1
|
Hellwig M, Diel P, Eisenbrand G, Grune T, Guth S, Henle T, Humpf HU, Joost HG, Marko D, Raupbach J, Roth A, Vieths S, Mally A. Dietary glycation compounds - implications for human health. Crit Rev Toxicol 2024; 54:485-617. [PMID: 39150724 DOI: 10.1080/10408444.2024.2362985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Thomas Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | | | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jana Raupbach
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Sun J, Akıllıoğlu HG, Zhong J, Muk T, Pan X, Lund MN, Sangild PT, Nguyen DN, Bering SB. Ultra-High Temperature Treatment of Liquid Infant Formula, Systemic Immunity, and Kidney Development in Preterm Neonates. Mol Nutr Food Res 2023; 67:e2300318. [PMID: 37888862 DOI: 10.1002/mnfr.202300318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2023] [Revised: 08/25/2023] [Indexed: 10/28/2023]
Abstract
SCOPE Ready-to-feed liquid infant formulas (IFs) are increasingly being used for newborn preterm infants when human milk is unavailable. However, sterilization of liquid IFs by ultra-high temperature (UHT) introduces Maillard reaction products (MRPs) that may negatively affect systemic immune and kidney development. METHODS AND RESULTS UHT-treated IF without and with prolonged storage (SUHT) are tested against pasteurized IF (PAST) in newborn preterm pigs as a model for preterm infants. After 5 days, blood leukocytes, markers of systemic immunity and inflammation, kidney structure and function are evaluated. No consistent differences between UHT and PAST pigs are observed. However, SUHT increases plasma TNFα and IL-6 and reduces neutrophils and in vitro response to LPS. In SUHT pigs, the immature kidneys show minor upregulation of gene expressions related to inflammation (RAGE, MPO, MMP9) and oxidative stress (CAT, GLO1), together with glomerular mesangial expansion and cell injury. The increased inflammatory status in SUHT pigs appears unrelated to systemic levels of MRPs. CONCLUSION SUHT feeding may impair systemic immunity and affect kidney development in preterm newborns. The systemic effects may be induced by local gut inflammatory effects of MRPs. Optimal processing and length of storage are critical for UHT-treated liquid IFs for preterm infants.
Collapse
Affiliation(s)
- Jing Sun
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | | | - Jingren Zhong
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Tik Muk
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Xiaoyu Pan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Marianne Nissen Lund
- Department of Food Science, University of Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
- Hans Christian Andersen Children's Hospital, Odense, Denmark
- Department of Neonatology, Rigshospitalet, Denmark
| | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Stine Brandt Bering
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| |
Collapse
|
3
|
Marousez L, Sprenger N, De Lamballerie M, Jaramillo-Ortiz S, Tran L, Micours E, Gottrand F, Howsam M, Tessier FJ, Ley D, Lesage J. High hydrostatic pressure processing of human milk preserves milk oligosaccharides and avoids formation of Maillard reaction products. Clin Nutr 2021; 41:1-8. [PMID: 34861623 DOI: 10.1016/j.clnu.2021.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2021] [Revised: 10/29/2021] [Accepted: 11/17/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS High hydrostatic pressure (HHP) processing is a non-thermal method proposed as an alternative to Holder pasteurization (HoP) for the treatment of human milk. HHP preserves numerous milk bioactive components that are degraded by HoP, but no data are available for milk oligosaccharides (HMOs) or the formation of Maillard reaction products, which may be deleterious for preterm newborns. METHODS We evaluated the impact of HHP processing of human milk on 22 HMOs measured by liquid chromatography with fluorescence detection and on furosine, lactuloselysine, carboxymethyllysine (CML) and carboxyethyllysine (CEL) measured by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS), four established indicators of the Maillard reaction. Human raw milk was sterilized by HoP (62.5 °C for 30 min) or processed by HHP (350 MPa at 38 °C). RESULTS Neither HHP nor HoP processing affected the concentration of HMOs, but HoP significantly increased furosine, lactuloselysine, CML and CEL levels in milk. CONCLUSIONS Our findings demonstrate that HPP treatment preserves HMOs and avoids formation of Maillard reaction products. Our study confirms and extends previous findings that HHP treatment of human milk provides safe milk, with fewer detrimental effects on the biochemically active milk components than HoP.
Collapse
Affiliation(s)
- Lucie Marousez
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Norbert Sprenger
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | | | - Sarahi Jaramillo-Ortiz
- University of Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1167 - RID-AGE, F-59000 Lille, France
| | - Léa Tran
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Edwina Micours
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Frédéric Gottrand
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France; Division of Gastroenterology Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children's Hospital, CHU Lille, F-59000 Lille, France
| | - Michael Howsam
- University of Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1167 - RID-AGE, F-59000 Lille, France
| | - Frederic J Tessier
- University of Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1167 - RID-AGE, F-59000 Lille, France
| | - Delphine Ley
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France; Division of Gastroenterology Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children's Hospital, CHU Lille, F-59000 Lille, France
| | - Jean Lesage
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France.
| |
Collapse
|
4
|
Abstract
The introduction of membrane filtration during infant milk formula (IMF) processing represents an innovative approach to increasing native protein content compared to standard IMF. The objective of this study was to compare IMF powder produced using a standard process and IMF produced from raw bovine skim milk with added whey protein isolate using a split-stream process incorporating a ceramic 1.4 μm filter followed by a polyvinylidene difluoride polymeric 0.2 μm filter. Retentates from 0.2 μm microfiltration (MF) were blended with fat, lactose, and minerals and subsequently high-temperature treated (125 °C × 5 s). The heat-treated retentate was merged with the permeate from the 0.2 μm MF, homogenised, and spray-dried (referred to as membrane-filtered IMF or MEM-IMF). A control IMF was also produced using standard treatment (referred to as high-temperature IMF or HT-IMF) without membrane filtration. Both IMF products were characterised by high-performance liquid chromatography, particle size, and enzyme activity assays. MEM-IMF powder had significantly higher amounts of native (1.1 g per 100 g powder) and monomeric (1.48 g per 100 g powder) whey proteins when compared to 0.18 and 0.46 g per 100 g powder in HT-IMF, respectively. MEM-IMF also exhibited a lower degree of protein aggregation compared to HT-IMF. Comparison of microbial and Maillard by-products markers demonstrated that a safe IMF product could be produced at scale, although levels of the Maillard by-product marker, carboxymethyl-lysine, were not significantly reduced in MEM-IMF. This study demonstrates how membrane filtration can be used to retain native proteins during IMF manufacture.
Collapse
|
5
|
Francisco FA, Saavedra LPJ, Junior MDF, Barra C, Matafome P, Mathias PCF, Gomes RM. Early AGEing and metabolic diseases: is perinatal exposure to glycotoxins programming for adult-life metabolic syndrome? Nutr Rev 2021; 79:13-24. [PMID: 32951053 DOI: 10.1093/nutrit/nuaa074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
Perinatal early nutritional disorders are critical for the developmental origins of health and disease. Glycotoxins, or advanced glycation end-products, and their precursors such as the methylglyoxal, which are formed endogenously and commonly found in processed foods and infant formulas, may be associated with acute and long-term metabolic disorders. Besides general aspects of glycotoxins, such as their endogenous production, exogenous sources, and their role in the development of metabolic syndrome, we discuss in this review the sources of perinatal exposure to glycotoxins and their involvement in metabolic programming mechanisms. The role of perinatal glycotoxin exposure in the onset of insulin resistance, central nervous system development, cardiovascular diseases, and early aging also are discussed, as are possible interventions that may prevent or reduce such effects.
Collapse
Affiliation(s)
- Flávio A Francisco
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringa, Maringa, PR, Brazil
| | - Lucas P J Saavedra
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringa, Maringa, PR, Brazil
| | - Marcos D F Junior
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Cátia Barra
- Institute of Physiology and Coimbra Institute of Clinical and Biomedical Research, Faculty of Medicine, and the Center for Innovative Biotechnology and Biomedicine, University of Coimbra; and the Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Institute of Physiology and Coimbra Institute of Clinical and Biomedical Research, Faculty of Medicine, and the Center for Innovative Biotechnology and Biomedicine, University of Coimbra; and the Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Paulo C F Mathias
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringa, Maringa, PR, Brazil
| | - Rodrigo M Gomes
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
6
|
van der Lugt T, Opperhuizen A, Bast A, Vrolijk MF. Dietary Advanced Glycation Endproducts and the Gastrointestinal Tract. Nutrients 2020; 12:nu12092814. [PMID: 32937858 PMCID: PMC7551018 DOI: 10.3390/nu12092814] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
The prevalence of inflammatory bowel diseases (IBD) is increasing in the world. The introduction of the Western diet has been suggested as a potential explanation of increased prevalence. The Western diet includes highly processed food products, and often include thermal treatment. During thermal treatment, the Maillard reaction can occur, leading to the formation of dietary advanced glycation endproducts (dAGEs). In this review, different biological effects of dAGEs are discussed, including their digestion, absorption, formation, and degradation in the gastrointestinal tract, with an emphasis on their pro-inflammatory effects. In addition, potential mechanisms in the inflammatory effects of dAGEs are discussed. This review also specifically elaborates on the involvement of the effects of dAGEs in IBD and focuses on evidence regarding the involvement of dAGEs in the symptoms of IBD. Finally, knowledge gaps that still need to be filled are identified.
Collapse
Affiliation(s)
- Timme van der Lugt
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), 3540 AA Utrecht, The Netherlands
- Correspondence:
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), 3540 AA Utrecht, The Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Campus Venlo, Maastricht University, 5911 BV Venlo, The Netherlands; (A.B.); (M.F.V.)
| | - Misha F. Vrolijk
- Campus Venlo, Maastricht University, 5911 BV Venlo, The Netherlands; (A.B.); (M.F.V.)
| |
Collapse
|
7
|
Francisquini JD, Nunes L, Martins E, Stephani R, Perrone ÍT, Carvalho AFD. How the heat treatment affects the constituents of infant formulas: a review. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2020. [DOI: 10.1590/1981-6723.27219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
Abstract
Abstract Breast milk as the children’s primary source of nutrition fulfills the babies’ needs and can also provide immune protection. In some cases, when mothers are not able to breastfeed, an equivalent substitute is required. Nowadays, the best substitutes of the human breast milk are infant formulas. Different technological routes may be designed to produce infant formulas according to the main challenges: the compromise between food safety and heat treatment damage. This article aimed to review the current scientific knowledge about how heat treatment affects the macro and micronutrients of milk, extrapolating the expected effects on infant formulas. The covered topics were: The definition and composition of infant formulas, industrial methods of infant formulas production, the effects of heat treatment on milk macro and micronutrients.
Collapse
|
8
|
Giblin L, Yalçın AS, Biçim G, Krämer AC, Chen Z, Callanan MJ, Arranz E, Davies MJ. Whey proteins: targets of oxidation, or mediators of redox protection. Free Radic Res 2019; 53:1136-1152. [PMID: 31510814 DOI: 10.1080/10715762.2019.1632445] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
Bovine whey proteins are highly valued dairy ingredients. This is primarily due to their amino acid content, digestibility, bioactivities and their processing characteristics. One of the reported bioactivities of whey proteins is antioxidant activity. Numerous dietary intervention trials with humans and animals indicate that consumption of whey products can modulate redox biomarkers to reduce oxidative stress. This bioactivity has in part been assigned to whey peptides using a range of biochemical or cellular assays in vitro. Superimposing whey peptide sequences from gastrointestinal samples, with whey peptides proven to be antioxidant in vitro, allows us to propose peptides from whey likely to exhibit antioxidant activity in the diet. However, whey proteins themselves are targets of oxidation during processing particularly when exposed to high thermal loads and/or extensive processing (e.g. infant formula manufacture). Oxidative damage of whey proteins can be selective with regard to the residues that are modified and are associated with the degree of protein unfolding, with α-Lactalbumin more susceptible than β-Lactoglobulin. Such oxidative damage may have adverse effects on human health. This review summarises how whey proteins can modulate cellular redox pathways and conversely how whey proteins can be oxidised during processing. Given the extensive processing steps that whey proteins are often subjected to, we conclude that oxidation during processing is likely to compromise the positive health attributes associated with whey proteins.
Collapse
Affiliation(s)
- Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - A Süha Yalçın
- Department of Biochemistry, School of Medicine, Marmara University, İstanbul, Turkey
| | - Gökhan Biçim
- Department of Biochemistry, School of Medicine, Marmara University, İstanbul, Turkey
| | - Anna C Krämer
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Zhifei Chen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Callanan
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Elena Arranz
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Chen Y, Nagy T, Guo TL. Glycated Whey Proteins Protect NOD Mice against Type 1 Diabetes by Increasing Anti-Inflammatory Responses and Decreasing Autoreactivity to Self-Antigens. J Funct Foods 2019; 56:171-181. [PMID: 31832103 DOI: 10.1016/j.jff.2019.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023] Open
Abstract
Our previous studies suggested that early glycation products (EGPs) generated in the first step of Maillard reaction/glycation were anti-inflammatory. The objectives of the present study were to determine the effects of EGPs derived from the whey protein isolate-glucose system on type 1 diabetes (T1D), and the underlying immunological mechanisms. In non-obese diabetic (NOD) mice, EGPs at the physiological dose of 600 mg/kg/day increased glucose metabolism, decreased non-fasting blood glucose levels and T1D incidence, decreased insulin resistance, and decreased the pancreatic immune infiltration. The protective effects were accompanied with decreases in CD4-CD8+ thymocytes, CD8+ T cells and serum insulin autoantibody levels, and increases in splenic CD4+CD25+ T cells, macrophage M2/M1 ratio and serum IL-10 level. However, similar treatment with EGPs produced minimal effect on the multiple low-dose streptozotocin-induced hyperglycemia. In conclusion, EGPs protected NOD mice against T1D via increasing anti-inflammatory immune responses and decreasing autoreactivity to self-antigens.
Collapse
Affiliation(s)
- Yingjia Chen
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
10
|
Nε-carboxymethyllysine in nutritional milk formulas for infants. Food Chem 2019; 274:886-890. [PMID: 30373023 DOI: 10.1016/j.foodchem.2018.09.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 01/02/2023]
|
11
|
Hillman M, Weström B, Aalaei K, Erlanson-Albertsson C, Wolinski J, Lozinska L, Sjöholm I, Rayner M, Landin-Olsson M. Skim milk powder with high content of Maillard reaction products affect weight gain, organ development and intestinal inflammation in early life in rats. Food Chem Toxicol 2018; 125:78-84. [PMID: 30553875 DOI: 10.1016/j.fct.2018.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND The intestinal tract is important for development of immune tolerance and disturbances are suggested to trigger autoimmune disorders. The aim of this study was to explore the effect of Maillard products in skim milk powder obtained after long storage, compared to fresh skim milk powder. METHODS Young rats were weaned onto a diet based on skim milk powder with high concentration of Maillard products (HM-SM, n = 18) or low (C-SM, n = 18) for one week or four weeks. Weekly body weight and feed consumption were noted. At the end, organ weights, intestinal histology, permeability and inflammatory cytokines were evaluated. RESULTS Rats fed with HM-SM had after one week, 15% less weight gain than controls, despite equal feed intake. After one week thymus and spleen were smaller, intestinal mucosa thickness was increased and acute inflammatory cytokines (IL-17, IL-1β, MCP-1) were elevated. After four weeks, cytokines associated with chronic intestinal inflammation (fractalkine, IP-10, leptin, LIX, MIP-2, RANTES and VEGF) were increased in rats fed with HM-SM compared to C-SM. CONCLUSION High content of Maillard products in stored milk powder caused an intestinal inflammation. Whether this is relevant for tolerance development and future autoimmune diseases remains to be explored.
Collapse
Affiliation(s)
- M Hillman
- Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Sweden
| | - B Weström
- Lund University, Faculty of Science, Department of Biology, Lund, Sweden, Sweden
| | - K Aalaei
- Lund University, Faculty of Engineering, Department of Food Technology Engineering and Nutrition, Sweden
| | - C Erlanson-Albertsson
- Lund University, Faculty of Medicine, Department of Experimental Sciences, Lund, Sweden
| | - J Wolinski
- Polish Academy of Sciences, Kielanowski Institute of Animal Nutrition and Physiology, Department of Endocrinology, Jablonna, Poland
| | - L Lozinska
- Lund University, Faculty of Science, Department of Biology, Lund, Sweden, Sweden
| | - I Sjöholm
- Lund University, Faculty of Engineering, Department of Food Technology Engineering and Nutrition, Sweden
| | - M Rayner
- Lund University, Faculty of Engineering, Department of Food Technology Engineering and Nutrition, Sweden
| | - M Landin-Olsson
- Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Sweden; Skane University Hospital, Department of Endocrinology, Lund, Sweden.
| |
Collapse
|
12
|
van der Lugt T, Weseler AR, Gebbink WA, Vrolijk MF, Opperhuizen A, Bast A. Dietary Advanced Glycation Endproducts Induce an Inflammatory Response in Human Macrophages in Vitro. Nutrients 2018; 10:nu10121868. [PMID: 30513810 PMCID: PMC6315629 DOI: 10.3390/nu10121868] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2018] [Revised: 11/09/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022] Open
Abstract
Advanced glycation endproducts (AGEs) can be found in protein- and sugar-rich food products processed at high temperatures, which make up a vast amount of the Western diet. The effect of AGE-rich food products on human health is not yet clear and controversy still exists due to possible contamination of samples with endotoxin and the use of endogenous formed AGEs. AGEs occur in food products, both as protein-bound and individual molecules. Which form exactly induces a pro-inflammatory effect is also unknown. In this study, we exposed human macrophage-like cells to dietary AGEs, both in a protein matrix and individual AGEs. It was ensured that all samples did not contain endotoxin concentrations > 0.06 EU/mL. The dietary AGEs induced TNF-alpha secretion of human macrophage-like cells. This effect was decreased by the addition of N(ε)-carboxymethyllysine (CML)-antibodies or a receptor for advanced glycation endproducts (RAGE) antagonist. None of the individual AGEs induce any TNF-alpha, indicating that AGEs should be bound to proteins to exert an inflammatory reaction. These findings show that dietary AGEs directly stimulate the inflammatory response of human innate immune cells and help us define the risk of regular consumption of AGE-rich food products on human health.
Collapse
Affiliation(s)
- Timme van der Lugt
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine, and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Antje R Weseler
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine, and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Wouter A Gebbink
- RIKILT, Wageningen University and Research, 6708 WB Wageningen, The Netherlands.
| | - Misha F Vrolijk
- Campus Venlo, Maastricht University, 5911 AA Venlo, The Netherlands.
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine, and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands.
- Office for Risk Assessment and Research (BuRO), Dutch Food and Consumer Safety Authority, NVWA, 3511 GG Utrecht, The Netherlands.
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine, and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands.
- Campus Venlo, Maastricht University, 5911 AA Venlo, The Netherlands.
| |
Collapse
|
13
|
Šebeková K, Brouder Šebeková K. Glycated proteins in nutrition: Friend or foe? Exp Gerontol 2018; 117:76-90. [PMID: 30458224 DOI: 10.1016/j.exger.2018.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2018] [Revised: 09/20/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022]
Abstract
Advanced glycation end products (AGEs) are formed in in vivo, and accumulate in tissues and body fluids during ageing. Endogenous AGE-modified proteins show altered structure and function, and may interact with receptor for AGEs (RAGE) resulting in production of reactive oxygen species, inflammatory, atherogenic and diabetogenic responses. AGEs are also formed in thermally processed foods. Studies in rodents document that dietary AGEs are partially absorbed into circulation, and accumulate in different tissues. Knowledge on the health effects of high dietary intake of AGEs is incomplete and contradictory. In this overview we discuss the data from experimental and clinical studies, either those supporting the assumption that restriction of dietary AGEs associated with health benefits, or data suggesting that dietary intake of AGEs associates with positive health outcomes. We polemicize whether the effects of exaggerated intake or restriction of highly thermally processed foods might be straightforward interpreted as the effects of AGEs-rich vs. AGEs-restricted diets. We also underline the lack of studies, and thus a poor knowledge, on the effects of different single chemically defined AGEs administration, concurrent intake of different dietary AGEs, of load with dietary AGEs corresponding to the habitual diet in humans, and on those of dietary AGEs in vulnerable populations, such as infants and particularly elderly.
Collapse
Affiliation(s)
- Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, Bratislava, Slovakia.
| | - Katarína Brouder Šebeková
- Intensive Care Unit, John Radcliffe Hospital, Oxford, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
14
|
Scheijen JL, Hanssen NM, van Greevenbroek MM, Van der Kallen CJ, Feskens EJ, Stehouwer CD, Schalkwijk CG. Dietary intake of advanced glycation endproducts is associated with higher levels of advanced glycation endproducts in plasma and urine: The CODAM study. Clin Nutr 2018; 37:919-925. [DOI: 10.1016/j.clnu.2017.03.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2016] [Revised: 03/06/2017] [Accepted: 03/20/2017] [Indexed: 01/11/2023]
|
15
|
Kellow NJ, Coughlan MT, Reid CM. Association between habitual dietary and lifestyle behaviours and skin autofluorescence (SAF), a marker of tissue accumulation of advanced glycation endproducts (AGEs), in healthy adults. Eur J Nutr 2017; 57:2209-2216. [DOI: 10.1007/s00394-017-1495-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2016] [Accepted: 06/25/2017] [Indexed: 01/11/2023]
|
16
|
Federico G, Gori M, Randazzo E, Vierucci F. Skin advanced glycation end-products evaluation in infants according to the type of feeding and mother's smoking habits. SAGE Open Med 2016; 4:2050312116682126. [PMID: 28210490 PMCID: PMC5302171 DOI: 10.1177/2050312116682126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES This study was conducted to assess whether formula-fed infants had increased skin advanced glycation end-products compared with breastfed ones. We also evaluated the effect of maternal smoke during pregnancy and lactation on infant skin advanced glycation end-products accumulation. METHODS Advanced glycation end-product-linked skin autofluorescence was measured in 101 infants. RESULTS In infants born from non-smoking mothers, advanced glycation end-products were higher in formula-fed subjects than in breastfed subjects (0.80 (0.65-0.90) vs 1.00 (0.85-1.05), p < 0.001). Advanced glycation end-products in breastfed infants from smoking mothers were higher than in those from non-smoking mothers (0.80 (0.65-0.90) vs 1.00 (0.90-1.17), p = 0.009). CONCLUSION Formula-fed infants had increased amounts of advanced glycation end-products compared with the breastfed ones, confirming that breast milk represents the best food for infants. Breastfed infants from mothers smoking during pregnancy and lactation had increased skin advanced glycation end-products, suggesting that smoke-related advanced glycation end-products transfer throughout breast milk. Moreover, advanced glycation end-products may already increase during gestation, possibly affecting fetal development. Thus, we reinforced that smoking must be stopped during pregnancy and lactation.
Collapse
Affiliation(s)
- Giovanni Federico
- Unit of Pediatric Endocrinology & Diabetes, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Martina Gori
- Unit of Pediatric Endocrinology & Diabetes, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Emioli Randazzo
- Unit of Pediatric Endocrinology & Diabetes, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
17
|
Abstract
Advanced glycation end products constitute a complex group of compounds derived from the nonenzymatic glycation of proteins, lipids, and nucleic acids formed endogenously, but also from exogenous supplies such as tobacco smoking (glycotoxins). Accumulating evidence underlies the beneficial effect of the dietary restriction of glycotoxins in animal studies and also in patients with diabetic complications and metabolic diseases. Composition of infant formulas and their processing methods render an extraordinary favorable milieu for the formation of glycotoxins, and the content of glycotoxins in infant formula exceeds that of breast milk by hundred folds. Data from a limited number of short-term small studies in healthy infants do not provide direct evidence of acute negative health effects of glycotoxins in early infancy. However, the effects in sensitive groups on the state of future health in adulthood remain unclear.
Collapse
Affiliation(s)
- Tufan Kutlu
- Department of Pediatrics, Gastroenterology, Division of Hepatology Gastroenterology and Nutrition, İstanbul University Cerrahpaşa School of Medicine, İstanbul, Turkey
| |
Collapse
|
18
|
Liu F, Teodorowicz M, Wichers HJ, van Boekel MAJS, Hettinga KA. Generation of Soluble Advanced Glycation End Products Receptor (sRAGE)-Binding Ligands during Extensive Heat Treatment of Whey Protein/Lactose Mixtures Is Dependent on Glycation and Aggregation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6477-6486. [PMID: 27460534 DOI: 10.1021/acs.jafc.6b02674] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/06/2023]
Abstract
Heating of protein- and sugar-containing materials is considered the primary factor affecting the formation of advanced glycation end products (AGEs). This study aimed to investigate the influence of heating conditions, digestion, and aggregation on the binding capacity of AGEs to the soluble AGE receptor (sRAGE). Samples consisting of mixtures of whey protein and lactose were heated at 130 °C. An in vitro infant digestion model was used to study the influence of heat treatment on the digestibility of whey proteins. The amount of sRAGE-binding ligands before and after digestion was measured by an ELISA-based sRAGE-binding assay. Water activity did not significantly affect the extent of digestibility of whey proteins dry heated at pH 5 (ranging from 3.3 ± 0.2 to 3.6 ± 0.1% for gastric digestion and from 53.5 ± 1.5 to 64.7 ± 1.1% for duodenal digestion), but there were differences in cleavage patterns of peptides among the samples heated at different pH values. Formation of sRAGE-binding ligands depended on the formation of aggregates and was limited in the samples heated at pH 5. Moreover, the sRAGE-binding activity of digested sample was changed by protease degradation and correlated with the digestibility of samples. In conclusion, generation of sRAGE-binding ligands during extensive heat treatment of whey protein/lactose mixtures is limited in acidic heating condition and dependent on glycation and aggregation.
Collapse
Affiliation(s)
- Fahui Liu
- Food Quality & Design Group, Wageningen University & Research Centre , 6700 EV Wageningen, The Netherlands
| | - Małgorzata Teodorowicz
- Cell Biology and Immunology Group, Wageningen University and Research Centre , 6708 WD Wageningen, The Netherlands
| | - Harry J Wichers
- Cell Biology and Immunology Group, Wageningen University and Research Centre , 6708 WD Wageningen, The Netherlands
- Food and Biobased Research, Wageningen University and Research Centre , 6700 AA Wageningen, The Netherlands
| | - Martinus A J S van Boekel
- Food Quality & Design Group, Wageningen University & Research Centre , 6700 EV Wageningen, The Netherlands
| | - Kasper A Hettinga
- Food Quality & Design Group, Wageningen University & Research Centre , 6700 EV Wageningen, The Netherlands
| |
Collapse
|
19
|
Awasthi S, Sankaranarayanan K, Saraswathi NT. Advanced glycation end products induce differential structural modifications and fibrillation of albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 163:60-67. [PMID: 27037764 DOI: 10.1016/j.saa.2016.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/12/2015] [Revised: 03/11/2016] [Accepted: 03/20/2016] [Indexed: 06/05/2023]
Abstract
Glycation induced amyloid fibrillation is fundamental to the development of many neurodegenerative and cardiovascular complications. Excessive non-enzymatic glycation in conditions such as hyperglycaemia results in the increased accumulation of advanced glycation end products (AGEs). AGEs are highly reactive pro-oxidants, which can lead to the activation of inflammatory pathways and development of oxidative stress. Recently, the effect of non-enzymatic glycation on protein structure has been the major research area, but the role of specific AGEs in such structural alteration and induction of fibrillation remains undefined. In this study, we determined the specific AGEs mediated structural modifications in albumin mainly considering carboxymethyllysine (CML), carboxyethyllysine (CEL), and argpyrimidine (Arg-P) which are the major AGEs formed in the body. We studied the secondary structural changes based on circular dichroism (CD) and spectroscopic analysis. The AGEs induced fibrillation was determined by Congo red binding and examination of scanning and transmission electron micrographs. The amyloidogenic regions in the sequence of BSA were determined using FoldAmyloid. It was observed that CEL modification of BSA leads to the development of fibrillar structures, which was evident from both secondary structure changes and TEM analysis.
Collapse
Affiliation(s)
- Saurabh Awasthi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamilnadu, India
| | - Kamatchi Sankaranarayanan
- DST-INSPIRE Faculty, Department of Energy and Environment, National Institute of Technology, Tiruchirappalli 620015, Tamilnadu, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamilnadu, India.
| |
Collapse
|
20
|
Elmhiri G, Hamoudi D, Dou S, Bahi-Jaber N, Reygnier J, Larcher T, Firmin S, Abdennebi-Najar L. Antioxidant properties of formula derived Maillard reaction products in colons of intrauterine growth restricted pigs. Food Funct 2016; 7:2582-90. [DOI: 10.1039/c5fo01551k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Abstract
The present study has been conducted to evaluate the impact of the consumption of high MRP formula on changes in the microbiota and oxidative stress in the colon of IUGR piglets.
Collapse
Affiliation(s)
- Ghada Elmhiri
- UP-EGEAL 2012.10.101 Institut Polytechnique LaSalle Beauvais
- Beauvais Cedex
- France
| | - Dounia Hamoudi
- UP-EGEAL 2012.10.101 Institut Polytechnique LaSalle Beauvais
- Beauvais Cedex
- France
| | - Samir Dou
- UP-EGEAL 2012.10.101 Institut Polytechnique LaSalle Beauvais
- Beauvais Cedex
- France
| | - Narges Bahi-Jaber
- UP-EGEAL 2012.10.101 Institut Polytechnique LaSalle Beauvais
- Beauvais Cedex
- France
| | - Julie Reygnier
- UP-EGEAL 2012.10.101 Institut Polytechnique LaSalle Beauvais
- Beauvais Cedex
- France
- Laboratoire Périnatalité et Risques Toxiques (PERITOX)
- UMR-I01 INERIS
| | - Thibaut Larcher
- INRA
- UMR 703 APEX
- Ecole Nationale Vétérinaire Agroalimentaire et de l'Alimentation Nantes-Atlantique (Oniris)
- Nantes
- France
| | - Stéphane Firmin
- UP-EGEAL 2012.10.101 Institut Polytechnique LaSalle Beauvais
- Beauvais Cedex
- France
| | | |
Collapse
|
21
|
Gupta A, Uribarri J. Dietary Advanced Glycation End Products and Their Potential Role in Cardiometabolic Disease in Children. Horm Res Paediatr 2016; 85:291-300. [PMID: 27008270 PMCID: PMC4891230 DOI: 10.1159/000444053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/21/2015] [Accepted: 01/12/2016] [Indexed: 12/17/2022] Open
Abstract
The rising incidence of obesity and metabolic diseases such as diabetes mellitus and cardiovascular disease in adolescents and young adults is of grave concern. Recent studies favor a role of lifestyle factors over genetics in the perpetuation of inflammation, insulin resistance and oxidative stress, which are pathophysiologic processes common to the above diseases; furthermore, the importance of dietary factors in addition to calories and physical activity in these processes is being increasingly recognized. Advanced glycation end products (AGEs) belong to a category of dietary oxidants which have been implicated in the pathogenesis of inflammation, oxidative stress, insulin resistance, β-cell failure and endothelial dysfunction. This paper reviews the studies of AGEs with a focus on their role in cardiometabolic disease in children. A Medline search was performed using the key words 'childhood obesity', 'metabolic syndrome' and 'advanced glycation end products'. Articles published in English between 1975 and 2015 and their references were reviewed. While most studies were performed in adults, a few studies also demonstrated a role of AGEs in obesity and associated cardiometabolic comorbidities in the younger population. Available evidence suggests an involvement of AGEs in the pathogenesis of adiposity and β-cell failure in children. Potential areas for further research to investigate underlying mechanisms are proposed.
Collapse
Affiliation(s)
- Anshu Gupta
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jaime Uribarri
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
22
|
Gurecká R, Koborová I, Janšáková K, Tábi T, Szökő É, Somoza V, Šebeková K, Celec P. Prenatal dietary load of Maillard reaction products combined with postnatal Coca-Cola drinking affects metabolic status of female Wistar rats. Croat Med J 2015; 56:94-103. [PMID: 25891868 PMCID: PMC4410178 DOI: 10.3325/cmj.2015.56.94] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
Aim To assess the impact of prenatal exposure to Maillard reaction products (MRPs) -rich diet and postnatal Coca-Cola consumption on metabolic status of female rats. Diet rich in MRPs and consumption of saccharose/fructose sweetened soft drinks is presumed to impose increased risk of development of cardiometabolic afflictions, such as obesity or insulin resistance. Methods At the first day of pregnancy, 9 female Wistar rats were randomized into two groups, pair-fed either with standard rat chow (MRP-) or MRPs-rich diet (MRP+). Offspring from each group of mothers was divided into two groups and given either water (Cola-) or Coca-Cola (Cola+) for drinking ad libitum for 18 days. Oral glucose tolerance test was performed, and circulating markers of inflammation, oxidative stress, glucose and lipid metabolism were assessed. Results MRP+ groups had higher weight gain, significantly so in the MRP+/Cola- vs MRP-/Cola-. Both prenatal and postnatal intervention increased carboxymethyllysine levels and semicarbazide-sensitive amine oxidase activity, both significantly higher in MRP+/Cola + than in MRP-/Cola-. Total antioxidant capacity was lower in MRP+ groups, with significant decrease in MRP+/Cola + vs MRP-/Cola+. Rats drinking Coca-Cola had higher insulin, homeostatic model assessment of insulin resistance, heart rate, advanced oxidation of protein products, triacylglycerols, and oxidative stress markers measured as thiobarbituric acid reactive substances compared to rats drinking water, with no visible effect of MRPs-rich diet. Conclusion Metabolic status of rats was affected both by prenatal and postnatal dietary intervention. Our results suggest that combined effect of prenatal MRPs load and postnatal Coca-Cola drinking may play a role in development of metabolic disorders in later life.
Collapse
Affiliation(s)
- Radana Gurecká
- Radana Gurecká, Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia,
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Troise AD, Fiore A, Colantuono A, Kokkinidou S, Peterson DG, Fogliano V. Effect of olive mill wastewater phenol compounds on reactive carbonyl species and Maillard reaction end-products in ultrahigh-temperature-treated milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10092-100. [PMID: 25280240 DOI: 10.1021/jf503329d] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/07/2023]
Abstract
Thermal processing and Maillard reaction (MR) affect the nutritional and sensorial qualities of milk. In this paper an olive mill wastewater phenolic powder (OMW) was tested as a functional ingredient for inhibiting MR development in ultrahigh-temperature (UHT)-treated milk. OMW was added to milk at 0.1 and 0.05% w/v before UHT treatment, and the concentration of MR products was monitored to verify the effect of OMW phenols in controlling the MR. Results revealed that OMW is able to trap the reactive carbonyl species such as hydroxycarbonyls and dicarbonyls, which in turn led to the increase of Maillard-derived off-flavor development. The effect of OMW on the formation of Amadori products and N-ε-(carboxymethyl)-lysine (CML) showed that oxidative cleavage, C2-C6 cyclization, and the consequent reactive carbonyl species formation were also inhibited by OMW. Data indicated that OMW is a functional ingredient able to control the MR and to improve the nutritional and sensorial attributes of milk.
Collapse
Affiliation(s)
- Antonio Dario Troise
- Food Quality and Design Group, Wageningen University and Research Centre , P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Šebeková K, Simon Klenovics K, Brouder Šebeková K. 26. Advanced glycation end products in infant formulas. HUMAN HEALTH HANDBOOKS 2014. [DOI: 10.3920/978-90-8686-223-8_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023]
|
25
|
Li Y, Li L, Li B, Han L, Li X, Xu Z, Bian H. Optimization of Pretreatment for Free and Bound Nε-(carboxymethyl)lysine Analysis in Soy Sauce. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-9892-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
|
26
|
Simon Klenovics K, Kollárová R, Hodosy J, Celec P, Sebeková K. Reference values of skin autofluorescence as an estimation of tissue accumulation of advanced glycation end products in a general Slovak population. Diabet Med 2014; 31:581-5. [PMID: 24111899 DOI: 10.1111/dme.12326] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/16/2013] [Revised: 08/21/2013] [Accepted: 09/19/2013] [Indexed: 01/11/2023]
Abstract
AIMS For decades, Slovakia has maintained a prominent place in mortality rates from cardiovascular diseases among European Union (EU-27) countries. Determination of skin autofluorescence serves as an estimate of tissue accumulation of advanced glycation end products--substances accumulating in tissues and body fluids that play a pathophysiological role in age-related diseases and their complications, such as diabetes. METHODS In 1385 apparently healthy Slovakian subjects aged from a few days old to 77 years, skin autofluorescence was determined using an advanced glycation end product reader and compared with reference data from Dutch Caucasians. The impact of the weekly frequency of recreational physical exercise on skin autofluorescence was investigated in the adults, and the impact of feeding regimen in the infants. RESULTS With the exception of 10- to 19-year-olds, Slovaks had lower skin autofluorescence values in comparison with the Dutch Caucasians. In healthy non-smokers, physical exercise for > 30 min/day performed ≥ 3 times/week was associated with lower skin autofluorescence levels. In infants, breastfeeding (advanced glycation end product-poor diet) was associated with lower skin autofluorescence levels in comparison with consumption of infant formulas (advanced glycation end product-rich diet). CONCLUSIONS Reference ranges of skin autofluorescence in Slovak Caucasians, detailed for paediatric age groups, are provided. Our data show that, in healthy adults, regular physical exercise associates with lower skin autofluorescence. Infants fed or weaned from infant formulas (advanced glycation end product-rich diet) have higher skin autofluorescence than their breast milk-consuming counterparts. It is unclear why Slovaks have lower skin autofluorescence compared with a Dutch population with lower cardiovascular mortality rates. Reference data on skin autofluorescence from diverse populations are needed for the precise clinical interpretation of skin autofluorescence measurements.
Collapse
Affiliation(s)
- K Simon Klenovics
- Institute of Physiology, Comenius University Medical Faculty, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
27
|
Tóthová L, Hodosy J, Mettenburg K, Fábryová H, Wagnerová A, Bábíčková J, Okuliarová M, Zeman M, Celec P. No harmful effect of different Coca-cola beverages after 6 months of intake on rat testes. Food Chem Toxicol 2013; 62:343-8. [PMID: 24001441 DOI: 10.1016/j.fct.2013.08.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2013] [Revised: 08/11/2013] [Accepted: 08/26/2013] [Indexed: 11/25/2022]
Abstract
Our laboratory recently reported that a 3-month exposure of rats to cola-like beverages induced sex hormone changes. The aim of the study was to investigate the effects of various types of Coca-cola intake with different composition for 6 months on oxidative status in testes and testosterone in adult male rats. Fifty adult male Wistar rats were divided into control group drinking water, and groups drinking different Coca-cola beverages (regular Coca-cola, Coca-cola caffeine-free, Coca-cola Light and Coca-cola Zero). Oxidative and carbonyl stress markers were measured in the testicular tissue to assess oxidative status together with testicular and plasma testosterone. StAR expression in testes as a marker of steroidogenesis was quantified. No significant differences were found between the groups in any of the measured parameters. In conclusion, oxidative and carbonyl stress in testicular tissue were not influenced by drinking any type of Coca-cola. Additionally, testosterone in testes and in plasma, as well as testicular StAR expression were comparable among the groups.
Collapse
Affiliation(s)
- Lubomíra Tóthová
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shi L, Yu X, Yang H, Wu X. Advanced glycation end products induce human corneal epithelial cells apoptosis through generation of reactive oxygen species and activation of JNK and p38 MAPK pathways. PLoS One 2013; 8:e66781. [PMID: 23776698 PMCID: PMC3680386 DOI: 10.1371/journal.pone.0066781] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2013] [Accepted: 05/13/2013] [Indexed: 01/02/2023] Open
Abstract
Advanced Glycation End Products (AGEs) has been implicated in the progression of diabetic keratopathy. However, details regarding their function are not well understood. In the present study, we investigated the effects of intracellular reactive oxygen species (ROS) and JNK, p38 MAPK on AGE-modified bovine serum albumin (BSA) induced Human telomerase-immortalized corneal epithelial cells (HUCLs) apoptosis. We found that AGE-BSA induced HUCLs apoptosis and increased Bax protein expression, decreased Bcl-2 protein expression. AGE-BSA also induced the expression of receptor for advanced glycation end product (RAGE). AGE-BSA-RAGE interaction induced intracellular ROS generation through activated NADPH oxidase and increased the phosphorylation of p47phox. AGE-BSA induced HUCLs apoptosis was inhibited by pretreatment with NADPH oxidase inhibitors, ROS quencher N-acetylcysteine (NAC) or neutralizing anti-RAGE antibodies. We also found that AGE-BSA induced JNK and p38 MAPK phosphorylation. JNK and p38 MAPK inhibitor effectively blocked AGE-BSA-induced HUCLs apoptosis. In addition, NAC completely blocked phosphorylation of JNK and p38 MAPK induced by AGE-BSA. Our results indicate that AGE-BSA induced HUCLs apoptosis through generation of intracellular ROS and activation of JNK and p38 MAPK pathways.
Collapse
Affiliation(s)
- Long Shi
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoming Yu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Hongling Yang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|