.
Collapse
Affiliation(s)
- David A Hart
- Bone and Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada.,Department of Surgery, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Family Practice, Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Mandic M, Joyce W, Perry SF. The evolutionary and physiological significance of the Hif pathway in teleost fishes. J Exp Biol 2021; 224:272213. [PMID: 34533194 DOI: 10.1242/jeb.231936] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hypoxia-inducible factor (HIF) pathway is a key regulator of cellular O2 homeostasis and an important orchestrator of the physiological responses to hypoxia (low O2) in vertebrates. Fish can be exposed to significant and frequent changes in environmental O2, and increases in Hif-α (the hypoxia-sensitive subunit of the transcription factor Hif) have been documented in a number of species as a result of a decrease in O2. Here, we discuss the impact of the Hif pathway on the hypoxic response and the contribution to hypoxia tolerance, particularly in fishes of the cyprinid lineage, which includes the zebrafish (Danio rerio). The cyprinids are of specific interest because, unlike in most other fishes, duplicated paralogs of the Hif-α isoforms arising from a teleost-specific genome duplication event have been retained. Positive selection has acted on the duplicated paralogs of the Hif-α isoforms in some cyprinid sub-families, pointing to adaptive evolutionary change in the paralogs. Thus, cyprinids are valuable models for exploring the evolutionary significance and physiological impact of the Hif pathway on the hypoxic response. Knockout in zebrafish of either paralog of Hif-1α greatly reduces hypoxia tolerance, indicating the importance of both paralogs to the hypoxic response. Here, with an emphasis on the cardiorespiratory system, we focus on the role of Hif-1α in the hypoxic ventilatory response and the regulation of cardiac function. We explore the effects of the duration of the hypoxic exposure (acute, sustained or intermittent) on the impact of Hif-1α on cardiorespiratory function and compare relevant data with those from mammalian systems.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Animal Science, 2251 Meyer Hall, University of California Davis, Davis, CA 95616, USA
| | - William Joyce
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5.,Department of Biology - Zoophysiology, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
13
|
Serum Inflammatory Factor Profiles in the Pathogenesis of High-Altitude Polycythemia and Mechanisms of Acclimation to High Altitudes. Mediators Inflamm 2021; 2021:8844438. [PMID: 34483727 PMCID: PMC8413029 DOI: 10.1155/2021/8844438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
High-altitude polycythemia (HAPC) is a common aspect of chronic mountain sickness (CMS) caused by hypoxia and is the main cause of other symptoms associated with CMS. However, its pathogenesis and the mechanisms of high-altitude acclimation have not been fully elucidated. Exposure to high altitude is associated with elevated inflammatory mediators. In this study, the subjects were recruited and placed into a plain control (PC) group, plateau control (PUC) group, early HAPC (eHAPC) group, or a confirmed HAPC (cHAPC) group. Serum samples were collected, and inflammatory factors were measured by a novel antibody array methodology. The serum levels of interleukin-2 (IL-2), interleukin-3 (IL-3), and macrophage chemoattractant protein-1 (MCP-1) in the eHAPC group and the levels of interleukin-1 beta (IL-1 beta), IL-2, IL-3, tumor necrosis factor-alpha (TNF-alpha), MCP-1, and interleukin-16 (IL-16) in the cHAPC group were higher than those in the PUC group. More interestingly, the expression of IL-1 beta, IL-2, IL-3, TNF-alpha, MCP-1, and IL-16 in the PUC group showed a remarkable lower value than that in the PC group. These results suggest that these six factors might be involved in the pathogenesis of HAPC as well as acclimation to high altitudes. Altered inflammatory factors might be new biomarkers for HAPC and for high-altitude acclimation.
Collapse
|
14
|
Graham AM, Peters JL, Wilson RE, Muñoz-Fuentes V, Green AJ, Dorfsman DA, Valqui TH, Winker K, McCracken KG. Adaptive introgression of the beta-globin cluster in two Andean waterfowl. Heredity (Edinb) 2021; 127:107-123. [PMID: 33903741 PMCID: PMC8249413 DOI: 10.1038/s41437-021-00437-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 11/09/2022] Open
Abstract
Introgression of beneficial alleles has emerged as an important avenue for genetic adaptation in both plant and animal populations. In vertebrates, adaptation to hypoxic high-altitude environments involves the coordination of multiple molecular and cellular mechanisms, including selection on the hypoxia-inducible factor (HIF) pathway and the blood-O2 transport protein hemoglobin (Hb). In two Andean duck species, a striking DNA sequence similarity reflecting identity by descent is present across the ~20 kb β-globin cluster including both embryonic (HBE) and adult (HBB) paralogs, though it was yet untested whether this is due to independent parallel evolution or adaptive introgression. In this study, we find that identical amino acid substitutions in the β-globin cluster that increase Hb-O2 affinity have likely resulted from historical interbreeding between high-altitude populations of two different distantly-related species. We examined the direction of introgression and discovered that the species with a deeper mtDNA divergence that colonized high altitude earlier in history (Anas flavirostris) transferred adaptive genetic variation to the species with a shallower divergence (A. georgica) that likely colonized high altitude more recently possibly following a range shift into a novel environment. As a consequence, the species that received these β-globin variants through hybridization might have adapted to hypoxic conditions in the high-altitude environment more quickly through acquiring beneficial alleles from the standing, hybrid-origin variation, leading to faster evolution.
Collapse
Affiliation(s)
- Allie M Graham
- Eccles Institute for Human Genetics, University of Utah, Salt Lake City, UT, USA.
| | - Jeffrey L Peters
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | - Robert E Wilson
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Violeta Muñoz-Fuentes
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK
| | - Andy J Green
- Department of Wetland Ecology, Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| | - Daniel A Dorfsman
- Human Genetics and Genomics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Thomas H Valqui
- Centro de Ornitología y Biodiversidad (CORBIDI), Surco, Lima, Perú
- Universidad Nacional Agraria, La Molina, Perú
| | - Kevin Winker
- University of Alaska Museum and Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Kevin G McCracken
- Human Genetics and Genomics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
- Centro de Ornitología y Biodiversidad (CORBIDI), Surco, Lima, Perú.
- University of Alaska Museum and Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.
- Department of Biology, University of Miami, Coral Gables, FL, USA.
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA.
| |
Collapse
|
15
|
Arima H, Nakano M, Koirala S, Ito H, Pandey BD, Pandey K, Wada T, Yamamoto T. Unique hemoglobin dynamics in female Tibetan highlanders. Trop Med Health 2021; 49:2. [PMID: 33397517 PMCID: PMC7780399 DOI: 10.1186/s41182-020-00289-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tibetan highlanders have adapted to hypoxic environments through the development of unique mechanisms that suppress an increase in hemoglobin (Hb) concentration even in high-altitude areas. Hb concentrations generally decrease with increasing age. However, in the highlands, chronic altitude sickness is known to occur in the elderly population. To investigate how aging in a hypoxic environment affects Hb levels in Tibetan highlanders, we focused on the Mustang people, who live above 3500 m. We tried to clarify the pure relationship between aging and Hb levels in a hypoxic environment. RESULTS We found that the Hb concentration increased with increasing age in females but not in males. Multivariate analysis showed that age, pulse pressure, the poverty index, and vascular diameter were strongly correlated with the Hb concentration. CONCLUSIONS We found unique Hb dynamics among female Tibetan highlanders. As seen in these Hb dynamics, there may be sex-based differences in the adaptive mechanism in Tibetan highlanders.
Collapse
Affiliation(s)
- Hiroaki Arima
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masayuki Nakano
- Department of Nutrition, Faculty of Health Sciences, Kochi Gakuen University, Kochi, Japan
| | | | - Hiromu Ito
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Basu Dev Pandey
- Everest International Clinic and Research Center, Kathmandu, Nepal.,Sukraraj Tropical and Infectious Disease Hospital, Kathmandu, Nepal
| | - Kishor Pandey
- Everest International Clinic and Research Center, Kathmandu, Nepal.,Nepal Academy of Science and Technology, Lalitpur, Nepal
| | - Takayuki Wada
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Taro Yamamoto
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan. .,Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
16
|
KOGANEBUCHI KAE, OOTA HIROKI. Paleogenomics of human remains in East Asia and Yaponesia focusing on current advances and future directions. ANTHROPOL SCI 2021. [DOI: 10.1537/ase.2011302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- KAE KOGANEBUCHI
- Laboratory of Genome Anthropology, Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo
- Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, Nishihara
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara
| | - HIROKI OOTA
- Laboratory of Genome Anthropology, Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo
| |
Collapse
|
17
|
Chanana N, Palmo T, Newman JH, Pasha MAQ. Vascular homeostasis at high-altitude: role of genetic variants and transcription factors. Pulm Circ 2020; 10:2045894020913475. [PMID: 33282179 PMCID: PMC7682230 DOI: 10.1177/2045894020913475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/14/2020] [Indexed: 12/24/2022] Open
Abstract
High-altitude pulmonary edema occurs most frequently in non-acclimatized low landers on exposure to altitude ≥2500 m. High-altitude pulmonary edema is a complex condition that involves perturbation of signaling pathways in vasoconstrictors, vasodilators, anti-diuretics, and vascular growth factors. Genetic variations are instrumental in regulating these pathways and evidence is accumulating for a role of epigenetic modification in hypoxic responses. This review focuses on the crosstalk between high-altitude pulmonary edema-associated genetic variants and transcription factors, comparing high-altitude adapted and high-altitude pulmonary edema-afflicted subjects. This approach might ultimately yield biomarker information both to understand and to design therapies for high-altitude adaptation.
Collapse
Affiliation(s)
- Neha Chanana
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Tsering Palmo
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - John H Newman
- Pulmonary Circulation Center, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M A Qadar Pasha
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
18
|
Hypoxia-inducible factor-2α is crucial for proper brain development. Sci Rep 2020; 10:19146. [PMID: 33154420 PMCID: PMC7644612 DOI: 10.1038/s41598-020-75838-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/21/2020] [Indexed: 11/09/2022] Open
Abstract
Sufficient tissue oxygenation is required for regular brain function; thus oxygen supply must be tightly regulated to avoid hypoxia and irreversible cell damage. If hypoxia occurs the transcription factor complex hypoxia-inducible factor (HIF) will accumulate and coordinate adaptation of cells to hypoxia. However, even under atmospheric O2 conditions stabilized HIF-2α protein was found in brains of adult mice. Mice with a neuro-specific knockout of Hif-2α showed a reduction of pyramidal neurons in the retrosplenial cortex (RSC), a brain region responsible for a range of cognitive functions, including memory and navigation. Accordingly, behavioral studies showed disturbed cognitive abilities in these mice. In search of the underlying mechanisms for the specific loss of pyramidal cells in the RSC, we found deficits in migration in neural stem cells from Hif-2α knockout mice due to altered expression patterns of genes highly associated with neuronal migration and positioning.
Collapse
|
19
|
Yasukochi Y, Shin S, Wakabayashi H, Maeda T. Transcriptomic Changes in Young Japanese Males After Exposure to Acute Hypobaric Hypoxia. Front Genet 2020; 11:559074. [PMID: 33101380 PMCID: PMC7506118 DOI: 10.3389/fgene.2020.559074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022] Open
Abstract
After the genomic era, the development of high-throughput sequencing technologies has allowed us to advance our understanding of genetic variants responsible for adaptation to high altitude in humans. However, transcriptomic characteristics associated with phenotypic plasticity conferring tolerance to acute hypobaric hypoxic stress remain unclear. To elucidate the effects of hypobaric hypoxic stress on transcriptional variability, we aimed to describe transcriptomic profiles in response to acute hypobaric hypoxia in humans. In a hypobaric hypoxic chamber, young Japanese males were exposed to a barometric pressure of 493 mmHg (hypobaric hypoxia) for 75 min after resting for 30 min at the pressure of 760 mmHg (normobaric normoxia) at 28°C. Saliva samples of the subjects were collected before and after hypobaric hypoxia exposure, to be used for RNA sequencing. Differential gene expression analysis identified 30 significantly upregulated genes and some of these genes may be involved in biological processes influencing hematological or immunological responses to hypobaric hypoxic stress. We also confirmed the absence of any significant transcriptional fluctuations in the analysis of basal transcriptomic profiles under no-stimulus conditions, suggesting that the 30 genes were actually upregulated by hypobaric hypoxia exposure. In conclusion, our findings showed that the transcriptional profiles of Japanese individuals can be rapidly changed as a result of acute hypobaric hypoxia, and this change may influence the phenotypic plasticity of lowland individuals for acclimatization to a hypobaric hypoxic environment. Therefore, the results obtained in this study shed light on the transcriptional mechanisms underlying high-altitude acclimatization in humans.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Organization for the Promotion of Regional Innovation, Mie University, Tsu, Japan
| | - Sora Shin
- Graduate School of Design, Kyushu University, Fukuoka, Japan
| | | | - Takafumi Maeda
- Department of Human Science, Faculty of Design, Kyushu University, Fukuoka, Japan.,Physiological Anthropology Research Center, Faculty of Design, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Dzhalilova D, Makarova O. Differences in Tolerance to Hypoxia: Physiological, Biochemical, and Molecular-Biological Characteristics. Biomedicines 2020; 8:E428. [PMID: 33080959 PMCID: PMC7603118 DOI: 10.3390/biomedicines8100428] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia plays an important role in the development of many infectious, inflammatory, and tumor diseases. The predisposition to such disorders is mostly provided by differences in basic tolerance to oxygen deficiency, which we discuss in this review. Except the direct exposure of different-severity hypoxia in decompression chambers or in highland conditions, there are no alternative methods for determining organism tolerance. Due to the variability of the detection methods, differences in many parameters between tolerant and susceptible organisms are still not well-characterized, but some of them can serve as biomarkers of susceptibility to hypoxia. At the moment, several potential biomarkers in conditions after hypoxic exposure have been identified both in experimental animals and humans. The main potential biomarkers are Hypoxia-Inducible Factor (HIF)-1, Heat-Shock Protein 70 (HSP70), and NO. Due to the different mechanisms of various high-altitude diseases, biomarkers may not be highly specific and universal. Therefore, it is extremely important to conduct research on hypoxia susceptibility biomarkers. Moreover, it is important to develop a method for the evaluation of organisms' basic hypoxia tolerance without the necessity of any oxygen deficiency exposure. This can contribute to new personalized medicine approaches' development for diagnostics and the treatment of inflammatory and tumor diseases, taking into account hypoxia tolerance differences.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution ‘Research Institute of Human Morphology’, Moscow 117418, Russia;
| | | |
Collapse
|
21
|
Li HY, Yuan Y, Fu YH, Wang Y, Gao XY. Hypoxia-inducible factor-1α: A promising therapeutic target for vasculopathy in diabetic retinopathy. Pharmacol Res 2020; 159:104924. [PMID: 32464323 DOI: 10.1016/j.phrs.2020.104924] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is a serious condition that can cause blindness in diabetic patients. It is a neurovascular disease, but the pathogenesis leading to the onset of this disease is still not completely understood. However, hypoxia with subsequent neovascularization is a characteristic phenomenon observed with DR. Cellular response to hypoxia is mediated by the transcriptional regulator hypoxia-inducible factor (HIF). Long-term research has shown that one isotype of HIF, HIF-1α, may play a pivotal role under hypoxic conditions, and an increasing number of studies have shown that HIF-1α and its target genes contribute to retinal neovascularization. Therefore, targeting HIF-1α may lead to more effective DR treatments. This review describes the possible mechanisms of HIF-1α in neovascularization of DR. Furthermore, various inhibitors of HIF-1α that may have viable potential in the treatment of DR are also discussed.
Collapse
Affiliation(s)
- Hui-Yao Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yue Yuan
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yu-Hong Fu
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Ying Wang
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xin-Yuan Gao
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
22
|
Bhanushali D, Tyagi R, Limaye Rishi Nityapragya N, Anand A. Effect of mindfulness meditation protocol in subjects with various psychometric characteristics at high altitude. Brain Behav 2020; 10:e01604. [PMID: 32207242 PMCID: PMC7218243 DOI: 10.1002/brb3.1604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/04/2020] [Accepted: 02/29/2020] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Incidence of high altitude-related sickness is increasing due to more number of people visiting the areas of high altitude which may result in life-threatening conditions including acute mountain sickness (AMS), high altitude pulmonary edema (HAPE), high altitude cerebral edema (HACE), and High-altitude pulmonary hypertension (HAPH). We hypothesized that an advanced yoga regimen may be beneficial in dealing with the physiology of acclimatization. METHODS Anthropometric, Biochemical, and Psychological assessments were carried out in 48 participants before and after the advance meditation program (AMP) in the experimental group. Individuals with an age range of 20-65 years with no comorbidities were included in the study. Participants were exposed to AMP for 4 days. All assessments were carried out at the baseline and after the course. Prakriti was constituted for all participants using a standard questionnaire. The study was carried out after obtaining the written informed consent as per the guidelines outlined by the Institute Ethics Committee. RESULTS Po2 and glucose levels were found significantly reduced along with changes in the Happiness index, anxiety, and mental well-being. However, participants with lowered Po2, after 4 days of mindfulness intervention, showed a positive outcome measured by the established scales of anxiety, happiness, and information processing. Psychometric or Prakriti wise analysis revealed that subject with "Pitta" constitution exposed to high altitude and advance meditation showed changes in more parameters than "Vatta" or "Kapha" Constitution. CONCLUSIONS Advance meditation in the high altitude zone confers biochemical and neuro-cognitive benefits. Molecular studies may require to understand the role of hypoxic condition in improving the disease state.
Collapse
Affiliation(s)
- Disha Bhanushali
- Ved Vignan Maha Vidya Peeth, Sri Sri Institute of Advanced Research, Bangaluru, India
| | - Rahul Tyagi
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
23
|
Association of EPAS1 and PPARA Gene Polymorphisms with High-Altitude Headache in Chinese Han Population. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1593068. [PMID: 32185192 PMCID: PMC7060407 DOI: 10.1155/2020/1593068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/09/2019] [Accepted: 12/14/2019] [Indexed: 11/17/2022]
Abstract
Background High-altitude headache (HAH) is the most common complication after high-altitude exposure. Hypoxia-inducible factor- (HIF-) related genes have been confirmed to contribute to high-altitude acclimatization. We aim to investigate a possible association between HIF-related genes and HAH in the Chinese Han population. Methods In total, 580 healthy Chinese Han volunteers were recruited in Chengdu (500 m) and carried to Lhasa (3700 m) by plane in 2 hours. HAH scores and basic physiological parameters were collected within 18-24 hours after the arrival. Thirty-five single nucleotide polymorphisms (SNPs) in HIF-related genes were genotyped, and linkage disequilibrium (LD) was evaluated by Haploview software. The functions of SNPs/haplotypes for HAH were developed by using logistic regression analysis. Results In comparison with wild types, the rs4953354 "G" allele (P=0.013), rs6756667 "A" allele (P=0.013), rs6756667 "A" allele (EPAS1, and rs6520015 "C" allele in PPARA (P=0.013), rs6756667 "A" allele (PPARA (P=0.013), rs6756667 "A" allele (EPAS1, and rs6520015 "C" allele in PPARA (P=0.013), rs6756667 "A" allele (. Conclusions EPAS1 and PPARA polymorphisms were associated with HAH in the Chinese Han population. Our findings pointed out potentially predictive gene markers, provided new insights into understanding pathogenesis, and may further provide prophylaxis and treatment strategies for HAH.EPAS1, and rs6520015 "C" allele in PPARA (.
Collapse
|
24
|
Deng L, Zhang C, Yuan K, Gao Y, Pan Y, Ge X, He Y, Yuan Y, Lu Y, Zhang X, Chen H, Lou H, Wang X, Lu D, Liu J, Tian L, Feng Q, Khan A, Yang Y, Jin ZB, Yang J, Lu F, Qu J, Kang L, Su B, Xu S. Prioritizing natural-selection signals from the deep-sequencing genomic data suggests multi-variant adaptation in Tibetan highlanders. Natl Sci Rev 2019; 6:1201-1222. [PMID: 34691999 PMCID: PMC8291452 DOI: 10.1093/nsr/nwz108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022] Open
Abstract
Human genetic adaptation to high altitudes (>2500 m) has been extensively studied over the last few years, but few functional adaptive genetic variants have been identified, largely owing to the lack of deep-genome sequencing data available to previous studies. Here, we build a list of putative adaptive variants, including 63 missense, 7 loss-of-function, 1,298 evolutionarily conserved variants and 509 expression quantitative traits loci. Notably, the top signal of selection is located in TMEM247, a transmembrane protein-coding gene. The Tibetan version of TMEM247 harbors one high-frequency (76.3%) missense variant, rs116983452 (c.248C > T; p.Ala83Val), with the T allele derived from archaic ancestry and carried by >94% of Tibetans but absent or in low frequencies (<3%) in non-Tibetan populations. The rs116983452-T is strongly and positively correlated with altitude and significantly associated with reduced hemoglobin concentration (p = 5.78 × 10-5), red blood cell count (p = 5.72 × 10-7) and hematocrit (p = 2.57 × 10-6). In particular, TMEM247-rs116983452 shows greater effect size and better predicts the phenotypic outcome than any EPAS1 variants in association with adaptive traits in Tibetans. Modeling the interaction between TMEM247-rs116983452 and EPAS1 variants indicates weak but statistically significant epistatic effects. Our results support that multiple variants may jointly deliver the fitness of the Tibetans on the plateau, where a complex model is needed to elucidate the adaptive evolution mechanism.
Collapse
Affiliation(s)
- Lian Deng
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Zhang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kai Yuan
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yang Gao
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuwen Pan
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xueling Ge
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yuan Yuan
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Lu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxi Zhang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hao Chen
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haiyi Lou
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoji Wang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongsheng Lu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiaojiao Liu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lei Tian
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qidi Feng
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Asifullah Khan
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zi-Bing Jin
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, China National Center for International Research in Regenerative Medicine and Neurogenetics, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Jian Yang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, China National Center for International Research in Regenerative Medicine and Neurogenetics, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
- Institute for Molecular Bioscience, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fan Lu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, China National Center for International Research in Regenerative Medicine and Neurogenetics, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Jia Qu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, China National Center for International Research in Regenerative Medicine and Neurogenetics, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Shuhua Xu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nu-trition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| |
Collapse
|
25
|
Bhandari S, Cavalleri GL. Population History and Altitude-Related Adaptation in the Sherpa. Front Physiol 2019; 10:1116. [PMID: 31555147 PMCID: PMC6722185 DOI: 10.3389/fphys.2019.01116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 12/29/2022] Open
Abstract
The first ascent of Mount Everest by Tenzing Norgay and Sir Edmund Hillary in 1953 brought global attention to the Sherpa people and human performance at altitude. The Sherpa inhabit the Khumbu Valley of Nepal, and are descendants of a population that has resided continuously on the Tibetan plateau for the past ∼25,000 to 40,000 years. The long exposure of the Sherpa to an inhospitable environment has driven genetic selection and produced distinct adaptive phenotypes. This review summarizes the population history of the Sherpa and their physiological and genetic adaptation to hypoxia. Genomic studies have identified robust signals of positive selection across EPAS1, EGLN1, and PPARA, that are associated with hemoglobin levels, which likely protect the Sherpa from altitude sickness. However, the biological underpinnings of other adaptive phenotypes such as birth weight and the increased reproductive success of Sherpa women are unknown. Further studies are required to identify additional signatures of selection and refine existing Sherpa-specific adaptive phenotypes to understand how genetic factors have underpinned adaptation in this population. By correlating known and emerging signals of genetic selection with adaptive phenotypes, we can further reveal hypoxia-related biological mechanisms of adaptation. Ultimately this work could provide valuable information regarding treatments of hypoxia-related illnesses including stroke, heart failure, lung disease and cancer.
Collapse
Affiliation(s)
- Sushil Bhandari
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
26
|
Kong X, Dong X, Yang S, Qian J, Yang J, Jiang Q, Li X, Wang B, Yan D, Lu S, Zhu L, Li G, Li M, Yi S, Deng M, Sun L, Zhou X, Mao H, Gou X. Natural selection on TMPRSS6 associated with the blunted erythropoiesis and improved blood viscosity in Tibetan pigs. Comp Biochem Physiol B Biochem Mol Biol 2019; 233:11-22. [PMID: 30885835 DOI: 10.1016/j.cbpb.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 02/04/2023]
Abstract
Tibetan pigs, indigenous to Tibetan plateau, are well adapted to hypoxia. So far, there have been not any definitively described genes and functional sites responsible for hypoxia adaptation for the Tibetan pig. The whole genome-wide association studies in human suggested that genetic variations in TMPRSS6 was associated with hemoglobin concentration (HGB) and red cell counts (RBC). Here we conducted resequencing of the nearly entire genomic region (40.1 kb) of the candidate gene TMPRSS6 in 40 domestic pigs and 40 wild boars along continuous altitudes and identified 708 SNPs, in addition to an indel (CGTG/----) in the intron 10. We conduct the CGTG indel in 838 domestic pigs, both the CGTG deletion frequency and the pairwise r2 linkage disequilibrium showed an increase with elevated altitudes, suggesting that TMPRSS6 has been under Darwinian positive selection. As the conserved core sequence of hypoxia-response elements (HREs), the deletion of CGTG in Tibetan pigs decreased the expression levels of TMPRSS6 mRNA and protein in the liver revealed by real-time quantitative PCR and western blot, respectively. We compared domestic pigs and Tibetan pigs living continuous altitudes, found that the blood-related traits with the increase of altitude, however, the HGB did not increase with the elevation in Tibetan pigs. Genotype association analysis results dissected a genetic effect on reducing HGB by 13.25 g/L in Gongbo'gyamda Tibetan pigs, decreasing mean corpuscular volume (MCV) by 4.79 fl in Diqing Tibetan pigs. In conclusion, the CGTG deletion of TMPRSS6 resulted in lower HGB and smaller MCV, which could reflect a blunting erythropoiesis and improving blood viscosity as well as erythrocyte deformability. It remains to be determined whether a blunting of erythropoiesis for TMPRSS6 or others genetic effects are the physiological adaptations among Tibetan pigs.
Collapse
Affiliation(s)
- Xiaoyan Kong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xinxing Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shuli Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jinhua Qian
- Department of Animal Science, Yuxi Agriculture Vocational-Technical College, Yuxi, Yunnan, China
| | - Jianfa Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Xingrun Li
- Department of Animal Science, Dali Vocational and Technical College of Agriculture and Forestry, Dali, Yunnan, China
| | - Bo Wang
- Research Experimental Center, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Dawei Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Li Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Gen Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Minjuan Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shengnan Yi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Mingyue Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Liyuan Sun
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiaoxia Zhou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Huaming Mao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| | - Xiao Gou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| |
Collapse
|
27
|
Convergent evolution on the hypoxia-inducible factor (HIF) pathway genes EGLN1 and EPAS1 in high-altitude ducks. Heredity (Edinb) 2019; 122:819-832. [PMID: 30631144 PMCID: PMC6781116 DOI: 10.1038/s41437-018-0173-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022] Open
Abstract
During periods of reduced O2 supply, the most profound changes in gene expression are mediated by hypoxia-inducible factor (HIF) transcription factors that play a key role in cellular responses to low-O2 tension. Using target-enrichment sequencing, we tested whether variation in 26 genes in the HIF signaling pathway was associated with high altitude and therefore corresponding O2 availability in three duck species that colonized the Andes from ancestral low-altitude habitats in South America. We found strong support for convergent evolution in the case of two of the three duck species with the same genes (EGLN1, EPAS1), and even the same exons (exon 12, EPAS1), exhibiting extreme outliers with a high probability of directional selection in the high-altitude populations. These results mirror patterns of adaptation seen in human populations, which showed mutations in EPAS1, and transcriptional regulation differences in EGLN1, causing changes in downstream target transactivation, associated with a blunted hypoxic response.
Collapse
|
28
|
Comparative genomic investigation of high-elevation adaptation in ectothermic snakes. Proc Natl Acad Sci U S A 2018; 115:8406-8411. [PMID: 30065117 DOI: 10.1073/pnas.1805348115] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several previous genomic studies have focused on adaptation to high elevations, but these investigations have been largely limited to endotherms. Snakes of the genus Thermophis are endemic to the Tibetan plateau and therefore present an opportunity to study high-elevation adaptations in ectotherms. Here, we report the de novo assembly of the genome of a Tibetan hot-spring snake (Thermophis baileyi) and then compare its genome to the genomes of the other two species of Thermophis, as well as to the genomes of two related species of snakes that occur at lower elevations. We identify 308 putative genes that appear to be under positive selection in Thermophis We also identified genes with shared amino acid replacements in the high-elevation hot-spring snakes compared with snakes and lizards that live at low elevations, including the genes for proteins involved in DNA damage repair (FEN1) and response to hypoxia (EPAS1). Functional assays of the FEN1 alleles reveal that the Thermophis allele is more stable under UV radiation than is the ancestral allele found in low-elevation lizards and snakes. Functional assays of EPAS1 alleles suggest that the Thermophis protein has lower transactivation activity than the low-elevation forms. Our analysis identifies some convergent genetic mechanisms in high-elevation adaptation between endotherms (based on studies of mammals) and ectotherms (based on our studies of Thermophis).
Collapse
|
29
|
Metabolic adjustment to high-altitude hypoxia: from genetic signals to physiological implications. Biochem Soc Trans 2018; 46:599-607. [PMID: 29678953 DOI: 10.1042/bst20170502] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 01/04/2023]
Abstract
Ascent to high altitude is associated with physiological responses that counter the stress of hypobaric hypoxia by increasing oxygen delivery and by altering tissue oxygen utilisation via metabolic modulation. At the cellular level, the transcriptional response to hypoxia is mediated by the hypoxia-inducible factor (HIF) pathway and results in promotion of glycolytic capacity and suppression of oxidative metabolism. In Tibetan highlanders, gene variants encoding components of the HIF pathway have undergone selection and are associated with adaptive phenotypic changes, including suppression of erythropoiesis and increased blood lactate levels. In some highland populations, there has also been a selection of variants in PPARA, encoding peroxisome proliferator-activated receptor alpha (PPARα), a transcriptional regulator of fatty acid metabolism. In one such population, the Sherpas, lower muscle PPARA expression is associated with a decreased capacity for fatty acid oxidation, potentially improving the efficiency of oxygen utilisation. In lowlanders ascending to altitude, a similar suppression of fatty acid oxidation occurs, although the underlying molecular mechanism appears to differ along with the consequences. Unlike lowlanders, Sherpas appear to be protected against oxidative stress and the accumulation of intramuscular lipid intermediates at altitude. Moreover, Sherpas are able to defend muscle ATP and phosphocreatine levels in the face of decreased oxygen delivery, possibly due to suppression of ATP demand pathways. The molecular mechanisms allowing Sherpas to successfully live, work and reproduce at altitude may hold the key to novel therapeutic strategies for the treatment of diseases to which hypoxia is a fundamental contributor.
Collapse
|
30
|
Graham AM, Lavretsky P, Muñoz-Fuentes V, Green AJ, Wilson RE, McCracken KG. Migration-Selection Balance Drives Genetic Differentiation in Genes Associated with High-Altitude Function in the Speckled Teal (Anas flavirostris) in the Andes. Genome Biol Evol 2018; 10:14-32. [PMID: 29211852 PMCID: PMC5757641 DOI: 10.1093/gbe/evx253] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2017] [Indexed: 12/30/2022] Open
Abstract
Local adaptation frequently occurs across populations as a result of migration-selection balance between divergent selective pressures and gene flow associated with life in heterogeneous landscapes. Studying the effects of selection and gene flow on the adaptation process can be achieved in systems that have recently colonized extreme environments. This study utilizes an endemic South American duck species, the speckled teal (Anas flavirostris), which has both high- and low-altitude populations. High-altitude speckled teal (A. f. oxyptera) are locally adapted to the Andean environment and mostly allopatric from low-altitude birds (A. f. flavirostris); however, there is occasional gene flow across altitudinal gradients. In this study, we used next-generation sequencing to explore genetic patterns associated with high-altitude adaptation in speckled teal populations, as well as the extent to which the balance between selection and migration have affected genetic architecture. We identified a set of loci with allele frequencies strongly correlated with altitude, including those involved in the insulin-like signaling pathway, bone morphogenesis, oxidative phosphorylation, responders to hypoxia-induced DNA damage, and feedback loops to the hypoxia-inducible factor pathway. These same outlier loci were found to have depressed gene flow estimates, as well as being highly concentrated on the Z-chromosome. Our results suggest a multifactorial response to life at high altitudes through an array of interconnected pathways that are likely under positive selection and whose genetic components seem to be providing an effective genomic barrier to interbreeding, potentially functioning as an avenue for population divergence and speciation.
Collapse
Affiliation(s)
| | | | - Violeta Muñoz-Fuentes
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| | - Andy J Green
- Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| | - Robert E Wilson
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska, Fairbanks
| | - Kevin G McCracken
- Department of Biology, University of Miami
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska, Fairbanks
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine
| |
Collapse
|
31
|
Graham AM, Presnell JS. Hypoxia Inducible Factor (HIF) transcription factor family expansion, diversification, divergence and selection in eukaryotes. PLoS One 2017; 12:e0179545. [PMID: 28614393 PMCID: PMC5470732 DOI: 10.1371/journal.pone.0179545] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/31/2017] [Indexed: 01/01/2023] Open
Abstract
Hypoxia inducible factor (HIF) transcription factors are crucial for regulating a variety of cellular activities in response to oxygen stress (hypoxia). In this study, we determine the evolutionary history of HIF genes and their associated transactivation domains, as well as perform selection and functional divergence analyses across their four characteristic domains. Here we show that the HIF genes are restricted to metazoans: At least one HIF-α homolog is found within the genomes of non-bilaterians and bilaterian invertebrates, while most vertebrate genomes contain between two and six HIF-α genes. We also find widespread purifying selection across all four characteristic domain types, bHLH, PAS, NTAD, CTAD, in HIF-α genes, and evidence for Type I functional divergence between HIF-1α, HIF-2α /EPAS, and invertebrate HIF genes. Overall, we describe the evolutionary histories of the HIF transcription factor gene family and its associated transactivation domains in eukaryotes. We show that the NTAD and CTAD domains appear de novo, without any appearance outside of the HIF-α subunits. Although they both appear in invertebrates as well as vertebrate HIF- α sequences, there seems to have been a substantial loss across invertebrates or were convergently acquired in these few lineages. We reaffirm that HIF-1α is phylogenetically conserved among most metazoans, whereas HIF-2α appeared later. Overall, our findings can be attributed to the substantial integration of this transcription factor family into the critical tasks associated with maintenance of oxygen homeostasis and vascularization, particularly in the vertebrate lineage.
Collapse
Affiliation(s)
- Allie M. Graham
- Department of Biology, University of Miami, Coral Gables, Florida, United States of America
- * E-mail:
| | - Jason S. Presnell
- Department of Biology, University of Miami, Coral Gables, Florida, United States of America
| |
Collapse
|
32
|
Cho JI, Basnyat B, Jeong C, Di Rienzo A, Childs G, Craig SR, Sun J, Beall CM. Ethnically Tibetan women in Nepal with low hemoglobin concentration have better reproductive outcomes. EVOLUTION MEDICINE AND PUBLIC HEALTH 2017; 2017:82-96. [PMID: 28567284 PMCID: PMC5442430 DOI: 10.1093/emph/eox008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/12/2017] [Indexed: 12/24/2022]
Abstract
Background and objectives: Tibetans have distinctively low hemoglobin concentrations at high altitudes compared with visitors and Andean highlanders. This study hypothesized that natural selection favors an unelevated hemoglobin concentration among Tibetans. It considered nonheritable sociocultural factors affecting reproductive success and tested the hypotheses that a higher percent of oxygen saturation of hemoglobin (indicating less stress) or lower hemoglobin concentration (indicating dampened response) associated with higher lifetime reproductive success. Methodology: We sampled 1006 post-reproductive ethnically Tibetan women residing at 3000–4100 m in Nepal. We collected reproductive histories by interviews in native dialects and noninvasive physiological measurements. Regression analyses selected influential covariates of measures of reproductive success: the numbers of pregnancies, live births and children surviving to age 15. Results: Taking factors such as marriage status, age of first birth and access to health care into account, we found a higher percent of oxygen saturation associated weakly and an unelevated hemoglobin concentration associated strongly with better reproductive success. Women who lost all their pregnancies or all their live births had hemoglobin concentrations significantly higher than the sample mean. Elevated hemoglobin concentration associated with a lower probability a pregnancy progressed to a live birth. Conclusions and implications: These findings are consistent with the hypothesis that unelevated hemoglobin concentration is an adaptation shaped by natural selection resulting in the relatively low hemoglobin concentration of Tibetans compared with visitors and Andean highlanders.
Collapse
Affiliation(s)
- Jang Ik Cho
- Department of Epidemiology and Biostatistics, Case Western Reserve University, School of Medicine, Cleveland, OH 44109, USA
| | - Buddha Basnyat
- Patan Hospital, Oxford University Clinical Research Unit-Nepal, Kathmandu, Nepal and Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Choongwon Jeong
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Geoff Childs
- Department of Anthropology, Washington University, St. Louis, MO 63130, USA
| | - Sienna R Craig
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
| | - Jiayang Sun
- Department of Epidemiology and Biostatistics, Case Western Reserve University, School of Medicine, Cleveland, OH 44109, USA
| | - Cynthia M Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
33
|
Cheng L, Yu H, Yan N, Lai K, Xiang M. Hypoxia-Inducible Factor-1α Target Genes Contribute to Retinal Neuroprotection. Front Cell Neurosci 2017; 11:20. [PMID: 28289375 PMCID: PMC5326762 DOI: 10.3389/fncel.2017.00020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 01/23/2017] [Indexed: 02/05/2023] Open
Abstract
Hypoxia-inducible factor (HIF) is a transcription factor that facilitates cellular adaptation to hypoxia and ischemia. Long-standing evidence suggests that one isotype of HIF, HIF-1α, is involved in the pathogenesis of various solid tumors and cardiac diseases. However, the role of HIF-1α in retina remains poorly understood. HIF-1α has been recognized as neuroprotective in cerebral ischemia in the past two decades. Additionally, an increasing number of studies has shown that HIF-1α and its target genes contribute to retinal neuroprotection. This review will focus on recent advances in the studies of HIF-1α and its target genes that contribute to retinal neuroprotection. A thorough understanding of the function of HIF-1α and its target genes may lead to identification of novel therapeutic targets for treating degenerative retinal diseases including glaucoma, age-related macular degeneration, diabetic retinopathy, and retinal vein occlusions.
Collapse
Affiliation(s)
- Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University Guangzhou, China
| | - Honghua Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China; Department of Ophthalmology, General Hospital of Guangzhou Military Command of PLAGuangzhou, China
| | - Naihong Yan
- Department of Ophthalmology and Ophthalmic Laboratories, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University Guangzhou, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China; Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical SchoolPiscataway, NJ, USA
| |
Collapse
|
34
|
Cole AM, Cox S, Jeong C, Petousi N, Aryal DR, Droma Y, Hanaoka M, Ota M, Kobayashi N, Gasparini P, Montgomery H, Robbins P, Di Rienzo A, Cavalleri GL. Genetic structure in the Sherpa and neighboring Nepalese populations. BMC Genomics 2017; 18:102. [PMID: 28103797 PMCID: PMC5248489 DOI: 10.1186/s12864-016-3469-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 12/23/2016] [Indexed: 12/31/2022] Open
Abstract
Background We set out to describe the fine-scale population structure across the Eastern region of Nepal. To date there is relatively little known about the genetic structure of the Sherpa residing in Nepal and their genetic relationship with the Nepalese. We assembled dense genotype data from a total of 1245 individuals representing Nepal and a variety of different populations resident across the greater Himalayan region including Tibet, China, India, Pakistan, Kazakhstan, Uzbekistan, Tajikistan and Kirghizstan. We performed analysis of principal components, admixture and homozygosity. Results We identified clear substructure across populations resident in the Himalayan arc, with genetic structure broadly mirroring geographical features of the region. Ethnic subgroups within Nepal show distinct genetic structure, on both admixture and principal component analysis. We detected differential proportions of ancestry from northern Himalayan populations across Nepalese subgroups, with the Nepalese Rai, Magar and Tamang carrying the greatest proportions of Tibetan ancestry. Conclusions We show that populations dwelling on the Himalayan plateau have had a clear impact on the Northern Indian gene pool. We illustrate how the Sherpa are a remarkably isolated population, with little gene flow from surrounding Nepalese populations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3469-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amy M Cole
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sean Cox
- Centre for Human Health and Performance, and Institute for Sport, Exercise and Health, University College London, London, UK
| | - Choongwon Jeong
- Department of Human Genetics, University of Chicago, Chicago, USA
| | - Nayia Petousi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Dhana R Aryal
- Paropakar Maternity and Women's Hospital, Thapathali, Kathmandu, Nepal
| | - Yunden Droma
- First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masayuki Hanaoka
- First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masao Ota
- Department of Legal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Nobumitsu Kobayashi
- Department of Legal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Paolo Gasparini
- University of Triests, Trieste, Italy.,Division of Experimental Genetics, Sidra, Doha, Qatar
| | - Hugh Montgomery
- Centre for Human Health and Performance, and Institute for Sport, Exercise and Health, University College London, London, UK
| | - Peter Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, USA
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
35
|
Liu X, Lu D, Saw WY, Shaw PJ, Wangkumhang P, Ngamphiw C, Fucharoen S, Lert-Itthiporn W, Chin-Inmanu K, Chau TNB, Anders K, Kasturiratne A, de Silva HJ, Katsuya T, Kimura R, Nabika T, Ohkubo T, Tabara Y, Takeuchi F, Yamamoto K, Yokota M, Mamatyusupu D, Yang W, Chung YJ, Jin L, Hoh BP, Wickremasinghe AR, Ong RH, Khor CC, Dunstan SJ, Simmons C, Tongsima S, Suriyaphol P, Kato N, Xu S, Teo YY. Characterising private and shared signatures of positive selection in 37 Asian populations. Eur J Hum Genet 2017; 25:499-508. [PMID: 28098149 DOI: 10.1038/ejhg.2016.181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 10/22/2016] [Accepted: 11/01/2016] [Indexed: 11/09/2022] Open
Abstract
The Asian Diversity Project (ADP) assembled 37 cosmopolitan and ethnic minority populations in Asia that have been densely genotyped across over half a million markers to study patterns of genetic diversity and positive natural selection. We performed population structure analyses of the ADP populations and divided these populations into four major groups based on their genographic information. By applying a highly sensitive algorithm haploPS to locate genomic signatures of positive selection, 140 distinct genomic regions exhibiting evidence of positive selection in at least one population were identified. We examined the extent of signal sharing for regions that were selected in multiple populations and observed that populations clustered in a similar fashion to that of how the ancestry clades were phylogenetically defined. In particular, populations predominantly located in South Asia underwent considerably different adaptation as compared with populations from the other geographical regions. Signatures of positive selection present in multiple geographical regions were predicted to be older and have emerged prior to the separation of the populations in the different regions. In contrast, selection signals present in a single population group tended to be of lower frequencies and thus can be attributed to recent evolutionary events.
Collapse
Affiliation(s)
- Xuanyao Liu
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Dongsheng Lu
- Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Woei-Yuh Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Philip J Shaw
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Pongsakorn Wangkumhang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chumpol Ngamphiw
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Suthat Fucharoen
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Worachart Lert-Itthiporn
- Faculty of Science, Molecular Medicine Graduate Programme, Mahidol University, Bangkok, Thailand.,Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kwanrutai Chin-Inmanu
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tran Nguyen Bich Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Katie Anders
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam.,Nuffield Department of Clinical Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, UK
| | | | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Takayoshi Ohkubo
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ken Yamamoto
- Department of Medical Chemistry, Kurume University School of Medicine, Kurume, Japan
| | - Mitsuhiro Yokota
- Department of Genome Science, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Dolikun Mamatyusupu
- College of the Life Sciences and Technology, Xinjiang University, Urumqi, China
| | - Wenjun Yang
- Key Laboratory of Reproduction and Heredity of Ningxia Region, Ningxia Medical University, YinchuanChina
| | - Yeun-Jun Chung
- Department of Microbiology, Integrated Research Center for Genome Polymorphism, The Catholic University Medical College, Seoul, Korea
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE), Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Boon-Peng Hoh
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | | | - RickTwee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Chiea-Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sarah J Dunstan
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam.,Nuffield Department of Clinical Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, UK.,The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Cameron Simmons
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam.,Nuffield Department of Clinical Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, UK.,Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sissades Tongsima
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Prapat Suriyaphol
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Institute of Personalized Genomics and Gene Therapy (IPGG), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shuhua Xu
- Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China.,Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | - Yik-Ying Teo
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| |
Collapse
|
36
|
Bhandari S, Zhang X, Cui C, Yangla, Liu L, Ouzhuluobu, Baimakangzhuo, Gonggalanzi, Bai C, Bianba, Peng Y, Zhang H, Xiang K, Shi H, Liu S, Gengdeng, Wu T, Qi X, Su B. Sherpas share genetic variations with Tibetans for high-altitude adaptation. Mol Genet Genomic Med 2016; 5:76-84. [PMID: 28116332 PMCID: PMC5241213 DOI: 10.1002/mgg3.264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
Background Sherpas, a highlander population living in Khumbu region of Nepal, are well known for their superior climbing ability in Himalayas. However, the genetic basis of their adaptation to high‐altitude environments remains elusive. Methods We collected DNA samples of 582 Sherpas from Nepal and Tibetan Autonomous Region of China, and we measured their hemoglobin levels and degrees of blood oxygen saturation. We genotyped 29 EPAS1 SNPs, two EGLN1 SNPs and the TED polymorphism (3.4 kb deletion) in Sherpas. We also performed genetic association analysis among these sequence variants with phenotypic data. Results We found similar allele frequencies on the tested 32 variants of these genes in Sherpas and Tibetans. Sherpa individuals carrying the derived alleles of EPAS1 (rs113305133, rs116611511 and rs12467821), EGLN1 (rs186996510 and rs12097901) and TED have lower hemoglobin levels when compared with those wild‐type allele carriers. Most of the EPAS1 variants showing significant association with hemoglobin levels in Tibetans were replicated in Sherpas. Conclusion The shared sequence variants and hemoglobin trait between Sherpas and Tibetans indicate a shared genetic basis for high‐altitude adaptation, consistent with the proposal that Sherpas are in fact a recently derived population from Tibetans and they inherited adaptive variants for high‐altitude adaptation from their Tibetan ancestors.
Collapse
Affiliation(s)
- Sushil Bhandari
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunming650223China; Kunming College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China; Nepal Academy of Science and TechnologyGPO Box: 3323, KhumaltarLalitpurNepal
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| | - Chaoying Cui
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Yangla
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Lan Liu
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Ouzhuluobu
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Baimakangzhuo
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Gonggalanzi
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Caijuan Bai
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Bianba
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Yi Peng
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| | - Kun Xiang
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| | - Hong Shi
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunming650223China; Institute of Primate Translational MedicineKunming University of Science and TechnologyKunming650500China
| | - Shiming Liu
- National Key Laboratory of High Altitude Medicine High Altitude Medical Research Institute Xining 810012 China
| | - Gengdeng
- National Key Laboratory of High Altitude Medicine High Altitude Medical Research Institute Xining 810012 China
| | - Tianyi Wu
- National Key Laboratory of High Altitude Medicine High Altitude Medical Research Institute Xining 810012 China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| |
Collapse
|
37
|
Simonson TS, Huff CD, Witherspoon DJ, Prchal JT, Jorde LB. Adaptive genetic changes related to haemoglobin concentration in native high-altitude Tibetans. Exp Physiol 2016; 100:1263-8. [PMID: 26454145 DOI: 10.1113/ep085035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/06/2015] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the topic of this review? Tibetans have genetic adaptations that are hypothesized to underlie the distinct set of traits they exhibit at altitude. What advances does it highlight? Several adaptive signatures in the same genomic regions have been identified among Tibetan populations resident throughout the Qinghai-Tibetan Plateau. Many highland Tibetans exhibit a haemoglobin concentration within the range expected at sea level, and this trait is associated with putatively adaptive regions harbouring the hypoxia-inducible factor pathway genes EGLN1, EPAS1 and PPARA. Precise functional variants at adaptive loci and relationships to physiological traits, beyond haemoglobin concentration, are currently being examined in this population. Some native Tibetan, Andean and Ethiopian populations have lived at altitudes ranging from 3000 to >4000 m above sea level for hundreds of generations and exhibit distinct combinations of traits at altitude. It was long hypothesized that genetic factors contribute to adaptive differences in these populations, and recent advances in genomics provide evidence that some of the strongest signatures of positive selection in humans are those identified in Tibetans. Many of the top adaptive genomic regions highlighted thus far harbour genes related to hypoxia sensing and response. Putatively adaptive copies of three hypoxia-inducible factor pathway genes, EPAS1, EGLN1 and PPARA, are associated with sea-level range, rather than elevated, haemoglobin concentration observed in many Tibetans at high altitude, and recent studies provide insight into some of the precise adaptive variants, timing of adaptive events and functional roles. While several studies in highland Tibetans have converged on a few hypoxia-inducible factor pathway genes, additional candidates have been reported in independent studies of Tibetans located throughout the Qinghai-Tibetan Plateau. Various aspects of adaptive significance have yet to be identified, integrated, and fully explored. Given the rapid technological advances and interdisciplinary efforts in genomics, physiology and molecular biology, careful examination of Tibetans and comparisons with other distinctively adapted highland populations will provide valuable insight into evolutionary processes and models for both basic and clinical research.
Collapse
Affiliation(s)
- T S Simonson
- Department of Medicine, Division of Physiology, University of California San Diego, La Jolla, CA, USA
| | - C D Huff
- Department of Epidemiology, University of Texas, MD Anderson, Houston, TX, USA
| | - D J Witherspoon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - J T Prchal
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - L B Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
38
|
Bigham AW. Genetics of human origin and evolution: high-altitude adaptations. Curr Opin Genet Dev 2016; 41:8-13. [PMID: 27501156 DOI: 10.1016/j.gde.2016.06.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022]
Abstract
High altitude, defined as elevations lying above 2500m sea level, challenges human survival and reproduction. This environment provides a natural experimental design wherein specific populations, Andeans, Ethiopians, and Tibetans, have lived in a chronic hypoxia state for millennia. These human groups have overcome the low ambient oxygen tension of high elevation via unique physiologic and genetic adaptations. Genomic studies have identified several genes that underlie high-altitude adaptive phenotypes, many of which are central components of the Hypoxia Inducible Factor (HIF) pathway. Further study of mechanisms governing the adaptive changes responsible for high-altitude adaptation will contribute to our understanding of the molecular basis of evolutionary change and assist in the functional annotation of the human genome.
Collapse
Affiliation(s)
- Abigail W Bigham
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
39
|
Engelken J, Espadas G, Mancuso FM, Bonet N, Scherr AL, Jímenez-Álvarez V, Codina-Solà M, Medina-Stacey D, Spataro N, Stoneking M, Calafell F, Sabidó E, Bosch E. Signatures of Evolutionary Adaptation in Quantitative Trait Loci Influencing Trace Element Homeostasis in Liver. Mol Biol Evol 2016; 33:738-54. [PMID: 26582562 PMCID: PMC4760079 DOI: 10.1093/molbev/msv267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Essential trace elements possess vital functions at molecular, cellular, and physiological levels in health and disease, and they are tightly regulated in the human body. In order to assess variability and potential adaptive evolution of trace element homeostasis, we quantified 18 trace elements in 150 liver samples, together with the expression levels of 90 genes and abundances of 40 proteins involved in their homeostasis. Additionally, we genotyped 169 single nucleotide polymorphism (SNPs) in the same sample set. We detected significant associations for 8 protein quantitative trait loci (pQTL), 10 expression quantitative trait loci (eQTLs), and 15 micronutrient quantitative trait loci (nutriQTL). Six of these exceeded the false discovery rate cutoff and were related to essential trace elements: 1) one pQTL for GPX2 (rs10133290); 2) two previously described eQTLs for HFE (rs12346) and SELO (rs4838862) expression; and 3) three nutriQTLs: The pathogenic C282Y mutation at HFE affecting iron (rs1800562), and two SNPs within several clustered metallothionein genes determining selenium concentration (rs1811322 and rs904773). Within the complete set of significant QTLs (which involved 30 SNPs and 20 gene regions), we identified 12 SNPs with extreme patterns of population differentiation (FST values in the top 5% percentile in at least one HapMap population pair) and significant evidence for selective sweeps involving QTLs at GPX1, SELENBP1, GPX3, SLC30A9, and SLC39A8. Overall, this detailed study of various molecular phenotypes illustrates the role of regulatory variants in explaining differences in trace element homeostasis among populations and in the human adaptive response to environmental pressures related to micronutrients.
Collapse
Affiliation(s)
- Johannes Engelken
- †These authors contributed equally to this work. ‡Deceased October 23, 2015. Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Guadalupe Espadas
- †These authors contributed equally to this work. Proteomics Unit, Center of Genomics Regulation, Barcelona, Spain Proteomics Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francesco M Mancuso
- Proteomics Unit, Center of Genomics Regulation, Barcelona, Spain Proteomics Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nuria Bonet
- Genomics Core Facility, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Anna-Lena Scherr
- Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Victoria Jímenez-Álvarez
- Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marta Codina-Solà
- Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniel Medina-Stacey
- Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nino Spataro
- Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Francesc Calafell
- Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Center of Genomics Regulation, Barcelona, Spain Proteomics Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Bosch
- Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
40
|
Kang L, Wang CC, Chen F, Yao D, Jin L, Li H. Northward genetic penetration across the Himalayas viewed from Sherpa people. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:342-9. [PMID: 24617465 DOI: 10.3109/19401736.2014.895986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Himalayas have been suggested as a natural barrier for human migrations, especially the northward dispersals from the Indian Subcontinent to Tibetan Plateau. However, although the majority of Sherpa have a Tibeto-Burman origin, considerable genetic components from Indian Subcontinent have been observed in Sherpa people living in Tibet. The western Y chromosomal haplogroups R1a1a-M17, J-M304, and F*-M89 comprise almost 17% of Sherpa paternal gene pool. In the maternal side, M5c2, M21d, and U from the west also count up to 8% of Sherpa people. Those lineages with South Asian origin indicate that the Himalayas have been permeable to bidirectional gene flow.
Collapse
Affiliation(s)
- Longli Kang
- a Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet , Ministry of Education, Tibet University for Nationalities , Xianyang , Shaanxi , China and
| | - Chuan-Chao Wang
- b Ministry of Education Key Laboratory of Contemporary Anthropology , School of Life Sciences, Fudan University , Shanghai , China
| | - Feng Chen
- a Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet , Ministry of Education, Tibet University for Nationalities , Xianyang , Shaanxi , China and
| | - Dali Yao
- b Ministry of Education Key Laboratory of Contemporary Anthropology , School of Life Sciences, Fudan University , Shanghai , China
| | - Li Jin
- b Ministry of Education Key Laboratory of Contemporary Anthropology , School of Life Sciences, Fudan University , Shanghai , China
| | - Hui Li
- a Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet , Ministry of Education, Tibet University for Nationalities , Xianyang , Shaanxi , China and.,b Ministry of Education Key Laboratory of Contemporary Anthropology , School of Life Sciences, Fudan University , Shanghai , China
| |
Collapse
|
41
|
GUO LI, ZHANG JIHANG, JIN JUN, GAO XUBIN, YU JIE, GENG QIANWEN, LI HUIJIE, HUANG LAN. Genetic variants of endothelial PAS domain protein 1 are associated with susceptibility to acute mountain sickness in individuals unaccustomed to high altitude: A nested case-control study. Exp Ther Med 2015; 10:907-914. [PMID: 26622413 PMCID: PMC4533176 DOI: 10.3892/etm.2015.2611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/15/2015] [Indexed: 01/25/2023] Open
Abstract
The endothelial PAS domain protein 1 (EPAS1) gene functions to sense the blood oxygen level by regulating the hypoxia-inducible transcription factor pathway, and single nucleotide polymorphisms (SNPs) of EPAS1 have been found to have a strong and positive selection in the adaptation of the native Tibetan highland population to high-altitude hypoxia. The aim of the present study was to investigate the effect of EPAS1 SNPs on the risk of acute mountain sickness (AMS) and the physiological responses to acute high-altitude hypoxia in lowland humans. Three tag SNPs (rs6756667, rs13419896 and rs4953354; minor allele frequency, ≥5%) were selected and genotyped in 603 unrelated Han Chinese men, who had traveled to Lhasa (a high-altitude hypoxia environment) by plane, using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry method. The data showed that the EPAS1 rs6756667 wild-type GG homozygous genotype was associated with elevated AMS risk compared with the AA and AG genotypes (odds ratio, 1.815; 95% confidence interval, 1.233-2.666; P=0.0023) using the dominant-model analysis. EPAS1 rs6756667 GG genotypes were also associated with higher levels of hemoglobin, red blood cells and hematocrit than those carrying the AG heterozygote during AMS development. These findings indicate that EPAS1 SNPs play a role in the physiological effects of AMS, and these effects could be further evaluated as a therapeutic strategy to control acute hypoxia-related human diseases.
Collapse
Affiliation(s)
- LI GUO
- Institute of Cardiovascular Diseases of PLA, Department of Cardiology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - JIHANG ZHANG
- Institute of Cardiovascular Diseases of PLA, Department of Cardiology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - JUN JIN
- Institute of Cardiovascular Diseases of PLA, Department of Cardiology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - XUBIN GAO
- Institute of Cardiovascular Diseases of PLA, Department of Cardiology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - JIE YU
- Institute of Cardiovascular Diseases of PLA, Department of Cardiology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - QIANWEN GENG
- Institute of Cardiovascular Diseases of PLA, Department of Cardiology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - HUIJIE LI
- Institute of Cardiovascular Diseases of PLA, Department of Cardiology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - LAN HUANG
- Institute of Cardiovascular Diseases of PLA, Department of Cardiology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
42
|
Ronen R, Zhou D, Bafna V, Haddad GG. The genetic basis of chronic mountain sickness. Physiology (Bethesda) 2015; 29:403-12. [PMID: 25362634 DOI: 10.1152/physiol.00008.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Chronic mountain sickness (CMS) is a disease that affects many high-altitude dwellers, particularly in the Andean Mountains in South America. The hallmark symptom of CMS is polycythemia, which causes increased risk of pulmonary hypertension and stroke (among other symptoms). A prevailing hypothesis in high-altitude medicine is that CMS results from a population-specific "maladaptation" to the hypoxic conditions at high altitude. In contrast, the prevalence of CMS is very low in other high-altitude populations (e.g., Tibetans and Ethiopians), which are seemingly well adapted to hypoxia. In recent years, concurrent with the advent of genomic technologies, several studies have investigated the genetic basis of adaptation to altitude. These studies have identified several candidate genes that may underlie the adaptation, or maladaptation. Interestingly, some of these genes are targeted by known drugs, raising the possibility of new treatments for CMS and other ischemic diseases. We review recent discoveries, alongside the methodologies used to obtain them, and outline some of the challenges remaining in the field.
Collapse
Affiliation(s)
- Roy Ronen
- Bioinformatics & Systems Biology Graduate Program, University of California San Diego, La Jolla, California
| | - Dan Zhou
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, California
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California
| | - Gabriel G Haddad
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, California; Department of Neurosciences, University of California San Diego, La Jolla, California; and Rady Children's Hospital, San Diego, California
| |
Collapse
|
43
|
The A Allele at rs13419896 of EPAS1 Is Associated with Enhanced Expression and Poor Prognosis for Non-Small Cell Lung Cancer. PLoS One 2015; 10:e0134496. [PMID: 26263511 PMCID: PMC4532412 DOI: 10.1371/journal.pone.0134496] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/09/2015] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-inducible factor-2α (HIF-2α, or EPAS1) is important for cancer progression, and is a putative biomarker for poor prognosis for non-small cell lung cancer (NSCLC). However, molecular mechanisms underlying the EPAS1 overexpression are not still fully understood. We explored a role of a single nucleotide polymorphism (SNP), rs13419896 located within intron 1 of the EPAS1 gene in regulation of its expression. Bioinformatic analyses suggested that a region including the rs13419896 SNP plays a role in regulation of the EPAS1 gene expression and the SNP alters the binding activity of transcription factors. In vitro analyses demonstrated that a fragment containing the SNP locus function as a regulatory region and that a fragment with A allele showed higher transactivation activity than one with G, especially in the presence of overexpressed c-Fos or c-Jun. Moreover, NSCLC patients with the A allele showed poorer prognosis than those with G at the SNP even after adjustment with various variables. In conclusion, the genetic polymorphism of the EPAS1 gene may lead to variation of its gene expression levels to drive progression of the cancer and serve as a prognostic marker for NSCLC.
Collapse
|
44
|
Xu J, Yang YZ, Tang F, Ga Q, Tana W, Ge RL. EPAS1 Gene Polymorphisms Are Associated With High Altitude Polycythemia in Tibetans at the Qinghai-Tibetan Plateau. Wilderness Environ Med 2015; 26:288-94. [PMID: 25792003 DOI: 10.1016/j.wem.2015.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/29/2014] [Accepted: 01/02/2015] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To test the hypothesis that the polymorphisms in the EPAS1 gene are associated with the susceptibility to high altitude polycythemia (HAPC) in Tibetans at the Qinghai-Tibetan Plateau. METHODS We enrolled 63 Tibetan HAPC patients and 131 matched healthy Tibetans as a control group, from the Yushu area in Qinghai where the altitude is greater than 3500 m. Eight single-nucleotide polymorphisms (SNPs) of the EPAS1 gene, including rs12619696, rs13420857, rs2881504, rs4953388, rs13419896, rs4953354, rs10187368, and rs7587138, were genotyped by the Sequenom MassARRAY SNP assay. RESULTS The frequencies of the G allele of EPAS1 SNP rs13419896 were significantly higher in the HAPC group than in the control group (P < .05). Moreover, the A alleles of rs12619696 and rs4953354 were prevalent in the HAPC group, and their counterpart homozygotes were prevalent in the normal Tibetan group (P < .05). CONCLUSIONS Compared with normal Tibetans, Tibetans with HAPC are maladapted and have a different haplotype in EPAS1 SNPs rs12619696, rs13419896, and rs4953354.
Collapse
Affiliation(s)
- Jin Xu
- Research Center for High Altitude Medical Sciences, Qinghai University School of Medicine, Qinghai, China (Drs Xu, Yang, Tang, Ga, Tana, and Ge); Department of Clinical Medicine, Qinghai University School of Medicine, Qinghai, China (Dr Xu)
| | - Ying-Zhong Yang
- Research Center for High Altitude Medical Sciences, Qinghai University School of Medicine, Qinghai, China (Drs Xu, Yang, Tang, Ga, Tana, and Ge)
| | - Feng Tang
- Research Center for High Altitude Medical Sciences, Qinghai University School of Medicine, Qinghai, China (Drs Xu, Yang, Tang, Ga, Tana, and Ge)
| | - Qin Ga
- Research Center for High Altitude Medical Sciences, Qinghai University School of Medicine, Qinghai, China (Drs Xu, Yang, Tang, Ga, Tana, and Ge)
| | - Wuren Tana
- Research Center for High Altitude Medical Sciences, Qinghai University School of Medicine, Qinghai, China (Drs Xu, Yang, Tang, Ga, Tana, and Ge)
| | - Ri-Li Ge
- Research Center for High Altitude Medical Sciences, Qinghai University School of Medicine, Qinghai, China (Drs Xu, Yang, Tang, Ga, Tana, and Ge).
| |
Collapse
|
45
|
Masschelein E, Puype J, Broos S, Van Thienen R, Deldicque L, Lambrechts D, Hespel P, Thomis M. A genetic predisposition score associates with reduced aerobic capacity in response to acute normobaric hypoxia in lowlanders. High Alt Med Biol 2015; 16:34-42. [PMID: 25761120 DOI: 10.1089/ham.2014.1083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Given the high inter-individual variability in the sensitivity to high altitude, we hypothesize the presence of underlying genetic factors. The aim of this study was to construct a genetic predisposition score based on previously identified high-altitude gene variants to explain the inter-individual variation in the reduced maximal O2 uptake (ΔVo2max) in response to acute hypoxia. Ninety-six healthy young male Belgian lowlanders were included. In both normobaric normoxia (Fio2=20.9%) and acute normobaric hypoxia (Fio2=10.7%-12.5%) Vo2max was measured. Forty-one SNPs in 21 genes were genotyped. A stepwise regression analysis was applied to detect a subset of SNPs to be associated with ΔVo2max. This subset of SNPs was included in the genetic predisposition score. A general linear model and regression analysis with age, weight, height, hypoxic protocol group, and Vo2max in normoxia as covariates were used to test the explained variance of the genetic predisposition score. A ROC analysis was performed to discriminate between the low- and high ΔVo2max subgroups. A stepwise regression analysis revealed a subset of SNPs [rs833070 (VEGFA), rs4253778 (PPARA), rs6735530 (EPAS1), rs4341 (ACE), rs1042713 (ADRB2), and rs1042714 (ADRB2)] to be associated with ΔVo2max. The genetic predisposition score was found to be an independent predictive variable with a partial explained variance of 23% (p<0.0001). A ROC analysis showed significant discriminating accuracy (AUC=0.78, 95% confidence interval=0.64-0.91) between the low- and high ΔVo2max subgroups. This six-SNP based genetic predisposition score showed a significantly predictive value for ΔVo2max.
Collapse
Affiliation(s)
- Evi Masschelein
- 1 Exercise Physiology Research Group , KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Espinoza JR, Alvarez G, León-Velarde F, Preciado HFJ, Macarlupu JL, Rivera-Ch M, Rodriguez J, Favier J, Gimenez-Roqueplo AP, Richalet JP. Vascular endothelial growth factor-A is associated with chronic mountain sickness in the Andean population. High Alt Med Biol 2015; 15:146-54. [PMID: 24971768 DOI: 10.1089/ham.2013.1121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A study of chronic mountain sickness (CMS) with a candidate gene--vascular endothelial growth factor A (VEGFA)--was carried out in a Peruvian population living at high altitude in Cerro de Pasco (4380 m). The study was performed by genotyping of 11 tag SNPs encompassing 2.2 kb of region of VEGFA gene in patients with a diagnosis of CMS (n = 131; 49.1 ± 12.7 years old) and unrelated healthy controls (n = 84; 47.2 ± 13.4 years old). The VEGFA tag SNP rs3025033 was found associated with CMS (p < 0.05), individuals with AG genotype have 2.5 more risk of CMS compared to those with GG genotype (p < 0.02; OR, 2.54; 95% CI: 1.10-5.88). Pairwise Fst and Nei's distance indicate genetic differentiation between Cerro de Pasco population and HapMap3 population (Fst > 0.36, p < 0.01), suggesting selection is operating on the VEGF gene. Our results suggest that VEGFA is associated with CMS in long-term residents at high altitude in the Peruvian Andes.
Collapse
Affiliation(s)
- Jose R Espinoza
- 1 Molecular Biotechnology Unit, Laboratories for Research and Development (LID), Universidad Peruana Cayetano Heredia , Peru
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Humans have adapted to the chronic hypoxia of high altitude in several locations, and recent genome-wide studies have indicated a genetic basis. In some populations, genetic signatures have been identified in the hypoxia-inducible factor (HIF) pathway, which orchestrates the transcriptional response to hypoxia. In Tibetans, they have been found in the HIF2A (EPAS1) gene, which encodes for HIF-2α, and the prolyl hydroxylase domain protein 2 (PHD2, also known as EGLN1) gene, which encodes for one of its key regulators, PHD2. High-altitude adaptation may be due to multiple genes that act in concert with one another. Unraveling their mechanism of action can offer new therapeutic approaches toward treating common human diseases characterized by chronic hypoxia.
Collapse
Affiliation(s)
- Abigail W Bigham
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Frank S Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
48
|
Association of EPAS1 Gene rs4953354 Polymorphism with Susceptibility to Lung Adenocarcinoma in Female Japanese Non-Smokers. J Thorac Oncol 2014; 9:1709-13. [DOI: 10.1097/jto.0000000000000309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Abstract
Populations residing for millennia on the high-altitude plateaus of the world started natural experiments that we can evaluate to address questions about the processes of evolution and adaptation. A 2001 assessment in this journal summarized abundant evidence that Tibetan and Andean high-altitude natives had different phenotypes, and the article made a case for the hypothesis that different genetic bases underlie traits in the two populations. Since then, knowledge of the prehistory of high-altitude populations has grown, information about East African highlanders has become available, genomic science has grown exponentially, and the genetic and molecular bases of oxygen homeostasis have been clarified. Those scientific advances have transformed the study of high-altitude populations. The present review aims to summarize recent advances in understanding with an emphasis on the genetic bases of adaptive phenotypes, particularly hemoglobin concentration among Tibetan highlanders. EGLN1 and EPAS1 encode two crucial proteins contributing to oxygen homeostasis, the oxygen sensor PHD2 and the transcription factor subunit HIF-2α, respectively; they show signals of natural selection such as marked allele frequency differentiation between Tibetans and lowland populations. EPAS1 genotypes associated in several studies with the dampened hemoglobin phenotype that is characteristic of Tibetans at high altitude but did not associate with the dampened response among Amhara from Ethiopia or the vigorous elevation of hemoglobin concentration among Andean highlanders. Future work will likely develop understanding of the integrative biology leading from genotype to phenotype to population in all highland areas.
Collapse
Affiliation(s)
- Cynthia M. Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, Ohio 44106–7125
| |
Collapse
|
50
|
Gonzales GF, Chaupis D. Higher androgen bioactivity is associated with excessive erythrocytosis and chronic mountain sickness in Andean Highlanders: a review. Andrologia 2014; 47:729-43. [PMID: 25277225 DOI: 10.1111/and.12359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2014] [Indexed: 01/12/2023] Open
Abstract
Populations living at high altitudes (HA), particularly in the Peruvian Central Andes, are characterised by presenting subjects with erythrocytosis and others with excessive erythrocytosis (EE)(Hb>21 g dl(-1) ). EE is associated with chronic mountain sickness (CMS), or lack of adaptation to HA. Testosterone is an erythropoietic hormone and it may play a role on EE at HA. The objective of the present review was to summarise findings on role of serum T levels on adaptation at HA and genes acting on this process. Men at HA without EE have higher androstenedione levels and low ratio androstenedione/testosterone than men with EE, suggesting low activity of 17beta-hydroxysteroid dehydrogenase (17beta-HSD), and this could be a mechanism of adaptation to HA. Higher conversion of dehydroepiandrosterone to testosterone in men with EE suggests nigher 17beta-HSD activity. Men with CMS at Peruvian Central Andes have two genes SENP1, and ANP32D with higher transcriptional response to hypoxia relative to those without. SUMO-specific protease 1 (SENP1) is an erythropoiesis regulator, which is essential for the stability and activity of hypoxia-inducible factor 1 (HIF-1α) under hypoxia. SENP1 reverses the hormone-augmented SUMOylation of androgen receptor (AR) increasing the transcription activity of AR.In conclusion, increased androgen activity is related with CMS.
Collapse
Affiliation(s)
- G F Gonzales
- Laboratory of Endocrinology and Reproduction, High Altitude Research Institute and Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - D Chaupis
- Laboratory of Endocrinology and Reproduction, High Altitude Research Institute and Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|