1
|
Finlay JB, Ireland AS, Hawgood SB, Reyes T, Ko T, Olsen RR, Abi Hachem R, Jang DW, Bell D, Chan JM, Goldstein BJ, Oliver TG. Olfactory neuroblastoma mimics molecular heterogeneity and lineage trajectories of small-cell lung cancer. Cancer Cell 2024; 42:1086-1105.e13. [PMID: 38788720 PMCID: PMC11186085 DOI: 10.1016/j.ccell.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/13/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
The olfactory epithelium undergoes neuronal regeneration from basal stem cells and is susceptible to olfactory neuroblastoma (ONB), a rare tumor of unclear origins. Employing alterations in Rb1/Trp53/Myc (RPM), we establish a genetically engineered mouse model of high-grade metastatic ONB exhibiting a NEUROD1+ immature neuronal phenotype. We demonstrate that globose basal cells (GBCs) are a permissive cell of origin for ONB and that ONBs exhibit cell fate heterogeneity that mimics normal GBC developmental trajectories. ASCL1 loss in RPM ONB leads to emergence of non-neuronal histopathologies, including a POU2F3+ microvillar-like state. Similar to small-cell lung cancer (SCLC), mouse and human ONBs exhibit mutually exclusive NEUROD1 and POU2F3-like states, an immune-cold tumor microenvironment, intratumoral cell fate heterogeneity comprising neuronal and non-neuronal lineages, and cell fate plasticity-evidenced by barcode-based lineage tracing and single-cell transcriptomics. Collectively, our findings highlight conserved similarities between ONB and neuroendocrine tumors with significant implications for ONB classification and treatment.
Collapse
Affiliation(s)
- John B Finlay
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham 27710, NC, USA
| | - Abbie S Ireland
- Department of Pharmacology and Cancer Biology, Duke University, Durham 27710, NC, USA
| | - Sarah B Hawgood
- Department of Pharmacology and Cancer Biology, Duke University, Durham 27710, NC, USA
| | - Tony Reyes
- Department of Pharmacology and Cancer Biology, Duke University, Durham 27710, NC, USA; Department of Oncological Sciences, University of Utah, Salt Lake City 84112, UT, USA
| | - Tiffany Ko
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham 27710, NC, USA
| | - Rachelle R Olsen
- Department of Oncological Sciences, University of Utah, Salt Lake City 84112, UT, USA
| | - Ralph Abi Hachem
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham 27710, NC, USA
| | - David W Jang
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham 27710, NC, USA
| | - Diana Bell
- Division of Anatomic Pathology, City of Hope Comprehensive Cancer Center, Duarte 91010, CA, USA
| | - Joseph M Chan
- Human Oncology and Pathogenesis Program, Memorial-Sloan Kettering Cancer Center, New York City 10065, NY, USA
| | - Bradley J Goldstein
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham 27710, NC, USA; Department of Neurobiology, Duke University, Durham 27710, NC, USA.
| | - Trudy G Oliver
- Department of Pharmacology and Cancer Biology, Duke University, Durham 27710, NC, USA; Department of Oncological Sciences, University of Utah, Salt Lake City 84112, UT, USA.
| |
Collapse
|
2
|
Yu P, Chen W, Jiang L, Jia Y, Xu X, Shen W, Jin N, Du H. Olfactory dysfunction and the role of stem cells in the regeneration of olfactory neurons. Heliyon 2024; 10:e29948. [PMID: 38694081 PMCID: PMC11058886 DOI: 10.1016/j.heliyon.2024.e29948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
The prevalence of COVID-19 has drawn increasing attention to olfactory dysfunction among researchers. Olfactory dysfunction manifests in various clinical types, influenced by numerous pathogenic factors. Despite this diversity, the underlying pathogenesis remains largely elusive, contributing to a lack of standardized treatment approaches. However, the potential regeneration of olfactory neurons within the nasal cavity presents a promising avenue for addressing olfactory dysfunction effectively. Our review aims to delve into the current research landscape and treatment modalities concerning olfactory dysfunction, emphasizing etiology, pathogenesis, clinical interventions, and the role of stem cells in regenerating olfactory nerves. Through this comprehensive examination, we aim to provide valuable insights into understanding the onset, progression, and treatment of olfactory dysfunction diseases.
Collapse
Affiliation(s)
- Pengju Yu
- Department of Otolaryngology, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Weiguan Chen
- Operating Room, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Ling Jiang
- Operating Room, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Yufeng Jia
- Operating Room, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Xiaoyan Xu
- Operating Room, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Weiye Shen
- Operating Room, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Ni Jin
- Operating Room, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Hongjie Du
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| |
Collapse
|
3
|
Hirota J. Molecular mechanisms of differentiation and class choice of olfactory sensory neurons. Genesis 2024; 62:e23587. [PMID: 38454646 DOI: 10.1002/dvg.23587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
The sense of smell is intricately linked to essential animal behaviors necessary for individual survival and species preservation. During vertebrate evolution, odorant receptors (ORs), responsible for detecting odor molecules, have evolved to adapt to changing environments, transitioning from aquatic to terrestrial habitats and accommodating increasing complex chemical environments. These evolutionary pressures have given rise to the largest gene family in vertebrate genomes. Vertebrate ORs are phylogenetically divided into two major classes; class I and class II. Class I OR genes, initially identified in fish and frog, have persisted across vertebrate species. On the other hand, class II OR genes are unique to terrestrial animals, accounting for ~90% of mammalian OR genes. In mice, each olfactory sensory neuron (OSN) expresses a single functional allele of a single OR gene from either the class I or class II OR repertoire. This one neuron-one receptor rule is established through two sequential steps: specification of OR class and subsequent exclusive OR expression from the corresponding OR class. Consequently, OSNs acquire diverse neuronal identities during the process of OSN differentiation, enabling animals to detect a wide array of odor molecules. This review provides an overview of the OSN differentiation process through which OSN diversity is achieved, primarily using the mouse as a model animal.
Collapse
Affiliation(s)
- Junji Hirota
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Center for Integrative Biosciences, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
4
|
Zunitch MJ, Fisch AS, Lin B, Barrios-Camacho CM, Faquin WC, Tachie-Baffour Y, Louie JD, Jang W, Curry WT, Gray ST, Lin DT, Schwob JE, Holbrook EH. Molecular Evidence for Olfactory Neuroblastoma as a Tumor of Malignant Globose Basal Cells. Mod Pathol 2023; 36:100122. [PMID: 36841178 PMCID: PMC10198888 DOI: 10.1016/j.modpat.2023.100122] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Olfactory neuroblastoma (ONB, esthesioneuroblastoma) is a sinonasal cancer with an underdeveloped diagnostic toolkit, and is the subject of many incidents of tumor misclassification throughout the literature. Despite its name, connections between the cancer and normal cells of the olfactory epithelium have not been systematically explored and markers of olfactory epithelial cell types are not deployed in clinical practice. Here, we utilize an integrated human-mouse single-cell atlas of the nasal mucosa, including the olfactory epithelium, to identify transcriptomic programs that link ONB to a specific population of stem/progenitor cells known as olfactory epithelial globose basal cells (GBCs). Expression of a GBC transcription factor NEUROD1 distinguishes both low- and high-grade ONB from sinonasal undifferentiated carcinoma, a potential histologic mimic with a distinctly unfavorable prognosis. Furthermore, we identify a reproducible subpopulation of highly proliferative ONB cells expressing the GBC stemness marker EZH2, suggesting that EZH2 inhibition may play a role in the targeted treatment of ONB. Finally, we study the cellular states comprising ONB parenchyma using single-cell transcriptomics and identify evidence of a conserved GBC transcriptional regulatory circuit that governs divergent neuronal-versus-sustentacular differentiation. These results link ONB to a specific cell type for the first time and identify conserved developmental pathways within ONB that inform diagnostic, prognostic, and mechanistic investigation.
Collapse
Affiliation(s)
- Matthew J Zunitch
- Medical Scientist Training Program, Tufts University School of Medicine, Boston, Massachusetts; Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - Adam S Fisch
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brian Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - William C Faquin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yaw Tachie-Baffour
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - Jonathan D Louie
- Medical Scientist Training Program, Tufts University School of Medicine, Boston, Massachusetts; Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Woochan Jang
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - William T Curry
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stacey T Gray
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Derrick T Lin
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - James E Schwob
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts; Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts.
| | - Eric H Holbrook
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
5
|
Sheng Y, Chen J, Jiang H, Lu Y, Dong Z, Pang L, Zhang J, Wang Y, Chen X, Huang J. The vitellogenin receptor gene contributes to mating and host-searching behaviors in parasitoid wasps. iScience 2023; 26:106298. [PMID: 36950109 PMCID: PMC10025991 DOI: 10.1016/j.isci.2023.106298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Vitellogenin receptor (VgR) is essential to vitellogenin uptaking and dominates ovary maturation in insects. However, the function of VgR in parasitoid wasps is largely unknown. Here, we applied the Drosophila parasitoid Leptopilina boulardi as a study model to investigate the function of VgR in parasitoids. Despite the conserved sequence characteristics with other insect VgRs, we found L. boulardi VgR (LbVgR) gene was highly expressed in head but lower in ovary. In addition, we found that LbVgR had no effects on ovary development, but participated in host-searching behavior of female L. boulardi and mating behavior of male L. boulardi. Comparative transcriptome analysis further revealed LbVgR might play crucial roles in regulating the expression of some important chemoreception genes to adjust the parasitoid behaviors. These results will broaden our knowledge of the function of VgR in insects, and contribute to develop advanced pest management strategies using parasitoids as biocontrol agents.
Collapse
Affiliation(s)
- Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jiani Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang University, Hangzhou 310058, China
| | - Hanyu Jiang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yueqi Lu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhi Dong
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Lan Pang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang University, Hangzhou 310058, China
| | - Junwei Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Ying Wang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xuexin Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Corresponding author
| |
Collapse
|
6
|
Mercurio S. SOX2-Sensing: Insights into the Role of SOX2 in the Generation of Sensory Cell Types in Vertebrates. Int J Mol Sci 2023; 24:ijms24087637. [PMID: 37108798 PMCID: PMC10141063 DOI: 10.3390/ijms24087637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The SOX2 transcription factor is a key regulator of nervous system development, and its mutation in humans leads to a rare disease characterized by severe eye defects, cognitive defects, hearing defects, abnormalities of the CNS and motor control problems. SOX2 has an essential role in neural stem cell maintenance in specific regions of the brain, and it is one of the master genes required for the generation of induced pluripotent stem cells. Sox2 is expressed in sensory organs, and this review will illustrate how it regulates the differentiation of sensory cell types required for hearing, touching, tasting and smelling in vertebrates and, in particular, in mice.
Collapse
Affiliation(s)
- Sara Mercurio
- Department of Biotechnologies and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
7
|
Leung HW, Foo G, VanDongen A. Arc Regulates Transcription of Genes for Plasticity, Excitability and Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081946. [PMID: 36009494 PMCID: PMC9405677 DOI: 10.3390/biomedicines10081946] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by pharmacological network activation was prevented using a short hairpin RNA, the expression profile was altered for over 1900 genes, which included genes associated with synaptic function, neuronal plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc can control expression in the absence of activated signalling pathways. Taken together, these data establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that it plays a significant role in the pathophysiology of AD.
Collapse
Affiliation(s)
| | - Gabriel Foo
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antonius VanDongen
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Correspondence:
| |
Collapse
|
8
|
Kocagöz Y, Demirler MC, Eski SE, Güler K, Dokuzluoglu Z, Fuss SH. Disparate progenitor cell populations contribute to maintenance and repair neurogenesis in the zebrafish olfactory epithelium. Cell Tissue Res 2022; 388:331-358. [PMID: 35266039 DOI: 10.1007/s00441-022-03597-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 02/02/2022] [Indexed: 12/25/2022]
Abstract
Olfactory sensory neurons (OSNs) undergo constant turnover under physiological conditions but also regenerate efficiently following tissue injury. Maintenance and repair neurogenesis in the olfactory epithelium (OE) have been attributed to the selective activity of globose (GBCs) and horizontal basal cells (HBCs), respectively. In zebrafish, cells with GBC-like properties are localized to the peripheral margins of the sensory OE and contribute to OSN neurogenesis in the intact OE, while cells that resemble HBCs at the morphological and molecular level are more uniformly distributed. However, the contribution of these cells to the restoration of the injured OE has not been demonstrated. Here, we provide a detailed cellular and molecular analysis of the tissue response to injury and show that a dual progenitor cell system also exists in zebrafish. Zebrafish HBCs respond to the structural damage of the OE and generate a transient population of proliferative neurogenic progenitors that restores OSNs. In contrast, selective ablation of OSNs by axotomy triggers neurogenic GBC proliferation, suggesting that distinct signaling events activate GBC and HBC responses. Molecular analysis of differentially expressed genes in lesioned and regenerating OEs points toward an involvement of the canonical Wnt/β-catenin pathway. Activation of Wnt signaling appears to be sufficient to stimulate mitotic activity, while inhibition significantly reduces, but does not fully eliminate, HBC responses. Zebrafish HBCs are surprisingly active even under physiological conditions with a strong bias toward the zones of constitutive OSN neurogenesis, suggestive of a direct lineage relationship between progenitor cell subtypes.
Collapse
Affiliation(s)
- Yigit Kocagöz
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Kuzey Park 319, 34342, Bebek - Istanbul, Turkey
| | - Mehmet Can Demirler
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Kuzey Park 319, 34342, Bebek - Istanbul, Turkey
| | - Sema Elif Eski
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Kuzey Park 319, 34342, Bebek - Istanbul, Turkey
- Institute of Interdisciplinary Research in Human and Molecular Biology, Free University of Brussels, Campus Erasme, 1070, Brussels, Belgium
| | - Kardelen Güler
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Kuzey Park 319, 34342, Bebek - Istanbul, Turkey
| | - Zeynep Dokuzluoglu
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Kuzey Park 319, 34342, Bebek - Istanbul, Turkey
| | - Stefan H Fuss
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Kuzey Park 319, 34342, Bebek - Istanbul, Turkey.
| |
Collapse
|
9
|
Hu B, Zhang J, Gong M, Deng Y, Cao Y, Xiang Y, Ye D. Research Progress of Olfactory Nerve Regeneration Mechanism and Olfactory Training. Ther Clin Risk Manag 2022; 18:185-195. [PMID: 35281777 PMCID: PMC8906848 DOI: 10.2147/tcrm.s354695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
The olfactory nerve (ON) is the only cranial nerve exposed to the external environment. Hence, it is susceptible to damage from head trauma, viral infection, inflammatory stimulation, and chemical toxins, which can lead to olfactory dysfunction. However, compared with all other cranial nerves, the ON is unique due to its inherent ability to regenerate. This characteristic provides a theoretical basis for treatment of olfactory dysfunction. Olfactory training (OT) is one of the main treatments for olfactory dysfunction. It is easy to apply and has few side-effects, and has been shown to be efficacious for patients with olfactory dysfunction of various causes. To further understand the application value of ON regeneration and OT on olfactory dysfunction, we review the research progress on the mechanism of ON regeneration and OT.
Collapse
Affiliation(s)
- Bian Hu
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
- Department of Otorhinolaryngology-Head and Neck Surgery, Ninghai First Hospital, Ningbo, 315699, Zhejiang, People’s Republic of China
| | - Jingyu Zhang
- Shanghai Jiao Tong University, Shanghai, 200030, People’s Republic of China
| | - Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
| | - Yujie Cao
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
- Correspondence: Dong Ye, Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China, Tel +86 13819861213, Fax +86 574-87392232, Email
| |
Collapse
|
10
|
Flora P, Dalal G, Cohen I, Ezhkova E. Polycomb Repressive Complex(es) and Their Role in Adult Stem Cells. Genes (Basel) 2021; 12:1485. [PMID: 34680880 PMCID: PMC8535826 DOI: 10.3390/genes12101485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/31/2022] Open
Abstract
Populations of resident stem cells (SCs) are responsible for maintaining, repairing, and regenerating adult tissues. In addition to having the capacity to generate all the differentiated cell types of the tissue, adult SCs undergo long periods of quiescence within the niche to maintain themselves. The process of SC renewal and differentiation is tightly regulated for proper tissue regeneration throughout an organisms' lifetime. Epigenetic regulators, such as the polycomb group (PcG) of proteins have been implicated in modulating gene expression in adult SCs to maintain homeostatic and regenerative balances in adult tissues. In this review, we summarize the recent findings that elucidate the composition and function of the polycomb repressive complex machinery and highlight their role in diverse adult stem cell compartments.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| | - Gil Dalal
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Elena Ezhkova
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| |
Collapse
|
11
|
Jia C, Oliver J, Gilmer D, Lovins C, Rodriguez-Gil DJ, Hagg T. Inhibition of focal adhesion kinase increases adult olfactory stem cell self-renewal and neuroregeneration through ciliary neurotrophic factor. Stem Cell Res 2020; 49:102061. [PMID: 33130470 PMCID: PMC7903807 DOI: 10.1016/j.scr.2020.102061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023] Open
Abstract
Constant neuroregeneration in adult olfactory epithelium maintains olfactory function by basal stem cell proliferation and differentiation to replace lost olfactory sensory neurons (OSNs). Understanding the mechanisms regulating this process could reveal potential therapeutic targets for stimulating adult olfactory neurogenesis under pathological conditions and aging. Ciliary neurotrophic factor (CNTF) in astrocytes promotes forebrain neurogenesis but its function in the olfactory system is unknown. Here, we show in mouse olfactory epithelium that CNTF is expressed in horizontal basal cells, olfactory ensheathing cells (OECs) and a small subpopulation of OSNs. CNTF receptor alpha was expressed in Mash1-positive globose basal cells (GBCs) and OECs. Thus, CNTF may affect GBCs in a paracrine manner. CNTF−/− mice did not display altered GBC proliferation or olfactory function, suggesting that CNTF is not involved in basal olfactory renewal or that they developed compensatory mechanisms. Therefore, we tested the effect of increased CNTF in wild type mice. Intranasal instillation of a focal adhesion kinase (FAK) inhibitor, FAK14, upregulated CNTF expression. FAK14 also promoted GBC proliferation, neuronal differentiation and basal stem cell self-renewal but had no effective in CNTF−/− mice, suggesting that FAK inhibition promotes olfactory neuroregeneration through CNTF, making them potential targets to treat sensorineural anosmia due to OSN loss.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States.
| | - Joe Oliver
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Dustin Gilmer
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Diego J Rodriguez-Gil
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Theo Hagg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| |
Collapse
|
12
|
Demirler MC, Sakizli U, Bali B, Kocagöz Y, Eski SE, Ergönen A, Alkiraz AS, Bayramli X, Hassenklöver T, Manzini I, Fuss SH. Purinergic signalling selectively modulates maintenance but not repair neurogenesis in the zebrafish olfactory epithelium. FEBS J 2019; 287:2699-2722. [PMID: 31821713 DOI: 10.1111/febs.15170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/26/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
Olfactory sensory neurons (OSNs) of the vertebrate olfactory epithelium (OE) undergo continuous turnover but also regenerate efficiently when the OE is acutely damaged by traumatic injury. Two distinct pools of neuronal stem/progenitor cells, the globose (GBCs), and horizontal basal cells (HBCs) have been shown to selectively contribute to intrinsic OSN turnover and damage-induced OE regeneration, respectively. For both types of progenitors, their rate of cell divisions and OSN production must match the actual loss of cells to maintain or to re-establish sensory function. However, signals that communicate between neurons or glia cells of the OE and resident neurogenic progenitors remain largely elusive. Here, we investigate the effect of purinergic signaling on cell proliferation and OSN neurogenesis in the zebrafish OE. Purine stimulation elicits transient Ca2+ signals in OSNs and distinct non-neuronal cell populations, which are located exclusively in the basal OE and stain positive for the neuronal stem cell marker Sox2. The more apical population of Sox2-positive cells comprises evenly distributed glia-like sustentacular cells (SCs) and spatially restricted GBC-like cells, whereas the more basal population expresses the HBC markers keratin 5 and tumor protein 63 and lines the entire sensory OE. Importantly, exogenous purine stimulation promotes P2 receptor-dependent mitotic activity and OSN generation from sites where GBCs are located but not from HBCs. We hypothesize that purine compounds released from dying OSNs modulate GBC progenitor cell cycling in a dose-dependent manner that is proportional to the number of dying OSNs and, thereby, ensures a constant pool of sensory neurons over time.
Collapse
Affiliation(s)
- Mehmet Can Demirler
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Uğurcan Sakizli
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Burak Bali
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey
| | - Yiğit Kocagöz
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Sema Elif Eski
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Arda Ergönen
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey
| | - Aysu Sevval Alkiraz
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Xalid Bayramli
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Thomas Hassenklöver
- Department of Animal Physiology and Molecular Biomedicine, Institute of Animal Physiology, Justus-Liebig-University Giessen, Germany
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, Institute of Animal Physiology, Justus-Liebig-University Giessen, Germany
| | - Stefan H Fuss
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| |
Collapse
|
13
|
Kim JS, Kim BG. Neurogenesis and Regulation of Olfactory Epithelium. JOURNAL OF RHINOLOGY 2019. [DOI: 10.18787/jr.2019.26.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Ji-Sun Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Eunpyeong St. Mar's, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byung Guk Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Eunpyeong St. Mar's, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
14
|
Dai Q, Duan C, Ren W, Li F, Zheng Q, Wang L, Li W, Lu X, Ni W, Zhang Y, Chen Y, Wen T, Yu Y, Yu H. Notch Signaling Regulates Lgr5 + Olfactory Epithelium Progenitor/Stem Cell Turnover and Mediates Recovery of Lesioned Olfactory Epithelium in Mouse Model. Stem Cells 2018; 36:1259-1272. [PMID: 29664186 DOI: 10.1002/stem.2837] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/18/2022]
Abstract
The Notch signaling pathway regulates stem cell proliferation and differentiation in multiple tissues and organs, and is required for tissue maintenance. However, the role of Notch in regulation of olfactory epithelium (OE) progenitor/stem cells to maintain tissue function is still not clear. A recent study reported that leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) is expressed in globose basal cells (GBCs) localized in OE. Through lineage tracing in vivo, we found that Lgr5+ cells act as progenitor/stem cells in OE. The generation of daughter cells from Lgr5+ progenitor/stem cells is delicately regulated by the Notch signaling pathway, which not only controls the proliferation of Lgr5+ cells and their immediate progenies but also affects their subsequent terminal differentiation. In conditionally cultured OE organoids in vitro, inhibition of Notch signaling promotes neuronal differentiation. Besides, OE lesion through methimazole administration in mice induces generation of more Notch1+ cells in the horizontal basal cell (HBC) layer, and organoids derived from lesioned OE possesses more proliferative Notch1+ HBCs. In summary, we concluded that Notch signaling regulates Lgr5+ GBCs by controlling cellular proliferation and differentiation as well as maintaining epithelial cell homeostasis in normal OE. Meanwhile, Notch1 also marks HBCs in lesioned OE and Notch1+ HBCs are transiently present in OE after injury. This implies that Notch1+ cells in OE may have dual roles, functioning as GBCs in early development of OE and HBCs in restoring the lesioned OE. Stem Cells 2018;36:1259-1272.
Collapse
Affiliation(s)
- Qi Dai
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Chen Duan
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Wenwen Ren
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Fangqi Li
- School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Qian Zheng
- School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Li Wang
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Wenyan Li
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Xiaoling Lu
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Wenli Ni
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Yanping Zhang
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Yan Chen
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Tieqiao Wen
- School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Yiqun Yu
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China.,School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Hongmeng Yu
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Canonical Notch Signaling Directs the Fate of Differentiating Neurocompetent Progenitors in the Mammalian Olfactory Epithelium. J Neurosci 2018; 38:5022-5037. [PMID: 29739871 DOI: 10.1523/jneurosci.0484-17.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/31/2018] [Accepted: 05/04/2018] [Indexed: 12/24/2022] Open
Abstract
The adult olfactory epithelium (OE) has the remarkable capacity to regenerate fully both neurosensory and non-neuronal cell types after severe epithelial injury. Lifelong persistence of two stem cell populations supports OE regeneration when damaged: the horizontal basal cells (HBCs), dormant and held in reserve; and globose basal cells, a heterogeneous population most of which are actively dividing. Both populations regenerate all cell types of the OE after injury, but the mechanisms underlying neuronal versus non-neuronal lineage commitment after recruitment of the stem cell pools remains unknown. We used both retroviral transduction and mouse lines that permit conditional cell-specific genetic manipulation as well as the tracing of progeny to study the role of canonical Notch signaling in the determination of neuronal versus non-neuronal lineages in the regenerating adult OE. Excision of either Notch1 or Notch2 genes alone in HBCs did not alter progenitor fate during recovery from epithelial injury, whereas conditional knock-out of both Notch1 and Notch2 together, retroviral transduction of progenitors with a dominant-negative form of MAML (mastermind-like), or excision of the downstream cofactor RBPJ caused progeny to adopt a neuronal fate exclusively. Conversely, we show that overexpressing the Notch1-intracellular domain (N1ICD) either genetically or by transduction blocks neuronal differentiation completely. However, N1ICD overexpression requires both alleles of the canonical cofactor RBPJ to specify downstream lineage. Together, our results suggest that canonical RBPJ-dependent Notch signaling through redundant Notch1 and Notch2 receptors is both necessary and sufficient for determining neuronal versus non-neuronal differentiation in the regenerating adult OE.SIGNIFICANCE STATEMENT Despite the substantial reconstitution of the olfactory epithelium and its population of sensory neurons after injury, disruption and exhaustion of neurogenesis is a consequence of aging and a cause of olfactory dysfunction. Understanding the mechanisms underlying the generation of replacement neurons and non-neuronal cells is critical to any therapeutic strategy aimed at rebuilding a functional neuroepithelium. The results shown here demonstrate that canonical Notch signaling determines the balance between neurons and non-neuronal cells during restoration of the epithelium after injury. Moreover, the complexities of the multiple Notch pathways impinging on that decision are dissected in detail. Finally, RBPJ, the canonical Notch transcriptional cofactor, exhibits a heretofore unreported haploinsufficiency in setting the balance among the regenerating populations.
Collapse
|
16
|
Sokpor G, Abbas E, Rosenbusch J, Staiger JF, Tuoc T. Transcriptional and Epigenetic Control of Mammalian Olfactory Epithelium Development. Mol Neurobiol 2018. [PMID: 29532253 DOI: 10.1007/s12035-018-0987-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The postnatal mammalian olfactory epithelium (OE) represents a major aspect of the peripheral olfactory system. It is a pseudostratified tissue that originates from the olfactory placode and is composed of diverse cells, some of which are specialized receptor neurons capable of transducing odorant stimuli to afford the perception of smell (olfaction). The OE is known to offer a tractable miniature model for studying the systematic generation of neurons and glia that typify neural tissue development. During OE development, stem/progenitor cells that will become olfactory sensory neurons and/or non-neuronal cell types display fine spatiotemporal expression of neuronal and non-neuronal genes that ensures their proper proliferation, differentiation, survival, and regeneration. Many factors, including transcription and epigenetic factors, have been identified as key regulators of the expression of such requisite genes to permit normal OE morphogenesis. Typically, specific interactive regulatory networks established between transcription and epigenetic factors/cofactors orchestrate histogenesis in the embryonic and adult OE. Hence, investigation of these regulatory networks critical for OE development promises to disclose strategies that may be employed in manipulating the stepwise transition of olfactory precursor cells to become fully differentiated and functional neuronal and non-neuronal cell types. Such strategies potentially offer formidable means of replacing injured or degenerated neural cells as therapeutics for nervous system perturbations. This review recapitulates the developmental cellular diversity of the olfactory neuroepithelium and discusses findings on how the precise and cooperative molecular control by transcriptional and epigenetic machinery is indispensable for OE ontogeny.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany
| | - Eman Abbas
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany.,Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Joachim Rosenbusch
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany
| | - Jochen F Staiger
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Goettingen, Germany
| | - Tran Tuoc
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany. .,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Goettingen, Germany.
| |
Collapse
|
17
|
Panaliappan TK, Wittmann W, Jidigam VK, Mercurio S, Bertolini JA, Sghari S, Bose R, Patthey C, Nicolis SK, Gunhaga L. Sox2 is required for olfactory pit formation and olfactory neurogenesis through BMP restriction and Hes5 upregulation. Development 2018; 145:145/2/dev153791. [PMID: 29352015 PMCID: PMC5825848 DOI: 10.1242/dev.153791] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022]
Abstract
The transcription factor Sox2 is necessary to maintain pluripotency of embryonic stem cells, and to regulate neural development. Neurogenesis in the vertebrate olfactory epithelium persists from embryonic stages through adulthood. The role Sox2 plays for the development of the olfactory epithelium and neurogenesis within has, however, not been determined. Here, by analysing Sox2 conditional knockout mouse embryos and chick embryos deprived of Sox2 in the olfactory epithelium using CRISPR-Cas9, we show that Sox2 activity is crucial for the induction of the neural progenitor gene Hes5 and for subsequent differentiation of the neuronal lineage. Our results also suggest that Sox2 activity promotes the neurogenic domain in the nasal epithelium by restricting Bmp4 expression. The Sox2-deficient olfactory epithelium displays diminished cell cycle progression and proliferation, a dramatic increase in apoptosis and finally olfactory pit atrophy. Moreover, chromatin immunoprecipitation data show that Sox2 directly binds to the Hes5 promoter in both the PNS and CNS. Taken together, our results indicate that Sox2 is essential to establish, maintain and expand the neuronal progenitor pool by suppressing Bmp4 and upregulating Hes5 expression. Summary: Analysis of Sox2 mutant mouse and Sox2 CRISPR-targeted chick embryos reveals that Sox2 controls the establishment of sensory progenitors in the olfactory epithelium by suppressing Bmp4 and upregulating Hes5 expression.
Collapse
Affiliation(s)
| | - Walter Wittmann
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Vijay K Jidigam
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Sara Mercurio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Jessica A Bertolini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Soufien Sghari
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Raj Bose
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Cedric Patthey
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Silvia K Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
18
|
Lin B, Coleman JH, Peterson JN, Zunitch MJ, Jang W, Herrick DB, Schwob JE. Injury Induces Endogenous Reprogramming and Dedifferentiation of Neuronal Progenitors to Multipotency. Cell Stem Cell 2017; 21:761-774.e5. [PMID: 29174332 DOI: 10.1016/j.stem.2017.09.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/12/2017] [Accepted: 09/12/2017] [Indexed: 02/08/2023]
Abstract
Adult neurogenesis in the olfactory epithelium is often depicted as a unidirectional pathway during homeostasis and repair. We challenge the unidirectionality of this model by showing that epithelial injury unlocks the potential for Ascl1+ progenitors and Neurog1+ specified neuronal precursors to dedifferentiate into multipotent stem/progenitor cells that contribute significantly to tissue regeneration in the murine olfactory epithelium (OE). We characterize these dedifferentiating cells using several lineage-tracing strains and single-cell mRNA-seq, and we show that Sox2 is required for initiating dedifferentiation and that inhibition of Ezh2 promotes multipotent progenitor expansion. These results suggest that the apparent hierarchy of neuronal differentiation is not irreversible and that lineage commitment can be overridden following severe tissue injury. We elucidate a previously unappreciated pathway for endogenous tissue repair by a highly regenerative neuroepithelium and introduce a system to study the mechanisms underlying plasticity in the OE that can be adapted for other tissues.
Collapse
Affiliation(s)
- Brian Lin
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA; Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Julie H Coleman
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA; Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Jesse N Peterson
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA; Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Matthew J Zunitch
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA; Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Woochan Jang
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Daniel B Herrick
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA; Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - James E Schwob
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
19
|
Kam JWK, Dumontier E, Baim C, Brignall AC, Mendes da Silva D, Cowan M, Kennedy TE, Cloutier JF. RGMB and neogenin control cell differentiation in the developing olfactory epithelium. Development 2017; 143:1534-46. [PMID: 27143755 DOI: 10.1242/dev.118638] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/29/2016] [Indexed: 12/25/2022]
Abstract
Cellular interactions are key for the differentiation of distinct cell types within developing epithelia, yet the molecular mechanisms engaged in these interactions remain poorly understood. In the developing olfactory epithelium (OE), neural stem/progenitor cells give rise to odorant-detecting olfactory receptor neurons (ORNs) and glial-like sustentacular (SUS) cells. Here, we show in mice that the transmembrane receptor neogenin (NEO1) and its membrane-bound ligand RGMB control the balance of neurons and glial cells produced in the OE. In this layered epithelium, neogenin is expressed in progenitor cells, while RGMB is restricted to adjacent newly born ORNs. Ablation of Rgmb via gene-targeting increases the number of dividing progenitor cells in the OE and leads to supernumerary SUS cells. Neogenin loss-of-function phenocopies these effects observed in Rgmb(-/-) mice, supporting the proposal that RGMB-neogenin signaling regulates progenitor cell numbers and SUS cell production. Interestingly, Neo1(-/-) mice also exhibit increased apoptosis of ORNs, implicating additional ligands in the neogenin-dependent survival of ORNs. Thus, our results indicate that RGMB-neogenin-mediated cell-cell interactions between newly born neurons and progenitor cells control the ratio of glia and neurons produced in the OE.
Collapse
Affiliation(s)
- Joseph Wai Keung Kam
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, Québec, Canada H3A 2B4
| | - Emilie Dumontier
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, Québec, Canada H3A 2B4
| | - Christopher Baim
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, Québec, Canada H3A 2B4
| | - Alexandra C Brignall
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, Québec, Canada H3A 2B4
| | - David Mendes da Silva
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, Rua Larga, Coimbra 3004-517, Portugal
| | - Mitra Cowan
- Centre de Recherches du Centre Hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, Canada H2X 0A9
| | - Timothy E Kennedy
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Anatomy and Cell Biology, McGill University, 3640 University, Montréal, Québec, Canada H3A 0C7
| | - Jean-François Cloutier
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Anatomy and Cell Biology, McGill University, 3640 University, Montréal, Québec, Canada H3A 0C7
| |
Collapse
|
20
|
Isolation of putative stem cells present in human adult olfactory mucosa. PLoS One 2017; 12:e0181151. [PMID: 28719644 PMCID: PMC5515430 DOI: 10.1371/journal.pone.0181151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/27/2017] [Indexed: 02/08/2023] Open
Abstract
The olfactory mucosa (OM) has the unique characteristic of performing an almost continuous and lifelong neurogenesis in response to external injuries, due to the presence of olfactory stem cells that guarantee the maintenance of the olfactory function. The easy accessibility of the OM in humans makes these stem cells feasible candidates for the development of regenerative therapies. In this report we present a detailed characterization of a patient-derived OM, together with a description of cell cultures obtained from the OM. In addition, we present a method for the enrichment and isolation of OM stem cells that might be used for future translational studies dealing with neuronal plasticity, neuro-regeneration or disease modeling.
Collapse
|
21
|
Weng PL, Vinjamuri M, Ovitt CE. Ascl3 transcription factor marks a distinct progenitor lineage for non-neuronal support cells in the olfactory epithelium. Sci Rep 2016; 6:38199. [PMID: 27910949 PMCID: PMC5133605 DOI: 10.1038/srep38199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/04/2016] [Indexed: 12/30/2022] Open
Abstract
The olfactory epithelium (OE) is composed of olfactory sensory neurons (OSNs), sustentacular supporting cells, and several types of non-neuronal cells. Stem and progenitor cells are located basally, and are the source of all cell types needed to maintain OE homeostasis. Here, we report that Ascl3, a basic helix-loop-helix transcription factor, is expressed in the developing OE. Lineage tracing experiments demonstrate that the non-neuronal microvillar cells and Bowman's glands are exclusively derived from Ascl3+ progenitor cells in the OE during development. Following chemically-induced injury, Ascl3 expression is activated in a subset of horizontal basal cells (HBCs), which repopulate all microvillar cells and Bowman's glands during OE regeneration. After ablation of Ascl3-expressing cells, the OE can regenerate, but lacks the non-neuronal microvillar and Bowman's gland support cells. These results demonstrate that Ascl3 marks progenitors that are lineage-committed strictly to microvillar cells and Bowman's glands, and highlight the requirement for these cell types to support OE homeostasis.
Collapse
Affiliation(s)
- Pei-Lun Weng
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Mridula Vinjamuri
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Catherine E. Ovitt
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| |
Collapse
|
22
|
Goldstein BJ, Goss GM, Choi R, Saur D, Seidler B, Hare JM, Chaudhari N. Contribution of Polycomb group proteins to olfactory basal stem cell self-renewal in a novel c-KIT+ culture model and in vivo. Development 2016; 143:4394-4404. [PMID: 27789621 DOI: 10.1242/dev.142653] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/18/2016] [Indexed: 01/14/2023]
Abstract
Olfactory epithelium (OE) has a lifelong capacity for neurogenesis due to the presence of basal stem cells. Despite the ability to generate short-term cultures, the successful in vitro expansion of purified stem cells from adult OE has not been reported. We sought to establish expansion-competent OE stem cell cultures to facilitate further study of the mechanisms and cell populations important in OE renewal. Successful cultures were prepared using adult mouse basal cells selected for expression of c-KIT. We show that c-KIT signaling regulates self-renewal capacity and prevents neurodifferentiation in culture. Inhibition of TGFβ family signaling, a known negative regulator of embryonic basal cells, is also necessary for maintenance of the proliferative, undifferentiated state in vitro Characterizing successful cultures, we identified expression of BMI1 and other Polycomb proteins not previously identified in olfactory basal cells but known to be essential for self-renewal in other stem cell populations. Inducible fate mapping demonstrates that BMI1 is expressed in vivo by multipotent OE progenitors, validating our culture model. These findings provide mechanistic insights into the renewal and potency of olfactory stem cells.
Collapse
Affiliation(s)
- Bradley J Goldstein
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA .,Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Garrett M Goss
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rhea Choi
- MD, PhD Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dieter Saur
- Department of Internal Medicine, Technical University of Munich, 80333 Munich, Germany
| | - Barbara Seidler
- Department of Internal Medicine, Technical University of Munich, 80333 Munich, Germany
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nirupa Chaudhari
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
23
|
Schwob JE, Jang W, Holbrook EH, Lin B, Herrick DB, Peterson JN, Hewitt Coleman J. Stem and progenitor cells of the mammalian olfactory epithelium: Taking poietic license. J Comp Neurol 2016; 525:1034-1054. [PMID: 27560601 DOI: 10.1002/cne.24105] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022]
Abstract
The capacity of the olfactory epithelium (OE) for lifelong neurogenesis and regeneration depends on the persistence of neurocompetent stem cells, which self-renew as well as generating all of the cell types found within the nasal epithelium. This Review focuses on the types of stem and progenitor cells in the epithelium and their regulation. Both horizontal basal cells (HBCs) and some among the population of globose basal cells (GBCs) are stem cells, but the two types plays vastly different roles. The GBC population includes the basal cells that proliferate in the uninjured OE and is heterogeneous with respect to transcription factor expression. From upstream in the hierarchy to downstream, GBCs encompass 1) Sox2+ /Pax6+ stem-like cells that are totipotent and self-renew over the long term, 2) Ascl1+ transit-amplifying progenitors with a limited capacity for expansive proliferation, and 3) Neurog1+ /NeuroD1+ immediate precursor cells that make neurons directly. In contrast, the normally quiescent HBCs are activated to multipotency and proliferate when sustentacular cells are killed, but not when only OSNs die, indicating that HBCs are reserve stem cells that respond to severe epithelial injury. The master regulator of HBC activation is the ΔN isoform of the transcription factor p63; eliminating ΔNp63 unleashes HBC multipotency. Notch signaling, via Jagged1 ligand on Sus cells and Notch1 and Notch2 receptors on HBCs, is likely to play a major role in setting the level of p63 expression. Thus, ΔNp63 becomes a potential therapeutic target for reversing the neurogenic exhaustion characteristic of the aged OE. J. Comp. Neurol. 525:1034-1054, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James E Schwob
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Woochan Jang
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Eric H Holbrook
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Brian Lin
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Daniel B Herrick
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Jesse N Peterson
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Julie Hewitt Coleman
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| |
Collapse
|
24
|
Bachmann C, Nguyen H, Rosenbusch J, Pham L, Rabe T, Patwa M, Sokpor G, Seong RH, Ashery-Padan R, Mansouri A, Stoykova A, Staiger JF, Tuoc T. mSWI/SNF (BAF) Complexes Are Indispensable for the Neurogenesis and Development of Embryonic Olfactory Epithelium. PLoS Genet 2016; 12:e1006274. [PMID: 27611684 PMCID: PMC5017785 DOI: 10.1371/journal.pgen.1006274] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 08/03/2016] [Indexed: 01/06/2023] Open
Abstract
Neurogenesis is a key developmental event through which neurons are generated from neural stem/progenitor cells. Chromatin remodeling BAF (mSWI/SNF) complexes have been reported to play essential roles in the neurogenesis of the central nervous system. However, whether BAF complexes are required for neuron generation in the olfactory system is unknown. Here, we identified onscBAF and ornBAF complexes, which are specifically present in olfactory neural stem cells (oNSCs) and olfactory receptor neurons (ORNs), respectively. We demonstrated that BAF155 subunit is highly expressed in both oNSCs and ORNs, whereas high expression of BAF170 subunit is observed only in ORNs. We report that conditional deletion of BAF155, a core subunit in both onscBAF and ornBAF complexes, causes impaired proliferation of oNSCs as well as defective maturation and axonogenesis of ORNs in the developing olfactory epithelium (OE), while the high expression of BAF170 is important for maturation of ORNs. Interestingly, in the absence of BAF complexes in BAF155/BAF170 double-conditional knockout mice (dcKO), OE is not specified. Mechanistically, BAF complex is required for normal activation of Pax6-dependent transcriptional activity in stem cells/progenitors of the OE. Our findings unveil a novel mechanism mediated by the mSWI/SNF complex in OE neurogenesis and development.
Collapse
Affiliation(s)
| | - Huong Nguyen
- University Medical Center, Georg-August-University, Goettingen, Germany
| | | | - Linh Pham
- University Medical Center, Georg-August-University, Goettingen, Germany
| | - Tamara Rabe
- Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| | - Megha Patwa
- University Medical Center, Georg-August-University, Goettingen, Germany
| | - Godwin Sokpor
- University Medical Center, Georg-August-University, Goettingen, Germany
| | - Rho H. Seong
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Ruth Ashery-Padan
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
| | - Ahmed Mansouri
- Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Goettingen, Germany
| | - Anastassia Stoykova
- Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Goettingen, Germany
| | - Jochen F. Staiger
- University Medical Center, Georg-August-University, Goettingen, Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Goettingen, Germany
| | - Tran Tuoc
- University Medical Center, Georg-August-University, Goettingen, Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Goettingen, Germany
| |
Collapse
|
25
|
Im S, Moon C. Transcriptional regulatory network during development in the olfactory epithelium. BMB Rep 2016; 48:599-608. [PMID: 26303973 PMCID: PMC4911201 DOI: 10.5483/bmbrep.2015.48.11.177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 12/22/2022] Open
Abstract
Regeneration, a process of reconstitution of the entire tissue, occurs throughout life in the olfactory epithelium (OE). Regeneration of OE consists of several stages: proliferation of progenitors, cell fate determination between neuronal and non-neuronal lineages, their differentiation and maturation. How the differentiated cell types that comprise the OE are regenerated, is one of the central questions in olfactory developmental neurobiology. The past decade has witnessed considerable progress regarding the regulation of transcription factors (TFs) involved in the remarkable regenerative potential of OE. Here, we review current state of knowledge of the transcriptional regulatory networks that are powerful modulators of the acquisition and maintenance of developmental stages during regeneration in the OE. Advance in our understanding of regeneration will not only shed light on the basic principles of adult plasticity of cell identity, but may also lead to new approaches for using stem cells and reprogramming after injury or degenerative neurological diseases.
Collapse
Affiliation(s)
- SeungYeong Im
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Cheil Moon
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu 42988, Korea
| |
Collapse
|
26
|
Regeneration and rewiring of rodent olfactory sensory neurons. Exp Neurol 2016; 287:395-408. [PMID: 27264358 DOI: 10.1016/j.expneurol.2016.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 12/24/2022]
Abstract
The olfactory sensory neurons are the only neurons in the mammalian nervous system that not only regenerate naturally and in response to injury, but also project to specific targets in the brain. The stem cells in the olfactory epithelium commit to both neuronal and non-neuronal lineages depending on the environmental conditions. They provide a continuous supply of new neurons. A newly generated neuron must express a specific odorant receptor gene and project to a central target consist of axons expressing the same receptor type. Recent studies have provided insights into this highly regulated, complex process. However, the molecular mechanisms that determine the regenerative capacity of stem cells, and the ability of newly generated neurons in directing their axons toward specific targets, remain elusive. Here we review progresses and controversies in the field and offer testable models.
Collapse
|
27
|
Sox2 and Pax6 Play Counteracting Roles in Regulating Neurogenesis within the Murine Olfactory Epithelium. PLoS One 2016; 11:e0155167. [PMID: 27171428 PMCID: PMC4865097 DOI: 10.1371/journal.pone.0155167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022] Open
Abstract
In the adult olfactory epithelium, the transcription factors Pax6 and Sox2 are co-expressed in sustentacular cells, horizontal basal cells (HBCs), and less-differentiated globose basal cells (GBCs)–both multipotent and transit amplifying categories—but are absent from immediate neuronal precursor GBCs and olfactory sensory neurons (OSNs). We used retroviral-vector transduction to over-express Pax6 and Sox2 individually and together during post-lesion recovery to determine how they regulate neuronal differentiation. Both Pax6 and Sox2, separately and together, can suppress the production of OSNs, as fewer clones contain neurons than with empty vector (EV), although this effect is not absolute. In this regard, Pax6 has the strongest effect when acting alone. In clones where neurons form, Pax6 reduces neuron numbers by comparison with EV, while Sox2 expands their numbers. Co-transduction with Pax6 and Sox2 produces an intermediate result. The increased production of OSNs driven by Sox2 is due to the expansion of neuronal progenitors, since proliferation and the numbers of Ascl1, Neurog1, and NeuroD1-expressing GBCs are increased. Conversely, Pax6 seems to accelerate neuronal differentiation, since Ascl1 labeling is reduced, while Neurog1- and NeuroD1-labeled GBCs are enriched. As a complement to the over-expression experiments, elimination of Sox2 in spared cells of floxed Sox2 mice, by retroviral Cre or by K5-driven CreERT2, reduces the production of OSNs and non-neuronal cells during OE regeneration. These data suggest that Pax6 and Sox2 have counteracting roles in regulating neurogenesis, in which Pax6 accelerates neuronal production, while Sox2 retards it and expands the pool of neuronal progenitors.
Collapse
|
28
|
Kilinc S, Savarino A, Coleman JH, Schwob JE, Lane RP. Lysine-specific demethylase-1 (LSD1) is compartmentalized at nuclear chromocenters in early post-mitotic cells of the olfactory sensory neuronal lineage. Mol Cell Neurosci 2016; 74:58-70. [PMID: 26947098 DOI: 10.1016/j.mcn.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/29/2016] [Accepted: 03/02/2016] [Indexed: 12/12/2022] Open
Abstract
Mammalian olfaction depends on the development of specialized olfactory sensory neurons (OSNs) that each express one odorant receptor (OR) protein from a large family of OR genes encoded in the genome. The lysine-specific demethylase-1 (LSD1) protein removes activating H3K4 or silencing H3K9 methylation marks at gene promoters and is required for proper OR regulation. We show that LSD1 protein exhibits variable organization within nuclei of developing OSNs, and tends to consolidate into a single dominant compartment at the edges of chromocenters within nuclei of early post-mitotic cells of the mouse olfactory epithelium (MOE). Using an immortalized cell line derived from developing olfactory placode, we show that consolidation of LSD1 appears to be cell-cycle regulated, with a peak occurrence in early G1. LSD1 co-compartmentalizes with CoREST, a protein known to collaborate with LSD1 to carry out a variety of chromatin-modifying functions. We show that LSD1 compartments co-localize with 1-3 OR loci at the exclusion of most OR genes, and commonly associate with Lhx2, a transcription factor involved in OR regulation. Together, our data suggests that LSD1 is sequestered into a distinct nuclear space that might restrict a histone-modifying function to a narrow developmental time window and/or range of OR gene targets.
Collapse
Affiliation(s)
- Seda Kilinc
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA.
| | - Alyssa Savarino
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Julie H Coleman
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - James E Schwob
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Robert P Lane
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA.
| |
Collapse
|
29
|
Abstract
UNLABELLED The olfactory epithelium (OE) is one of the few tissues to undergo constitutive neurogenesis throughout the mammalian lifespan. It is composed of multiple cell types including olfactory sensory neurons (OSNs) that are readily replaced by two populations of basal stem cells, frequently dividing globose basal cells and quiescent horizontal basal cells (HBCs). However, the precise mechanisms by which these cells mediate OE regeneration are unclear. Here, we show for the first time that the HBC subpopulation of basal stem cells uniquely possesses primary cilia that are aligned in an apical orientation in direct apposition to sustentacular cell end feet. The positioning of these cilia suggests that they function in the detection of growth signals and/or differentiation cues. To test this idea, we generated an inducible, cell type-specific Ift88 knock-out mouse line (K5rtTA;tetOCre;Ift88(fl/fl)) to disrupt cilia formation and maintenance specifically in HBCs. Surprisingly, the loss of HBC cilia did not affect the maintenance of the adult OE but dramatically impaired the regeneration of OSNs following lesion. Furthermore, the loss of cilia during development resulted in a region-specific decrease in neurogenesis, implicating HBCs in the establishment of the OE. Together, these results suggest a novel role for primary cilia in HBC activation, proliferation, and differentiation. SIGNIFICANCE STATEMENT We show for the first time the presence of primary cilia on a quiescent population of basal stem cells, the horizontal basal cells (HBCs), in the olfactory epithelium (OE). Importantly, our data demonstrate that cilia on HBCs are necessary for regeneration of the OE following injury. Moreover, the disruption of HBC cilia alters neurogenesis during the development of the OE, providing evidence that HBCs participate in the establishment of this tissue. These data suggest that the mechanisms of penetrance for ciliopathies in the OE extend beyond that of defects in olfactory sensory neurons and may include alterations in OE maintenance and regeneration.
Collapse
|
30
|
Abstract
UNLABELLED The olfactory epithelium (OE) is one of the few tissues to undergo constitutive neurogenesis throughout the mammalian lifespan. It is composed of multiple cell types including olfactory sensory neurons (OSNs) that are readily replaced by two populations of basal stem cells, frequently dividing globose basal cells and quiescent horizontal basal cells (HBCs). However, the precise mechanisms by which these cells mediate OE regeneration are unclear. Here, we show for the first time that the HBC subpopulation of basal stem cells uniquely possesses primary cilia that are aligned in an apical orientation in direct apposition to sustentacular cell end feet. The positioning of these cilia suggests that they function in the detection of growth signals and/or differentiation cues. To test this idea, we generated an inducible, cell type-specific Ift88 knock-out mouse line (K5rtTA;tetOCre;Ift88(fl/fl)) to disrupt cilia formation and maintenance specifically in HBCs. Surprisingly, the loss of HBC cilia did not affect the maintenance of the adult OE but dramatically impaired the regeneration of OSNs following lesion. Furthermore, the loss of cilia during development resulted in a region-specific decrease in neurogenesis, implicating HBCs in the establishment of the OE. Together, these results suggest a novel role for primary cilia in HBC activation, proliferation, and differentiation. SIGNIFICANCE STATEMENT We show for the first time the presence of primary cilia on a quiescent population of basal stem cells, the horizontal basal cells (HBCs), in the olfactory epithelium (OE). Importantly, our data demonstrate that cilia on HBCs are necessary for regeneration of the OE following injury. Moreover, the disruption of HBC cilia alters neurogenesis during the development of the OE, providing evidence that HBCs participate in the establishment of this tissue. These data suggest that the mechanisms of penetrance for ciliopathies in the OE extend beyond that of defects in olfactory sensory neurons and may include alterations in OE maintenance and regeneration.
Collapse
|
31
|
Ueda T, Hoshikawa M, Shibata Y, Kumamoto N, Ugawa S. Basal cells express functional TRPV4 channels in the mouse nasal epithelium. Biochem Biophys Rep 2015; 4:169-174. [PMID: 29124201 PMCID: PMC5668914 DOI: 10.1016/j.bbrep.2015.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/19/2015] [Accepted: 09/15/2015] [Indexed: 11/16/2022] Open
Abstract
Basal cells in the nasal epithelium (olfactory and airway epithelia) are stem/progenitor cells that are capable of dividing, renewing and differentiating into specialized cells. These stem cells can sense their biophysical microenvironment, but the underlying mechanism of this process remains unknown. Here, we demonstrate the prominent expression of the transient receptor potential vanilloid type 4 (TRPV4) channel, a Ca2+-permeable channel that is known to act as a sensor for hypo-osmotic and mechanical stresses, in the basal cells of the mouse nasal epithelium. TRPV4 mRNA was expressed in the basal portions of the prenatal mouse nasal epithelium, and this expression continued into adult mice. The TRPV4 protein was also detected in the basal layers of the nasal epithelium in wild-type but not in TRPV4-knockout (TRPV4-KO) mice. The TRPV4-positive immunoreactions largely overlapped with those of keratin 14 (K14), a marker of basal cells, in the airway epithelium, and they partially overlapped with those of K14 in the olfactory epithelium. Ca2+ imaging analysis revealed that hypo-osmotic stimulation and 4α-phorbol 12,13 didecanoate (4α-PDD), both of which are TRPV4 agonists, caused an increase in the cytosolic Ca2+ concentration in a subset of primary epithelial cells cultured from the upper parts of the nasal epithelium of the wild-type mice. This response was barely noticeable in cells from similar parts of the epithelium in TRPV4-KO mice. Finally, there was no significant difference in BrdU-labeled proliferation between the olfactory epithelia of wild-type and TRPV4-KO mice under normal conditions. Thus, TRPV4 channels are functionally expressed in basal cells throughout the nasal epithelium and may act as sensors for the development and injury-induced regeneration of basal stem cells. TRPV4 is expressed in basal stem cells of the nasal airway and olfactory epithelium. TRPV4 expression appears in the nasal epithelium during the late prenatal stages. TRPV4 activation causes an increase in cytosolic Ca2+ concentration. TRPV4 may be involved in a variety of cellular functions in progenitor/stem cells.
Collapse
Affiliation(s)
- Takashi Ueda
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Mariko Hoshikawa
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yasuhiro Shibata
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Natsuko Kumamoto
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shinya Ugawa
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
32
|
Maurya DK, Henriques T, Marini M, Pedemonte N, Galietta LJV, Rock JR, Harfe BD, Menini A. Development of the Olfactory Epithelium and Nasal Glands in TMEM16A-/- and TMEM16A+/+ Mice. PLoS One 2015; 10:e0129171. [PMID: 26067252 PMCID: PMC4465891 DOI: 10.1371/journal.pone.0129171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 05/05/2015] [Indexed: 12/16/2022] Open
Abstract
TMEM16A/ANO1 is a calcium-activated chloride channel expressed in several types of epithelia and involved in various physiological processes, including proliferation and development. During mouse embryonic development, the expression of TMEM16A in the olfactory epithelium is dynamic. TMEM16A is expressed at the apical surface of the entire olfactory epithelium at embryonic day E12.5 while from E16.5 its expression is restricted to a region near the transition zone with the respiratory epithelium. To investigate whether TMEM16A plays a role in the development of the mouse olfactory epithelium, we obtained the first immunohistochemistry study comparing the morphological properties of the olfactory epithelium and nasal glands in TMEM16A-/- and TMEM16A+/+ littermate mice. A comparison between the expression of the olfactory marker protein and adenylyl cyclase III shows that genetic ablation of TMEM16A did not seem to affect the maturation of olfactory sensory neurons and their ciliary layer. As TMEM16A is expressed at the apical part of supporting cells and in their microvilli, we used ezrin and cytokeratin 8 as markers of microvilli and cell body of supporting cells, respectively, and found that morphology and development of supporting cells were similar in TMEM16A-/- and TMEM16A+/+ littermate mice. The average number of supporting cells, olfactory sensory neurons, horizontal and globose basal cells were not significantly different in the two types of mice. Moreover, we also observed that the morphology of Bowman’s glands, nasal septal glands and lateral nasal glands did not change in the absence of TMEM16A. Our results indicate that the development of mouse olfactory epithelium and nasal glands does not seem to be affected by the genetic ablation of TMEM16A.
Collapse
Affiliation(s)
- Devendra Kumar Maurya
- Laboratory of Olfactory Transduction, SISSA, International School for Advanced Studies, Trieste, Italy
| | - Tiago Henriques
- Laboratory of Olfactory Transduction, SISSA, International School for Advanced Studies, Trieste, Italy
| | | | | | | | - Jason R. Rock
- Department of Anatomy, UCSF School of Medicine, San Francisco, CA, United States of America
| | - Brian D. Harfe
- Department of Molecular Genetics and Microbiology Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, United States of America
| | - Anna Menini
- Laboratory of Olfactory Transduction, SISSA, International School for Advanced Studies, Trieste, Italy
- * E-mail:
| |
Collapse
|
33
|
Abstract
Cranial sensory placodes derive from discrete patches of the head ectoderm and give rise to numerous sensory structures. During gastrulation, a specialized "neural border zone" forms around the neural plate in response to interactions between the neural and nonneural ectoderm and signals from adjacent mesodermal and/or endodermal tissues. This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the preplacodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Members of the Six family of transcription factors are major regulators of PPE specification, in partnership with cofactor proteins such as Eya. Six gene activity also maintains tissue boundaries between the PPE, neural crest, and epidermis by repressing genes that specify the fates of those adjacent ectodermally derived domains. As the embryo acquires anterior-posterior identity, the PPE becomes transcriptionally regionalized, and it subsequently becomes subdivided into specific placodes with distinct developmental fates in response to signaling from adjacent tissues. Each placode is characterized by a unique transcriptional program that leads to the differentiation of highly specialized cells, such as neurosecretory cells, sensory receptor cells, chemosensory neurons, peripheral glia, and supporting cells. In this review, we summarize the transcriptional and signaling factors that regulate key steps of placode development, influence subsequent sensory neuron specification, and discuss what is known about mutations in some of the essential PPE genes that underlie human congenital syndromes.
Collapse
Affiliation(s)
- Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA; George Washington University Institute for Neuroscience, Washington, DC, USA.
| | - Anthony-Samuel LaMantia
- George Washington University Institute for Neuroscience, Washington, DC, USA; Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
34
|
|
35
|
Goldstein BJ, Goss GM, Hatzistergos KE, Rangel EB, Seidler B, Saur D, Hare JM. Adult c-Kit(+) progenitor cells are necessary for maintenance and regeneration of olfactory neurons. J Comp Neurol 2014; 523:15-31. [PMID: 25044230 DOI: 10.1002/cne.23653] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 12/28/2022]
Abstract
The olfactory epithelium houses chemosensory neurons, which transmit odor information from the nose to the brain. In adult mammals, the olfactory epithelium is a uniquely robust neuroproliferative zone, with the ability to replenish its neuronal and non-neuronal populations due to the presence of germinal basal cells. The stem and progenitor cells of these germinal layers, and their regulatory mechanisms, remain incompletely defined. Here we show that progenitor cells expressing c-Kit, a receptor tyrosine kinase marking stem cells in a variety of embryonic tissues, are required for maintenance of the adult neuroepithelium. Mouse genetic fate-mapping analyses show that embryonically, a c-Kit(+) population contributes to olfactory neurogenesis. In adults under conditions of normal turnover, there is relatively sparse c-Kit(+) progenitor cell (ckPC) activity. However, after experimentally induced neuroepithelial injury, ckPCs are activated such that they reconstitute the neuronal population. There are also occasional non-neuronal cells found to arise from ckPCs. Moreover, the selective depletion of the ckPC population, utilizing temporally controlled targeted diphtheria toxin A expression, results in failure of neurogenesis after experimental injury. Analysis of this model indicates that most ckPCs reside among the globose basal cell populations and act downstream of horizontal basal cells, which can serve as stem cells. Identification of the requirement for olfactory c-Kit-expressing progenitors in olfactory maintenance provides new insight into the mechanisms involved in adult olfactory neurogenesis. Additionally, we define an important and previously unrecognized site of adult c-Kit activity.
Collapse
Affiliation(s)
- Bradley J Goldstein
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, 33136; Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, 33136
| | | | | | | | | | | | | |
Collapse
|
36
|
Liu F, Xuan A, Chen Y, Zhang J, Xu L, Yan Q, Long D. Combined effect of nerve growth factor and brain‑derived neurotrophic factor on neuronal differentiation of neural stem cells and the potential molecular mechanisms. Mol Med Rep 2014; 10:1739-45. [PMID: 25051506 PMCID: PMC4148384 DOI: 10.3892/mmr.2014.2393] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/11/2014] [Indexed: 11/09/2022] Open
Abstract
Neural stem cells (NSCs) are important pluripotent stem cells, which have potential applications in cell replacement therapy. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have been demonstrated to exert a marked impact on the proliferation and differentiation of NSCs. The effects of NGF, BDNF, and BDNF combined with NGF on NSC neuronal differentiation and the possible mechanisms for these effects were investigated in this study. An adherent monolayer culture was employed to obtain highly homogeneous NSCs. The cells were divided into four groups: Control, NGF, BDNF and combination (BDNF + NGF) groups. Neuron differentiation was examined using immunocytochemistry and phospho-extracellular signal-regulated kinase (p-ERK) levels were analyzed using western blotting. Reverse transcription polymerase chain reaction was used to measure the mRNA expression levels of the HES1, HES5, MASH1, NGN1 and NeuroD transcription factors at different time intervals following neurotrophin-induced differentiation. NGF and BDNF were observed to induce NSC neuronal differentiation, and β-tubulin III-positive cells and p-ERK expression levels were highest in the NGF + BDNF combination group at all time points. The proportion of β-tubulin III-positive neurons in each group was associated with the expression levels of MASH1, NGN1 and NeuroD in the group. In conclusion, BDNF combined with NGF significantly improved NSC neuronal differentiation, which may provide support for the practical application of NSCs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Feifei Liu
- Department of Human Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| | - Aiguo Xuan
- Department of Human Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| | - Yan Chen
- Department of Human Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| | - Jundu Zhang
- Department of Human Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| | - Liping Xu
- Department of Human Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| | - Qijiang Yan
- Kingmed Diagnostics College, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| | - Dahong Long
- Department of Human Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| |
Collapse
|
37
|
Cellular and molecular mechanisms regulating embryonic neurogenesis in the rodent olfactory epithelium. Int J Dev Neurosci 2014; 37:76-86. [PMID: 25003986 DOI: 10.1016/j.ijdevneu.2014.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 02/08/2023] Open
Abstract
Mechanisms that regulate cellular differentiation in developing embryos are maintained across multiple physiological systems, including the nervous system where neurons and glia are generated. The olfactory epithelium, which arises from the olfactory pit, is a stratified tissue in which the stepwise generation of neurons and support cells can easily be assessed and followed during embryogenesis and throughout adulthood. During olfactory epithelium morphogenesis, progenitor cells respond to factors that control their proliferation, survival, and differentiation in order to generate olfactory receptor neurons that detect odorants in the environment and glia-like sustentacular cells. The tight temporal regulation of expression of proneural genes in dividing progenitor cells, including Mash-1, Neurogenin-1, and NeuroD1, plays a central role in the production of olfactory receptor neurons. Multiple factors that either positively or negatively affect the generation of olfactory receptor neurons have been identified and shown to impinge on the transcriptional regulatory network in dividing progenitor cells. Several growth factors, such as FGF-8, act to promote neurogenesis by ensuring survival of progenitor cells that will give rise to olfactory receptor neurons. In contrast, other molecules, including members of the large TGF-β family of proteins, have negative impacts on neurogenesis by restricting progenitor cell proliferation and stalling their differentiation. Since recent reviews have focused on neurogenesis in the regenerating adult olfactory epithelium, this review describes neurogenesis at embryonic stages of olfactory epithelium development and summarizes our current understanding of how both cell intrinsic and extrinsic factors control this process.
Collapse
|
38
|
Brann JH, Firestein SJ. A lifetime of neurogenesis in the olfactory system. Front Neurosci 2014; 8:182. [PMID: 25018692 PMCID: PMC4071289 DOI: 10.3389/fnins.2014.00182] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/09/2014] [Indexed: 12/11/2022] Open
Abstract
Neurogenesis continues well beyond embryonic and early postnatal ages in three areas of the nervous system. The subgranular zone supplies new neurons to the dentate gyrus of the hippocampus. The subventricular zone supplies new interneurons to the olfactory bulb, and the olfactory neuroepithelia generate new excitatory sensory neurons that send their axons to the olfactory bulb. The latter two areas are of particular interest as they contribute new neurons to both ends of a first-level circuit governing olfactory perception. The vomeronasal organ and the main olfactory epithelium comprise the primary peripheral olfactory epithelia. These anatomically distinct areas share common features, as each exhibits extensive neurogenesis well beyond the juvenile phase of development. Here we will discuss the effect of age on the structural and functional significance of neurogenesis in the vomeronasal and olfactory epithelia, from juvenile to advanced adult ages, in several common model systems. We will next discuss how age affects the regenerative capacity of these neural stem cells in response to injury. Finally, we will consider the integration of newborn neurons into an existing circuit as it is modified by the age of the animal.
Collapse
Affiliation(s)
- Jessica H Brann
- Department of Biology, Loyola University Chicago Chicago, IL, USA
| | - Stuart J Firestein
- Department of Biological Sciences, Columbia University New York, NY, USA ; Department of Neuroscience, Columbia University New York, NY, USA
| |
Collapse
|
39
|
Mechanisms of permanent loss of olfactory receptor neurons induced by the herbicide 2,6-dichlorobenzonitrile: effects on stem cells and noninvolvement of acute induction of the inflammatory cytokine IL-6. Toxicol Appl Pharmacol 2013; 272:598-607. [PMID: 23921153 DOI: 10.1016/j.taap.2013.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 01/08/2023]
Abstract
We explored the mechanisms underlying the differential effects of two olfactory toxicants, the herbicide 2,6-dichlorobenzonitrile (DCBN) and the anti-thyroid drug methimazole (MMZ), on olfactory receptor neuron (ORN) regeneration in mouse olfactory epithelium (OE). DCBN, but not MMZ, induced inflammation-like pathological changes in OE, and DCBN increased interleukin IL-6 levels in nasal-wash fluid to much greater magnitude and duration than did MMZ. At 24h after DCBN injection, the population of horizontal basal cells (HBCs; reserve, normally quiescent OE stem cells) lining the DMM became severely depleted as some of them detached from the basal lamina, and sloughed into the nasal cavity along with the globose basal cells (GBCs; heterogeneous population of stem and progenitor cells), neurons, and sustentacular cells of the neuroepithelium. In contrast, the layer of HBCs remained intact in MMZ-treated mice, as only the mature elements of the neuroepithelium were shed. Despite the respiratory metaplasia accompanying the greater severity of the DCBN lesion, residual HBCs that survived intoxication were activated by the injury and contributed to the metaplastic respiratory epithelium, as shown by tracing their descendants in a K5CreEr(T2)::fl(stop)TdTomato strain of mice in which recombination causes HBCs to express TdTomato in advance of the lesion. But, contrary to published observations with MMZ, the HBCs failed to form ORNs. A role for IL-6 in suppressing ORN regeneration in DCBN-treated mice was rejected by the failure of the anti-inflammatory drug dexamethasone to prevent the subsequent respiratory metaplasia in the DMM, suggesting that other factors lead to HBC neuro-incompetence.
Collapse
|