1
|
Handa H, Uzawa A, Sugiyama A, Yokota H, Yasuda M, Kimura A, Shimohata T, Kuwabara S. A spectrum of neurological diseases with elevated cerebrospinal fluid adenosine deaminase levels. J Neurol Sci 2025; 469:123368. [PMID: 39754823 DOI: 10.1016/j.jns.2024.123368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
OBJECTIVES This study aimed to investigate cerebrospinal fluid (CSF) adenosine deaminase (ADA) levels in various neurological disorders and examine the relationships between CSF ADA levels and immunological parameters. METHODS Overall, 276 patients whose CSF ADA levels were measured for suspected tuberculous meningitis (TBM) were evaluated. Data on baseline characteristics, final diagnoses, CSF ADA levels, and other laboratory parameters were collected. Thereafter, CSF ADA levels were compared based on final diagnoses, and correlations between CSF ADA levels and other CSF and blood laboratory parameters were evaluated. RESULTS Five diseases exhibited a significant increase in CSF ADA levels relative to the noninflammatory disease control group (n = 40): (1) TBM (n = 15, p < 0.0001), (2) fungal meningitis (n = 7, p = 0.0400), (3) autoimmune glial fibrillary acidic protein astrocytopathy (GFAP-A, n = 7, p < 0.0001), (4) neurosarcoidosis (n = 7, p = 0.0028), and (5) lymphoproliferative disorders (n = 18, p = 0.0001). Strong positive correlations were observed between CSF ADA and CSF parameters, including soluble IL2 receptor (rs = 0.7566, p < 0.0001), albumin (rs = 0.6693, p < 0.0001), lactate dehydrogenase (rs = 0.6452, p < 0.0001), white blood cell count (rs = 0.6035, p < 0.0001), protein (rs = 0.6334, p < 0.0001), and lymphocytes (rs = 0.5954, p < 0.0001). DISCUSSION CSF ADA levels were elevated in various inflammatory neurological diseases, especially in TBM, fungal meningitis, GFAP-A, neurosarcoidosis, and lymphoproliferative disorders. CSF ADA levels may reflect T-cell hyperactivation in the central nervous system.
Collapse
Affiliation(s)
- Hideo Handa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Atsuhiko Sugiyama
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hajime Yokota
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Manato Yasuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akio Kimura
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
2
|
Li J, Ma S, Pei H, Jiang J, Zou Q, Lv Z. Review of T cell proliferation regulatory factors in treatment and prognostic prediction for solid tumors. Heliyon 2023; 9:e21329. [PMID: 37954355 PMCID: PMC10637962 DOI: 10.1016/j.heliyon.2023.e21329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
T cell proliferation regulators (Tcprs), which are positive regulators that promote T cell function, have made great contributions to the development of therapies to improve T cell function. CAR (chimeric antigen receptor) -T cell therapy, a type of adoptive cell transfer therapy that targets tumor cells and enhances immune lethality, has led to significant progress in the treatment of hematologic tumors. However, the applications of CAR-T in solid tumor treatment remain limited. Therefore, in this review, we focus on the development of Tcprs for solid tumor therapy and prognostic prediction. We summarize potential strategies for targeting different Tcprs to enhance T cell proliferation and activation and inhibition of cancer progression, thereby improving the antitumor activity and persistence of CAR-T. In summary, we propose means of enhancing CAR-T cells by expressing different Tcprs, which may lead to the development of a new generation of cell therapies.
Collapse
Affiliation(s)
- Jiayu Li
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- College of Life Science, Sichuan University, Chengdu 610065, China
| | - Shuhan Ma
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Hongdi Pei
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Jici Jiang
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Zhibin Lv
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Eberhardt N, Bergero G, Mazzocco Mariotta YL, Aoki MP. Purinergic modulation of the immune response to infections. Purinergic Signal 2022; 18:93-113. [PMID: 34997903 PMCID: PMC8742569 DOI: 10.1007/s11302-021-09838-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are caused by the invasion of pathogenic microorganisms such as fungi, bacteria, viruses, and parasites. After infection, disease progression relies on the complex interplay between the host immune response and the microorganism evasion strategies. The host's survival depends on its ability to mount an efficient protective anti-microbial response to accomplish pathogen clearance while simultaneously preventing tissue injury by keeping under control the excessive inflammatory process. The purinergic system has the dual function of regulating the immune response and triggering effector antimicrobial mechanisms. This review provides an overview of the current knowledge of the modulation of innate and adaptive immunity driven by the purinergic system during parasitic, bacterial and viral infections.
Collapse
Affiliation(s)
- Natalia Eberhardt
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Present Address: Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, USA
| | - Gastón Bergero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yanina L. Mazzocco Mariotta
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M. Pilar Aoki
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Haya de La Torre and Medina Allende, Ciudad Universitaria, CP 5000 Córdoba, Argentina
| |
Collapse
|
4
|
Franco R, Rivas-Santisteban R, Navarro G, Reyes-Resina I. Adenosine Receptor Antagonists to Combat Cancer and to Boost Anti-Cancer Chemotherapy and Immunotherapy. Cells 2021; 10:cells10112831. [PMID: 34831054 PMCID: PMC8616521 DOI: 10.3390/cells10112831] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 12/22/2022] Open
Abstract
Extracellular adenosine accumulates in the environment of numerous tumors. For years, this fact has fueled preclinical research to determine whether adenosine receptors (ARs) could be the target to fight cancer. The four ARs discovered so far, A1, A2A, A2B and A3, belong to the class A family of G protein-coupled receptors (GPCRs) and all four have been involved in one way or another in regulating tumor progression. Prompted by the successful anti-cancer immunotherapy, the focus was placed on the ARs more involved in regulation of immune cell differentiation and activation and that are able to establish molecular and functional interactions. This review focuses on the potential of A2A and A2B receptor antagonists in cancer control and in boosting anti-cancer chemotherapy and immunotherapy. The article also overviews the ongoing clinical trials in which A2AR and A2BR ligands are being tested in anti-cancer therapy.
Collapse
Affiliation(s)
- Rafael Franco
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain; (R.R.-S.); (G.N.); (I.R.-R.)
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: or
| | - Rafael Rivas-Santisteban
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain; (R.R.-S.); (G.N.); (I.R.-R.)
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain; (R.R.-S.); (G.N.); (I.R.-R.)
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
| | - Irene Reyes-Resina
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain; (R.R.-S.); (G.N.); (I.R.-R.)
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Lu CF, Liu WS, Ge XQ, Xu F, Su JB, Wang XQ, Wang Y. The association between serum adenosine deaminase levels and Graves' disease. Endocr Connect 2021; 10:1227-1233. [PMID: 34473081 PMCID: PMC8494409 DOI: 10.1530/ec-21-0344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Adenosine deaminase (ADA) is essential for the differentiation and maturation of lymphocytes, while lymphocytes infiltration in thyroid tissue is a vital pathological feature of Graves' disease (GD). The aim of the present study was to compare the concentration of ADA between healthy controls (HC) and patients with GD, and evaluate the association between ADA and GD. METHODS A total of 112 GD patients and 77 matched HC were enrolled in this study. Each participant was examined for thyroid hormones and autoantibodies, ADA concentration, and thyroid ultrasonography. RESULTS Serum ADA levels in GD patients were significantly higher than that in HC subgroup (P < 0.001). In GD patients, serum ADA levels were positively associated with serum-free triiodothyronine (FT3), free thyroxine (FT4), thyroid peroxidase antibody (TPOAb), thyroid-stimulating hormone receptor antibody (TRAb) levels, and total thyroid gland volume (thyroid VolT) and negatively associated with serum thyroid-stimulating hormone receptor (TSH) levels (all P < 0.05). There were no similar correlations in the HC subgroup. Multiple linear regression analysis suggested that serum TSH, FT3, and ADA levels played an important role in serum TRAb levels. CONCLUSIONS Our results demonstrated that serum ADA levels were closely associated with GD.
Collapse
Affiliation(s)
- Chun-feng Lu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Wang-shu Liu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Xiao-qin Ge
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
- Correspondence should be addressed to F Xu or J Su or X Wang: or or
| | - Jian-bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
- Correspondence should be addressed to F Xu or J Su or X Wang: or or
| | - Xue-qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
- Correspondence should be addressed to F Xu or J Su or X Wang: or or
| | - Yan Wang
- Department of Geriatrics, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| |
Collapse
|
6
|
Odumade OA, Plotkin AL, Pak J, Idoko OT, Pettengill MA, Kollmann TR, Ozonoff A, Kampmann B, Levy O, Smolen KK. Plasma Adenosine Deaminase (ADA)-1 and -2 Demonstrate Robust Ontogeny Across the First Four Months of Human Life. Front Immunol 2021; 12:578700. [PMID: 34122398 PMCID: PMC8190399 DOI: 10.3389/fimmu.2021.578700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background Human adenosine deaminases (ADAs) modulate the immune response: ADA1 via metabolizing adenosine, a purine metabolite that inhibits pro-inflammatory and Th1 cytokine production, and the multi-functional ADA2, by enhancing T-cell proliferation and monocyte differentiation. Newborns are relatively deficient in ADA1 resulting in elevated plasma adenosine concentrations and a Th2/anti-inflammatory bias compared to adults. Despite the growing recognition of the role of ADAs in immune regulation, little is known about the ontogeny of ADA concentrations. Methods In a subgroup of the EPIC002-study, clinical data and plasma samples were collected from 540 Gambian infants at four time-points: day of birth; first week of life; one month of age; and four months of age. Concentrations of total extracellular ADA, ADA1, and ADA2 were measured by chromogenic assay and evaluated in relation to clinical data. Plasma cytokines/chemokine were measured across the first week of life and correlated to ADA concentrations. Results ADA2 demonstrated a steady rise across the first months of life, while ADA1 concentration significantly decreased 0.79-fold across the first week then increased 1.4-fold by four months of life. Males demonstrated significantly higher concentrations of ADA2 (1.1-fold) than females at four months; newborns with early-term (37 to <39 weeks) and late-term (≥41 weeks) gestational age demonstrated significantly higher ADA1 at birth (1.1-fold), and those born to mothers with advanced maternal age (≥35 years) had lower plasma concentrations of ADA2 at one month (0.93-fold). Plasma ADA1 concentrations were positively correlated with plasma CXCL8 during the first week of life, while ADA2 concentrations correlated positively with TNFα, IFNγ and CXCL10, and negatively with IL-6 and CXCL8. Conclusions The ratio of plasma ADA2/ADA1 concentration increased during the first week of life, after which both ADA1 and ADA2 increased across the first four months of life suggesting a gradual development of Th1/Th2 balanced immunity. Furthermore, ADA1 and ADA2 were positively correlated with cytokines/chemokines during the first week of life. Overall, ADA isoforms demonstrate robust ontogeny in newborns and infants but further mechanistic studies are needed to clarify their roles in early life immune development and the correlations with sex, gestational age, and maternal age that were observed.
Collapse
Affiliation(s)
- Oludare A. Odumade
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Division of Medicine Critical Care, Boston Children’s Hospital, Boston, MA, United States
| | - Alec L. Plotkin
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Jensen Pak
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Olubukola T. Idoko
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew A. Pettengill
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tobias R. Kollmann
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Beate Kampmann
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT & Harvard, Cambridge, MA, United States
| | - Kinga K. Smolen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Firmino JP, Vallejos-Vidal E, Balebona MC, Ramayo-Caldas Y, Cerezo IM, Salomón R, Tort L, Estevez A, Moriñigo MÁ, Reyes-López FE, Gisbert E. Diet, Immunity, and Microbiota Interactions: An Integrative Analysis of the Intestine Transcriptional Response and Microbiota Modulation in Gilthead Seabream ( Sparus aurata) Fed an Essential Oils-Based Functional Diet. Front Immunol 2021; 12:625297. [PMID: 33746962 PMCID: PMC7969985 DOI: 10.3389/fimmu.2021.625297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022] Open
Abstract
Essential oils (EOs) are promising alternatives to chemotherapeutics in animal production due to their immunostimulant, antimicrobial, and antioxidant properties, without associated environmental or hazardous side effects. In the present study, the modulation of the transcriptional immune response (microarray analysis) and microbiota [16S Ribosomal RNA (rRNA) sequencing] in the intestine of the euryhaline fish gilthead seabream (Sparus aurata) fed a dietary supplementation of garlic, carvacrol, and thymol EOs was evaluated. The transcriptomic functional analysis showed the regulation of genes related to processes of proteolysis and inflammatory modulation, immunity, transport and secretion, response to cyclic compounds, symbiosis, and RNA metabolism in fish fed the EOs-supplemented diet. Particularly, the activation of leukocytes, such as acidophilic granulocytes, was suggested to be the primary actors of the innate immune response promoted by the tested functional feed additive in the gut. Fish growth performance and gut microbiota alpha diversity indices were not affected, while dietary EOs promoted alterations in bacterial abundances in terms of phylum, class, and genus. Subtle, but significant alterations in microbiota composition, such as the decrease in Bacteroidia and Clostridia classes, were suggested to participate in the modulation of the intestine transcriptional immune profile observed in fish fed the EOs diet. Moreover, regarding microbiota functionality, increased bacterial sequences associated with glutathione and lipid metabolisms, among others, detected in fish fed the EOs supported the metabolic alterations suggested to potentially affect the observed immune-related transcriptional response. The overall results indicated that the tested dietary EOs may promote intestinal local immunity through the impact of the EOs on the host-microbial co-metabolism and consequent regulation of significant biological processes, evidencing the crosstalk between gut and microbiota in the inflammatory regulation upon administration of immunostimulant feed additives.
Collapse
Affiliation(s)
- Joana P. Firmino
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Sant Carles de la Ràpita, Spain
- TECNOVIT–FARMFAES, S.L. Alforja, Spain
- Ph.D. Program in Aquaculture, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eva Vallejos-Vidal
- Departamento de Biología, Facultad de Química y Biología, Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - M. Carmen Balebona
- Department of Microbiology, Faculty of Science, University of Malaga, Málaga, Spain
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Torre Marimon, Caldes de Montbui, Spain
| | - Isabel M. Cerezo
- Department of Microbiology, Faculty of Science, University of Malaga, Málaga, Spain
| | - Ricardo Salomón
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Sant Carles de la Ràpita, Spain
- Ph.D. Program in Aquaculture, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alicia Estevez
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Sant Carles de la Ràpita, Spain
| | | | - Felipe E. Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S. A., Santiago, Chile
| | - Enric Gisbert
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Sant Carles de la Ràpita, Spain
| |
Collapse
|
8
|
Gary E, O'Connor M, Chakhtoura M, Tardif V, Kumova OK, Malherbe DC, Sutton WF, Haigwood NL, Kutzler MA, Haddad EK. Adenosine deaminase-1 enhances germinal center formation and functional antibody responses to HIV-1 Envelope DNA and protein vaccines. Vaccine 2020; 38:3821-3831. [PMID: 32280045 PMCID: PMC7190415 DOI: 10.1016/j.vaccine.2020.03.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022]
Abstract
Adenosine deaminase-1 (ADA-1) plays both enzymatic and non-enzymatic roles in regulating immune cell function. Mutations in the ADA1 gene account for 15% of heritable severe-combined immunodeficiencies. We determined previously that ADA1 expression defines and is instrumental for the germinal center follicular helper T cell (TFH) phenotype using in vitro human assays. Herein, we tested whether ADA-1 can be used as an adjuvant to improve vaccine efficacy in vivo. In vitro, ADA-1 induced myeloid dendritic cell (mDC) maturation as measured by increased frequencies of CD40-, CD83-, CD86-, and HLA-DR-positive mDCs. ADA-1 treatment also promoted the secretion of the TFH-polarizing cytokine IL-6 from mDCs. In the context of an HIV-1 envelope (env) DNA vaccine, co-immunization with plasmid-encoded ADA-1 (pADA) enhanced humoral immunity. Animals co-immunized with env DNA and pADA had significantly increased frequencies of TFH cells in their draining lymph nodes and increased HIV-binding IgG in serum. Next, mice were co-immunized with subtype C env gp160 DNA and pADA along with simultaneous immunization with matched gp140 trimeric protein. Mice that received env gp160 DNA, pADA, and gp140 glycoprotein had significantly more heterologous HIV-specific binding IgG in their serum. Furthermore, only these mice had detectable neutralizing antibody responses. These studies support the use of ADA-1 as a vaccine adjuvant to qualitatively enhance germinal center responses and represent a novel application of an existing therapeutic agent that can be quickly translated for clinical use.
Collapse
Affiliation(s)
- Ebony Gary
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Margaret O'Connor
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States; The Department of Biochemistry and Cell Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Marita Chakhtoura
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Virginie Tardif
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ogan K Kumova
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Delphine C Malherbe
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - William F Sutton
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Michele A Kutzler
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States; The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Elias K Haddad
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States; The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
9
|
da Silva JLG, Passos DF, Bernardes VM, Leal DBR. ATP and adenosine: Role in the immunopathogenesis of rheumatoid arthritis. Immunol Lett 2019; 214:55-64. [PMID: 31479688 DOI: 10.1016/j.imlet.2019.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022]
Abstract
Rheumatoid arthritis (RA) is a classic inflammatory autoimmune disease. Local joint destruction and extra-articular manifestations of RA deeply compromise the life quality of the affected patients. RA immunopathogenesis depends on continuous immunogenic activation in which the purinergic system participates. The purinergic system comprises the signaling and metabolism of purines such as adenosine triphosphate (ATP) and adenosine. ATP signaling is involved in the activation and maintenance of the inflammatory state of RA through the activation of P2X7 and the production of cytokines, which orchestrate the pathogenesis of RA. The breakdown of ATP through the CD39/CD73 axis produces adenosine, which mostly inhibits the inflammatory process through activation of specific P1 receptors. Adenosine is hydrolyzed by adenosine deaminase (ADA) that interacts with other molecules playing additional roles in this disease. This review explores the release, metabolism, and the effects of binding of ATP and adenosine to their respective receptors in the context of RA, as well as their potential use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jean L G da Silva
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniela F Passos
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Viviane M Bernardes
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniela B R Leal
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
10
|
Adenosine signaling and adenosine deaminase regulation of immune responses: impact on the immunopathogenesis of HIV infection. Purinergic Signal 2018; 14:309-320. [PMID: 30097807 DOI: 10.1007/s11302-018-9619-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Infection by human immunodeficiency virus (HIV) causes the acquired immune deficiency syndrome (AIDS), which has devastating effects on the host immune system. HIV entry into host cells and subsequent viral replication induce a proinflammatory response, hyperactivating immune cells and leading them to death, disfunction, and exhaustion. Adenosine is an immunomodulatory molecule that suppresses immune cell function to protect tissue integrity. The anti-inflammatory properties of adenosine modulate the chronic inflammation and immune activation caused by HIV. Lack of adenosine contributes to pathogenic events in HIV infection. However, immunosuppression by adenosine has its shortcomings, such as impairing the immune response, hindering the elimination of the virus and control of viral replication. By attempting to control inflammation, adenosine feeds a pathogenic cycle affecting immune cells. Deamination of adenosine by ADA (adenosine deaminase) counteracts the negative effects of adenosine in immune cells, boosting the immune response. This review comprises the connection between adenosinergic system and HIV immunopathogenesis, exploring defects in immune cell function and the role of ADA in protecting these cells against damage.
Collapse
|
11
|
Bigley V, Cytlak U, Collin M. Human dendritic cell immunodeficiencies. Semin Cell Dev Biol 2018; 86:50-61. [PMID: 29452225 DOI: 10.1016/j.semcdb.2018.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/28/2017] [Accepted: 02/10/2018] [Indexed: 12/21/2022]
Abstract
The critical functions of dendritic cells (DCs) in immunity and tolerance have been demonstrated in many animal models but their non-redundant roles in humans are more difficult to probe. Human primary immunodeficiency (PID), resulting from single gene mutations, may result in DC deficiency or dysfunction. This relatively recent recognition illuminates the in vivo role of human DCs and the pathophysiology of the associated clinical syndromes. In this review, the development and function of DCs as established in murine models and human in vitro systems, discussed. This forms the basis of predicting the effects of DC deficiency in vivo and understanding the consequences of specific mutations on DC development and function. DC deficiency syndromes are associated with heterozygous GATA2 mutation, bi-allelic and heterozygous IRF8 mutation and heterozygous IKZF1 mutation. The intricate involvement of DCs in the balance between immunity and tolerance is leading to increased recognition of their involvement in a number of other immunodeficiencies and autoimmune conditions. Owing to the precise control of transcription factor gene expression by super-enhancer elements, phenotypic anomalies are relatively commonly caused by heterozygous mutations.
Collapse
Affiliation(s)
- Venetia Bigley
- Human DC Lab, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Urszula Cytlak
- Human DC Lab, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew Collin
- Human DC Lab, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Moreno E, Canet J, Gracia E, Lluís C, Mallol J, Canela EI, Cortés A, Casadó V. Molecular Evidence of Adenosine Deaminase Linking Adenosine A 2A Receptor and CD26 Proteins. Front Pharmacol 2018; 9:106. [PMID: 29497379 PMCID: PMC5818423 DOI: 10.3389/fphar.2018.00106] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/30/2018] [Indexed: 01/05/2023] Open
Abstract
Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR)-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA) is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26) and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A2AR present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A2AR and a modification of the bioluminescence resonance energy transfer (BRET) technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET), we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A2AR involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A2AR-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26) and dendritic cells (expressing A2AR). This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector) without partitioning these functions in different subunits.
Collapse
Affiliation(s)
- Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Júlia Canet
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Eduard Gracia
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Carme Lluís
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Josefa Mallol
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Enric I. Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Antoni Cortés
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
13
|
Abstract
Purpose of review Dendritic cells are specialized antigen-presenting cells which link innate and adaptive immunity, through recognition and presentation of antigen to T cells. Although the importance of dendritic cells has been demonstrated in many animal models, their contribution to human immunity remains relatively unexplored in vivo. Given their central role in infection, autoimmunity, and malignancy, dendritic cell deficiency or dysfunction would be expected to have clinical consequences. Recent findings Human dendritic cell deficiency disorders, related to GATA binding protein 2 (GATA2) and interferon regulatory factor 8 (IRF8) mutations, have highlighted the importance of dendritic cells and monocytes in primary immunodeficiency diseases and begun to shed light on their nonredundant roles in host defense and immune regulation in vivo. The contribution of dendritic cell and monocyte dysfunction to the pathogenesis of primary immunodeficiency disease phenotypes is becoming increasingly apparent. However, dendritic cell analysis is not yet a routine part of primary immunodeficiency disease workup. Summary Widespread uptake of dendritic cell/monocyte screening in clinical practice will facilitate the discovery of novel dendritic cell and monocyte disorders as well as advancing our understanding of human dendritic cell biology in health and disease.
Collapse
|
14
|
Metabolites: deciphering the molecular language between DCs and their environment. Semin Immunopathol 2016; 39:177-198. [PMID: 27921148 DOI: 10.1007/s00281-016-0609-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) determine the outcome of the immune response based on signals they receive from the environment. Presentation of antigen under various contexts can lead to activation and differentiation of T cells for immunity or dampening of immune responses by establishing tolerance, primarily through the priming of regulatory T cells. Infections, inflammation and normal cellular interactions shape DC responses through direct contact or via cytokine signaling. Although it is widely accepted that DCs sense microbial components through pattern recognition receptors (PRRs), increasing evidence advocates for the existence of a set of signals that can profoundly shape DC function via PRR-independent pathways. This diverse group of host- or commensal-derived metabolites represents a newly appreciated code from which DCs can interpret environmental cues. In this review, we discuss the existing information on the effect of some of the most studied metabolites on DC function, together with the implications this may have in immune-mediated diseases.
Collapse
|
15
|
Liang D, Zuo A, Zhao R, Shao H, Kaplan HJ, Sun D. Regulation of Adenosine Deaminase on Induced Mouse Experimental Autoimmune Uveitis. THE JOURNAL OF IMMUNOLOGY 2016; 196:2646-54. [PMID: 26856700 DOI: 10.4049/jimmunol.1502294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/05/2016] [Indexed: 01/25/2023]
Abstract
Adenosine is an important regulator of the immune response, and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies showed that adenosine receptor agonists can be anti- or proinflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoimmune uveitis (EAU) induced by immunizing EAU-prone mice with a known uveitogenic peptide, IRBP1-20. Our results showed that the effective time to administer a single dose of ADA to suppress induction of EAU was 8-14 d postimmunization, shortly before EAU expression; however, ADA treatment at other time points exacerbated disease. ADA preferentially inhibited Th17 responses, and this effect was γδ T cell dependent. Our results demonstrated that the existing immune status strongly influences the anti- or proinflammatory effects of ADA. Our observations should help to improve the design of ADA- and adenosine receptor-targeted therapies.
Collapse
Affiliation(s)
- Dongchun Liang
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90033
| | - Aijun Zuo
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90033
| | - Ronglan Zhao
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90033; Department of Medical Laboratory, Key Laboratory of Clinical Laboratory Diagnostics, University of Shandong, Weifang Medical University, Weifang, Shandong 261053, China; and
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202
| | - Deming Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90033;
| |
Collapse
|
16
|
Naval-Macabuhay I, Casanova V, Navarro G, García F, León A, Miralles L, Rovira C, Martinez-Navio JM, Gallart T, Mallol J, Gatell JM, Lluís C, Franco R, McCormick PJ, Climent N. Adenosine deaminase regulates Treg expression in autologous T cell-dendritic cell cocultures from patients infected with HIV-1. J Leukoc Biol 2015; 99:349-59. [PMID: 26310829 DOI: 10.1189/jlb.3a1214-580rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 08/15/2015] [Indexed: 12/26/2022] Open
Abstract
Regulatory T cells have an important role in immune suppression during HIV-1 infection. As regulatory T cells produce the immunomodulatory molecule adenosine, our aim here was to assess the potential of adenosine removal to revert the suppression of anti-HIV responses exerted by regulatory T cells. The experimental setup consisted of ex vivo cocultures of T and dendritic cells, to which adenosine deaminase, an enzyme that hydrolyzes adenosine, was added. In cells from healthy individuals, adenosine hydrolysis decreased CD4(+)CD25(hi) regulatory T cells. Addition of 5'-N-ethylcarboxamidoadenosine, an adenosine receptor agonist, significantly decreased CD4(+)CD25(lo) cells, confirming a modulatory role of adenosine acting via adenosine receptors. In autologous cocultures of T cells with HIV-1-pulsed dendritic cells, addition of adenosine deaminase led to a significant decrease of HIV-1-induced CD4(+)CD25(hi) forkhead box p3(+) cells and to a significant enhancement of the HIV-1-specific CD4(+) responder T cells. An increase in the effector response was confirmed by the enhanced production of CD4(+) and CD8(+) CD25(-)CD45RO(+) memory cell generation and secretion of Th1 cytokines, including IFN-γ and IL-15 and chemokines MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5. These ex vivo results show, in a physiologically relevant model, that adenosine deaminase is able to enhance HIV-1 effector responses markedly. The possibility to revert regulatory T cell-mediated inhibition of immune responses by use of adenosine deaminase, an enzyme that hydrolyzes adenosine, merits attention for restoring T lymphocyte function in HIV-1 infection.
Collapse
Affiliation(s)
- Isaac Naval-Macabuhay
- *Department of Biochemistry and Molecular Biology, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer-AIDS Research Group and Catalonian Center for HIV Vaccines, Barcelona, Spain; Infectious Diseases and AIDS Unit and Service of Immunology, Hospital Clínic de Barcelona, Spain; and School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Víctor Casanova
- *Department of Biochemistry and Molecular Biology, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer-AIDS Research Group and Catalonian Center for HIV Vaccines, Barcelona, Spain; Infectious Diseases and AIDS Unit and Service of Immunology, Hospital Clínic de Barcelona, Spain; and School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Gemma Navarro
- *Department of Biochemistry and Molecular Biology, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer-AIDS Research Group and Catalonian Center for HIV Vaccines, Barcelona, Spain; Infectious Diseases and AIDS Unit and Service of Immunology, Hospital Clínic de Barcelona, Spain; and School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Felipe García
- *Department of Biochemistry and Molecular Biology, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer-AIDS Research Group and Catalonian Center for HIV Vaccines, Barcelona, Spain; Infectious Diseases and AIDS Unit and Service of Immunology, Hospital Clínic de Barcelona, Spain; and School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Agathe León
- *Department of Biochemistry and Molecular Biology, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer-AIDS Research Group and Catalonian Center for HIV Vaccines, Barcelona, Spain; Infectious Diseases and AIDS Unit and Service of Immunology, Hospital Clínic de Barcelona, Spain; and School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Laia Miralles
- *Department of Biochemistry and Molecular Biology, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer-AIDS Research Group and Catalonian Center for HIV Vaccines, Barcelona, Spain; Infectious Diseases and AIDS Unit and Service of Immunology, Hospital Clínic de Barcelona, Spain; and School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Cristina Rovira
- *Department of Biochemistry and Molecular Biology, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer-AIDS Research Group and Catalonian Center for HIV Vaccines, Barcelona, Spain; Infectious Diseases and AIDS Unit and Service of Immunology, Hospital Clínic de Barcelona, Spain; and School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - José M Martinez-Navio
- *Department of Biochemistry and Molecular Biology, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer-AIDS Research Group and Catalonian Center for HIV Vaccines, Barcelona, Spain; Infectious Diseases and AIDS Unit and Service of Immunology, Hospital Clínic de Barcelona, Spain; and School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Teresa Gallart
- *Department of Biochemistry and Molecular Biology, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer-AIDS Research Group and Catalonian Center for HIV Vaccines, Barcelona, Spain; Infectious Diseases and AIDS Unit and Service of Immunology, Hospital Clínic de Barcelona, Spain; and School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Josefa Mallol
- *Department of Biochemistry and Molecular Biology, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer-AIDS Research Group and Catalonian Center for HIV Vaccines, Barcelona, Spain; Infectious Diseases and AIDS Unit and Service of Immunology, Hospital Clínic de Barcelona, Spain; and School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - José M Gatell
- *Department of Biochemistry and Molecular Biology, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer-AIDS Research Group and Catalonian Center for HIV Vaccines, Barcelona, Spain; Infectious Diseases and AIDS Unit and Service of Immunology, Hospital Clínic de Barcelona, Spain; and School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Carme Lluís
- *Department of Biochemistry and Molecular Biology, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer-AIDS Research Group and Catalonian Center for HIV Vaccines, Barcelona, Spain; Infectious Diseases and AIDS Unit and Service of Immunology, Hospital Clínic de Barcelona, Spain; and School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Rafael Franco
- *Department of Biochemistry and Molecular Biology, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer-AIDS Research Group and Catalonian Center for HIV Vaccines, Barcelona, Spain; Infectious Diseases and AIDS Unit and Service of Immunology, Hospital Clínic de Barcelona, Spain; and School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Peter J McCormick
- *Department of Biochemistry and Molecular Biology, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer-AIDS Research Group and Catalonian Center for HIV Vaccines, Barcelona, Spain; Infectious Diseases and AIDS Unit and Service of Immunology, Hospital Clínic de Barcelona, Spain; and School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Núria Climent
- *Department of Biochemistry and Molecular Biology, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer-AIDS Research Group and Catalonian Center for HIV Vaccines, Barcelona, Spain; Infectious Diseases and AIDS Unit and Service of Immunology, Hospital Clínic de Barcelona, Spain; and School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| |
Collapse
|
17
|
Wang Y, Chen X, Liu L, Chen Y, Ma H, Yang R, Liu X. Identifying the causative proteins of similar side effect pairs to explore the common molecular basis of these side effects. MOLECULAR BIOSYSTEMS 2015; 11:2060-7. [PMID: 25992869 DOI: 10.1039/c5mb00242g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drug side effects, or adverse drug reactions (ADRs), have become a major public health concern and often cause drug development failure and withdrawal. Some ADRs always occur concomitantly. Therefore, identifying these ADRs and their common molecular basis can better promote their prevention and treatment. In this paper we predicted the potential proteins for ADR pairs with similar mechanisms based on three layers of information: (i) the drug co-occurrence between a pair of ADRs; (ii) the correlation between a protein and an ADR pair based on the co-occurrence of drugs and (iii) the interaction between these proteins within the protein-protein interaction (PPI) network. The methods of randomization and functional annotation are used to investigate and analyze the relation between causative proteins and similar ADR pairs. The prediction accuracy of the relation between similar ADR pairs and related proteins reached 80%, and it increases with the number of drugs shared by the ADR pairs. From the ADR network made of single ADRs from predicted similar ADR pairs, we found that some ADRs are involved in multiple ADR pairs. The functional analysis of these ADR-related proteins suggests that a similar molecular basis is shared by multiple ADR pairs containing the same ADR, and these ADR pairs are almost caused by the same drug sets. The results of this study are reliable and provide a theoretical basis for the better prevention and treatment of ADRs that always occur concomitantly.
Collapse
Affiliation(s)
- Yunfeng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Zanette RA, Bitencourt PER, Kontoyiannis DP, Fighera RA, Flores MM, Kommers GD, Silva PS, Ludwig A, Moretto MB, Alves SH, Santurio JM. Complex interaction of deferasirox and Pythium insidiosum: iron-dependent attenuation of growth in vitro and immunotherapy-like enhancement of immune responses in vivo. PLoS One 2015; 10:e0118932. [PMID: 25738758 PMCID: PMC4349436 DOI: 10.1371/journal.pone.0118932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022] Open
Abstract
Pythium insidiosum iron acquisition mechanisms are unknown. We previously showed that the iron chelator deferasirox had weak activity in vitro and in rabbits with experimental pythiosis. Here we show that deferasirox causes damage to P. insidiosum hyphae in vitro, but that activity is diminished in the presence of exogenous iron. The tissue activity of the proinflammatory enzyme adenosine deaminase and the histological pattern observed in pythiosis lesions of rabbits treated with deferasirox were similar to the ones in animals treated with immunotherapy.
Collapse
Affiliation(s)
- Régis A. Zanette
- Graduate Program in Pharmacology, Health Science Center, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Paula E. R. Bitencourt
- Graduate Program in Pharmaceutical Sciences, Health Science Center, UFSM, Santa Maria, RS, Brazil
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Rafael A. Fighera
- Graduate Program in Veterinary Medicine, Health Science Center, UFSM, Santa Maria, RS, Brazil
| | - Mariana M. Flores
- Graduate Program in Veterinary Medicine, Health Science Center, UFSM, Santa Maria, RS, Brazil
| | - Glaucia D. Kommers
- Graduate Program in Veterinary Medicine, Health Science Center, UFSM, Santa Maria, RS, Brazil
| | - Priscila S. Silva
- Graduate Program in Pharmaceutical Sciences, Health Science Center, UFSM, Santa Maria, RS, Brazil
| | - Aline Ludwig
- Graduate Program in Pharmacology, Health Science Center, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Maria B. Moretto
- Graduate Program in Pharmaceutical Sciences, Health Science Center, UFSM, Santa Maria, RS, Brazil
| | - Sydney H. Alves
- Graduate Program in Pharmacology, Health Science Center, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
- Graduate Program in Pharmaceutical Sciences, Health Science Center, UFSM, Santa Maria, RS, Brazil
| | - Janio M. Santurio
- Graduate Program in Pharmacology, Health Science Center, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
- * E-mail:
| |
Collapse
|
19
|
Climent N, Munier S, Piqué N, García F, Pavot V, Primard C, Casanova V, Gatell JM, Verrier B, Gallart T. Loading dendritic cells with PLA-p24 nanoparticles or MVA expressing HIV genes induces HIV-1-specific T cell responses. Vaccine 2014; 32:6266-76. [PMID: 25240755 DOI: 10.1016/j.vaccine.2014.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 08/28/2014] [Accepted: 09/05/2014] [Indexed: 02/05/2023]
Abstract
Since recent data suggest that nanoparticles and modified vaccinia ankara (MVA) vectors could play a pivotal role in HIV-1 therapeutics and vaccine design, in an ex vivo model of human monocyte-derived dendritic cells (MDDCs), we compared two different loading strategies with HIV-1 vaccine vehicles, either viral or synthetic derived. We used polylactic acid (PLA) colloidal biodegradable particles, coated with HIV Gag antigens (p24), and MVA expressing Gag (rMVA-gag and rMVA-gag/trans membrane) or Tat, Nef and Rev genes (rMVA tat+rev and rMVA nef). PLA-p24 captured by MDDCs from HIV-1 individuals induced a slight degree of MDDC maturation, cytokine and chemokine secretion and migration towards a gradient of CCL19 chemokine and highly increased HIV-specific CD8(+) T-cell proliferation compared with p24 alone. After complete maturation induction of PLA-p24-pulsed MDDCs, maximal migration towards a gradient of CCL19 chemokine and induction of HIV-specific T-cell proliferation (two-fold higher for CD4(+) than CD8(+)) and cytokine secretion (IFN-γ and IL-2) in the co-culture were observed. Upon exposure to MVA-gag, MDDCs produced cytokines and chemokines and maintained their capacity to migrate to a gradient of CCL19. MDDCs infected with MVA-gag and MVA-gag trans-membrane were able to induce HIV-specific CD8(+) proliferation and secretion of IFN-γ, IL-2, IL-6 and TNF-α. We conclude that both HIV antigens loading strategies (PLA-p24 nanoparticles or MVA expressing HIV genes) induce HIV-1-specific T-cell responses, which are able to kill autologous gag-expressing cells. Thus, they are plausible candidates for the development of anti-HIV vaccines.
Collapse
Affiliation(s)
- Núria Climent
- Service of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain; AIDS Research Group, and Catalonian Center for HIV Vaccines (HIVACAT), Barcelona, Spain.
| | - Séverine Munier
- Institut de Biology et Chimie des Protéines, UMR5305, UCBL, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Núria Piqué
- Department of Microbiology and Parasitology, Pharmacy Faculty, Universitat de Barcelona, Barcelona, Spain
| | - Felipe García
- AIDS Research Group, and Catalonian Center for HIV Vaccines (HIVACAT), Barcelona, Spain; Infectious Diseases and AIDS Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Vincent Pavot
- Institut de Biology et Chimie des Protéines, UMR5305, UCBL, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Charlotte Primard
- Institut de Biology et Chimie des Protéines, UMR5305, UCBL, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Victor Casanova
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - José María Gatell
- AIDS Research Group, and Catalonian Center for HIV Vaccines (HIVACAT), Barcelona, Spain; Infectious Diseases and AIDS Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Bernard Verrier
- Institut de Biology et Chimie des Protéines, UMR5305, UCBL, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Teresa Gallart
- Service of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain; AIDS Research Group, and Catalonian Center for HIV Vaccines (HIVACAT), Barcelona, Spain
| |
Collapse
|
20
|
Cortés A, Gracia E, Moreno E, Mallol J, Lluís C, Canela EI, Casadó V. Moonlighting Adenosine Deaminase: A Target Protein for Drug Development. Med Res Rev 2014; 35:85-125. [DOI: 10.1002/med.21324] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Antoni Cortés
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Eduard Gracia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Estefania Moreno
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Josefa Mallol
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Carme Lluís
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Enric I. Canela
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Vicent Casadó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| |
Collapse
|
21
|
García F, Plana M, Climent N, León A, Gatell JM, Gallart T. Dendritic cell based vaccines for HIV infection: the way ahead. Hum Vaccin Immunother 2013; 9:2445-52. [PMID: 23912672 PMCID: PMC3981855 DOI: 10.4161/hv.25876] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/24/2013] [Indexed: 01/23/2023] Open
Abstract
Dendritic cells have a central role in HIV infection. On one hand, they are essential to induce strong HIV-specific CD4⁺ helper T-cell responses that are crucial to achieve a sustained and effective HIV-specific CD8⁺ cytotoxic T-lymphocyte able to control HIV replication. On the other hand, DCs contribute to virus dissemination and HIV itself could avoid a correct antigen presentation. As the efficacy of immune therapy and therapeutic vaccines against HIV infection has been modest in the best of cases, it has been hypothesized that ex vivo generated DC therapeutic vaccines aimed to induce effective specific HIV immune responses might overcome some of these problems. In fact, DC-based vaccine clinical trials have yielded the best results in this field. However, despite these encouraging results, functional cure has not been reached with this strategy in any patient. In this Commentary, we discuss new approaches to improve the efficacy and feasibility of this type of therapeutic vaccine.
Collapse
Affiliation(s)
- Felipe García
- Hospital Clinic-HIVACAT; IDIBAPS; University of Barcelona; Barcelona, Spain
| | - Montserrat Plana
- Hospital Clinic-HIVACAT; IDIBAPS; University of Barcelona; Barcelona, Spain
| | - Nuria Climent
- Hospital Clinic-HIVACAT; IDIBAPS; University of Barcelona; Barcelona, Spain
| | - Agathe León
- Hospital Clinic-HIVACAT; IDIBAPS; University of Barcelona; Barcelona, Spain
| | - Jose M Gatell
- Hospital Clinic-HIVACAT; IDIBAPS; University of Barcelona; Barcelona, Spain
| | - Teresa Gallart
- Hospital Clinic-HIVACAT; IDIBAPS; University of Barcelona; Barcelona, Spain
| |
Collapse
|