1
|
Mao L, Liu A, Zhang X. Effects of Intermittent Fasting on Female Reproductive Function: A Review of Animal and Human Studies. Curr Nutr Rep 2024; 13:786-799. [PMID: 39320714 DOI: 10.1007/s13668-024-00569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
PURPOSE OF REVIEW Intermittent fasting has gained significant attention, yet a comprehensive understanding of its impact on female reproductive health is lacking. This review aims to fill this gap by examining various intermittent fasting regimens and their effects on female reproductive function, along with potential mechanisms. RECENT FINDINGS In healthy non-overweight/obese or pregnant animal models, alternate-day fasting (ADF) and an 8-h time-restricted feeding (TRF) window may have adverse effects on reproductive function. However, these regimens show potential to mitigate negative consequences induced by a high-fat diet (HFD) or environmental exposure. A 10-h TRF demonstrates benefits in improving fertility in both normal-weight and HFD-fed animal models. In women with overweight/obesity or polycystic ovary syndrome (PCOS), the 5:2 diet and TRF significantly reduce the free androgen index while elevating sex hormone binding globulin, promising improvements in menstrual regulation. For pregnant Muslim women, available data do not strongly indicate adverse effects of Ramadan fasting on preterm delivery, but potential downsides to maternal weight gain, neonatal birthweight, and long-term offspring health need consideration. Factors linking intermittent fasting to female reproductive health include the circadian clock, gut microbiota, metabolic regulators, and modifiable lifestyles. Drawing definitive conclusions remains challenging in this evolving area. Nonetheless, our findings underscore the potential utility of intermittent fasting regimens as a therapeutic approach for addressing menstruation irregularities and infertility in women with obesity and PCOS. On the other hand, pregnant women should remain cognizant of potential risks associated with intermittent fasting practices.
Collapse
Affiliation(s)
- Lei Mao
- Department of Women's Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Aixia Liu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| | - Xiaohui Zhang
- Department of Women's Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
2
|
Ullah R, Xue C, Wang S, Qin Z, Rauf N, Zhan S, Khan NU, Shen Y, Zhou YD, Fu J. Alternate-day fasting delays pubertal development in normal-weight mice but prevents high-fat diet-induced obesity and precocious puberty. Nutr Diabetes 2024; 14:82. [PMID: 39366955 PMCID: PMC11452675 DOI: 10.1038/s41387-024-00335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND/OBJECTIVES Childhood obesity, particularly in girls, is linked to early puberty onset, heightening risks for adult-onset diseases. Addressing childhood obesity and precocious puberty is vital to mitigate societal burdens. Despite existing costly and invasive medical interventions, introducing lifestyle-based alternatives is essential. Our study investigates alternate-day fasting's (ADF) impact on pubertal development in normal-weight and high-fat diet (HFD)-induced obese female mice. METHODS Four groups of female mice were utilized, with dams initially fed control chow during and before pregnancy. Post-parturition, two groups continued on control chow, while two switched to an HFD. Offspring diets mirrored maternal exposure. One control and one HFD group were subjected to ADF. Morphometry and hormone analyses at various time points were performed. RESULTS Our findings demonstrate that ADF in normal-weight mice led to reduced body length, weight, uterine, and ovarian weights, accompanied by delayed puberty and lower levels of sex hormones and growth hormone (GH). Remarkably, GH treatment effectively prevented ADF-induced growth reduction but did not prevent delayed puberty. Conversely, an HFD increased body length, induced obesity and precocious puberty, and altered sex hormones and leptin levels, which were counteracted by ADF regimen. Our data indicate ADF's potential in managing childhood obesity and precocious puberty. CONCLUSIONS ADF reduced GH and sex hormone levels, contributing to reduced growth and delayed puberty, respectively. Therefore, parents of normal-weight children should be cautious about prolonged overnight fasting. ADF prevented HFD-induced obesity and precocious puberty, offering an alternative to medical approaches; nevertheless, further studies are needed for translation into clinical practice.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China.
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, 310052, China.
| | - Chuqing Xue
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Senjie Wang
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Zhewen Qin
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Naveed Rauf
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Shumin Zhan
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Naimat Ullah Khan
- College of Veterinary Sciences, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Yi Shen
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, 310052, China.
| | - Yu-Dong Zhou
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, 310052, China.
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China.
| |
Collapse
|
3
|
Athar F, Karmani M, Templeman N. Metabolic hormones are integral regulators of female reproductive health and function. Biosci Rep 2024; 44:BSR20231916. [PMID: 38131197 PMCID: PMC10830447 DOI: 10.1042/bsr20231916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The female reproductive system is strongly influenced by nutrition and energy balance. It is well known that food restriction or energy depletion can induce suppression of reproductive processes, while overnutrition is associated with reproductive dysfunction. However, the intricate mechanisms through which nutritional inputs and metabolic health are integrated into the coordination of reproduction are still being defined. In this review, we describe evidence for essential contributions by hormones that are responsive to food intake or fuel stores. Key metabolic hormones-including insulin, the incretins (glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1), growth hormone, ghrelin, leptin, and adiponectin-signal throughout the hypothalamic-pituitary-gonadal axis to support or suppress reproduction. We synthesize current knowledge on how these multifaceted hormones interact with the brain, pituitary, and ovaries to regulate functioning of the female reproductive system, incorporating in vitro and in vivo data from animal models and humans. Metabolic hormones are involved in orchestrating reproductive processes in healthy states, but some also play a significant role in the pathophysiology or treatment strategies of female reproductive disorders. Further understanding of the complex interrelationships between metabolic health and female reproductive function has important implications for improving women's health overall.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Muskan Karmani
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M. Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
4
|
Hu X, Peng J, Tang W, Xia Y, Song P. A circadian rhythm-restricted diet regulates autophagy to improve cognitive function and prolong lifespan. Biosci Trends 2023; 17:356-368. [PMID: 37722875 DOI: 10.5582/bst.2023.01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Diet and circadian rhythms have been found to have a profound impact on health, disease, and aging. Skipping breakfast, eating late, and overeating have adverse effects on the body's metabolism and increase the risk of cardiovascular and metabolic diseases. Disturbance of circadian rhythms has been associated with increased risk of atherosclerosis, Alzheimer's disease, Parkinson's disease, and other diseases. Abnormal deposition of amyloid β (Aβ) and tau proteins in the brain and impaired synaptic function are linked to cognitive dysfunction. A restrictive diet following the circadian rhythm can affect the metabolism of lipids, glucose, and amino acids such as branched chain amino acids and cysteine. These metabolic changes contribute to autophagy through molecular mechanisms such as adenosine monophosphate-activated protein kinase (AMPK), rapamycin (mTOR), D-β-hydroxybutyrate (D-BHB), and neuropeptide Y (NPY). Autophagy, in turn, promotes the removal of abnormally deposited proteins and damaged organelles and improves cognitive function, ultimately prolonging lifespan. In addition, a diet restricted to the circadian rhythm induces increased expression of brain-derived neurotrophic factor (BDNF) in the forebrain region, regulating autophagy and increasing synaptic plasticity, thus enhancing cognitive function. Consequently, circadian rhythm-restricted diets could serve as a promising non-pharmacological treatment for preventing and improving cognitive dysfunction and prolonging lifespan.
Collapse
Affiliation(s)
- Xiqi Hu
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jun Peng
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Wei Tang
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
- International Health Care Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Peipei Song
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Abstract
Despite the emergence of stronger nutritional science over the past two decades, fad diets remain highly popular. However, growing medical evidence has led to the endorsement of healthy eating patterns by medical societies. This thus allows fad diets to be compared to the emerging scientific evidence as to which diets promote or damage health. In this narrative review, the most popular current fad diets are critically analyzed, including low-fat diets, vegan and vegetarian diets, low-carbohydrate diets, ketogenic diets, Paleolithic diets, and intermittent fasting. Each of these diets has some scientific merit, but each has potential deficiencies relative to the findings of nutritional science. This article also presents the common themes that emerge among the dietary guidance of leading health organizations, such as the American Heart Association and the American College of Lifestyle Medicine. While there are important distinctions between dietary recommendations emanating from various medical societies, each recommends eating more unrefined, plant-based foods, while eating fewer highly processed foods and added sugars, and avoiding excessive calorie consumption as an important nutritional strategy for the prevention and management of chronic conditions and promotion of overall health.
Collapse
Affiliation(s)
- Kayli Anderson
- Food as Medicine Course, The American College of Lifestyle Medicine, PO Box 1188, Salida, CO 81201, United States of America.
| |
Collapse
|
6
|
Kalam F, Akasheh RT, Cienfuegos S, Ankireddy A, Gabel K, Ezpeleta M, Lin S, Tamatam CM, Reddy SP, Spring B, Khan SA, Varady KA. Effect of time-restricted eating on sex hormone levels in premenopausal and postmenopausal females. Obesity (Silver Spring) 2023; 31 Suppl 1:57-62. [PMID: 36203273 PMCID: PMC9877115 DOI: 10.1002/oby.23562] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Concerns have been raised regarding the impact of time-restricted eating (TRE) on sex hormones in females. This study examined how TRE affects sex steroids in premenopausal and postmenopausal females. METHODS This is a secondary analysis of an 8-week TRE study (4- to 6-hour eating window) conducted in adults with obesity. Men and perimenopausal females were excluded. Females were classified into two groups based on menstrual status: premenopausal (n = 12) or postmenopausal (n = 11). RESULTS After 8 weeks, body weight decreased in premenopausal females (-3% ± 2%) and postmenopausal females (-4% ± 2%) (main effect of time, p < 0.001), with no difference between groups (no group × time interaction). Circulating levels of testosterone, androstenedione, and sex hormone binding globulin (SHBG) did not change in either group (no group × time interaction). Dehydroepiandrosterone (DHEA) concentrations decreased (p < 0.05) in premenopausal (-14% ± 32%) and postmenopausal females (-13% ± 34%; main effect of time, p = 0.03), with no difference between groups. Estradiol, estrone, and progesterone were measured only in postmenopausal females, and they remained unchanged. CONCLUSIONS In premenopausal females, androgens and SHBG remained unchanged during TRE, whereas DHEA decreased. In postmenopausal females, estrogens, progesterone, androgens, and SHBG did not change, but DHEA was reduced.
Collapse
Affiliation(s)
- Faiza Kalam
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rand T Akasheh
- Department of Nutrition and Dietetics, American University of Madaba, Madaba, Jordan
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sofia Cienfuegos
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Aparna Ankireddy
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kelsey Gabel
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark Ezpeleta
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Shuhao Lin
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Chandra M Tamatam
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sekhar P Reddy
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Bonnie Spring
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois, USA
| | - Seema A Khan
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois, USA
| | - Krista A Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
7
|
The Effect of Alternating High-Sucrose and Sucrose Free-Diets, and Intermittent One-Day Fasting on the Estrous Cycle and Sex Hormones in Female Rats. Nutrients 2022; 14:nu14204350. [DOI: 10.3390/nu14204350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Relationships between diet, sex hormone concentrations, and the estrous cycle are important from the perspective of infertility and estrogen-dependent disease prevention and treatment. Four dietary interventions reflecting modern eating behaviors were explored. The study involved 50 female rats divided into five feeding groups. The impact of the amount of sucrose consumed (9% and 18% of the dietary energy content), alternating high-sucrose and sucrose-free diets, and a high-sucrose diet combined with intermittent one-day fasting on the estrous cycle and sex hormone concentrations in female rats was assessed. Even low amounts of dietary sucrose (9% of the dietary energy content) were found to lead to increased estradiol (E2) concentrations and decreased progesterone (Pg) concentrations. A high-sucrose diet, even when periodically applied, additionally led to a reduced concentration of luteinizing hormone (LH). The largest changes in the hormones tested were observed with one-day fasting coupled with the high-sucrose diet; in addition, the estrous phase was shortened and the estrous cycle was disrupted. The results of this study show that both the amount of dietary sucrose and also its uptake pattern affect the estrous cycle and sex hormone concentrations in female rats.
Collapse
|
8
|
Exploring the Effects of Energy Constraints on Performance, Body Composition, Endocrinological/Hematological Biomarkers, and Immune System among Athletes: An Overview of the Fasting State. Nutrients 2022; 14:nu14153197. [PMID: 35956373 PMCID: PMC9370338 DOI: 10.3390/nu14153197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
The Ramadan fasting period (RFP) means abstaining from consuming food and/or beverages during certain hours of the day—from sunrise to sunset. Engaging in exercise and sports during the RFP leads to the lipolysis of adipose tissue and an increase in the breakdown of peripheral fat, leading to an increase in fat consumption. The effects of the RFP on functional, hematological, and metabolic parameters needs further study as existing studies have reported contradictory results. The differences in the results of various studies are due to the geographical characteristics of Muslim athletes, their specific diets, and their genetics, which explain these variations. In recent years, the attention of medical and sports researchers on the effects of the RFP and energy restrictions on bodily functions and athletic performance has increased significantly. Therefore, this brief article examines the effects of the RFP on the immune system, body composition, hematology, and the functionality of athletes during and after the RFP. We found that most sporting activities were performed during any time of the day without being affected by Ramadan fasting. Athletes were able to participate in their physical activities during fasting periods and saw few effects on their performance. Sleep and nutritional factors should be adjusted so that athletic performance is not impaired.
Collapse
|
9
|
Cienfuegos S, Corapi S, Gabel K, Ezpeleta M, Kalam F, Lin S, Pavlou V, Varady KA. Effect of Intermittent Fasting on Reproductive Hormone Levels in Females and Males: A Review of Human Trials. Nutrients 2022; 14:nu14112343. [PMID: 35684143 PMCID: PMC9182756 DOI: 10.3390/nu14112343] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 12/27/2022] Open
Abstract
Intermittent fasting is a popular diet for weight loss, but concerns have been raised regarding the effects of fasting on the reproductive health of women and men. Accordingly, we conducted this literature review to clarify the effects of fasting on reproductive hormone levels in humans. Our results suggest that intermittent fasting decreases androgen markers (i.e., testosterone and the free androgen index (FAI)) while increasing sex hormone-binding globulin (SHBG) levels in premenopausal females with obesity. This effect was more likely to occur when food consumption was confined to earlier in the day (eating all food before 4 pm). In contrast, fasting did not have any effect on estrogen, gonadotropins, or prolactin levels in women. As for men, intermittent fasting reduced testosterone levels in lean, physically active, young males, but it did not affect SHBG concentrations. Interestingly, muscle mass and muscular strength were not negatively affected by these reductions in testosterone. In interpreting these findings, it is important to note that very few studies have been conducted on this topic. Thus, it is difficult to draw solid conclusions at present. From the limited data presented here, it is possible that intermittent fasting may decrease androgen markers in both genders. If this is the case, these results would have varied health implications. On the one hand, fasting may prove to be a valuable tool for treating hyperandrogenism in females with polycystic ovarian syndrome (PCOS) by improving menstruation and fertility. On the other hand, fasting may be shown to decrease androgens among males, which could negatively affect metabolic health and libido. More research is warranted to confirm these preliminary findings.
Collapse
|
10
|
Zhao Y, Jia M, Chen W, Liu Z. The neuroprotective effects of intermittent fasting on brain aging and neurodegenerative diseases via regulating mitochondrial function. Free Radic Biol Med 2022; 182:206-218. [PMID: 35218914 DOI: 10.1016/j.freeradbiomed.2022.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022]
Abstract
Intermittent fasting (IF) has been studied for its effects on lifespan and the prevention or delay of age-related diseases upon the regulation of metabolic pathways. Mitochondria participate in key metabolic pathways and play important roles in maintaining intracellular signaling networks that modulate various cellular functions. Mitochondrial dysfunction has been described as an early feature of brain aging and neurodegeneration. Although IF has been shown to prevent brain aging and neurodegeneration, the mechanism is still unclear. This review focuses on the mechanisms by which IF improves mitochondrial function, which plays a central role in brain aging and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The cellular and molecular mechanisms of IF in brain aging and neurodegeneration involve activation of adaptive cellular stress responses and signaling- and transcriptional pathways, thereby enhancing mitochondrial function, by promoting energy metabolism and reducing oxidant production.
Collapse
Affiliation(s)
- Yihang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengzhen Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Weixuan Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China; German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
| |
Collapse
|
11
|
MORO TATIANA, TINSLEY GRANT, PACELLI FRANCESCOQ, MARCOLIN GIUSEPPE, BIANCO ANTONINO, PAOLI ANTONIO. Twelve Months of Time-restricted Eating and Resistance Training Improves Inflammatory Markers and Cardiometabolic Risk Factors. Med Sci Sports Exerc 2021; 53:2577-2585. [PMID: 34649266 PMCID: PMC10115489 DOI: 10.1249/mss.0000000000002738] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Recently, a modified intermittent fasting protocol was demonstrated to be able to maintain muscle mass and strength, decrease fat mass, and improve some inflammation and cardiovascular risk factors in healthy resistance-trained males after 2 months. The present study sought to investigate the long-term effects on these parameters. METHODS The experiment was a single-blind randomized study. Twenty healthy subjects were enrolled and underwent 12 months of either a time-restricted eating (TRE) diet or a normal diet (ND) protocol, along with resistance training. In the TRE protocol, subjects consumed their energy needs in three meals during an 8-h period of time each day (1 pm, 4 pm, and 8 pm). Subjects in the ND group also had three meals, which were consumed at 8 am, 1 pm, and 8 pm. Groups were matched for kilocalories consumed and macronutrient distribution at baseline. RESULTS After 12 months of TRE, body mass, fat mass, insulin-like growth factor 1, and testosterone were significantly lower compared with ND. Moreover, inflammatory markers (interleukin 6, interleukin 1β, and tumor necrosis factor α), insulin sensitivity (fasting glucose, insulin, and homeostatic model assessment for insulin resistance index), and lipid profile (cholesterol, HDL, and LDL) significantly improved after TRE compared with ND. Finally, subjects in TRE spontaneously decreased their daily energy intake, whereas those in ND maintained their starting kilocalories per day. No adverse events were reported. CONCLUSIONS Our results suggest that long-term TRE combined with a resistance training program is feasible, safe, and effective in reducing inflammatory markers and risk factors related to cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- TATIANA MORO
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
| | - GRANT TINSLEY
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX
| | | | - GIUSEPPE MARCOLIN
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
| | - ANTONINO BIANCO
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, ITALY
| | - ANTONIO PAOLI
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
| |
Collapse
|
12
|
Kim BH, Joo Y, Kim MS, Choe HK, Tong Q, Kwon O. Effects of Intermittent Fasting on the Circulating Levels and Circadian Rhythms of Hormones. Endocrinol Metab (Seoul) 2021; 36:745-756. [PMID: 34474513 PMCID: PMC8419605 DOI: 10.3803/enm.2021.405] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 01/09/2023] Open
Abstract
Intermittent fasting has become an increasingly popular strategy in losing weight and associated reduction in obesity-related medical complications. Overwhelming studies support metabolic improvements from intermittent fasting in blood glucose levels, cardiac and brain function, and other health benefits, in addition to weight loss. However, concerns have also been raised on side effects including muscle loss, ketosis, and electrolyte imbalance. Of particular concern, the effect of intermittent fasting on hormonal circadian rhythms has received little attention. Given the known importance of circadian hormonal changes to normal physiology, potential detrimental effects by dysregulation of hormonal changes deserve careful discussions. In this review, we describe the changes in circadian rhythms of hormones caused by intermittent fasting. We covered major hormones commonly pathophysiologically involved in clinical endocrinology, including insulin, thyroid hormones, and glucocorticoids. Given that intermittent fasting could alter both the level and frequency of hormone secretion, decisions on practicing intermittent fasting should take more considerations on potential detrimental consequences versus beneficial effects pertaining to individual health conditions.
Collapse
Affiliation(s)
- Bo Hye Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul,
Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul,
Korea
| | - Yena Joo
- Seoul National University College of Medicine, Seoul,
Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu,
Korea
| | - Qingchun Tong
- Brown Institute of Molecular Medicine and Department of Neurobiology and Anatomy, McGovern Medical School of UTHealth, and MD Anderson Cancer Center & UTHealth Graduate School of Biomedical Sciences, Houston, TX,
USA
| | - Obin Kwon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul,
Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul,
Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul,
Korea
| |
Collapse
|
13
|
Arrested Puberty in an Adolescent Male with Anorexia Nervosa Successfully Resumed with Multidisciplinary Care. Case Rep Pediatr 2021; 2021:5512532. [PMID: 34336338 PMCID: PMC8294969 DOI: 10.1155/2021/5512532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
The normal development of puberty depends on the specific pulsatility of gonadorelin, which is finely regulated by genetic and environmental factors. In the published literature, eating disorders figure as a cause of pubertal delay/arrest in females but are rarely considered in males with disordered puberty. A 16.7-year-old male was referred to the Department of Pediatrics with arrested puberty due to severe malnutrition in the context of food restriction. Past medical history was relevant for asthma. Generalized cachexia, facial lanugo hair, cutaneous xerosis, and Russell's sign were noted; he had a height of 155.5 cm (−2.5 SD; target height: 168 cm, −1.1 SD) and a BMI of 12.4 kg/m2 (−6.8 SD); left and right testicular volumes were 8 mL and 10 mL, respectively. He had a twin brother who had normal auxological/pubertal development (height: 167 cm, −1.05 SD; testicular volumes: 20 mL). Anorexia nervosa was diagnosed, and he was enrolled in a personalized treatment and surveillance program. “Nonthyroid illness” resembling secondary hypothyroidism was noted, as was low bone mineral density. Clinical and biochemical follow-up showed significant improvements in BMI (16.2 kg/m2, −2.55 SD), completion of puberty (testicular volumes: 25 mL), and reversion of main neuroendocrine abnormalities. Herein, we present an adolescent male with arrested puberty in the context of anorexia nervosa. The recognition of this rare condition in males allows a personalized approach to disordered puberty, with resumption of normal function of the hypothalamic-pituitary-gonadal axis and achievement of pubertal milestones.
Collapse
|
14
|
Pini T, Raubenheimer D, Simpson SJ, Crean AJ. Obesity and Male Reproduction; Placing the Western Diet in Context. Front Endocrinol (Lausanne) 2021; 12:622292. [PMID: 33776921 PMCID: PMC7991841 DOI: 10.3389/fendo.2021.622292] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
There is mounting evidence that obesity has negative repercussions for reproductive physiology in males. Much of this evidence has accumulated from rodent studies employing diets high in fat and sugar ("high fat" or "western" diets). While excessive fats and carbohydrates have long been considered major determinants of diet induced obesity, a growing body of research suggests that the relationships between diet composition and obesity are more complex than originally thought, involving interactions between dietary macronutrients. However, rodent dietary models have yet to evolve to capture this, instead relying heavily on elevated levels of a single macronutrient. While this approach has highlighted important effects of obesity on male reproduction, it does not allow for interpretation of the complex, interacting effects of dietary protein, carbohydrate and fat. Further, the single nutrient approach limits the ability to draw conclusions about which diets best support reproductive function. Nutritional Geometry offers an alternative approach, assessing outcomes of interest over an extended range of dietary macronutrient compositions. This review explores the practical application of Nutritional Geometry to study the effects of dietary macronutrient balance on male reproduction, including experimental considerations specific to studies of diet and reproductive physiology. Finally, this review discusses the promising use of Nutritional Geometry in the development of evidence-based pre-conception nutritional guidance for men.
Collapse
Affiliation(s)
| | | | | | - Angela J. Crean
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Scharner S, Stengel A. Animal Models for Anorexia Nervosa-A Systematic Review. Front Hum Neurosci 2021; 14:596381. [PMID: 33551774 PMCID: PMC7854692 DOI: 10.3389/fnhum.2020.596381] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
Anorexia nervosa is an eating disorder characterized by intense fear of gaining weight and a distorted body image which usually leads to low caloric intake and hyperactivity. The underlying mechanism and pathogenesis of anorexia nervosa is still poorly understood. In order to learn more about the underlying pathophysiology of anorexia nervosa and to find further possible treatment options, several animal models mimicking anorexia nervosa have been developed. The aim of this review is to systematically search different databases and provide an overview of existing animal models and to discuss the current knowledge gained from animal models of anorexia nervosa. For the systematic data search, the Pubmed—Medline database, Embase database, and Web of Science database were searched. After removal of duplicates and the systematic process of selection, 108 original research papers were included in this systematic review. One hundred and six studies were performed with rodents and 2 on monkeys. Eighteen different animal models for anorexia nervosa were used in these studies. Parameters assessed in many studies were body weight, food intake, physical activity, cessation of the estrous cycle in female animals, behavioral changes, metabolic and hormonal alterations. The most commonly used animal model (75 of the studies) is the activity-based anorexia model in which typically young rodents are exposed to time-reduced access to food (a certain number of hours a day) with unrestricted access to a running wheel. Of the genetic animal models, one that is of particular interest is the anx/anx mice model. Animal models have so far contributed many findings to the understanding of mechanisms of hunger and satiety, physical activity and cognition in an underweight state and other mechanisms relevant for anorexia nervosa in humans.
Collapse
Affiliation(s)
- Sophie Scharner
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Nicholas DA, Knight VS, Tonsfeldt KJ, Terasaka T, Molinar-Inglis O, Stephens SBZ, Trejo J, Kauffman AS, Mellon PL, Lawson MA. GLUT1-mediated glycolysis supports GnRH-induced secretion of luteinizing hormone from female gonadotropes. Sci Rep 2020; 10:13063. [PMID: 32747664 PMCID: PMC7400764 DOI: 10.1038/s41598-020-69913-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/21/2020] [Indexed: 12/03/2022] Open
Abstract
The mechanisms mediating suppression of reproduction in response to decreased nutrient availability remain undefined, with studies suggesting regulation occurs within the hypothalamus, pituitary, or gonads. By manipulating glucose utilization and GLUT1 expression in a pituitary gonadotrope cell model and in primary gonadotropes, we show GLUT1-dependent stimulation of glycolysis, but not mitochondrial respiration, by the reproductive neuropeptide GnRH. GnRH stimulation increases gonadotrope GLUT1 expression and translocation to the extracellular membrane. Maximal secretion of the gonadotropin Luteinizing Hormone is supported by GLUT1 expression and activity, and GnRH-induced glycolysis is recapitulated in primary gonadotropes. GLUT1 expression increases in vivo during the GnRH-induced ovulatory LH surge and correlates with GnRHR. We conclude that the gonadotropes of the anterior pituitary sense glucose availability and integrate this status with input from the hypothalamus via GnRH receptor signaling to regulate reproductive hormone synthesis and secretion.
Collapse
Affiliation(s)
- Dequina A Nicholas
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Vashti S Knight
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Karen J Tonsfeldt
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tomohiro Terasaka
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Shannon B Z Stephens
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - JoAnn Trejo
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Alexander S Kauffman
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mark A Lawson
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
17
|
Cai J, Liu L, Jiang X, Li P, Sha A, Ren J. Low body mass index is associated with ectopic pregnancy following assisted reproductive techniques: a retrospective study. BJOG 2020; 128:540-550. [PMID: 32575153 DOI: 10.1111/1471-0528.16378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate the association between body mass index (BMI) and ectopic pregnancy (EP) following embryo transfer (ET). DESIGN Retrospective cohort study. SETTING University-affiliated hospital. POPULATION A total of 16 378 pregnancies derived from either fresh ET or frozen-thawed ET between January 2008 and December 2017. METHODS We used the generalised estimating equation (GEE) to analyse the association between BMI categories and EP, as one woman may contribute to more than one pregnancy. Generalised additive models were also used to demonstrate the non-linear association. Models were adjusted for age, parity, gravidity, previous history of ectopic pregnancy, duration of infertility, polycystic ovary syndrome, endometriosis, diagnosis of tubal problems, ovarian reserve markers, ovarian stimulation parameters, insemination protocol, endometrial thickness and embryo transfer policies. MAIN OUTCOME MEASURES Ectopic pregnancy. RESULTS According to the WHO criteria, the number of cycles with low (<18.5 kg/m2 ), normal (18.5-24.9 kg/m2 ) and high (≥25 kg/m2 ) BMI were 2155, 13 447 and 776, respectively. In comparison with the normal BMI group, the rate of EP was significantly increased in the low BMI group (2.92% versus 2.02%, relative risk 1.45, 95% CI 1.11-1.90), but not in the high BMI group (2.84%, relative risk 1.41, 95% CI 0.92-2.20). Adjusted for confounding factors, the odds ratio for EP comparing low BMI versus normal BMI was 1.61 (95% CI 1.19-2.16) and that comparing high BMI versus normal BMI was 1.12 (95% CI 0.72-1.76). CONCLUSIONS Low BMI is associated with an increased risk of EP. TWEETABLE ABSTRACT The ectopic pregnancy rate after embryo transfer for lean women is higher than that for women of normal weight.
Collapse
Affiliation(s)
- J Cai
- The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China.,School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - L Liu
- The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China.,School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - X Jiang
- The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - P Li
- The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - A Sha
- The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - J Ren
- The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
18
|
Serra M, Marongiu F, Pisu MG, Serra M, Laconi E. Time-restricted feeding delays the emergence of the age-associated, neoplastic-prone tissue landscape. Aging (Albany NY) 2020; 11:3851-3863. [PMID: 31188781 PMCID: PMC6594823 DOI: 10.18632/aging.102021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/05/2019] [Indexed: 12/18/2022]
Abstract
Aging increases the risk of cancer partly through alterations in the tissue microenvironment. Time-restricted feeding (TRF) is being proposed as an effective strategy to delay biological aging. In the present studies, we assessed the effect of long-term exposure to TRF on the emergence of the age-associated, neoplastic-prone tissue landscape. Animals were exposed to either ad libitum feeding (ALF) or TRF for 18 months and then transplanted with hepatocytes isolated from pre-neoplastic nodules. Both groups were continued ALF and the growth of transplanted cells was evaluated 3 months later. A significant decrease in frequency of larger size clusters of pre-neoplastic hepatocytes was seen in TRF-exposed group compared to controls. Furthermore, TRF modified several parameters related to both liver and systemic aging towards the persistence of a younger phenotype, including a decrease in liver cell senescence, diminished fat accumulation and up-regulation of SIRT1 in the liver, down-regulation of plasma IGF-1, decreased levels of plasma lipoproteins and up-regulation of hippocampal brain-derived growth factor (BDNF).These results indicate that TRF was able to delay the onset of the neoplastic-prone tissue landscape typical of aging. To our knowledge, this is the first investigation to describe a direct beneficial effect of TRF on early phases of carcinogenesis.
Collapse
Affiliation(s)
- Monica Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Mariangela Serra
- Department of Life and Environment Sciences University of Cagliari, Cagliari, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
19
|
Pan X, Taylor MJ, Cohen E, Hanna N, Mota S. Circadian Clock, Time-Restricted Feeding and Reproduction. Int J Mol Sci 2020; 21:ijms21030831. [PMID: 32012883 PMCID: PMC7038040 DOI: 10.3390/ijms21030831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/29/2022] Open
Abstract
The goal of this review was to seek a better understanding of the function and differential expression of circadian clock genes during the reproductive process. Through a discussion of how the circadian clock is involved in these steps, the identification of new clinical targets for sleep disorder-related diseases, such as reproductive failure, will be elucidated. Here, we focus on recent research findings regarding circadian clock regulation within the reproductive system, shedding new light on circadian rhythm-related problems in women. Discussions on the roles that circadian clock plays in these reproductive processes will help identify new clinical targets for such sleep disorder-related diseases.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, New York, NY 11501, USA
- Correspondence:
| | - Meredith J. Taylor
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, New York, NY 11501, USA
| | - Emma Cohen
- Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, New York, NY 11501, USA
| | - Nazeeh Hanna
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA
- Department of Pediatrics, NYU Winthrop Hospital, Mineola, New York, NY 11501, USA
| | - Samantha Mota
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, New York, NY 11501, USA
| |
Collapse
|
20
|
Yang X, Brobst D, Chan WS, Tse MCL, Herlea-Pana O, Ahuja P, Bi X, Zaw AM, Kwong ZSW, Jia WH, Zhang ZG, Zhang N, Chow SKH, Cheung WH, Louie JCY, Griffin TM, Nong W, Hui JHL, Du GH, Noh HL, Saengnipanthkul S, Chow BKC, Kim JK, Lee CW, Chan CB. Muscle-generated BDNF is a sexually dimorphic myokine that controls metabolic flexibility. Sci Signal 2019; 12:12/594/eaau1468. [PMID: 31409756 DOI: 10.1126/scisignal.aau1468] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability of skeletal muscle to switch between lipid and glucose oxidation for ATP production during metabolic stress is pivotal for maintaining systemic energy homeostasis, and dysregulation of this metabolic flexibility is a dominant cause of several metabolic disorders. However, the molecular mechanism that governs fuel selection in muscle is not well understood. Here, we report that brain-derived neurotrophic factor (BDNF) is a fasting-induced myokine that controls metabolic reprograming through the AMPK/CREB/PGC-1α pathway in female mice. Female mice with a muscle-specific deficiency in BDNF (MBKO mice) were unable to switch the predominant fuel source from carbohydrates to fatty acids during fasting, which reduced ATP production in muscle. Fasting-induced muscle atrophy was also compromised in female MBKO mice, likely a result of autophagy inhibition. These mutant mice displayed myofiber necrosis, weaker muscle strength, reduced locomotion, and muscle-specific insulin resistance. Together, our results show that muscle-derived BDNF facilitates metabolic adaption during nutrient scarcity in a gender-specific manner and that insufficient BDNF production in skeletal muscle promotes the development of metabolic myopathies and insulin resistance.
Collapse
Affiliation(s)
- Xiuying Yang
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 634, Oklahoma City, OK 73104, USA.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing 100050, China
| | - Daniel Brobst
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 634, Oklahoma City, OK 73104, USA
| | - Wing Suen Chan
- School of Biological Sciences, The University of Hong Kong, 6N01 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Margaret Chui Ling Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Oana Herlea-Pana
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 634, Oklahoma City, OK 73104, USA
| | - Palak Ahuja
- School of Biological Sciences, The University of Hong Kong, 6N01 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Xinyi Bi
- School of Biological Sciences, The University of Hong Kong, 6N01 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Aung Moe Zaw
- School of Biological Sciences, The University of Hong Kong, 6N01 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong.,Department of Chemical Engineering, University of Waterloo, ON N2L 3G1, Canada
| | - Zara Sau Wa Kwong
- School of Biological Sciences, The University of Hong Kong, 6N01 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Wei-Hua Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing 100050, China
| | - Zhong-Gou Zhang
- Department of Colorectal Cancer Oncological Surgery, Large-Scale Data Analysis Center of Cancer Precision Medicine, Cancer Hospital of Chinese Medical University, Liaoning Provincial Cancer Institute and Hospital, Shenyang 110042, China
| | - Ning Zhang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, 5/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Shatin, Hong Kong
| | - Simon Kwoon Ho Chow
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, 5/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Shatin, Hong Kong
| | - Wing Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, 5/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Shatin, Hong Kong
| | - Jimmy Chun Yu Louie
- School of Biological Sciences, The University of Hong Kong, 6N01 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Timothy M Griffin
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 634, Oklahoma City, OK 73104, USA.,Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Wenyan Nong
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jerome Ho Lam Hui
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing 100050, China
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Suchaorn Saengnipanthkul
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, 6N01 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Chi Wai Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| | - Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, 6N01 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong. .,State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong
| |
Collapse
|
21
|
Mani K, Javaheri A, Diwan A. Lysosomes Mediate Benefits of Intermittent Fasting in Cardiometabolic Disease: The Janitor Is the Undercover Boss. Compr Physiol 2018; 8:1639-1667. [PMID: 30215867 DOI: 10.1002/cphy.c180005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adaptive responses that counter starvation have evolved over millennia to permit organismal survival, including changes at the level of individual organelles, cells, tissues, and organ systems. In the past century, a shift has occurred away from disease caused by insufficient nutrient supply toward overnutrition, leading to obesity and diabetes, atherosclerosis, and cardiometabolic disease. The burden of these diseases has spurred interest in fasting strategies that harness physiological responses to starvation, thus limiting tissue injury during metabolic stress. Insights gained from animal and human studies suggest that intermittent fasting and chronic caloric restriction extend lifespan, decrease risk factors for cardiometabolic and inflammatory disease, limit tissue injury during myocardial stress, and activate a cardioprotective metabolic program. Acute fasting activates autophagy, an intricately orchestrated lysosomal degradative process that sequesters cellular constituents for degradation, and is critical for cardiac homeostasis during fasting. Lysosomes are dynamic cellular organelles that function as incinerators to permit autophagy, as well as degradation of extracellular material internalized by endocytosis, macropinocytosis, and phagocytosis. The last decade has witnessed an explosion of knowledge that has shaped our understanding of lysosomes as central regulators of cellular metabolism and the fasting response. Intriguingly, lysosomes also store nutrients for release during starvation; and function as a nutrient sensing organelle to couple activation of mammalian target of rapamycin to nutrient availability. This article reviews the evidence for how the lysosome, in the guise of a janitor, may be the "undercover boss" directing cellular processes for beneficial effects of intermittent fasting and restoring homeostasis during feast and famine. © 2018 American Physiological Society. Compr Physiol 8:1639-1667, 2018.
Collapse
Affiliation(s)
- Kartik Mani
- John Cochran VA Medical Center, St. Louis, Missouri, USA.,Center for Cardiovascular Research and Division of Cardiology in Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ali Javaheri
- Center for Cardiovascular Research and Division of Cardiology in Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Abhinav Diwan
- Center for Cardiovascular Research and Division of Cardiology in Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
22
|
Low body mass index compromises live birth rate in fresh transfer in vitro fertilization cycles: a retrospective study in a Chinese population. Fertil Steril 2017; 107:422-429.e2. [DOI: 10.1016/j.fertnstert.2016.10.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/11/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022]
|
23
|
Moro T, Tinsley G, Bianco A, Marcolin G, Pacelli QF, Battaglia G, Palma A, Gentil P, Neri M, Paoli A. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J Transl Med 2016; 14:290. [PMID: 27737674 PMCID: PMC5064803 DOI: 10.1186/s12967-016-1044-0] [Citation(s) in RCA: 416] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 10/03/2016] [Indexed: 01/10/2023] Open
Abstract
Background Intermittent fasting (IF) is an increasingly popular dietary approach used for weight loss and overall health. While there is an increasing body of evidence demonstrating beneficial effects of IF on blood lipids and other health outcomes in the overweight and obese, limited data are available about the effect of IF in athletes. Thus, the present study sought to investigate the effects of a modified IF protocol (i.e. time-restricted feeding) during resistance training in healthy resistance-trained males. Methods Thirty-four resistance-trained males were randomly assigned to time-restricted feeding (TRF) or normal diet group (ND). TRF subjects consumed 100 % of their energy needs in an 8-h period of time each day, with their caloric intake divided into three meals consumed at 1 p.m., 4 p.m., and 8 p.m. The remaining 16 h per 24-h period made up the fasting period. Subjects in the ND group consumed 100 % of their energy needs divided into three meals consumed at 8 a.m., 1 p.m., and 8 p.m. Groups were matched for kilocalories consumed and macronutrient distribution (TRF 2826 ± 412.3 kcal/day, carbohydrates 53.2 ± 1.4 %, fat 24.7 ± 3.1 %, protein 22.1 ± 2.6 %, ND 3007 ± 444.7 kcal/day, carbohydrates 54.7 ± 2.2 %, fat 23.9 ± 3.5 %, protein 21.4 ± 1.8). Subjects were tested before and after 8 weeks of the assigned diet and standardized resistance training program. Fat mass and fat-free mass were assessed by dual-energy x-ray absorptiometry and muscle area of the thigh and arm were measured using an anthropometric system. Total and free testosterone, insulin-like growth factor 1, blood glucose, insulin, adiponectin, leptin, triiodothyronine, thyroid stimulating hormone, interleukin-6, interleukin-1β, tumor necrosis factor α, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides were measured. Bench press and leg press maximal strength, resting energy expenditure, and respiratory ratio were also tested. Results After 8 weeks, the 2 Way ANOVA (Time * Diet interaction) showed a decrease in fat mass in TRF compared to ND (p = 0.0448), while fat-free mass, muscle area of the arm and thigh, and maximal strength were maintained in both groups. Testosterone and insulin-like growth factor 1 decreased significantly in TRF, with no changes in ND (p = 0.0476; p = 0.0397). Adiponectin increased (p = 0.0000) in TRF while total leptin decreased (p = 0.0001), although not when adjusted for fat mass. Triiodothyronine decreased in TRF, but no significant changes were detected in thyroid-stimulating hormone, total cholesterol, high-density lipoprotein, low-density lipoprotein, or triglycerides. Resting energy expenditure was unchanged, but a significant decrease in respiratory ratio was observed in the TRF group. Conclusions Our results suggest that an intermittent fasting program in which all calories are consumed in an 8-h window each day, in conjunction with resistance training, could improve some health-related biomarkers, decrease fat mass, and maintain muscle mass in resistance-trained males.
Collapse
Affiliation(s)
- Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Grant Tinsley
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Giuseppe Marcolin
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | | | - Giuseppe Battaglia
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Paulo Gentil
- College of Physical Education and Dance, Federal University of Goias, Goiania, Brazil
| | - Marco Neri
- Italian Fitness Federation, Ravenna, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padua, Italy.
| |
Collapse
|
24
|
Luo Q, Li W, Li M, Zhang X, Zhang H. Leptin/leptinR-kisspeptin/kiss1r-GnRH pathway reacting to regulate puberty onset during negative energy balance. Life Sci 2016; 153:207-12. [DOI: 10.1016/j.lfs.2016.03.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 11/30/2022]
|
25
|
Vasconcelos AR, Cabral-Costa JV, Mazucanti CH, Scavone C, Kawamoto EM. The Role of Steroid Hormones in the Modulation of Neuroinflammation by Dietary Interventions. Front Endocrinol (Lausanne) 2016; 7:9. [PMID: 26869995 PMCID: PMC4740355 DOI: 10.3389/fendo.2016.00009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/21/2016] [Indexed: 12/20/2022] Open
Abstract
Steroid hormones, such as sex hormones and glucocorticoids, have been demonstrated to play a role in different cellular processes in the central nervous system, ranging from neurodevelopment to neurodegeneration. Environmental factors, such as calorie intake or fasting frequency, may also impact on such processes, indicating the importance of external factors in the development and preservation of a healthy brain. The hypothalamic-pituitary-adrenal axis and glucocorticoid activity play a role in neurodegenerative processes, including in disorders such as in Alzheimer's and Parkinson's diseases. Sex hormones have also been shown to modulate cognitive functioning. Inflammation is a common feature in neurodegenerative disorders, and sex hormones/glucocorticoids can act to regulate inflammatory processes. Intermittent fasting can protect the brain against cognitive decline that is induced by an inflammatory stimulus. On the other hand, obesity increases susceptibility to inflammation, while metabolic syndromes, such as diabetes, are associated with neurodegeneration. Consequently, given that gonadal and/or adrenal steroids may significantly impact the pathophysiology of neurodegeneration, via their effect on inflammatory processes, this review focuses on how environmental factors, such as calorie intake and intermittent fasting, acting through their modulation of steroid hormones, impact on inflammation that contributes to cognitive and neurodegenerative processes.
Collapse
Affiliation(s)
- Andrea Rodrigues Vasconcelos
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - João Victor Cabral-Costa
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Caio Henrique Mazucanti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Elisa Mitiko Kawamoto,
| |
Collapse
|
26
|
Singh R, Manchanda S, Kaur T, Kumar S, Lakhanpal D, Lakhman SS, Kaur G. Middle age onset short-term intermittent fasting dietary restriction prevents brain function impairments in male Wistar rats. Biogerontology 2015; 16:775-88. [DOI: 10.1007/s10522-015-9603-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/24/2015] [Indexed: 01/14/2023]
|
27
|
Radler ME, Wright BJ, Walker FR, Hale MW, Kent S. Calorie restriction increases lipopolysaccharide-induced neuropeptide Y immunolabeling and reduces microglial cell area in the arcuate hypothalamic nucleus. Neuroscience 2014; 285:236-47. [PMID: 25446356 DOI: 10.1016/j.neuroscience.2014.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/20/2014] [Accepted: 11/04/2014] [Indexed: 11/30/2022]
Abstract
Calorie restriction (CR) increases longevity and elicits many health promoting benefits including delaying immunosenescence and reducing the incidence of age-related diseases. Although the mechanisms underlying the health-enhancing effects of CR are not known, a likely contributing factor is alterations in immune system functioning. CR suppresses lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines, blocks LPS-induced fever, and shifts hypothalamic signaling pathways to an anti-inflammatory bias. Furthermore, we have recently shown that CR attenuates LPS-stimulated microglial activation in the hypothalamic arcuate nucleus (ARC), a brain region containing neurons that synthesize neuropeptide Y (NPY), an orexigenic neuropeptide that is upregulated by a CR diet and has anti-inflammatory properties. To determine if increased NPY expression in the ARC following CR was associated with changes in microglial activation, a set of brain sections from mice that were exposed to 50% CR or ad libitum feeding for 28 days before being injected with LPS were immunostained for NPY. The density of NPY-immunolabeling was assessed across the rostrocaudal extent of the ARC and hypothalamic paraventricular nucleus (PVN). An adjacent set of sections were immunostained for ionized calcium-binding adapter molecule-1 (Iba1) and immunostained microglia in the ARC were digitally reconstructed to investigate the effects of CR on microglial morphology. We demonstrated that exposure to CR increased NPY expression in the ARC, but not the PVN. Digital reconstruction of microglia revealed that LPS increased Iba1 intensity in ad libitum fed mice but had no effect on Iba1 intensity in CR mice. CR also decreased the size of ARC microglial cells following LPS. Correlational analyses revealed strong associations between NPY and body temperature, and body temperature and microglia area. Together these results suggest that CR-induced changes in NPY are not directly involved in the suppression of LPS-induced microglial activation, however, NPY may indirectly affect microglial morphology through changes in body temperature.
Collapse
Affiliation(s)
- M E Radler
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - B J Wright
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - F R Walker
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, Australia
| | - M W Hale
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - S Kent
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
28
|
Khorram O, Keen-Rinehart E, Chuang TD, Ross MG, Desai M. Maternal undernutrition induces premature reproductive senescence in adult female rat offspring. Fertil Steril 2014; 103:291-8.e2. [PMID: 25439841 DOI: 10.1016/j.fertnstert.2014.09.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine the effects of maternal undernutrition (MUN) on the reproductive axis of aging offspring. DESIGN Animal (rat) study. SETTING Research laboratory. ANIMAL(S) Female Sprague-Dawley rats. INTERVENTION(S) Food restriction during the second half of pregnancy in rats. MAIN OUTCOME MEASURE(S) Circulating gonadotropins, antimüllerian hormone (AMH), ovarian morphology, estrous cyclicity, and gene expression studies in the hypothalamus and ovary in 1-day-old (P1) and aging adult offspring. RESULT(S) Offspring of MUN dams had low birth weight (LBW) and by adult age developed obesity. In addition, 80% of adult LBW offspring had disruption of estrous cycle by 8 months of age, with the majority of animals in persistent estrous. Ovarian morphology was consistent with acyclicity, with ovaries exhibiting large cystic structures and reduced corpora lutea. There was an elevation in circulating T, increased ovarian expression of enzymes involved in androgen synthesis, an increase in plasma LH/FSH levels, a reduction in E2 levels, and no changes in AMH in adult LBW offspring compared with in control offspring. Hypothalamic expression of leptin receptor (ObRb), estrogen receptor-α (ER-α), and GnRH protein was altered in an age-dependent manner with increased ObRb and ER-α expression in P1 LBW hypothalami and a reversal of this expression pattern in adult LBW hypothalami. CONCLUSION(S) Our data indicate that the maternal nutritional environment programs the reproductive potential of the offspring through alteration of the hypothalamic-pituitary-gonadal axis. The premature reproductive senescence in LBW offspring could be secondary to the development of obesity and hyperleptinemia in these animals in adult life.
Collapse
Affiliation(s)
- Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, and LA Biomedical Institute, Torrance, California.
| | - Erin Keen-Rinehart
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, and LA Biomedical Institute, Torrance, California
| | - Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, and LA Biomedical Institute, Torrance, California
| | - Michael G Ross
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, and LA Biomedical Institute, Torrance, California
| | - Mina Desai
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, and LA Biomedical Institute, Torrance, California
| |
Collapse
|
29
|
Kumar S, Kaur G. Second generation anti-epileptic drugs adversely affect reproductive functions in young non-epileptic female rats. Eur Neuropsychopharmacol 2014; 24:1709-18. [PMID: 25213092 DOI: 10.1016/j.euroneuro.2014.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 02/05/2014] [Accepted: 06/24/2014] [Indexed: 11/25/2022]
Abstract
Reproductive endocrine disturbances are a major health concern in women with epilepsy due to their long term use of antiepileptic drugs (AEDs). Second generation AEDs such as topiramate (TPM) and gabapentin are frequently used for the treatment of epilepsy as well as migraine, bipolar disorder etc. Despite the widespread clinical complications, however the definitive mechanism(s) mediating the side effects of TPM and gabapentin remain obscure. The present study was aimed to evaluate the long term effects of TPM and gabapentin on reproductive functions in young female Wistar rats. Estrous cyclicity, ovarian histology as well as estradiol, LH, leptin and insulin hormones level were studied to elucidate the long-term effect of these AEDs monotherapy on reproductive functions in non-epileptic animals. Further to explore the effects on gonadotropin releasing hormone (GnRH) neuroendocrine plasticity, the expression of GnRH, gamma-amino butyric acid (GABA), glutamic acid decarboxylase (GAD), glial fibrilliary acidic protein (GFAP) and polysialylated form of neural cell adhesion molecule (PSA-NCAM) was studied in median eminence (ME) region of these animals by immunohistochemistry, Western blot hybridization and RT-PCR. Our results demonstrate that TPM and gabapentin treatment for 8 weeks cause reproductive dysfunction as ascertained by disturbed hormonal levels and estrous cyclicity as well as alterations in GABAergic system and GnRH neuronal-glial plasticity. Our findings suggest that treatment with TPM and gabapentin disrupts the complete hypothalamo-hypophyseal-gonadal axis (HPG) through GnRH pulse generator in hypothalamus.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
30
|
Pazos P, Lima L, Diéguez C, García MC. Energy Balance Regulating Neuropeptides Are Expressed through Pregnancy and Regulated by Interleukin-6 Deficiency in Mouse Placenta. Int J Endocrinol 2014; 2014:537603. [PMID: 24744782 PMCID: PMC3972931 DOI: 10.1155/2014/537603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/21/2014] [Accepted: 02/02/2014] [Indexed: 01/17/2023] Open
Abstract
The placenta produces a number of signaling molecules including metabolic and reproductive hormones as well as several inflammatory mediators. Among them, Interleukin-6 (IL-6), a well-known immune and metabolic regulator, acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. IL-6 interacts with key hypothalamic neuropeptidergic systems controlling energy homeostasis such as those producing the orexigenic/anabolic: neuropeptide Y (NPY) and agouti-related peptide (AgRP) and anorectic/catabolic neuropeptides: proopiomelanocortin (POMC) and cocaine and amphetamine regulated transcript (CART). Human and rat placenta have been identified as source of these neuropeptides, but their expression and regulation in murine placental tissues remain unknown. Therefore, placental mRNA levels of IL-6, NPY, AgRP, POMC, and CART at different pregnancy stages (gestational days 13, 15, and 18) were analyzed by real time PCR, as were the effect of IL-6 deficiency (IL-6 knockout mice) on their placental expression. Our results showed that placenta-derived neuropeptides were regulated by gestational age and IL-6 throughout the second half of mouse pregnancy. These data suggest that IL-6 may participate in the fine tune control of energy balance during pregnancy by extending its action as a metabolic signal to the main organ at the fetomaternal interface: the placenta.
Collapse
Affiliation(s)
- Patricia Pazos
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Avenida de Barcelona s/n, 15782 Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII), Ministerio de Economía y Competitividad (MINECO), 15706 Santiago de Compostela, Spain
| | - Luis Lima
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Avenida de Barcelona s/n, 15782 Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Carlos Diéguez
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Avenida de Barcelona s/n, 15782 Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII), Ministerio de Economía y Competitividad (MINECO), 15706 Santiago de Compostela, Spain
| | - María C. García
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Avenida de Barcelona s/n, 15782 Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII), Ministerio de Economía y Competitividad (MINECO), 15706 Santiago de Compostela, Spain
| |
Collapse
|
31
|
Sawicka N, Gryczyńska M, Sowiński J, Tamborska-Zedlewska M, Ruchała M. Two diagnoses become one? Rare case report of anorexia nervosa and Cushing's syndrome. Neuropsychiatr Dis Treat 2013; 9:431-5. [PMID: 23579693 PMCID: PMC3621711 DOI: 10.2147/ndt.s40398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Hypothalamic-pituitary-adrenal axis impairment in anorexia nervosa is marked by hypercortisolemia, and psychiatric disorders occur in the majority of patients with Cushing's syndrome. Here we report a patient diagnosed with anorexia nervosa who also developed Cushing's syndrome. A 26-year-old female had been treated for anorexia nervosa since she was 17 years old, and also developed depression and paranoid schizophrenia. She was admitted to the Department of Endocrinology, Metabolism, and Internal Medicine with a preliminary diagnosis of Cushing's syndrome. Computed tomography revealed a 27 mm left adrenal tumor, and she underwent laparoscopic adrenalectomy. She was admitted to hospital 6 months after this procedure, at which time she did not report any eating or mood disorder. This is a rare case report of a patient with anorexia nervosa in whom Cushing's syndrome was subsequently diagnosed. Diagnostic difficulties were caused by the signs and symptoms presenting in the course of both disorders, ie, hypercortisolemia, osteoporosis, secondary amenorrhea, striae, hypokalemia, muscle weakness, and depression.
Collapse
Affiliation(s)
- Nadia Sawicka
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | |
Collapse
|