1
|
Trunova D, Borowska-Zuchowska N, Mykhailyk S, Xia K, Zhu Y, Sancho R, Rojek-Jelonek M, Garcia S, Wang K, Catalan P, Kovarik A, Hasterok R, Kolano B. Does time matter? Intraspecific diversity of ribosomal RNA genes in lineages of the allopolyploid model grass Brachypodium hybridum with different evolutionary ages. BMC PLANT BIOLOGY 2024; 24:981. [PMID: 39420249 PMCID: PMC11488067 DOI: 10.1186/s12870-024-05658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Polyploidisation often results in genome rearrangements that may involve changes in both the single-copy sequences and the repetitive genome fraction. In this study, we performed a comprehensive comparative analysis of repetitive DNA, with a particular focus on ribosomal DNA (rDNA), in Brachypodium hybridum (2n = 4x = 30, subgenome composition DDSS), an allotetraploid resulting from a natural cross between two diploid species that resemble the modern B. distachyon (2n = 10; DD) and B. stacei (2n = 20; SS). Taking advantage of the recurrent origin of B. hybridum, we investigated two genotypes, Bhyb26 and ABR113, differing markedly in their evolutionary age (1.4 and 0.14 Mya, respectively) and which resulted from opposite cross directions. To identify the origin of rDNA loci we employed cytogenetic and molecular methods (FISH, gCAPS and Southern hybridisation), phylogenetic and genomic approaches. RESULTS Unlike the general maintenance of doubled gene dosage in B. hybridum, the rRNA genes showed a remarkable tendency towards diploidisation at both locus and unit levels. While the partial elimination of 35S rDNA units occurred in the younger ABR113 lineage, unidirectional elimination of the entire locus was observed in the older Bhyb26 lineage. Additionally, a novel 5S rDNA family was amplified in Bhyb26 replacing the parental units. The 35S and 5S rDNA units were preferentially eliminated from the S- and D-subgenome, respectively. Thus, in the more ancient B. hybridum lineage, Bhyb26, 5S and 35S rRNA genes are likely expressed from different subgenomes, highlighting the complexity of polyploid regulatory networks. CONCLUSION Comparative analyses between two B. hybridum lineages of distinct evolutionary ages revealed that although the recent lineage ABR113 exhibited an additive pattern of rDNA loci distribution, the ancient lineage Bhyb26 demonstrated a pronounced tendency toward diploidisation manifested by the reduction in the number of both 35S and 5S loci. In conclusion, the age of the allopolyploid appears to be a decisive factor in rDNA turnover in B. hybridum.
Collapse
Affiliation(s)
- Dana Trunova
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Natalia Borowska-Zuchowska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Serhii Mykhailyk
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Kai Xia
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yuanbin Zhu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Ruben Sancho
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, 22071, Spain
| | - Magdalena Rojek-Jelonek
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Sònia Garcia
- Institut Botànic de Barcelona IBB (CSIC-CMCNB), Barcelona, Catalonia, 08038, Spain
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Pilar Catalan
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, 22071, Spain
| | - Ales Kovarik
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Brno, CZ- 61200, Czech Republic
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Bozena Kolano
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland.
| |
Collapse
|
2
|
Mu W, Li K, Yang Y, Breiman A, Yang J, Wu Y, Zhu M, Wang S, Catalan P, Nevo E, Liu J. Subgenomic Stability of Progenitor Genomes During Repeated Allotetraploid Origins of the Same Grass Brachypodium hybridum. Mol Biol Evol 2023; 40:msad259. [PMID: 38000891 PMCID: PMC10708906 DOI: 10.1093/molbev/msad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Both homeologous exchanges and homeologous expression bias are generally found in most allopolyploid species. Whether homeologous exchanges and homeologous expression bias differ between repeated allopolyploid speciation events from the same progenitor species remains unknown. Here, we detected a third independent and recent allotetraploid origin for the model grass Brachypodium hybridum. Our homeologous exchange with replacement analyses indicated the absence of significant homeologous exchanges in any of the three types of wild allotetraploids, supporting the integrity of their progenitor subgenomes and the immediate creation of the amphidiploids. Further homeologous expression bias tests did not uncover significant subgenomic dominance in different tissues and conditions of the allotetraploids. This suggests a balanced expression of homeologs under similar or dissimilar ecological conditions in their natural habitats. We observed that the density of transposons around genes was not associated with the initial establishment of subgenome dominance; rather, this feature is inherited from the progenitor genome. We found that drought response genes were highly induced in the two subgenomes, likely contributing to the local adaptation of this species to arid habitats in the third allotetraploid event. These findings provide evidence for the consistency of subgenomic stability of parental genomes across multiple allopolyploidization events that led to the same species at different periods. Our study emphasizes the importance of selecting closely related progenitor species genomes to accurately assess homeologous exchange with replacement in allopolyploids, thereby avoiding the detection of false homeologous exchanges when using less related progenitor species genomes.
Collapse
Affiliation(s)
- Wenjie Mu
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kexin Li
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yongzhi Yang
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Adina Breiman
- Department of Evolutionary and Environmental Biology, University of Tel-Aviv, Tel-Aviv 6997801, Israel
| | - Jiao Yang
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ying Wu
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Mingjia Zhu
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Shuai Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pilar Catalan
- Escuela Politecnica Superior de Huesca, Universidad de Zaragoza, Huesca 22071, Spain
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Jianquan Liu
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Sancho R, Inda LA, Díaz-Pérez A, Des Marais DL, Gordon S, Vogel JP, Lusinska J, Hasterok R, Contreras-Moreira B, Catalán P. Tracking the ancestry of known and 'ghost' homeologous subgenomes in model grass Brachypodium polyploids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1535-1558. [PMID: 34951515 DOI: 10.1111/tpj.15650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Rubén Sancho
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Luis A Inda
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Zaragoza, Spain
| | - Antonio Díaz-Pérez
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
- Instituto de Genética, Facultad de Agronomía, Universidad Central de Venezuela, Caracas, Venezuela
| | | | - Sean Gordon
- DOE Joint Genome Institute, Berkeley, California, USA
| | - John P Vogel
- DOE Joint Genome Institute, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Joanna Lusinska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Bruno Contreras-Moreira
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
- Department of Genetics and Plant Breeding, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Pilar Catalán
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
- Tomsk State University, Tomsk, Russia
| |
Collapse
|
4
|
Stritt C, Gimmi EL, Wyler M, Bakali AH, Skalska A, Hasterok R, Mur LAJ, Pecchioni N, Roulin AC. Migration without interbreeding: Evolutionary history of a highly selfing Mediterranean grass inferred from whole genomes. Mol Ecol 2022; 31:70-85. [PMID: 34601787 PMCID: PMC9298040 DOI: 10.1111/mec.16207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/07/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Abstract
Wild plant populations show extensive genetic subdivision and are far from the ideal of panmixia which permeates population genetic theory. Understanding the spatial and temporal scale of population structure is therefore fundamental for empirical population genetics - and of interest in itself, as it yields insights into the history and biology of a species. In this study we extend the genomic resources for the wild Mediterranean grass Brachypodium distachyon to investigate the scale of population structure and its underlying history at whole-genome resolution. A total of 86 accessions were sampled at local and regional scales in Italy and France, which closes a conspicuous gap in the collection for this model organism. The analysis of 196 accessions, spanning the Mediterranean from Spain to Iraq, suggests that the interplay of high selfing and seed dispersal rates has shaped genetic structure in B. distachyon. At the continental scale, the evolution in B. distachyon is characterized by the independent expansion of three lineages during the Upper Pleistocene. Today, these lineages may occur on the same meadow yet do not interbreed. At the regional scale, dispersal and selfing interact and maintain high genotypic diversity, thus challenging the textbook notion that selfing in finite populations implies reduced diversity. Our study extends the population genomic resources for B. distachyon and suggests that an important use of this wild plant model is to investigate how selfing and dispersal, two processes typically studied separately, interact in colonizing plant species.
Collapse
Affiliation(s)
- Christoph Stritt
- Institute for Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Elena L Gimmi
- Institute for Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Michele Wyler
- Institute for Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Abdelmonaim H Bakali
- National Institute of Agronomy, Regional Center of Errachidia, Errachidia, Morocco
| | - Aleksandra Skalska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Robert Hasterok
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Wales, UK
| | - Nicola Pecchioni
- Research Centre for Cereal and Industrial Crops, CREA - Council for Agricultural Research and Economics, Foggia, Italy
| | - Anne C Roulin
- Institute for Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Pickett B, Carey CJ, Arogyaswamy K, Botthoff J, Maltz M, Catalán P, Aronson EL. Enriched root bacterial microbiome in invaded vs native ranges of the model grass allotetraploid Brachypodium hybridum. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractInvasive species can shift the composition of key soil microbial groups, thus creating novel soil microbial communities. To better understand the biological drivers of invasion, we studied plant-microbial interactions in species of the Brachypodium distachyon complex, a model system for functional genomic studies of temperate grasses and bioenergy crops. While Brachypodium hybridum invasion in California is in an incipient stage, threatening natural and agricultural systems, its diploid progenitor species B. distachyon is not invasive in California. We investigated the root, soil, and rhizosphere bacterial composition of Brachypodium hybridum in both its native and invaded range, and of B. distachyon in the native range. We used high-throughput, amplicon sequencing to evaluate if the bacteria associated with these plants differ, and whether biotic controls may be driving B. hybridum invasion. Bacterial community composition of B. hybridum differed based on provenance (native or invaded range) for root, rhizosphere, and bulk soils, as did the abundance of dominant bacterial taxa. Bacteroidetes, Cyanobacteria and Bacillus spp. (species) were significantly more abundant in B. hybridum roots from the invaded range, whereas Proteobacteria, Firmicutes, Erwinia and Pseudomonas were more abundant in the native range roots. Brachypodium hybridum forms novel biotic interactions with a diverse suite of rhizosphere microbes from the invaded range, which may not exert a similar influence within its native range, ostensibly contributing to B. hybridum’s invasiveness. These associated plant microbiomes could inform future management approaches for B. hybridum in its invaded range and could be key to understanding, predicting, and preventing future plant invasions.
Collapse
|
6
|
Kellogg EA, Abbott JR, Bawa KS, Gandhi KN, Kailash BR, Ganeshaiah K, Shrestha UB, Raven P. Checklist of the grasses of India. PHYTOKEYS 2020; 163:1-560. [PMID: 37397271 PMCID: PMC10311516 DOI: 10.3897/phytokeys.163.38393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 01/22/2020] [Indexed: 07/04/2023]
Abstract
A checklist of the grasses of India is presented, as compiled from survey of all available literature. Of the twelve subfamilies of grasses, ten are represented in India. Most subfamilies have been examined by taxonomic experts for up-to-date nomenclature. The list includes 1506 species plus infraspecific taxa and presents information on types, synonyms, distribution within India, and habit. Twelve new combinations are made, viz. Arctopoa tibetica (Munro ex Stapf) Prob. var. aristulata (Stapf) E.A. Kellogg, comb. nov.; Chimonocalamus nagalandianus (H.B. Naithani) L.G. Clark, comb. nov.; Chionachne digitata (L.f.) E.A. Kellogg, comb. nov.; Chionachne wallichiana (Nees) E.A. Kellogg, comb. nov.; Dinebra polystachyos (R. Br.) E.A. Kellogg, comb. nov.; Moorochloa eruciformis (Sm.) Veldkamp var. divaricata (Basappa & Muniv.) E.A. Kellogg, comb. nov.; Phyllostachys nigra (Lodd. ex Lindl.) Munro var. puberula (Miq.) Kailash, comb. & stat. nov.; Tzveleviochloa schmidii (Hook. f.) E.A. Kellogg, comb. nov.; Urochloa lata (Schumach.) C.E. Hubb. var. pubescens (C.E. Hubb.) E.A. Kellogg, comb. nov.; Urochloa ramosa (L.) T.Q. Nguyen var. pubescens (Basappa & Muniy.) E.A. Kellogg, comb. nov.; Urochloa semiundulata (Hochst. ex A. Rich.) Ashalatha & V.J. Nair var. intermedia (Basappa & Muniy.) E.A. Kellogg, comb. nov.
Collapse
Affiliation(s)
| | - J. Richard Abbott
- Missouri Botanical GardenSt. LouisUnited States of America
- Missouri Botanical GardenSt. Louis, MOUnited States of America
| | - Kamaljit S. Bawa
- University of Massachusetts, BostonBostonUnited States of America
| | | | - B. R. Kailash
- 5Ashoka Trust for Research in Ecology and the Environment (ATREE)BangaloreIndia
| | | | | | - Peter Raven
- Missouri Botanical GardenSt. LouisUnited States of America
| |
Collapse
|
7
|
Sijimol K, Dev SA, Sreekumar VB. DNA barcoding supports existence of morphospecies complex in endemic bamboo genus Ochlandra Thwaites of the Western Ghats, India. J Genet 2020. [DOI: 10.1007/s12041-020-01227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Shiposha V, Marques I, López-Alvarez D, Manzaneda AJ, Hernandez P, Olonova M, Catalán P. Multiple founder events explain the genetic diversity and structure of the model allopolyploid grass Brachypodium hybridum in the Iberian Peninsula hotspot. ANNALS OF BOTANY 2020; 125:625-638. [PMID: 31630169 PMCID: PMC7442330 DOI: 10.1093/aob/mcz169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS It is accepted that contemporary allopolyploid species have originated recurrently, but very few cases have been documented using multiple natural formations of the same species. To extend our knowledge, we have investigated the multiple origins, genetic variation and structure of the allotetraploid grass Brachypodium hybridum with respect to its progenitor diploid species B. distachyon (D genome) and B. stacei (S genome). For this, our primary focus is the Iberian Peninsula, an evolutionary hotspot for the genus Brachypodium. METHODS We analysed 342 B. hybridum individuals from 36 populations using ten nuclear SSR loci and two plastid loci. The B. hybridum genetic profiles were compared with those previously reported for B. stacei and B. distachyon. In addition, phylogenetic analysis of the plastid data was performed for a reduced subset of individuals. KEY RESULTS The nuclear simple sequence repeat (SSR) genetic analysis detected medium to high genetic diversity, with a strong south-to-north genetic structure cline, and a high selfing rate in B. hybridum. Comparative genetic analysis showed a close relatedness of current B. hybridum D allelic profiles with those of B. distachyon, but a lack of similarity with those of B. stacei, suggesting another B. stacei source for the B. hybridum S alleles. Plastid analysis detected three different bidirectional allopolyploidization events: two involved distinct B. distachyon-like ancestors and one involved a B. stacei-like ancestor. The south-eastern Iberian Peninsula B. hybridum populations were more genetically diverse and could have originated from at least two hybridization events whereas north-eastern/north-western Iberian Peninsula B. hybridum populations were less diverse and may have derived from at least one hybridization event. CONCLUSIONS The genetic and evolutionary evidence supports the plausible in situ origin of the south-eastern and northern Iberian Peninsula B. hybridum allopolyploids from their respective local B. distachyon and unknown B. stacei ancestors. The untapped multiple origins and genetic variation detected in these B. hybridum populations opens the way to future evolutionary analysis of allopolyploid formation and genomic dominance and expression in the B. hybridum-B. distachyon-B. stacei grass model complex.
Collapse
Affiliation(s)
- Valeriia Shiposha
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte km 1, 22071 Huesca, Spain
- Department of Botany, Institute of Biology, Tomsk State University, Lenin Av. 36, Tomsk 634050, Russia
| | - Isabel Marques
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte km 1, 22071 Huesca, Spain
- LEAF, School of Agriculture, Instituto Superior de Agronomia and cE3c-Centre for Ecology Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Diana López-Alvarez
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte km 1, 22071 Huesca, Spain
| | - Antonio J Manzaneda
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Paraje Las Lagunillas s/n, 23071 Jaén, Spain
| | - Pilar Hernandez
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo s/n, 14004 Córdoba, Spainand
| | - Marina Olonova
- Department of Botany, Institute of Biology, Tomsk State University, Lenin Av. 36, Tomsk 634050, Russia
| | - Pilar Catalán
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte km 1, 22071 Huesca, Spain
- Department of Botany, Institute of Biology, Tomsk State University, Lenin Av. 36, Tomsk 634050, Russia
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza 50059, Spain
| |
Collapse
|
9
|
Comparatively Barcoded Chromosomes of Brachypodium Perennials Tell the Story of Their Karyotype Structure and Evolution. Int J Mol Sci 2019; 20:ijms20225557. [PMID: 31703351 PMCID: PMC6888173 DOI: 10.3390/ijms20225557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 11/17/2022] Open
Abstract
The Brachypodium genus is an informative model system for studying grass karyotype organization. Previous studies of a limited number of species and reference chromosomes have not provided a comprehensive picture of the enigmatic phylogenetic relationships in the genus. Comparative chromosome barcoding, which enables the reconstruction of the evolutionary history of individual chromosomes and their segments, allowed us to infer the relationships between putative ancestral karyotypes of extinct species and extant karyotypes of current species. We used over 80 chromosome-specific BAC (bacterial artificial chromosome) clones derived from five reference chromosomes of B. distachyon as probes against the karyotypes of twelve accessions representing five diploid and polyploid Brachypodium perennials. The results showed that descending dysploidy is common in Brachypodium and occurs primarily via nested chromosome fusions. Brachypodiumdistachyon was rejected as a putative ancestor for allotetraploid perennials and B. stacei for B. mexicanum. We propose two alternative models of perennial polyploid evolution involving either the incorporation of a putative x = 5 ancestral karyotype with different descending dysploidy patterns compared to B. distachyon chromosomes or hybridization of two x = 9 ancestors followed by genome doubling and descending dysploidy. Details of the karyotype structure and evolution in several Brachypodium perennials are revealed for the first time.
Collapse
|
10
|
Neji M, Kouas S, Gandour M, Aydi S, Abdelly C. Genetic variability of morpho-physiological response to phosphorus deficiency in Tunisian populations of Brachypodium hybridum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:246-256. [PMID: 31525602 DOI: 10.1016/j.plaphy.2019.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Brachypodium hybridum (Poaceae) is widely distributed in the dry environments in Mediterranean basin, due to its high tolerance to drought. Investigating the natural variation of B. hybridum in response to environmental stresses is crucial for unraveling the genetic network of its stress tolerance. 79 B. hybridum lines from eight Tunisian populations were screened for their performance to low P availability using morpho-physiological parameters. ANOVA showed that treatment and population*treatment factors were the most contributors in the explained variance for the majority of parameters. A considerable population differentiation was detected in control and under P level (Qst = 0.77 vs Qst = 0.62). This suggests that B. hybridum exhibit an adaptive differential response to P deficiency related environmental conditions. Results revealed that Raouad and Sejnen lines were the most tolerant to P deficiency followed by Haouaria and Enfidha lines. The remaining populations were classified as sensitive. This pattern suggests that coastal populations were more tolerant to P deficiency than the inland ones. A slightly higher heritability was evidenced under low P level for most of traits, indicating that the direct selection under P deficiency is more reliable than an indirect one under optimal P supply.
Collapse
Affiliation(s)
- Mohamed Neji
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, BP 901 Hammam Lif 2050, Tunisia; Department of Life Sciences, Faculty of Sciences of Gabès, University of Gabès, Cité Erriadh 6072 Zrig, Gabès, Tunisia; Unit of Evolutionary Biology & Ecology, Faculté des Sciences, Université Libre de Bruxelles, Av. F.D. Roosevelt, 50, CP 160/12, B-1050, Brussels, Belgium.
| | - Saber Kouas
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, BP 901 Hammam Lif 2050, Tunisia; Department of Life Sciences, Faculty of Sciences of Gabès, University of Gabès, Cité Erriadh 6072 Zrig, Gabès, Tunisia; Plant Physiology and Functional Genomics Research Unit, Institute of Biotechnology, University of Sfax, BP 1175, 3038 Sfax, Tunisia
| | - Mhemmed Gandour
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, BP 901 Hammam Lif 2050, Tunisia; Faculty of Sciences and Technology of Sidi Bouzid, 9100, Sidi Bouzid, Tunisia
| | - Samir Aydi
- Department of Life Sciences, Faculty of Sciences of Gabès, University of Gabès, Cité Erriadh 6072 Zrig, Gabès, Tunisia
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, BP 901 Hammam Lif 2050, Tunisia
| |
Collapse
|
11
|
El-Keblawy A, Elgabra M, Mosa KA, Fakhry A, Soliman S. Roles of Hardened Husks and Membranes Surrounding Brachypodium hybridum Grains on Germination and Seedling Growth. PLANTS 2019; 8:plants8090322. [PMID: 31484325 PMCID: PMC6784022 DOI: 10.3390/plants8090322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/31/2019] [Accepted: 09/01/2019] [Indexed: 01/05/2023]
Abstract
Several studies have assessed the function and significance of the presence of dead, hardened husks on germination and seedling growth in several grass species and reached to inconsistent results. Here, we assess the roles of husks (dead lemma and palea) and an inner membrane surrounding the grains on germination behaviour and seedling growth of Brachypodium hybridum, one of three species of the genetic model B. distachyon complex, in an arid mountain of Arabia. The interactive effects between temperature and the incubation light were assessed on germination of husked and dehusked-demembraned grains. Germination and seedling growth were assessed for different combinations of grain treatments (soaked and non-soaked husked, dehusked-membraned and dehusked-demembraned). Dehusked-demembraned grains were also germinated in different dormancy regulating compounds (DRCs) and light qualities (light, dark and different red: far red [R: FR] ratios). The results indicated an insignificant difference between husked and dehusked-membraned grains on final germination and the germination rate index (GRI), with the former producing significantly bigger seedlings. Removal of the inner-membrane resulted in a significant reduction in all traits. Soaking grains in water resulted in significant enhancements in germination and seedling growth of only husked grains. Husked-membraned and demembraned grains germinated more significantly and faster at lower rather than higher temperatures. None of different concentrations of several DRCs succeeded in enhancing final germination of dehusked-demembraned grains. Red-rich light significantly enhanced germination of dehusked-membraned grains in comparison to other light qualities. It could be concluded that the role of husks is to mainly enhance seedling growth, while the major role of the membrane is to increase final germination. The ability of red-rich light in enhancing the germination of dehusked-membraned but not dehusked-demembraned grains suggest a role for the inner membrane in regulating dormancy through differential filtering of light properties.
Collapse
Affiliation(s)
- Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah PO Box 27272, UAE.
| | - Masarra Elgabra
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah PO Box 27272, UAE.
| | - Kareem A Mosa
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah PO Box 27272, UAE.
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt.
| | - Amal Fakhry
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt.
| | - Sameh Soliman
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah PO Box 27272, UAE.
| |
Collapse
|
12
|
Brew-Appiah RAT, Peracchi LM, Sanguinet KA. Never the Two Shall Mix: Robust Indel Markers to Ensure the Fidelity of Two Pivotal and Closely-Related Accessions of Brachypodium distachyon. PLANTS 2019; 8:plants8060153. [PMID: 31174296 PMCID: PMC6630600 DOI: 10.3390/plants8060153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 11/25/2022]
Abstract
Brachypodium distachyon is an established model for monocotyledonous plants. Numerous markers intended for gene discovery and population genetics have been designed. However to date, very few indel markers with larger and easily scored length polymorphism differences, that distinguish between the two morphologically similar and highly utilized B. distachyon accessions, Bd21, the reference genome accession, and Bd21-3, the transformation-optimal accession, are publically available. In this study, 22 indel markers were designed and utilized to produce length polymorphism differences of 150 bp or more, for easy discrimination between Bd21 and Bd21-3. When tested on four other B. distachyon accessions, one case of multiallelism was observed. It was also shown that the markers could be used to determine homozygosity and heterozygosity at specific loci in a Bd21 x Bd3-1 F2 population. The work done in this study allows researchers to maintain the fidelity of Bd21 and Bd21-3 stocks for both transgenic and nontransgenic studies. It also provides markers that can be utilized in conjunction with others already available for further research on population genetics, gene discovery and gene characterization, all of which are necessary for the relevance of B. distachyon as a model species.
Collapse
Affiliation(s)
- Rhoda A T Brew-Appiah
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, USA.
| | - Luigi M Peracchi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, USA.
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, USA.
| |
Collapse
|
13
|
Wilson PB, Streich JC, Murray KD, Eichten SR, Cheng R, Aitken NC, Spokas K, Warthmann N, Gordon SP, Vogel JP, Borevitz JO. Global Diversity of the Brachypodium Species Complex as a Resource for Genome-Wide Association Studies Demonstrated for Agronomic Traits in Response to Climate. Genetics 2019; 211:317-331. [PMID: 30446522 PMCID: PMC6325704 DOI: 10.1534/genetics.118.301589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/08/2018] [Indexed: 01/29/2023] Open
Abstract
The development of model systems requires a detailed assessment of standing genetic variation across natural populations. The Brachypodium species complex has been promoted as a plant model for grass genomics with translation to small grain and biomass crops. To capture the genetic diversity within this species complex, thousands of Brachypodium accessions from around the globe were collected and genotyped by sequencing. Overall, 1897 samples were classified into two diploid or allopolyploid species, and then further grouped into distinct inbred genotypes. A core set of diverse B. distachyon diploid lines was selected for whole genome sequencing and high resolution phenotyping. Genome-wide association studies across simulated seasonal environments was used to identify candidate genes and pathways tied to key life history and agronomic traits under current and future climatic conditions. A total of 8, 22, and 47 QTL were identified for flowering time, early vigor, and energy traits, respectively. The results highlight the genomic structure of the Brachypodium species complex, and the diploid lines provided a resource that allows complex trait dissection within this grass model species.
Collapse
Affiliation(s)
- Pip B Wilson
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| | - Jared C Streich
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| | - Kevin D Murray
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| | - Steve R Eichten
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| | - Riyan Cheng
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Nicola C Aitken
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
- Ecogenomics and Bioinformatics Lab, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| | - Kurt Spokas
- Soil and Water Management, Agricultural Research Service, United States Department of Agricutlture (USDA), St. Paul, Minnesota 55108
| | - Norman Warthmann
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| | - Sean P Gordon
- Department of Energy, Joint Genome Institute, Walnut Creek, California 94598
| | - John P Vogel
- Department of Energy, Joint Genome Institute, Walnut Creek, California 94598
| | - Justin O Borevitz
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| |
Collapse
|
14
|
Takahagi K, Inoue K, Shimizu M, Uehara-Yamaguchi Y, Onda Y, Mochida K. Homoeolog-specific activation of genes for heat acclimation in the allopolyploid grass Brachypodium hybridum. Gigascience 2018; 7:4924998. [PMID: 29697823 PMCID: PMC5915950 DOI: 10.1093/gigascience/giy020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/01/2018] [Indexed: 11/21/2022] Open
Abstract
Background Allopolyploid plants often show wider environmental tolerances than their ancestors; this is expected to be due to the merger of multiple distinct genomes with a fixed heterozygosity. The complex homoeologous gene expression could have been evolutionarily advantageous for the adaptation of allopolyploid plants. Despite multiple previous studies reporting homoeolog-specific gene expression in allopolyploid species, there are no clear examples of homoeolog-specific function in acclimation to a long-term stress condition. Results We found that the allopolyploid grass Brachypodium hybridum and its ancestor Brachypodium stacei show long-term heat stress tolerance, unlike its other ancestor, Brachypodium distachyon. To understand the physiological traits of B. hybridum, we compared the transcriptome of the 3 Brachypodium species grown under normal and heat stress conditions. We found that the expression patterns of approximately 26% and approximately 38% of the homoeolog groups in B. hybridum changed toward nonadditive expression and nonancestral expression, respectively, under normal condition. Moreover, we found that B. distachyon showed similar expression patterns between normal and heat stress conditions, whereas B. hybridum and B. stacei significantly altered their transcriptome in response to heat after 3 days of stress exposure, and homoeologs that were inherited from B. stacei may have contributed to the transcriptional stress response to heat in B. hybridum. After 15 days of heat exposure, B. hybridum and B. stacei maintained transcriptional states similar to those under normal conditions. These results suggest that an earlier response to heat that was specific to homoeologs originating from B. stacei contributed to cellular homeostasis under long-term heat stress in B. hybridum. Conclusions Our results provide insights into different regulatory events of the homoeo-transcriptome that are associated with stress acclimation in allopolyploid plants.
Collapse
Affiliation(s)
- Kotaro Takahagi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan.,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.,Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Komaki Inoue
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Minami Shimizu
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.,Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yukiko Uehara-Yamaguchi
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshihiko Onda
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.,Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Keiichi Mochida
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan.,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.,Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
15
|
Omidvar V, Dugyala S, Li F, Rottschaefer SM, Miller ME, Ayliffe M, Moscou MJ, Kianian SF, Figueroa M. Detection of Race-Specific Resistance Against Puccinia coronata f. sp. avenae in Brachypodium Species. PHYTOPATHOLOGY 2018; 108:1443-1454. [PMID: 29923800 DOI: 10.1094/phyto-03-18-0084-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oat crown rust caused by Puccinia coronata f. sp. avenae is the most destructive foliar disease of cultivated oat. Characterization of genetic factors controlling resistance responses to Puccinia coronata f. sp. avenae in nonhost species could provide new resources for developing disease protection strategies in oat. We examined symptom development and fungal colonization levels of a collection of Brachypodium distachyon and B. hybridum accessions infected with three North American P. coronata f. sp. avenae isolates. Our results demonstrated that colonization phenotypes are dependent on both host and pathogen genotypes, indicating a role for race-specific responses in these interactions. These responses were independent of the accumulation of reactive oxygen species. Expression analysis of several defense-related genes suggested that salicylic acid and ethylene-mediated signaling but not jasmonic acid are components of resistance reaction to P. coronata f. sp. avenae. Our findings provide the basis to conduct a genetic inheritance study to examine whether effector-triggered immunity contributes to nonhost resistance to P. coronata f. sp. avenae in Brachypodium spp.
Collapse
Affiliation(s)
- Vahid Omidvar
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Sheshanka Dugyala
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Feng Li
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Susan M Rottschaefer
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Marisa E Miller
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Mick Ayliffe
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Matthew J Moscou
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Shahryar F Kianian
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Melania Figueroa
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| |
Collapse
|
16
|
Lusinska J, Majka J, Betekhtin A, Susek K, Wolny E, Hasterok R. Chromosome identification and reconstruction of evolutionary rearrangements in Brachypodium distachyon, B. stacei and B. hybridum. ANNALS OF BOTANY 2018; 122:445-459. [PMID: 29893795 PMCID: PMC6110338 DOI: 10.1093/aob/mcy086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/12/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS The Brachypodium genus represents a useful model system to study grass genome organization. Palaeogenomic analyses (e.g. Murat F, Armero A, Pont C, Klopp C, Salse J. 2017. Reconstructing the genome of the most recent common ancestor of flowering plants. Nature Genetics49: 490-496) have identified polyploidization and dysploidy as the prime mechanisms driving the diversity of plant karyotypes and nested chromosome fusions (NCFs) crucial for shaping grass chromosomes. This study compares the karyotype structure and evolution in B. distachyon (genome Bd), B. stacei (genome Bs) and in their putative allotetraploid B. hybridum (genomes BdBs). METHODS Brachypodium chromosomes were measured and identified using multicolour fluorescence in situ hybridization (mcFISH). For higher resolution, comparative chromosome barcoding was developed using sets of low-repeat, physically mapped B. distachyon-derived bacterial artificial chromosome (BAC) clones. KEY RESULTS All species had rather small chromosomes, and essentially all in the Bs genome were morphometrically indistinguishable. Seven BACs combined with two rDNA-based probes provided unambiguous and reproducible chromosome discrimination. Comparative chromosome barcoding revealed NCFs that contributed to the reduction in the x = 12 chromosome number that has been suggested for the intermediate ancestral grass karyotype. Chromosome Bd3 derives from two NCFs of three ancestral chromosomes (Os2, Os8, Os10). Chromosome Bs6 shows an ancient Os8/Os10 NCF, whilst Bs4 represents Os2 only. Chromosome Bd4 originated from a descending dysploidy that involves two NCFs of Os12, Os9 and Os11. The specific distribution of BACs along Bs9 and Bs5, in both B. stacei and B. hybridum, suggests a Bs genome-specific Robertsonian rearrangement. CONCLUSIONS mcFISH-based karyotyping identifies all chromosomes in Brachypodium annuals. Comparative chromosome barcoding reveals rearrangements responsible for the diverse organization of Bd and Bs genomes and provides new data regarding karyotype evolution since the split of the two diploids. The fact that no chromosome rearrangements were observed in B. hybridum compared with the karyotypes of its phylogenetic ancestors suggests prolonged genome stasis after the formation of the allotetraploid.
Collapse
Affiliation(s)
- Joanna Lusinska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Joanna Majka
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Alexander Betekhtin
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Karolina Susek
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Elzbieta Wolny
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
- For correspondence. E-mail
| |
Collapse
|
17
|
Scholthof KBG, Irigoyen S, Catalan P, Mandadi KK. Brachypodium: A Monocot Grass Model Genus for Plant Biology. THE PLANT CELL 2018; 30:1673-1694. [PMID: 29997238 PMCID: PMC6139682 DOI: 10.1105/tpc.18.00083] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/25/2018] [Accepted: 07/11/2018] [Indexed: 05/21/2023]
Abstract
The genus Brachypodium represents a model system that is advancing our knowledge of the biology of grasses, including small grains, in the postgenomics era. The most widely used species, Brachypodium distachyon, is a C3 plant that is distributed worldwide. B. distachyon has a small genome, short life cycle, and small stature and is amenable to genetic transformation. Due to the intensive and thoughtful development of this grass as a model organism, it is well-suited for laboratory and field experimentation. The intent of this review is to introduce this model system genus and describe some key outcomes of nearly a decade of research since the first draft genome sequence of the flagship species, B. distachyon, was completed. We discuss characteristics and features of B. distachyon and its congeners that make the genus a valuable model system for studies in ecology, evolution, genetics, and genomics in the grasses, review current hot topics in Brachypodium research, and highlight the potential for future analysis using this system in the coming years.
Collapse
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Weslaco, Texas 78596
| | - Pilar Catalan
- Universidad de Zaragoza-Escuela Politécnica Superior de Huesca, 22071 Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza E-50059, Spain
- Institute of Biology, Tomsk State University, Tomsk 634050, Russia
| | - Kranthi K Mandadi
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
- Texas A&M AgriLife Research and Extension Center, Weslaco, Texas 78596
| |
Collapse
|
18
|
Martínez LM, Fernández-Ocaña A, Rey PJ, Salido T, Amil-Ruiz F, Manzaneda AJ. Variation in functional responses to water stress and differentiation between natural allopolyploid populations in the Brachypodium distachyon species complex. ANNALS OF BOTANY 2018; 121:1369-1382. [PMID: 29893879 PMCID: PMC6007385 DOI: 10.1093/aob/mcy037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/26/2018] [Indexed: 05/21/2023]
Abstract
Background and Aims Some polyploid species show enhanced physiological tolerance to drought compared with their progenitors. However, very few studies have examined the consistency of physiological drought response between genetically differentiated natural polyploid populations, which is key to evaluation of the importance of adaptive evolution after polyploidization in those systems where drought exerts a selective pressure. Methods A comparative functional approach was used to investigate differentiation of drought-tolerance-related traits in the Brachypodium species complex, a model system for grass polyploid adaptive speciation and functional genomics that comprises three closely related annual species: the two diploid parents, B. distachyon and B. stacei, and the allotetraploid derived from them, B. hybridum. Differentiation of drought-tolerance-related traits between ten genetically distinct B. hybridum populations and its ecological correlates was further analysed. Key Results The functional drought response is overall well differentiated between Brachypodium species. Brachypodium hybridum allotetraploids showed a transgressive expression pattern in leaf phytohormone content in response to drought. In contrast, other B. hybridum physiological traits correlated to B. stacei ones. Particularly, proline and water content were the traits that best discriminated these species from B. distachyon under drought. Conclusions After polyploid formation and/or colonization, B. hybridum populations have adaptively diverged physiologically and genetically in response to variations in aridity.
Collapse
Affiliation(s)
- Luisa M Martínez
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain
| | - Ana Fernández-Ocaña
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain
| | - Pedro J Rey
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain
| | - Teresa Salido
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain
| | - Francisco Amil-Ruiz
- Bioinformatics Unit, Central Service for Research Support (SCAI), University of Córdoba, Córdoba, Spain
| | - Antonio J Manzaneda
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
19
|
Sancho R, Cantalapiedra CP, López-Alvarez D, Gordon SP, Vogel JP, Catalán P, Contreras-Moreira B. Comparative plastome genomics and phylogenomics of Brachypodium: flowering time signatures, introgression and recombination in recently diverged ecotypes. THE NEW PHYTOLOGIST 2018; 218:1631-1644. [PMID: 29206296 DOI: 10.1111/nph.14926] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/03/2017] [Indexed: 05/24/2023]
Abstract
Few pan-genomic studies have been conducted in plants, and none of them have focused on the intraspecific diversity and evolution of their plastid genomes. We address this issue in Brachypodium distachyon and its close relatives B. stacei and B. hybridum, for which a large genomic data set has been compiled. We analyze inter- and intraspecific plastid comparative genomics and phylogenomic relationships within a family-wide framework. Major indel differences were detected between Brachypodium plastomes. Within B. distachyon, we detected two main lineages, a mostly Extremely Delayed Flowering (EDF+) clade and a mostly Spanish (S+) - Turkish (T+) clade, plus nine chloroplast capture and two plastid DNA (ptDNA) introgression and micro-recombination events. Early Oligocene (30.9 million yr ago (Ma)) and Late Miocene (10.1 Ma) divergence times were inferred for the respective stem and crown nodes of Brachypodium and a very recent Mid-Pleistocene (0.9 Ma) time for the B. distachyon split. Flowering time variation is a main factor driving rapid intraspecific divergence in B. distachyon, although it is counterbalanced by repeated introgression between previously isolated lineages. Swapping of plastomes between the three different genomic groups, EDF+, T+, S+, probably resulted from random backcrossing followed by stabilization through selection pressure.
Collapse
Affiliation(s)
- Rubén Sancho
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Saragossa, Spain
| | - Carlos P Cantalapiedra
- Department of Genetics and Plant Breeding, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Diana López-Alvarez
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
| | - Sean P Gordon
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - John P Vogel
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Pilar Catalán
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Saragossa, Spain
| | - Bruno Contreras-Moreira
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Saragossa, Spain
- Department of Genetics and Plant Breeding, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| |
Collapse
|
20
|
Li Y, Zuo S, Zhang Z, Li Z, Han J, Chu Z, Hasterok R, Wang K. Centromeric DNA characterization in the model grass Brachypodium distachyon provides insights on the evolution of the genus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:1088-1101. [PMID: 29381236 DOI: 10.1111/tpj.13832] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 05/21/2023]
Abstract
Brachypodium distachyon is a well-established model monocot plant, and its small and compact genome has been used as an accurate reference for the much larger and often polyploid genomes of cereals such as Avena sativa (oats), Hordeum vulgare (barley) and Triticum aestivum (wheat). Centromeres are indispensable functional units of chromosomes and they play a core role in genome polyploidization events during evolution. As the Brachypodium genus contains about 20 species that differ significantly in terms of their basic chromosome numbers, genome size, ploidy levels and life strategies, studying their centromeres may provide important insight into the structure and evolution of the genome in this interesting and important genus. In this study, we isolated the centromeric DNA of the B. distachyon reference line Bd21 and characterized its composition via the chromatin immunoprecipitation of the nucleosomes that contain the centromere-specific histone CENH3. We revealed that the centromeres of Bd21 have the features of typical multicellular eukaryotic centromeres. Strikingly, these centromeres contain relatively few centromeric satellite DNAs; in particular, the centromere of chromosome 5 (Bd5) consists of only ~40 kb. Moreover, the centromeric retrotransposons in B. distachyon (CRBds) are evolutionarily young. These transposable elements are located both within and adjacent to the CENH3 binding domains, and have similar compositions. Moreover, based on the presence of CRBds in the centromeres, the species in this study can be grouped into two distinct lineages. This may provide new evidence regarding the phylogenetic relationships within the Brachypodium genus.
Collapse
Affiliation(s)
- Yinjia Li
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Sheng Zuo
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhiliang Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhanjie Li
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jinlei Han
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhaoqing Chu
- Shanghai Chenshan Plant Science Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai Chenshan Botanical Garden, 3888 Chenhua Road, Songjiang, Shanghai, 201602, China
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032, Katowice, Poland
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
21
|
Contreras R, Figueiras AM, Gallego FJ, Benavente E, Manzaneda AJ, Benito C. Neutral molecular markers support common origin of aluminium tolerance in three congeneric grass species growing in acidic soils. AOB PLANTS 2017; 9:plx060. [PMID: 29302302 PMCID: PMC5739048 DOI: 10.1093/aobpla/plx060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Aluminium (Al) toxicity is the main abiotic stress limiting plant productivity in acidic soils that are widely distributed among arable lands. Plant species differ in the level of Al resistance showing intraspecific and interspecific variation in many crop species. However, the origin of Al-tolerance is not well known. Three annual species, difficult to distinguish phenotypically and that were until recently misinterpreted as a single complex species under Brachypodium distachyon, have been recently separated into three distinct species: the diploids B. distachyon (2n = 10) and B. stacei (2n = 20), and B. hybridum (2n = 30), the allotetraploid derived from the two diploid species. The aims of this work were to know the origin of Al-tolerance in acidic soil conditions within these three Brachypodium species and to develop new DNA markers for species discrimination. Two multiplex SSR-PCRs allowed to genotype a group of 94 accessions for 17 pentanucleotide microsatellite (SSRs) loci. The variability for 139 inter-microsatellite (ISSRs) markers was also examined. The genetic relationships obtained using those neutral molecular markers (SSRs and ISSRs) support that all Al-tolerant allotetraploid accessions of B. hybridum have a common origin that is related with both geographic location and acidic soils. The possibility that the adaptation to acidic soils caused the isolation of the tolerant B. hybridum populations from the others is discussed. We finally describe a new, easy, DNA barcoding method based in the upstream-intron 1 region of the ALMT1 gene, a tool that is 100 % effective to distinguish among these three Brachypodium species.
Collapse
Affiliation(s)
- Roberto Contreras
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana M Figueiras
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - F Javier Gallego
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Elena Benavente
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Antonio J Manzaneda
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Paraje Las Lagunillas s⁄n, Jaén, Spain
| | - César Benito
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
22
|
Yao PC, Gao HY, Wei YN, Zhang JH, Chen XY, Li HQ. Evaluating sampling strategy for DNA barcoding study of coastal and inland halo-tolerant Poaceae and Chenopodiaceae: A case study for increased sample size. PLoS One 2017; 12:e0185311. [PMID: 28934362 PMCID: PMC5608404 DOI: 10.1371/journal.pone.0185311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022] Open
Abstract
Environmental conditions in coastal salt marsh habitats have led to the development of specialist genetic adaptations. We evaluated six DNA barcode loci of the 53 species of Poaceae and 15 species of Chenopodiaceae from China's coastal salt marsh area and inland area. Our results indicate that the optimum DNA barcode was ITS for coastal salt-tolerant Poaceae and matK for the Chenopodiaceae. Sampling strategies for ten common species of Poaceae and Chenopodiaceae were analyzed according to optimum barcode. We found that by increasing the number of samples collected from the coastal salt marsh area on the basis of inland samples, the number of haplotypes of Arundinella hirta, Digitaria ciliaris, Eleusine indica, Imperata cylindrica, Setaria viridis, and Chenopodium glaucum increased, with a principal coordinate plot clearly showing increased distribution points. The results of a Mann-Whitney test showed that for Digitaria ciliaris, Eleusine indica, Imperata cylindrica, and Setaria viridis, the distribution of intraspecific genetic distances was significantly different when samples from the coastal salt marsh area were included (P < 0.01). These results suggest that increasing the sample size in specialist habitats can improve measurements of intraspecific genetic diversity, and will have a positive effect on the application of the DNA barcodes in widely distributed species. The results of random sampling showed that when sample size reached 11 for Chloris virgata, Chenopodium glaucum, and Dysphania ambrosioides, 13 for Setaria viridis, and 15 for Eleusine indica, Imperata cylindrica and Chenopodium album, average intraspecific distance tended to reach stability. These results indicate that the sample size for DNA barcode of globally distributed species should be increased to 11–15.
Collapse
Affiliation(s)
- Peng-Cheng Yao
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Hai-Yan Gao
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ya-Nan Wei
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian-Hang Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiao-Yong Chen
- School of Ecological and Environmental Sciences, Tiantong National Station of Forest Ecosystem, East China Normal University, Shanghai, China
- * E-mail: (HQL); (XYC)
| | - Hong-Qing Li
- School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail: (HQL); (XYC)
| |
Collapse
|
23
|
Identification of effective DNA barcodes for Triticum plants through chloroplast genome-wide analysis. Comput Biol Chem 2017; 71:20-31. [PMID: 28961510 DOI: 10.1016/j.compbiolchem.2017.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 02/01/2023]
Abstract
The Egyptian flora is rich with a large number of Triticum plants, which are very difficult to discriminate between in the early developmental stages. This study assesses the significance of using two DNA Barcoding loci (matK and rbcL) in distinguishing between 18 different Triticum accessions in Egypt. We isolated and sequenced 15 rbcL and six matK fragments, but our analysis of the resultant sequences demonstrated a limited ability of matK and rbcL in distinguishing between Triticum accessions. Therefore, we pursued a bioinformatics approach to determine the most useful loci which may be used as DNA barcodes for the Triticum spp. We obtained the 10 available chloroplast genomes of the 10 Triticum species and sub-species from NCBI, and performed chloroplast genome-wide analysis to find the potential barcode loci. A total of 134 chloroplast genes, gene combinations, intergenic regions and intergenic region combinations were tested using a Tree-based method. We were unable to discriminate between Triticum species by using chloroplast genes, gene combinations and intergenic regions. However, a combination of the intergenic region (trnfM-trnT) with either (trnD-psbM), (petN-trnC), (matK-rps16) or (rbcL-psaI) demonstrated a very high discrimination capacity, suggesting their utilization as DNA barcodes for the Triticum plants. Furthermore, our novel DNA barcodes demonstrated high discrimination capacity for other Poaceae members.
Collapse
|
24
|
Marques I, Shiposha V, López-Alvarez D, Manzaneda AJ, Hernandez P, Olonova M, Catalán P. Environmental isolation explains Iberian genetic diversity in the highly homozygous model grass Brachypodium distachyon. BMC Evol Biol 2017; 17:139. [PMID: 28619047 PMCID: PMC5472904 DOI: 10.1186/s12862-017-0996-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brachypodium distachyon (Poaceae), an annual Mediterranean Aluminum (Al)-sensitive grass, is currently being used as a model species to provide new information on cereals and biofuel crops. The plant has a short life cycle and one of the smallest genomes in the grasses being well suited to experimental manipulation. Its genome has been fully sequenced and several genomic resources are being developed to elucidate key traits and gene functions. A reliable germplasm collection that reflects the natural diversity of this species is therefore needed for all these genomic resources. However, despite being a model plant, we still know very little about its genetic diversity. As a first step to overcome this gap, we used nuclear Simple Sequence Repeats (nSSR) to study the patterns of genetic diversity and population structure of B. distachyon in 14 populations sampled across the Iberian Peninsula (Spain), one of its best known areas. RESULTS We found very low levels of genetic diversity, allelic number and heterozygosity in B. distachyon, congruent with a highly selfing system. Our results indicate the existence of at least three genetic clusters providing additional evidence for the existence of a significant genetic structure in the Iberian Peninsula and supporting this geographical area as an important genetic reservoir. Several hotspots of genetic diversity were detected and populations growing on basic soils were significantly more diverse than those growing in acidic soils. A partial Mantel test confirmed a statistically significant Isolation-By-Distance (IBD) among all studied populations, as well as a statistically significant Isolation-By-Environment (IBE) revealing the presence of environmental-driven isolation as one explanation for the genetic patterns found in the Iberian Peninsula. CONCLUSIONS The finding of higher genetic diversity in eastern Iberian populations occurring in basic soils suggests that these populations can be better adapted than those occurring in western areas of the Iberian Peninsula where the soils are more acidic and accumulate toxic Al ions. This suggests that the western Iberian acidic soils might prevent the establishment of Al-sensitive B. distachyon populations, potentially causing the existence of more genetically depauperated individuals.
Collapse
Affiliation(s)
- Isabel Marques
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte km 1, 22071, Huesca, Spain.
| | - Valeriia Shiposha
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte km 1, 22071, Huesca, Spain
- Department of Botany, Institute of Biology, Tomsk State University, Lenin Av. 36, Tomsk, 634050, Russia
| | - Diana López-Alvarez
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte km 1, 22071, Huesca, Spain
- Present address: Centro de Bioinformática y Biología Computacional de Colombia, BIOS, Parque los Yarumos, Manizales, Colombia
| | - Antonio J Manzaneda
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Paraje Las Lagunillas s⁄n, 23071, Jaén, Spain
| | - Pilar Hernandez
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo s/n, 14004, Córdoba, Spain
| | - Marina Olonova
- Department of Botany, Institute of Biology, Tomsk State University, Lenin Av. 36, Tomsk, 634050, Russia
| | - Pilar Catalán
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte km 1, 22071, Huesca, Spain
- Department of Botany, Institute of Biology, Tomsk State University, Lenin Av. 36, Tomsk, 634050, Russia
| |
Collapse
|
25
|
López-Álvarez D, Zubair H, Beckmann M, Draper J, Catalán P. Diversity and association of phenotypic and metabolomic traits in the close model grasses Brachypodium distachyon, B. stacei and B. hybridum. ANNALS OF BOTANY 2017; 119:545-561. [PMID: 28040672 PMCID: PMC5458712 DOI: 10.1093/aob/mcw239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/25/2016] [Accepted: 10/12/2016] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS Morphological traits in combination with metabolite fingerprinting were used to investigate inter- and intraspecies diversity within the model annual grasses Brachypodium distachyon, Brachypodium stacei and Brachypodium hybridum . METHODS Phenotypic variation of 15 morphological characters and 2219 nominal mass ( m / z ) signals generated using flow infusion electrospray ionization-mass spectrometry (FIE-MS) were evaluated in individuals from a total of 174 wild populations and six inbred lines, and 12 lines, of the three species, respectively. Basic statistics and multivariate principal component analysis and discriminant analysis were used to differentiate inter- and intraspecific variability of the two types of variable, and their association was assayed with the rcorr function. KEY RESULTS Basic statistics and analysis of variance detected eight phenotypic characters [(stomata) leaf guard cell length, pollen grain length, (plant) height, second leaf width, inflorescence length, number of spikelets per inflorescence, lemma length, awn length] and 434 tentatively annotated metabolite signals that significantly discriminated the three species. Three phenotypic traits (pollen grain length, spikelet length, number of flowers per inflorescence) might be genetically fixed. The three species showed different metabolomic profiles. Discriminant analysis significantly discriminated the three taxa with both morphometric and metabolome traits and the intraspecific phenotypic diversity within B. distachyon and B. stacei . The populations of B. hybridum were considerably less differentiated. CONCLUSIONS Highly explanatory metabolite signals together with morphological characters revealed concordant patterns of differentiation of the three taxa. Intraspecific phenotypic diversity was observed between northern and southern Iberian populations of B. distachyon and between eastern Mediterranean/south-western Asian and western Mediterranean populations of B. stacei . Significant association was found for pollen grain length and lemma length and ten and six metabolomic signals, respectively. These results would guide the selection of new germplasm lines of the three model grasses in ongoing genome-wide association studies.
Collapse
Affiliation(s)
- Diana López-Álvarez
- Department of Agriculture and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Ctra. Cuarte Km 1, 22071 Huesca, Spain
| | - Hassan Zubair
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EB, UK
| | - Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EB, UK
| | - John Draper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EB, UK
| | - Pilar Catalán
- Department of Agriculture and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Ctra. Cuarte Km 1, 22071 Huesca, Spain
- Department of Botany, Institute of Biology, Tomsk State University, Lenin Av. 36, Tomsk 634050, Russia
| |
Collapse
|
26
|
Dinh Thi VH, Coriton O, Le Clainche I, Arnaud D, Gordon SP, Linc G, Catalan P, Hasterok R, Vogel JP, Jahier J, Chalhoub B. Recreating Stable Brachypodium hybridum Allotetraploids by Uniting the Divergent Genomes of B. distachyon and B. stacei. PLoS One 2016; 11:e0167171. [PMID: 27936041 PMCID: PMC5147888 DOI: 10.1371/journal.pone.0167171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/09/2016] [Indexed: 11/19/2022] Open
Abstract
Brachypodium hybridum (2n = 30) is a natural allopolyploid with highly divergent sub-genomes derived from two extant diploid species, B. distachyon (2n = 10) and B. stacei (2n = 20) that differ in chromosome evolution and number. We created synthetic B. hybridum allotetraploids by hybridizing various lines of B. distachyon and B. stacei. The initial amphihaploid F1 interspecific hybrids were obtained at low frequencies when B. distachyon was used as the maternal parent (0.15% or 0.245% depending on the line used) and were sterile. No hybrids were obtained from reciprocal crosses or when autotetraploids of the parental species were crossed. Colchicine treatment was used to double the genome of the F1 amphihaploid lines leading to allotetraploids. The genome-doubled F1 plants produced a few S1 (first selfed generation) seeds after self-pollination. S1 plants from one parental combination (Bd3-1×Bsta5) were fertile and gave rise to further generations whereas those of another parental combination (Bd21×ABR114) were sterile, illustrating the importance of the parental lineages crossed. The synthetic allotetraploids were stable and resembled the natural B. hybridum at the phenotypic, cytogenetic and genomic levels. The successful creation of synthetic B. hybridum offers the possibility to study changes in genome structure and regulation at the earliest stages of allopolyploid formation in comparison with the parental species and natural B. hybridum.
Collapse
Affiliation(s)
- Vinh Ha Dinh Thi
- Organization and evolution of complex genomes, Institut National de la Recherche agronomique, Université d’Evry Val d’Essonne, Evry, France
| | - Olivier Coriton
- Unité Mixte de Recherches INRA, Agrocampus Rennes—Université Rennes 1, Institut de Génétique, Environnement et Protection des Plantes, Le Rheu, France
| | - Isabelle Le Clainche
- Organization and evolution of complex genomes, Institut National de la Recherche agronomique, Université d’Evry Val d’Essonne, Evry, France
| | - Dominique Arnaud
- Organization and evolution of complex genomes, Institut National de la Recherche agronomique, Université d’Evry Val d’Essonne, Evry, France
| | - Sean P. Gordon
- DOE Joint Genome Institute, Walnut Creek, United States of America
| | - Gabriella Linc
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences,Martonvásár, Brunszvik u 2, Hungary
| | - Pilar Catalan
- Department of Agriculture and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
- Department of Botany, Institute of Biology, Tomsk State University, Tomsk, Russia
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia,Katowice, Poland
| | - John P. Vogel
- DOE Joint Genome Institute, Walnut Creek, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, United States of America
| | - Joseph Jahier
- Unité Mixte de Recherches INRA, Agrocampus Rennes—Université Rennes 1, Institut de Génétique, Environnement et Protection des Plantes, Le Rheu, France
| | - Boulos Chalhoub
- Organization and evolution of complex genomes, Institut National de la Recherche agronomique, Université d’Evry Val d’Essonne, Evry, France
- Institute of System and Synthetic Biology, Genopole, Centre National de la Recherche Scientifique, Université d’Evry Val d’Essonne, Université Paris-Saclay, Evry, France
- * E-mail:
| |
Collapse
|
27
|
Shiposha V, Catalán P, Olonova M, Marques I. Genetic structure and diversity of the selfing model grass Brachypodium stacei (Poaceae) in Western Mediterranean: out of the Iberian Peninsula and into the islands. PeerJ 2016; 4:e2407. [PMID: 27651993 PMCID: PMC5018678 DOI: 10.7717/peerj.2407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/04/2016] [Indexed: 12/29/2022] Open
Abstract
Annual Mediterranean species of the genus Brachypodium are promising model plants for energy crops since their selfing nature and short-life cycles are an advantage in breeding programs. The false brome, B. distachyon, has already been sequenced and new genomic initiatives have triggered the de-novo genome sequencing of its close relatives such as B. stacei, a species that was until recently mistaken for B. distachyon. However, the success of these initiatives hinges on detailed knowledge about the distribution of genetic variation within and among populations for the effective use of germplasm in a breeding program. Understanding population genetic diversity and genetic structure is also an important prerequisite for designing effective experimental populations for genomic wide studies. However, population genetic data are still limited in B. stacei. We therefore selected and amplified 10 nuclear microsatellite markers to depict patterns of population structure and genetic variation among 181 individuals from 19 populations of B. stacei occurring in its predominant range, the western Mediterranean area: mainland Iberian Peninsula, continental Balearic Islands and oceanic Canary Islands. Our genetic results support the occurrence of a predominant selfing system with extremely high levels of homozygosity across the analyzed populations. Despite the low level of genetic variation found, two different genetic clusters were retrieved, one clustering all SE Iberian mainland populations and the island of Minorca and another one grouping all S Iberian mainland populations, the Canary Islands and all Majorcan populations except one that clustered with the former group. These results, together with a high sharing of alleles (89%) suggest different colonization routes from the mainland Iberian Peninsula into the islands. A recent colonization scenario could explain the relatively low levels of genetic diversity and low number of alleles found in the Canary Islands populations while older colonization events are hypothesized to explain the high genetic diversity values found in the Majorcan populations. Our study provides widely applicable information about geographical patterns of genetic variation in B. stacei. Among others, the genetic pattern and the existence of local alleles will need to be adequately reflected in the germplasm collection of B. stacei for efficient genome wide association studies.
Collapse
Affiliation(s)
- Valeriia Shiposha
- Department of Agriculture and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain; Department of Botany, Institute of Biology, Tomsk State University, Tomsk, Russia
| | - Pilar Catalán
- Department of Agriculture and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain; Department of Botany, Institute of Biology, Tomsk State University, Tomsk, Russia
| | - Marina Olonova
- Department of Botany, Institute of Biology, Tomsk State University , Tomsk , Russia
| | - Isabel Marques
- Department of Agriculture and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza , Huesca , Spain
| |
Collapse
|
28
|
Tyler L, Lee SJ, Young ND, DeIulio GA, Benavente E, Reagon M, Sysopha J, Baldini RM, Troìa A, Hazen SP, Caicedo AL. Population Structure in the Model Grass Is Highly Correlated with Flowering Differences across Broad Geographic Areas. THE PLANT GENOME 2016; 9. [PMID: 27898828 DOI: 10.3835/plantgenome2015.08.0074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The small, annual grass (L.) Beauv., a close relative of wheat ( L.) and barley ( L.), is a powerful model system for cereals and bioenergy grasses. Genome-wide association studies (GWAS) of natural variation can elucidate the genetic basis of complex traits but have been so far limited in by the lack of large numbers of well-characterized and sufficiently diverse accessions. Here, we report on genotyping-by-sequencing (GBS) of 84 , seven , and three accessions with diverse geographic origins including Albania, Armenia, Georgia, Italy, Spain, and Turkey. Over 90,000 high-quality single-nucleotide polymorphisms (SNPs) distributed across the Bd21 reference genome were identified. Our results confirm the hybrid nature of the genome, which appears as a mosaic of -like and -like sequences. Analysis of more than 50,000 SNPs for the accessions revealed three distinct, genetically defined populations. Surprisingly, these genomic profiles are associated with differences in flowering time rather than with broad geographic origin. High levels of differentiation in loci associated with floral development support the differences in flowering phenology between populations. Genome-wide association studies combining genotypic and phenotypic data also suggest the presence of one or more photoperiodism, circadian clock, and vernalization genes in loci associated with flowering time variation within populations. Our characterization elucidates genes underlying population differences, expands the germplasm resources available for , and illustrates the feasibility and limitations of GWAS in this model grass.
Collapse
|
29
|
Manzaneda AJ, Rey PJ, Anderson JT, Raskin E, Weiss-Lehman C, Mitchell-Olds T. Natural variation, differentiation, and genetic trade-offs of ecophysiological traits in response to water limitation in Brachypodium distachyon and its descendent allotetraploid B. hybridum (Poaceae). Evolution 2015; 69:2689-704. [PMID: 26377138 DOI: 10.1111/evo.12776] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 07/02/2015] [Accepted: 08/25/2015] [Indexed: 11/30/2022]
Abstract
Differences in tolerance to water stress may underlie ecological divergence of closely related ploidy lineages. However, the mechanistic basis of physiological variation governing ecogeographical cytotype segregation is not well understood. Here, using Brachypodium distachyon and its derived allotetraploid B. hybridum as model, we test the hypothesis that, for heteroploid annuals, ecological divergence of polyploids in drier environments is based on trait differentiation enabling drought escape. We demonstrate that under water limitation allotetraploids maintain higher photosynthesis and stomatal conductance and show earlier flowering than diploids, concordant with a drought-escape strategy to cope with water stress. Increased heterozygosity and greater genetic variability and plasticity of polyploids could confer a superior adaptive capability. Consistent with these predictions, we document (1) greater standing within-population genetic variation in water-use efficiency (WUE) and flowering time in allotetraploids, and (2) the existence of (nonlinear) environmental clines in physiology across allotetraploid populations. Increased gas exchange and diminished WUE occurred at the driest end of the gradient, consistent with a drought-escape strategy. Finally, we found that allotetraploids showed weaker genetic correlations than diploids congruous with the expectation of relaxed pleiotropic constraints in polyploids. Our results suggest evolutionary divergence of ecophysiological traits in each ploidy lineage.
Collapse
Affiliation(s)
- Antonio J Manzaneda
- Departamento Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Paraje las Lagunillas s/n, 23071, Jaén, Spain. .,Institute for Genome Sciences and Policy, Department of Biology, Duke University, P.O. Box 90338, Durham, North Carolina, 27708.
| | - Pedro J Rey
- Departamento Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Paraje las Lagunillas s/n, 23071, Jaén, Spain
| | - Jill T Anderson
- Department of Genetics, University of Georgia, Athens, Georgia, 30602
| | - Evan Raskin
- Institute for Genome Sciences and Policy, Department of Biology, Duke University, P.O. Box 90338, Durham, North Carolina, 27708
| | - Christopher Weiss-Lehman
- Department of Ecology and Evolutionary Biology, Biofrontiers Institute, University of Colorado, Boulder, Colarado, 80309
| | - Thomas Mitchell-Olds
- Institute for Genome Sciences and Policy, Department of Biology, Duke University, P.O. Box 90338, Durham, North Carolina, 27708
| |
Collapse
|
30
|
Figueroa M, Castell-Miller CV, Li F, Hulbert SH, Bradeen JM. Pushing the boundaries of resistance: insights from Brachypodium-rust interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:558. [PMID: 26284085 PMCID: PMC4519692 DOI: 10.3389/fpls.2015.00558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/07/2015] [Indexed: 05/20/2023]
Abstract
The implications of global population growth urge transformation of current food and bioenergy production systems to sustainability. Members of the family Poaceae are of particular importance both in food security and for their applications as biofuel substrates. For centuries, rust fungi have threatened the production of valuable crops such as wheat, barley, oat, and other small grains; similarly, biofuel crops can also be susceptible to these pathogens. Emerging rust pathogenic races with increased virulence and recurrent rust epidemics around the world point out the vulnerability of monocultures. Basic research in plant immunity, especially in model plants, can make contributions to understanding plant resistance mechanisms and improve disease management strategies. The development of the grass Brachypodium distachyon as a genetically tractable model for monocots, especially temperate cereals and grasses, offers the possibility to overcome the experimental challenges presented by the genetic and genomic complexities of economically valuable crop plants. The numerous resources and tools available in Brachypodium have opened new doors to investigate the underlying molecular and genetic bases of plant-microbe interactions in grasses and evidence demonstrating the applicability and advantages of working with B. distachyon is increasing. Importantly, several interactions between B. distachyon and devastating plant pathogens, such rust fungi, have been examined in the context of non-host resistance. Here, we discuss the use of B. distachyon in these various pathosystems. Exploiting B. distachyon to understand the mechanisms underpinning disease resistance to non-adapted rust fungi may provide effective and durable approaches to fend off these pathogens. The close phylogenetic relationship among Brachypodium spp. and grasses with industrial and agronomic value support harnessing this model plant to improve cropping systems and encourage its use in translational research.
Collapse
Affiliation(s)
- Melania Figueroa
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Claudia V. Castell-Miller
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Feng Li
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Scot H. Hulbert
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - James M. Bradeen
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
31
|
Watching Grass Grow: The Emergence of Brachypodium distachyon as a Model for the Poaceae. ARCHIMEDES 2015. [DOI: 10.1007/978-3-319-12185-7_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
32
|
The Genus Brachypodium as a Model for Perenniality and Polyploidy. GENETICS AND GENOMICS OF BRACHYPODIUM 2015. [DOI: 10.1007/7397_2015_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Bettgenhaeuser J, Gilbert B, Ayliffe M, Moscou MJ. Nonhost resistance to rust pathogens - a continuation of continua. FRONTIERS IN PLANT SCIENCE 2014; 5:664. [PMID: 25566270 PMCID: PMC4263244 DOI: 10.3389/fpls.2014.00664] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/07/2014] [Indexed: 05/25/2023]
Abstract
The rust fungi (order: Pucciniales) are a group of widely distributed fungal plant pathogens, which can infect representatives of all vascular plant groups. Rust diseases significantly impact several crop species and considerable research focuses on understanding the basis of host specificity and nonhost resistance. Like many pathogens, rust fungi vary considerably in the number of hosts they can infect, such as wheat leaf rust (Puccinia triticina), which can only infect species in the genera Triticum and Aegilops, whereas Asian soybean rust (Phakopsora pachyrhizi) is known to infect over 95 species from over 42 genera. A greater understanding of the genetic basis determining host range has the potential to identify sources of durable resistance for agronomically important crops. Delimiting the boundary between host and nonhost has been complicated by the quantitative nature of phenotypes in the transition between these two states. Plant-pathogen interactions in this intermediate state are characterized either by (1) the majority of accessions of a species being resistant to the rust or (2) the rust only being able to partially complete key components of its life cycle. This leads to a continuum of disease phenotypes in the interaction with different plant species, observed as a range from compatibility (host) to complete immunity within a species (nonhost). In this review we will highlight how the quantitative nature of disease resistance in these intermediate interactions is caused by a continuum of defense barriers, which a pathogen needs to overcome for successfully establishing itself in the host. To illustrate continua as this underlying principle, we will discuss the advances that have been made in studying nonhost resistance towards rust pathogens, particularly cereal rust pathogens.
Collapse
Affiliation(s)
| | - Brian Gilbert
- Commonwealth Scientific and Industrial Research Organisation, Agriculture FlagshipCanberra, ACT, Australia
| | - Michael Ayliffe
- Commonwealth Scientific and Industrial Research Organisation, Agriculture FlagshipCanberra, ACT, Australia
| | | |
Collapse
|
34
|
Matzrafi M, Gadri Y, Frenkel E, Rubin B, Peleg Z. Evolution of herbicide resistance mechanisms in grass weeds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:43-52. [PMID: 25443832 DOI: 10.1016/j.plantsci.2014.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 08/14/2014] [Accepted: 08/21/2014] [Indexed: 05/27/2023]
Abstract
Herbicide resistant weeds are becoming increasingly common, threatening global food security. Here, we present BrIFAR: a new model system for the functional study of mechanisms of herbicide resistance in grass weeds. We have developed a large collection of Brachypodium accessions, the BrI collection, representing a wide range of habitats. Wide screening of the responses of the accessions to four major herbicide groups (PSII, ACCase, ALS/AHAS and EPSPS inhibitors) identified 28 herbicide-resistance candidate accessions. Target-site resistance to PSII inhibitors was found in accessions collected from habitats with a known history of herbicide applications. An amino acid substitution in the psbA gene (serine264 to glycine) conferred resistance and also significantly affected the flowering and shoot dry weight of the resistant accession, as compared to the sensitive accession. Non-target site resistance to ACCase inhibitors was found in accessions collected from habitats with a history of herbicide application and from a nature reserve. In-vitro enzyme activity tests and responses following pre-treatment with malathion (a cytochrome-P450 inhibitor) indicated sensitivity at the enzyme level, and give strong support to diclofop-methyl and pinoxaden enhanced detoxification as NTS resistance mechanism. BrIFAR can promote better understanding of the evolution of mechanisms of herbicide resistance and aid the implementation of integrative management approaches for sustainable agriculture.
Collapse
Affiliation(s)
- Maor Matzrafi
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 7610001, Israel.
| | - Yaron Gadri
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 7610001, Israel.
| | - Eyal Frenkel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 7610001, Israel.
| | - Baruch Rubin
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 7610001, Israel.
| | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 7610001, Israel.
| |
Collapse
|
35
|
Girin T, David LC, Chardin C, Sibout R, Krapp A, Ferrario-Méry S, Daniel-Vedele F. Brachypodium: a promising hub between model species and cereals. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5683-96. [PMID: 25262566 DOI: 10.1093/jxb/eru376] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Brachypodium distachyon was proposed as a model species for genetics and molecular genomics in cereals less than 10 years ago. It is now established as a standard for research on C3 cereals on a variety of topics, due to its close phylogenetic relationship with Triticeae crops such as wheat and barley, and to its simple genome, its minimal growth requirement, and its short life cycle. In this review, we first highlight the tools and resources for Brachypodium that are currently being developed and made available by the international community. We subsequently describe how this species has been used for comparative genomic studies together with cereal crops, before illustrating major research fields in which Brachypodium has been successfully used as a model: cell wall synthesis, plant-pathogen interactions, root architecture, and seed development. Finally, we discuss the usefulness of research on Brachypodium in order to improve nitrogen use efficiency in cereals, with the aim of reducing the amount of applied fertilizer while increasing the grain yield. Several paths are considered, namely an improvement of either nitrogen remobilization from the vegetative organs, nitrate uptake from the soil, or nitrate assimilation by the plant. Altogether, these examples position the research on Brachypodium as at an intermediate stage between basic research, carried out mainly in Arabidopsis, and applied research carried out on wheat and barley, enabling a complementarity of the studies and reciprocal benefits.
Collapse
Affiliation(s)
- Thomas Girin
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Laure C David
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Camille Chardin
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Richard Sibout
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Anne Krapp
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Sylvie Ferrario-Méry
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Françoise Daniel-Vedele
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| |
Collapse
|
36
|
Isozyme variation and differentiation of morphologically cryptic species in the Brachypodium distachyon complex. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Díaz-Pérez A, Sharifi-Tehrani M, Inda L, Catalán P. Polyphyly, gene-duplication and extensive allopolyploidy framed the evolution of the ephemeral Vulpia grasses and other fine-leaved Loliinae (Poaceae). Mol Phylogenet Evol 2014; 79:92-105. [DOI: 10.1016/j.ympev.2014.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/26/2014] [Accepted: 06/09/2014] [Indexed: 12/22/2022]
|