1
|
Machado PC, Brito LF, Martins R, Pinto LFB, Silva MR, Pedrosa VB. Genome-Wide Association Analysis Reveals Novel Loci Related with Visual Score Traits in Nellore Cattle Raised in Pasture-Based Systems. Animals (Basel) 2022; 12:ani12243526. [PMID: 36552446 PMCID: PMC9774243 DOI: 10.3390/ani12243526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Body conformation traits assessed based on visual scores are widely used in Zebu cattle breeding programs. The aim of this study was to identify genomic regions and biological pathways associated with body conformation (CONF), finishing precocity (PREC), and muscling (MUSC) in Nellore cattle. The measurements based on visual scores were collected in 20,807 animals raised in pasture-based systems in Brazil. In addition, 2775 animals were genotyped using a 35 K SNP chip, which contained 31,737 single nucleotide polymorphisms after quality control. Single-step GWAS was performed using the BLUPF90 software while candidate genes were identified based on the Ensembl Genes 69. PANTHER and REVIGO platforms were used to identify key biological pathways and STRING to create gene networks. Novel candidate genes were revealed associated with CONF, including ALDH9A1, RXRG, RAB2A, and CYP7A1, involved in lipid metabolism. The genes associated with PREC were ELOVL5, PID1, DNER, TRIP12, and PLCB4, which are related to the synthesis of long-chain fatty acids, lipid metabolism, and muscle differentiation. For MUSC, the most important genes associated with muscle development were SEMA6A, TIAM2, UNC5A, and UIMC1. The polymorphisms identified in this study can be incorporated in commercial genotyping panels to improve the accuracy of genomic evaluations for visual scores in beef cattle.
Collapse
Affiliation(s)
- Pamela C. Machado
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Rafaela Martins
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Luis Fernando B. Pinto
- Department of Animal Science, Federal University of Bahia, Av. Adhemar de Barros 500, Ondina, Salvador 40170-110, BA, Brazil
| | - Marcio R. Silva
- Melhore Animal and Katayama Agropecuaria Lda, Guararapes 16700-000, SP, Brazil
| | - Victor B. Pedrosa
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
2
|
Bevere M, Morabito C, Guarnieri S, Mariggiò MA. Mice lacking growth-associated protein 43 develop cardiac remodeling and hypertrophy. Histochem Cell Biol 2022; 157:547-556. [PMID: 35201398 PMCID: PMC9114049 DOI: 10.1007/s00418-022-02089-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 12/01/2022]
Abstract
Growth-associated protein 43 (GAP43) is found in skeletal muscle, localized near the calcium release units. In interaction with calmodulin (CaM), it indirectly modulates the activity of dihydropyridine and ryanodine Ca2+ channels. GAP43–CaM interaction plays a key role in intracellular Ca2+ homeostasis and, consequently, in skeletal muscle activity. The control of intracellular Ca2+ signaling is also an important functional requisite in cardiac physiology. The aim of this study is to define the impact of GAP43 on cardiac tissue at macroscopic and cellular levels, using GAP43 knockout (GAP43−/−) newborn C57/BL6 mice. Hearts from newborn GAP43−/− mice were heavier than hearts from wild-type (WT) ones. In these GAP43−/− hearts, histological section analyses revealed a thicker ventricular wall and interventricular septum with a reduced ventricular chamber area. In addition, increased collagen deposits between fibers and increased expression levels of myosin were observed in hearts from GAP43−/− mice. Cardiac tropism and rhythm are controlled by multiple intrinsic and extrinsic factors, including cellular events such those linked to intracellular Ca2+ dynamics, in which GAP43 plays a role. Our data revealed that, in the absence of GAP43, there were cardiac morphological alterations and signs of hypertrophy, suggesting that GAP43 could play a role in the functional processes of the whole cardiac muscle. This paves the way for further studies investigating GAP43 involvement in signaling dynamics at the cellular level.
Collapse
Affiliation(s)
- Michele Bevere
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Caterina Morabito
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy. .,Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| | - Maria A Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
3
|
Moreira-Pais A, Ferreira R, Oliveira PA, Duarte JA. A neuromuscular perspective of sarcopenia pathogenesis: deciphering the signaling pathways involved. GeroScience 2022; 44:1199-1213. [PMID: 34981273 DOI: 10.1007/s11357-021-00510-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/26/2021] [Indexed: 12/18/2022] Open
Abstract
The escalation of life expectancy is accompanied by an increase in the prevalence of age-related conditions, such as sarcopenia. Sarcopenia, a muscle condition defined by low muscle strength, muscle quality or quantity, and physical performance, has a high prevalence among the elderly and is associated to increased mortality. The neuromuscular system has been emerging as a key contributor to sarcopenia pathogenesis. Indeed, the age-related degeneration of the neuromuscular junction (NMJ) function and structure may contribute to the loss of muscle strength and ultimately to the loss of muscle mass that characterize sarcopenia. The present mini-review discusses important signaling pathways involved in the function and maintenance of the NMJ, giving emphasis to the ones that might contribute to sarcopenia pathogenesis. Some conceivable biomarkers, such as C-terminal agrin fragment (CAF) and brain-derived neurotrophic factor (BDNF), and therapeutic targets, namely acetylcholine and calcitonin gene-related peptide (CGRP), can be retrieved, making way to future studies to validate their clinical use.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal. .,Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-Os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-Os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Duarte
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal.,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| |
Collapse
|
4
|
Marti-Marimon M, Vialaneix N, Lahbib-Mansais Y, Zytnicki M, Camut S, Robelin D, Yerle-Bouissou M, Foissac S. Major Reorganization of Chromosome Conformation During Muscle Development in Pig. Front Genet 2021; 12:748239. [PMID: 34675966 PMCID: PMC8523936 DOI: 10.3389/fgene.2021.748239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
The spatial organization of the genome in the nucleus plays a crucial role in eukaryotic cell functions, yet little is known about chromatin structure variations during late fetal development in mammals. We performed in situ high-throughput chromosome conformation capture (Hi-C) sequencing of DNA from muscle samples of pig fetuses at two late stages of gestation. Comparative analysis of the resulting Hi-C interaction matrices between both groups showed widespread differences of different types. First, we discovered a complex landscape of stable and group-specific Topologically Associating Domains (TADs). Investigating the nuclear partition of the chromatin into transcriptionally active and inactive compartments, we observed a genome-wide fragmentation of these compartments between 90 and 110 days of gestation. Also, we identified and characterized the distribution of differential cis- and trans-pairwise interactions. In particular, trans-interactions at chromosome extremities revealed a mechanism of telomere clustering further confirmed by 3D Fluorescence in situ Hybridization (FISH). Altogether, we report major variations of the three-dimensional genome conformation during muscle development in pig, involving several levels of chromatin remodeling and structural regulation.
Collapse
Affiliation(s)
| | | | | | | | - Sylvie Camut
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - David Robelin
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | | | - Sylvain Foissac
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| |
Collapse
|
5
|
Fuertes-Alvarez S, Izeta A. Terminal Schwann Cell Aging: Implications for Age-Associated Neuromuscular Dysfunction. Aging Dis 2021; 12:494-514. [PMID: 33815879 PMCID: PMC7990373 DOI: 10.14336/ad.2020.0708] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Action potential is transmitted to muscle fibers through specialized synaptic interfaces called neuromuscular junctions (NMJs). These structures are capped by terminal Schwann cells (tSCs), which play essential roles during formation and maintenance of the NMJ. tSCs are implicated in the correct communication between nerves and muscles, and in reinnervation upon injury. During aging, loss of muscle mass and strength (sarcopenia and dynapenia) are due, at least in part, to the progressive loss of contacts between muscle fibers and nerves. Despite the important role of tSCs in NMJ function, very little is known on their implication in the NMJ-aging process and in age-associated denervation. This review summarizes the current knowledge about the implication of tSCs in the age-associated degeneration of NMJs. We also speculate on the possible mechanisms underlying the observed phenotypes.
Collapse
Affiliation(s)
- Sandra Fuertes-Alvarez
- 1Biodonostia, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, San Sebastian 20014, Spain
| | - Ander Izeta
- 1Biodonostia, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, San Sebastian 20014, Spain.,2Tecnun-University of Navarra, School of Engineering, Department of Biomedical Engineering and Science, Paseo Mikeletegi, 48, San Sebastian 20009, Spain
| |
Collapse
|
6
|
Bałaban J, Wierzbicki M, Zielińska M, Szczepaniak J, Sosnowska M, Daniluk K, Cysewski D, Koczoń P, Chwalibog A, Sawosz E. Effects of Graphene Oxide Nanofilm and Chicken Embryo Muscle Extract on Muscle Progenitor Cell Differentiation and Contraction. Molecules 2020; 25:E1991. [PMID: 32340398 PMCID: PMC7221809 DOI: 10.3390/molecules25081991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Finding an effective muscle regeneration technique is a priority for regenerative medicine. It is known that the key factors determining tissue formation include cells, capable of proliferating and/or differentiating, a niche (surface) allowing their colonization and growth factors. The interaction between these factors, especially between the surface of the artificial niche and growth factors, is not entirely clear. Moreover, it seems that the use of a complex of complementary growth factors instead of a few strictly defined ones could increase the effectiveness of tissue maturation, including muscle tissue. In this study, we evaluated whether graphene oxide (GO) nanofilm, chicken embryo muscle extract (CEME), and GO combined with CEME would affect the differentiation and functional maturation of muscle precursor cells, as well as the ability to spontaneously contract a pseudo-tissue muscle. CEME was extracted on day 18 of embryogenesis. Muscle cells obtained from an 8-day-old chicken embryo limb bud were treated with GO and CEME. Cell morphology and differentiation were observed using different microscopy methods. Cytotoxicity and viability of cells were measured by lactate dehydrogenase and Vybrant Cell Proliferation assays. Gene expression of myogenic regulatory genes was measured by Real-Time PCR. Our results demonstrate that CEME, independent of the culture surface, was the main factor influencing the intense differentiation of muscle progenitor cells. The present results, for the first time, clearly demonstrated that the cultured tissue-like structure was capable of inducing contractions without externally applied impulses. It has been indicated that a small amount of CEME in media (about 1%) allows the culture of pseudo-tissue muscle capable of spontaneous contraction. The study showed that the graphene oxide may be used as a niche for differentiating muscle cells, but the decisive influence on the maturation of muscle tissue, especially muscle contractions, depends on the complexity of the applied growth factors.
Collapse
Affiliation(s)
- Jaśmina Bałaban
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.B.); (M.W.); (M.Z.); (J.S.); (M.S.); (K.D.); (E.S.)
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.B.); (M.W.); (M.Z.); (J.S.); (M.S.); (K.D.); (E.S.)
| | - Marlena Zielińska
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.B.); (M.W.); (M.Z.); (J.S.); (M.S.); (K.D.); (E.S.)
| | - Jarosław Szczepaniak
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.B.); (M.W.); (M.Z.); (J.S.); (M.S.); (K.D.); (E.S.)
| | - Malwina Sosnowska
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.B.); (M.W.); (M.Z.); (J.S.); (M.S.); (K.D.); (E.S.)
| | - Karolina Daniluk
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.B.); (M.W.); (M.Z.); (J.S.); (M.S.); (K.D.); (E.S.)
| | - Dominik Cysewski
- Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland;
| | - Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Ewa Sawosz
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.B.); (M.W.); (M.Z.); (J.S.); (M.S.); (K.D.); (E.S.)
| |
Collapse
|
7
|
Barisic D, Erb M, Follo M, Al-Mudaris D, Rolauffs B, Hart ML. Lack of a skeletal muscle phenotype in adult human bone marrow stromal cells following xenogeneic-free expansion. Stem Cell Res Ther 2020; 11:79. [PMID: 32087752 PMCID: PMC7036219 DOI: 10.1186/s13287-020-1587-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/22/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background Many studies have elegantly shown that murine and rat bone marrow-derived mesenchymal stromal cells (bmMSCs) contribute to muscle regeneration and improve muscle function. Yet, the ability of transplanted human bmMSCs to manifest myogenic potential shows conflicting results. While human adipose- and umbilical cord-derived MSCs can be differentiated into a skeletal muscle phenotype using horse serum (HS), bmMSCs have only been shown to differentiate towards the skeletal muscle lineage using a complex mixture of cytokines followed by transfection with notch intracellular domain. Methods Since xenogeneic-free growth supplements are increasingly being used in the expansion of bmMSCs in clinical trials, we investigated the effects of human plasma and platelet lysate (P/PL) on the expression of neuromuscular markers and whether P/PL-expanded human bmMSCs could be differentiated towards a skeletal myogenic phenotype. Neuromuscular markers were measured using the highly sensitive droplet digital polymerase chain reaction for measuring the expression of Myf5, MyoD, MyoG, ACTA1, Desmin, GAP-43, and Coronin 1b transcripts, by performing immunofluorescence for the expression of Desmin, GAP-43, and MEF2, and flow cytometry for the expression of CD56/neural cell adhesion molecule (NCAM). Results Despite that bmMSCs expressed the myogenic regulatory factor (MRF) MEF2 after expansion in P/PL, bmMSCs cultured under such conditions did not express other essential MRFs including Myf5, MyoD, MyoG, or ACTA1 needed for myogenesis. Moreover, HS did not induce myogenesis of bmMSCs and hence did not induce the expression of any of these myogenic markers. P/PL, however, did lead to a significant increase in neurogenic GAP-43, as well as Desmin expression, and resulted in a high baseline expression of the neurogenic gene Coronin 1b which was sustained under further P/PL or HS culture conditions. Fetal bovine serum resulted in equally high levels of GAP-43 and Coronin 1b. Moreover, the proportion of CD56/NCAM-positive bmMSCs cultured in P/PL was 5.9 ± 2.1. Conclusions These data suggest that P/PL may prime a small portion of bmMSCs towards an early neural precursor cell type. Collectively, this shows that P/PL partially primes the cells towards a neurogenic phenotype, but does not prime adult human bmMSCs towards the skeletal muscle lineage.
Collapse
Affiliation(s)
- Dominik Barisic
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marita Erb
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dahlia Al-Mudaris
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie L Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Moradi F, Copeland EN, Baranowski RW, Scholey AE, Stuart JA, Fajardo VA. Calmodulin-Binding Proteins in Muscle: A Minireview on Nuclear Receptor Interacting Protein, Neurogranin, and Growth-Associated Protein 43. Int J Mol Sci 2020; 21:E1016. [PMID: 32033037 PMCID: PMC7038096 DOI: 10.3390/ijms21031016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 01/26/2023] Open
Abstract
Calmodulin (CaM) is an important Ca2+-sensing protein with numerous downstream targets that are either CaM-dependant or CaM-regulated. In muscle, CaM-dependent proteins, which are critical regulators of dynamic Ca2+ handling and contractility, include calcineurin (CaN), CaM-dependant kinase II (CaMKII), ryanodine receptor (RyR), and dihydropyridine receptor (DHPR). CaM-regulated targets include genes associated with oxidative metabolism, muscle plasticity, and repair. Despite its importance in muscle, the regulation of CaM-particularly its availability to bind to and activate downstream targets-is an emerging area of research. In this minireview, we discuss recent studies revealing the importance of small IQ motif proteins that bind to CaM to either facilitate (nuclear receptor interacting protein; NRIP) its activation of downstream targets, or sequester (neurogranin, Ng; and growth-associated protein 43, GAP43) CaM away from their downstream targets. Specifically, we discuss recent studies that have begun uncovering the physiological roles of NRIP, Ng, and GAP43 in skeletal and cardiac muscle, thereby highlighting the importance of endogenously expressed CaM-binding proteins and their regulation of CaM in muscle.
Collapse
Affiliation(s)
- Fereshteh Moradi
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (F.M.); (J.A.S.)
| | - Emily N. Copeland
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Ryan W. Baranowski
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Aiden E. Scholey
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Jeffrey A. Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (F.M.); (J.A.S.)
| | - Val A. Fajardo
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada;
| |
Collapse
|
9
|
Fajardo VA, Watson CJF, Bott KN, Moradi F, Maddalena LA, Bellissimo CA, Turner KD, Peters SJ, LeBlanc PJ, MacNeil AJ, Stuart JA, Tupling AR. Neurogranin is expressed in mammalian skeletal muscle and inhibits calcineurin signaling and myoblast fusion. Am J Physiol Cell Physiol 2019; 317:C1025-C1033. [PMID: 31433693 DOI: 10.1152/ajpcell.00345.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Calcineurin is a Ca2+/calmodulin (CaM)-dependent phosphatase that plays a critical role in promoting the slow fiber phenotype and myoblast fusion in skeletal muscle, thereby making calcineurin an attractive cellular target for enhancing fatigue resistance, muscle metabolism, and muscle repair. Neurogranin (Ng) is a CaM-binding protein thought to be expressed solely in brain and neurons, where it inhibits calcineurin signaling by sequestering CaM, thus lowering its cellular availability. Here, we demonstrate for the first time the expression of Ng protein and mRNA in mammalian skeletal muscle. Both protein and mRNA levels are greater in slow-oxidative compared with fast-glycolytic muscles. Coimmunoprecipitation of CaM with Ng in homogenates of C2C12 myotubes, mouse soleus, and human vastus lateralis suggests that these proteins physically interact. To determine whether Ng inhibits calcineurin signaling in muscle, we used Ng siRNA with C2C12 myotubes to reduce Ng protein levels by 60%. As a result of reduced Ng expression, C2C12 myotubes had enhanced CaM-calcineurin binding and calcineurin signaling as indicated by reduced phosphorylation of nuclear factor of activated T cells and increased utrophin mRNA. In addition, calcineurin signaling affects the expression of myogenin and stabilin-2, which are involved in myogenic differentiation and myoblast fusion, respectively. Here, we found that both myogenin and stabilin-2 were significantly elevated by Ng siRNA in C2C12 cells, concomitantly with an increased fusion index. Taken together, these results demonstrate the expression of Ng in mammalian skeletal muscle where it appears to be a novel regulator of calcineurin signaling.
Collapse
Affiliation(s)
- Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Colton J F Watson
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Kirsten N Bott
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Fereshteh Moradi
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Lucas A Maddalena
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | | - Kelli D Turner
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Sandra J Peters
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Paul J LeBlanc
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
10
|
Multimodal Rehabilitation Program Promotes Motor Function Recovery of Rats After Ischemic Stroke by Upregulating Expressions of GAP-43, SYN, HSP70, and C-MYC. J Stroke Cerebrovasc Dis 2018; 27:2829-2839. [PMID: 30093210 DOI: 10.1016/j.jstrokecerebrovasdis.2018.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/30/2018] [Accepted: 06/14/2018] [Indexed: 11/21/2022] Open
|
11
|
Wang N, Yang W, Xiao T, Miao Z, Luo W, You Z, Li G. Possible role of miR-204 in optic nerve injury through the regulation of GAP-43. Mol Med Rep 2017; 17:3891-3897. [PMID: 29286154 DOI: 10.3892/mmr.2017.8341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 09/06/2017] [Indexed: 11/05/2022] Open
Abstract
Optic nerve injury is a common disease. The present study aimed to examine the possible role of microRNA‑204 (miR‑204) in optic nerve injury through the regulation of growth‑associated protein-43 (GAP‑43). Initially, optic nerve injury models were established in Sprague‑Dawley (SD) rats, and the function of miR‑204 was either enhanced or inhibited through injection of miR‑204 mimic and inhibitor, respectively. Subsequently, the mRNA and protein levels of miR‑204, GAP‑43, toll‑like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and nuclear factor‑κB (NF‑κB) were examined in retinal tissues using reverse transcription‑quantitative polymerase chain reaction and western blot analyses. The apoptosis of retinal tissue cells was also detected using a terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay. There was a significant increase in the level of miR‑204 in retinal blood vessels of the model SD rats, compared with that in the normal SD rats (P<0.05), and the expression of GAP‑43 was significantly decreased (P<0.05). The results confirmed that the expression of GAP‑43 was significantly reduced, compared with that in the normal control group when the rats were treated with miR‑204 mimic (P<0.05), which was similar to the result in the model group. By contrast, its expression of GAP‑43 was significantly increased when treated with the miR‑204 inhibitor (P<0.05). Compared with the normal control group, the expression levels of TLR4, MyD88 and NF‑κB were significantly increased in the miR‑204 mimic group and model group (P<0.05), whereas the same three factors in the miR‑204 inhibitor group were effectively inhibited, compared with those in the model group, and showed similar results to the normal control group. The apoptotic rates of retinal cells in the miR‑204 mimic group and model group were significantly increased, compared with that in the normal control group (P<0.05), whereas miR‑204 inhibitor effectively reversed the effects on apoptotic rate observed in the model group, showing similar results to those in the normal control group. Taken together, miR‑204 promoted the apoptosis of retinal cells through inhibiting GAP‑43, providing theoretical guidance for the function of GAP‑43 in retinal injury.
Collapse
Affiliation(s)
- Nanye Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenyan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650034, P.R. China
| | - Tingting Xiao
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhenzhong Miao
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenbin Luo
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhipeng You
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guodong Li
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
12
|
Caprara GA, Morabito C, Perni S, Navarra R, Guarnieri S, Mariggiò MA. Evidence for Altered Ca 2+ Handling in Growth Associated Protein 43-Knockout Skeletal Muscle. Front Physiol 2016; 7:493. [PMID: 27833566 PMCID: PMC5080375 DOI: 10.3389/fphys.2016.00493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/11/2016] [Indexed: 11/13/2022] Open
Abstract
Neuronal growth-associated protein 43 (GAP43) has crucial roles in the nervous system, and during development, regeneration after injury, and learning and memory. GAP43 is expressed in mouse skeletal muscle fibers and satellite cells, with suggested its involvement in intracellular Ca2+ handling. However, the physiological role of GAP43 in muscle remains unknown. Using a GAP43-knockout (GAP43-/-) mouse, we have defined the role of GAP43 in skeletal muscle. GAP43-/- mice showed low survival beyond weaning, reduced adult body weight, decreased muscle strength, and changed myofiber ultrastructure, with no significant differences in the expression of markers of satellite cell and myotube progression through the myogenic program. Thus, GAP43 expression is involved in timing of muscle maturation in-vivo. Intracellular Ca2+ measurements in-vitro in myotubes revealed GAP43 involvement in Ca2+ handling. In the absence of GAP43 expression, the spontaneous Ca2+ variations had greater amplitudes and higher frequency. In GAP43-/- myotubes, also the intracellular Ca2+ variations induced by the activation of dihydropyridine and ryanodine Ca2+ channels, resulted modified. These evidences suggested dysregulation of Ca2+ homeostasis. The emerging hypothesis indicates that GAP43 interacts with calmodulin to indirectly modulate the activities of dihydropyridine and ryanodine Ca2+ channels. This thus influences intracellular Ca2+ dynamics and its related intracellular patterns, from functional excitation-contraction coupling, to cell metabolism, and gene expression.
Collapse
Affiliation(s)
- Giusy A Caprara
- Laboratory of Functional Biotechnology, Center of Sciences on Aging and Translational Medicine (CeSI-MeT), Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara Chieti, Italy
| | - Caterina Morabito
- Laboratory of Functional Biotechnology, Center of Sciences on Aging and Translational Medicine (CeSI-MeT), Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara Chieti, Italy
| | - Stefano Perni
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Riccardo Navarra
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara Chieti, Italy
| | - Simone Guarnieri
- Laboratory of Functional Biotechnology, Center of Sciences on Aging and Translational Medicine (CeSI-MeT), Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara Chieti, Italy
| | - Maria A Mariggiò
- Laboratory of Functional Biotechnology, Center of Sciences on Aging and Translational Medicine (CeSI-MeT), Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara Chieti, Italy
| |
Collapse
|
13
|
Trubiani O, Guarnieri S, Diomede F, Mariggiò MA, Merciaro I, Morabito C, Cavalcanti MFXB, Cocco L, Ramazzotti G. Nuclear translocation of PKCα isoenzyme is involved in neurogenic commitment of human neural crest-derived periodontal ligament stem cells. Cell Signal 2016; 28:1631-41. [PMID: 27478064 DOI: 10.1016/j.cellsig.2016.07.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 12/15/2022]
Abstract
Stem cells isolated from human adult tissue niche represent a promising source for neural differentiation. Human Periodontal Ligament Stem Cells (hPDLSCs) originating from the neural crest are particularly suitable for induction of neural commitment. In this study, under xeno-free culture conditions, in undifferentiated hPDLSCs and in hPDLSCs induced to neuronal differentiation by basic Fibroblast Growth Factor, the level of some neural markers have been analyzed. The hPDLSCs spontaneously express Nestin, a neural progenitor marker. In these cells, the neurogenic process induced to rearrange the cytoskeleton, form neurospheres and express higher levels of Nestin and Tyrosine Hydroxylase, indicating neural induction. Protein Kinase C (PKC) is highly expressed in neural tissue and has a key role in neuronal functions. In particular the Ca(2+) and diacylglycerol-dependent activation of PKCα isozyme is involved in the regulation of neuronal differentiation. Another main component of the pathways controlling neuronal differentiation is the Growth Associated Protein-43 (GAP-43), whose activity is strictly regulated by PKC. The aim of this study is to investigate the role of PKCα/GAP-43 nuclear signal transduction pathway during neuronal commitment of hPDLSCs. During hPDLSCs neurogenic commitment the levels of p-PKC and p-GAP-43 increased both in cytoplasmic and nuclear compartment. PKCα nuclear translocation induced GAP-43 movement to the cytoplasm, where it is known to regulate growth cone dynamics and neuronal differentiation. Moreover, the degree of cytosolic Ca(2+) mobilization appeared to be more pronounced in differentiated hPDLSCs than in undifferentiated cells. This study provides evidences of a new PKCα/GAP-43 nuclear signalling pathway that controls neuronal differentiation in hPDLSCs, leading the way to a potential use of these cells in cell-based therapy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences - CeSI-MET, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy
| | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy
| | - Maria A Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences - CeSI-MET, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy
| | - Ilaria Merciaro
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy
| | - Caterina Morabito
- Department of Neuroscience, Imaging and Clinical Sciences - CeSI-MET, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy
| | - Marcos F X B Cavalcanti
- Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, 9, avenue de la Forêt de Haye, 54500 Vandoeuvre-lés-Nancy, France; Cruzeiro do Sul University, Rua Galvão Bueno 868, 01506-000 São Paulo, SP, Brazil
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
14
|
Forsova OS, Zakharov VV. High-order oligomers of intrinsically disordered brain proteins BASP1 and GAP-43 preserve the structural disorder. FEBS J 2016; 283:1550-69. [PMID: 26918762 DOI: 10.1111/febs.13692] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/26/2016] [Accepted: 02/23/2016] [Indexed: 11/30/2022]
Abstract
Brain acid-soluble protein-1 (BASP1) and growth-associated protein-43 (GAP-43) are presynaptic membrane proteins participating in axon guidance, neuroregeneration and synaptic plasticity. They are presumed to sequester phosphatidylinositol-4,5-bisphosphate (PIP2 ) in lipid rafts. Previously we have shown that the proteins form heterogeneously sized oligomers in the presence of anionic phospholipids or SDS at submicellar concentration. BASP1 and GAP-43 are intrinsically disordered proteins (IDPs). In light of this, we investigated the structure of their oligomers. Using partial cross-linking of the oligomers with glutaraldehyde, the aggregation numbers of BASP1 and GAP-43 were estimated as 10-14 and 6-7 monomer subunits, respectively. The cross-linking pattern indicated that the subunits are circularly arranged. The circular dichroism (CD) spectra of the monomers were characteristic of coil-like IDPs showing unordered structure with a high population of polyproline-II conformation. The oligomerization was accompanied by a minor CD spectral change attributable to formation of a small amount of α-helix. The number of residues in the α-helical conformation was estimated as 13 in BASP1 and 18 in GAP-43. However, the overall structure of the oligomers remained disordered, indicating a high degree of 'fuzziness'. This was confirmed by measuring the hydrodynamic dimensions of the oligomers using polyacrylamide gradient gel electrophoresis and size-exclusion chromatography, and by assaying their sensitivity to proteolytic digestion. There is evidence that the observed α-helical folding occurs within the basic effector domains, which are presumably tethered together via anionic molecules of SDS or PIP2 . We conclude that BASP1 and GAP-43 oligomers preserve a mostly disordered structure, which may be of great importance for their function in PIP2 signaling pathway.
Collapse
Affiliation(s)
- Oksana S Forsova
- Molecular and Radiation Biophysics Division, B. P. Konstantinov Petersburg Nuclear Physics Institute, National Research Centre 'Kurchatov Institute', Gatchina, Russia.,Laboratory of Natural Polymers, Institute of Macromolecular Compounds, Russian Academy of Sciences, St Petersburg, Russia
| | - Vladislav V Zakharov
- Molecular and Radiation Biophysics Division, B. P. Konstantinov Petersburg Nuclear Physics Institute, National Research Centre 'Kurchatov Institute', Gatchina, Russia.,Laboratory of Natural Polymers, Institute of Macromolecular Compounds, Russian Academy of Sciences, St Petersburg, Russia.,Department of Biophysics, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St Petersburg Polytechnic University, Russia
| |
Collapse
|
15
|
Ibrahim A, Hage CH, Souissi A, Leray A, Héliot L, Souissi S, Vandenbunder B. Label-free microscopy and stress responses reveal the functional organization of Pseudodiaptomus marinus copepod myofibrils. J Struct Biol 2015; 191:224-35. [PMID: 26057347 DOI: 10.1016/j.jsb.2015.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 01/25/2023]
Abstract
Pseudodiaptomus marinus copepods are small crustaceans living in estuarine areas endowed with exceptional swimming and adaptative performances. Since the external cuticle acts as an impermeable barrier for most dyes and molecular tools for labeling copepod proteins with fluorescent tags are not available, imaging cellular organelles in these organisms requires label free microscopy. Complementary nonlinear microscopy techniques have been used to investigate the structure and the response of their myofibrils to abrupt changes of temperature or/and salinity. In contrast with previous observations in vertebrates and invertebrates, the flavin autofluorescence which is a signature of mitochondria activity and the Coherent Anti-Stokes Raman Scattering (CARS) pattern assigned to T-tubules overlapped along myofibrils with the second harmonic generation (SHG) striated pattern generated by myosin tails in sarcomeric A bands. Temperature jumps from 18 to 4 °C or salinity jumps from 30 to 15 psu mostly affected flavin autofluorescence. Severe salinity jumps from 30 to 0 psu dismantled myofibril organization with major changes both in the SHG and CARS patterns. After a double stress (from 18 °C/30 psu to 4° C/0 psu) condensed and distended regions appeared within single myofibrils, with flavin autofluorescence bands located between sarcomeric A bands. These results shed light on the interactions between the different functional compartments which provide fast acting excitation-contraction coupling and adequate power supply in copepods muscles.
Collapse
Affiliation(s)
- Ali Ibrahim
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France; Laboratoire d'Océanologie et de Géosciences, UMR CNRS 8187 LOG, University of Lille, Station Marine de Wimereux, 28 Avenue Foch, 62930 Wimereux, France.
| | - Charles Henri Hage
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| | - Anissa Souissi
- Laboratoire d'Océanologie et de Géosciences, UMR CNRS 8187 LOG, University of Lille, Station Marine de Wimereux, 28 Avenue Foch, 62930 Wimereux, France.
| | - Aymeric Leray
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| | - Laurent Héliot
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| | - Sami Souissi
- Laboratoire d'Océanologie et de Géosciences, UMR CNRS 8187 LOG, University of Lille, Station Marine de Wimereux, 28 Avenue Foch, 62930 Wimereux, France.
| | - Bernard Vandenbunder
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| |
Collapse
|
16
|
Lanuti P, Serafini F, Pierdomenico L, Simeone P, Bologna G, Ercolino E, Di Silvestre S, Guarnieri S, Canosa C, Impicciatore GG, Chiarini S, Magnacca F, Mariggiò MA, Pandolfi A, Marchisio M, Di Giammarco G, Miscia S. Human Mesenchymal Stem Cells Reendothelialize Porcine Heart Valve Scaffolds: Novel Perspectives in Heart Valve Tissue Engineering. Biores Open Access 2015; 4:288-97. [PMID: 26309804 PMCID: PMC4497625 DOI: 10.1089/biores.2015.0019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heart valve diseases are usually treated by surgical intervention addressed for the replacement of the damaged valve with a biosynthetic or mechanical prosthesis. Although this approach guarantees a good quality of life for patients, it is not free from drawbacks (structural deterioration, nonstructural dysfunction, and reintervention). To overcome these limitations, the heart valve tissue engineering (HVTE) is developing new strategies to synthesize novel types of valve substitutes, by identifying efficient sources of both ideal scaffolds and cells. In particular, a natural matrix, able to interact with cellular components, appears to be a suitable solution. On the other hand, the well-known Wharton's jelly mesenchymal stem cells (WJ-MSCs) plasticity, regenerative abilities, and their immunomodulatory capacities make them highly promising for HVTE applications. In the present study, we investigated the possibility to use porcine valve matrix to regenerate in vitro the valve endothelium by WJ-MSCs differentiated along the endothelial lineage, paralleled with human umbilical vein endothelial cells (HUVECs), used as positive control. Here, we were able to successfully decellularize porcine heart valves, which were then recellularized with both differentiated-WJ-MSCs and HUVECs. Data demonstrated that both cell types were able to reconstitute a cellular monolayer. Cells were able to positively interact with the natural matrix and demonstrated the surface expression of typical endothelial markers. Altogether, these data suggest that the interaction between a biological scaffold and WJ-MSCs allows the regeneration of a morphologically well-structured endothelium, opening new perspectives in the field of HVTE.
Collapse
Affiliation(s)
- Paola Lanuti
- Center for Aging Science (Ce.S.I.), “Università G. d'Annunzio” Foundation, Chieti, Italy
- Department of Medicine and Aging Science, School of Medicine and Health Science, University “G. d'Annunzio” Chieti–Pescara, Chieti, Italy
- StemTeCh Group, Chieti, Italy
| | - Francesco Serafini
- Center for Aging Science (Ce.S.I.), “Università G. d'Annunzio” Foundation, Chieti, Italy
- Department of Medicine and Aging Science, School of Medicine and Health Science, University “G. d'Annunzio” Chieti–Pescara, Chieti, Italy
| | - Laura Pierdomenico
- Center for Aging Science (Ce.S.I.), “Università G. d'Annunzio” Foundation, Chieti, Italy
- Department of Medicine and Aging Science, School of Medicine and Health Science, University “G. d'Annunzio” Chieti–Pescara, Chieti, Italy
- StemTeCh Group, Chieti, Italy
| | - Pasquale Simeone
- Center for Aging Science (Ce.S.I.), “Università G. d'Annunzio” Foundation, Chieti, Italy
- Department of Medicine and Aging Science, School of Medicine and Health Science, University “G. d'Annunzio” Chieti–Pescara, Chieti, Italy
| | - Giuseppina Bologna
- Center for Aging Science (Ce.S.I.), “Università G. d'Annunzio” Foundation, Chieti, Italy
- Department of Medicine and Aging Science, School of Medicine and Health Science, University “G. d'Annunzio” Chieti–Pescara, Chieti, Italy
| | - Eva Ercolino
- Center for Aging Science (Ce.S.I.), “Università G. d'Annunzio” Foundation, Chieti, Italy
- Department of Medicine and Aging Science, School of Medicine and Health Science, University “G. d'Annunzio” Chieti–Pescara, Chieti, Italy
| | - Sara Di Silvestre
- Center for Aging Science (Ce.S.I.), “Università G. d'Annunzio” Foundation, Chieti, Italy
- StemTeCh Group, Chieti, Italy
- Department of Experimental and Clinical Sciences, University “G. d'Annunzio” Chieti–Pescara, Chieti, Italy
| | - Simone Guarnieri
- Center for Aging Science (Ce.S.I.), “Università G. d'Annunzio” Foundation, Chieti, Italy
- Department of Experimental and Clinical Sciences, University “G. d'Annunzio” Chieti–Pescara, Chieti, Italy
| | - Carlo Canosa
- Department of Neuroscience and Imaging, University “G. d'Annunzio” Chieti–Pescara, Chieti, Italy
| | - Gianna Gabriella Impicciatore
- Department of Medicine and Aging Science, School of Medicine and Health Science, University “G. d'Annunzio” Chieti–Pescara, Chieti, Italy
| | - Stella Chiarini
- Department of Medicine and Aging Science, School of Medicine and Health Science, University “G. d'Annunzio” Chieti–Pescara, Chieti, Italy
| | - Francesco Magnacca
- Department of Neuroscience and Imaging, University “G. d'Annunzio” Chieti–Pescara, Chieti, Italy
| | - Maria Addolorata Mariggiò
- Center for Aging Science (Ce.S.I.), “Università G. d'Annunzio” Foundation, Chieti, Italy
- StemTeCh Group, Chieti, Italy
- Department of Experimental and Clinical Sciences, University “G. d'Annunzio” Chieti–Pescara, Chieti, Italy
| | - Assunta Pandolfi
- Center for Aging Science (Ce.S.I.), “Università G. d'Annunzio” Foundation, Chieti, Italy
- StemTeCh Group, Chieti, Italy
- Department of Experimental and Clinical Sciences, University “G. d'Annunzio” Chieti–Pescara, Chieti, Italy
| | - Marco Marchisio
- Center for Aging Science (Ce.S.I.), “Università G. d'Annunzio” Foundation, Chieti, Italy
- Department of Medicine and Aging Science, School of Medicine and Health Science, University “G. d'Annunzio” Chieti–Pescara, Chieti, Italy
- StemTeCh Group, Chieti, Italy
| | - Gabriele Di Giammarco
- Department of Neuroscience and Imaging, University “G. d'Annunzio” Chieti–Pescara, Chieti, Italy
| | - Sebastiano Miscia
- Center for Aging Science (Ce.S.I.), “Università G. d'Annunzio” Foundation, Chieti, Italy
- Department of Medicine and Aging Science, School of Medicine and Health Science, University “G. d'Annunzio” Chieti–Pescara, Chieti, Italy
- StemTeCh Group, Chieti, Italy
| |
Collapse
|
17
|
Caprara GA, Perni S, Morabito C, Mariggiò MA, Guarnieri S. Specific association of growth-associated protein 43 with calcium release units in skeletal muscles of lower vertebrates. Eur J Histochem 2014; 58:2453. [PMID: 25578978 PMCID: PMC4289850 DOI: 10.4081/ejh.2014.2453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 11/22/2022] Open
Abstract
Growth-associated protein 43 (GAP43), is a strictly conserved protein among vertebrates implicated in neuronal development and neurite branching. Since GAP43 structure contains a calmodulin-binding domain, this protein is able to bind calmodulin and gather it nearby membrane network, thus regulating cytosolic calcium and consequently calcium-dependent intracellular events. Even if for many years GAP43 has been considered a neuronal-specific protein, evidence from different laboratories described its presence in myoblasts, myotubes and adult skeletal muscle fibers. Data from our laboratory showed that GAP43 is localized between calcium release units (CRUs) and mitochondria in mammalian skeletal muscle suggesting that, also in skeletal muscle, this protein can be a key player in calcium/calmodulin homeostasis. However, the previous studies could not clearly distinguish between a mitochondrion- or a triad-related positioning of GAP43. To solve this question, the expression and localization of GAP43 was studied in skeletal muscle of Xenopus and Zebrafish known to have triads located at the level of the Z-lines and mitochondria not closely associated with them. Western blotting and immunostaining experiments revealed the expression of GAP43 also in skeletal muscle of lower vertebrates (like amphibians and fishes), and that the protein is localized closely to the triad junction. Once more, these results and GAP43 structural features, support an involvement of the protein in the dynamic intracellular Ca2+ homeostasis, a common conserved role among the different species.
Collapse
|
18
|
Tinospora cordifolia Induces Differentiation and Senescence Pathways in Neuroblastoma Cells. Mol Neurobiol 2014; 52:719-33. [PMID: 25280667 DOI: 10.1007/s12035-014-8892-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/03/2014] [Indexed: 01/06/2023]
Abstract
Children diagnosed with neuroblastomas often suffer from severe side as well as late effects of conventional treatments like chemotherapy and radiotherapy. Recent advances in understanding of molecular pathways involved in cellular differentiation and apoptosis have helped in the development of new therapeutic approach based on differentiation-based therapy of malignant tumours. Natural medicines with their holistic therapeutic approach are known to selectively eliminate cancer cells thus provide a better substitute for the conventional treatment modes. The current study was aimed to investigate the anti-cancer potential of aqueous ethanolic extract of Tinospora cordifolia (TCE) using IMR-32 human neuroblastoma cell line as a model system. TCE is highly recommended in Ayurveda for its general body and metal health-promoting properties. TCE treatment was seen to arrest the majority of cells in G0/G1 phase and modulated the expression of DNA clamp sliding protein (PCNA) and cyclin D1. Further, TCE-treated cells showed differentiation as revealed by their morphology and the expression of neuronal cell specific differentiation markers NF200, MAP-2 and NeuN in neuroblastoma cells. The differentiated phenotype was associated with induction of senescence and pro-apoptosis pathways by enhancing expression of senescence marker mortalin and Rel A subunit of nuclear factor kappa beta (NFkB) along with decreased expression of anti-apoptotic marker, Bcl-xl. TCE exhibited anti-metastatic activity and significantly reduced cell migration in the scratched area along with downregulation of neural cell adhesion molecule (NCAM) polysialylation and secretion of matrix metalloproteinases (MMPs). Our data suggest that crude extract or active phytochemicals from this plant may be a potential candidate for differentiation-based therapy of malignant neuroblastoma cells.
Collapse
|
19
|
New insights into the relationship between mIGF-1-induced hypertrophy and Ca2+ handling in differentiated satellite cells. PLoS One 2014; 9:e107753. [PMID: 25229238 PMCID: PMC4168228 DOI: 10.1371/journal.pone.0107753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/16/2014] [Indexed: 11/19/2022] Open
Abstract
Muscle regeneration involves the activation of satellite cells, is regulated at the genetic and epigenetic levels, and is strongly influenced by gene activation and environmental conditions. The aim of this study was to determine whether the overexpression of mIGF-1 can modify functional features of satellite cells during the differentiation process, particularly in relation to modifications of intracellular Ca2+ handling. Satellite cells were isolated from wild-type and MLC/mIGF-1 transgenic mice. The cells were differentiated in vitro, and morphological analyses, intracellular Ca2+ measurements, and ionic current recordings were performed. mIGF-1 overexpression accelerates satellite cell differentiation and promotes myotube hypertrophy. In addition, mIGF-1 overexpression-induced potentiation of myogenesis triggers both quantitative and qualitative changes to the control of intracellular Ca2+ handling. In particular, the differentiated MLC/mIGF-1 transgenic myotubes have reduced velocity and amplitude of intracellular Ca2+ increases after stimulation with caffeine, KCl and acetylcholine. This appears to be due, at least in part, to changes in the physico-chemical state of the sarcolemma (increased membrane lipid oxidation, increased output currents) and to increased expression of dihydropyridine voltage-operated Ca2+ channels. Interestingly, extracellular ATP and GTP evoke intracellular Ca2+ mobilization to greater extents in the MLC/mIGF-1 transgenic satellite cells, compared to the wild-type cells. These data suggest that these MLC/mIGF-1 transgenic satellite cells are more sensitive to trophic stimuli, which can potentiate the effects of mIGF-1 on the myogenic programme.
Collapse
|
20
|
Gu YL, Zhang LW, Ma N, Ye LL, Wang DX, Gao X. Cognitive improvement of mice induced by exercise prior to traumatic brain injury is associated with cytochrome c oxidase. Neurosci Lett 2014; 570:86-91. [PMID: 24746931 DOI: 10.1016/j.neulet.2014.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/01/2022]
Abstract
Though the evidence demonstrated that voluntary exercise programs could be implemented to enhance recovery of cognitive function induced by traumatic brain injury (TBI), the exact mechanisms were still not known. We proposed that the cognitive improvement induced by exercise in TBI mice is associated with cytochrome c oxidase (COX). To demonstrate this hypothesis, adult mice were housed with or without access to a running wheel (RW) for three weeks followed by TBI operation. Acquisition of spatial learning and memory retention was assessed by using the Morris Water Maze (MWM) on days 15 post TBI. The synaptic density was measured by Golji staining. Immunohistochemistry (IHC) for NeuN, GFAP and growth associated protein 43 (GAP43) were also performed. Using Western blot, the expressions of COX I, II, III, BDNF, synapsin I, synaptophysin (SYP) and GAP43 in hippocampus of TBI mice were determinated. Lastly, CcO activity and ATP amount were also detected. Results showed that voluntary exercise prior TBI: (i) counteracted the cognitive deficits and neuron and synaptic density loss associated with the injury; (ii) increased the levels of COX I, II, III, BDNF, synapsin I, SYP and GAP43; (iii) switched the mitochondrial CcO activity and ATP amounts. These studies demonstrated that the COX plays an important role in exercise's cognitive effects in TBI model and also provide evidence that RW training is a promise exercise for traumatically injured mice.
Collapse
Affiliation(s)
- Ying Li Gu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Li Wei Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Ning Ma
- The Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Lin Lin Ye
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - De Xin Wang
- Department of Neurology, Beichen Hospital of Traditional Chinese Medicine, Tianjin 300400, China
| | - Xu Gao
- The Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
21
|
Gimelli S, Leoni M, Di Rocco M, Caridi G, Porta S, Cuoco C, Gimelli G, Tassano E. A rare 3q13.31 microdeletion including GAP43 and LSAMP genes. Mol Cytogenet 2013; 6:52. [PMID: 24279697 PMCID: PMC3906914 DOI: 10.1186/1755-8166-6-52] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/28/2013] [Indexed: 11/26/2022] Open
Abstract
Background Interstitial deletions affecting the proximal long arm of chromosome 3 have been rarely reported in the literature. The deleted segments vary in localization and size with different breakpoints making genotype-phenotype correlation very difficult. Until now, a girl with a 1.9-Mb interstitial deletion of 3q13.2q13.31 and 14 novel patients with deletions in 3q11q23 have been reported. Results Here we report on a 7-year-old girl with neuropsychiatric disorders and renal, vascular and skeletal anomalies. Array-CGH analysis revealed a small rare inherited 3q13.31 deletion containing only two genes, GAP43 and LSAMP. The mutation analysis of the two genes was negative on the other non-deleted chromosome. GAP43 is considered a crucial component for an effective regenerative response in the nervous system and its mRNA is localized exclusively to nerve tissue where the protein is linked to the synaptosomal membrane. LSAMP is a 64- to 68-kD neuronal surface glycoprotein found in cortical and subcortical regions of the limbic system that acts as an adhesion molecule and guides the development of specific patterns of neuronal connection. The deleted region is adjacent to a “desert gene” region extending 2.099 Mb. Conclusions We discuss the effects of GAP43 and LSAMP haploinsufficiency, proposing that their deletion may be responsible for the main phenotype. Further cases with similar microdeletion are expected to be diagnosed and will help to better characterize the clinical spectrum of phenotypes associated with 3q13.31 microdeletion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elisa Tassano
- Laboratorio di Citogenetica, Istituto G, Gaslini, Genoa, Italy.
| |
Collapse
|
22
|
Shuvarikov A, Campbell IM, Dittwald P, Neill NJ, Bialer MG, Moore C, Wheeler PG, Wallace SE, Hannibal MC, Murray MF, Giovanni MA, Terespolsky D, Sodhi S, Cassina M, Viskochil D, Moghaddam B, Herman K, Brown CW, Beck CR, Gambin A, Cheung SW, Patel A, Lamb AN, Shaffer LG, Ellison JW, Ravnan JB, Stankiewicz P, Rosenfeld JA. Recurrent HERV-H-mediated 3q13.2-q13.31 deletions cause a syndrome of hypotonia and motor, language, and cognitive delays. Hum Mutat 2013; 34:1415-23. [PMID: 23878096 DOI: 10.1002/humu.22384] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/11/2013] [Indexed: 11/09/2022]
Abstract
We describe the molecular and clinical characterization of nine individuals with recurrent, 3.4-Mb, de novo deletions of 3q13.2-q13.31 detected by chromosomal microarray analysis. All individuals have hypotonia and language and motor delays; they variably express mild to moderate cognitive delays (8/9), abnormal behavior (7/9), and autism spectrum disorders (3/9). Common facial features include downslanting palpebral fissures with epicanthal folds, a slightly bulbous nose, and relative macrocephaly. Twenty-eight genes map to the deleted region, including four strong candidate genes, DRD3, ZBTB20, GAP43, and BOC, with important roles in neural and/or muscular development. Analysis of the breakpoint regions based on array data revealed directly oriented human endogenous retrovirus (HERV-H) elements of ~5 kb in size and of >95% DNA sequence identity flanking the deletion. Subsequent DNA sequencing revealed different deletion breakpoints and suggested nonallelic homologous recombination (NAHR) between HERV-H elements as a mechanism of deletion formation, analogous to HERV-I-flanked and NAHR-mediated AZFa deletions. We propose that similar HERV elements may also mediate other recurrent deletion and duplication events on a genome-wide scale. Observation of rare recurrent chromosomal events such as these deletions helps to further the understanding of mechanisms behind naturally occurring variation in the human genome and its contribution to genetic disease.
Collapse
Affiliation(s)
- Andrey Shuvarikov
- Signature Genomic Laboratories, PerkinElmer, Inc, Spokane, Washington
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|