1
|
Faber T, McConville JT, Lamprecht A. Focused ion beam-scanning electron microscopy provides novel insights of drug delivery phenomena. J Control Release 2024; 366:312-327. [PMID: 38161031 DOI: 10.1016/j.jconrel.2023.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Scanning electron microscopy (SEM) has long been a standard tool for morphological analyses, providing sub micrometer resolution of pharmaceutical formulations. However, analysis of internal morphologies of such formulations can often be biased due to the introduction of artifacts that originate from sample preparation. A recent advancement in SEM, is the focused ion beam scanning electron microscopy (FIB-SEM). This technique uses a focused ion beam (FIB) to remove material with nanometer precision, to provide virtually sample-independent access to sub-surface structures. The FIB can be combined with SEM imaging capabilities within the same instrumentation. As a powerful analytical tool, electron microscopy and FIB-milling are performed sequentially to produce high-resolution 3D models of structural peculiarities of diverse drug delivery systems or their behavior in a biological environment, i.e. intracellular or -tissue distribution. This review paper briefly describes the technical background of the method, outlines a wide array of potential uses within the drug delivery field, and focuses on intracellular transport where high-resolution images are an essential tool for mechanistical insights.
Collapse
Affiliation(s)
- Thilo Faber
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Jason T McConville
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; Université de Franche-Comté, INSERM UMR1098 Right, Besançon, France.
| |
Collapse
|
2
|
Wang H, Xue J, Li Y, Shi K, Fang J, Zheng J, Lyu X, Gao Z, Xu D, Hu N. Optimizing the Cell-Nanostructure Interface: Nanoconcave/Nanoconvex Device for Intracellular Recording of Cardiomyocytes. NANO LETTERS 2023; 23:11884-11891. [PMID: 38064276 DOI: 10.1021/acs.nanolett.3c03945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Nanostructures are powerful components for the development of high-performance nanodevices. Revealing and understanding the cell-nanostructure interface are essential for improving and guiding nanodevice design for investigations of cell physiology. For intracellular electrophysiological detection, the cell-nanostructure interface significantly affects the quality of recorded intracellular action potentials and the application of nanodevices in cardiology research and pharmacological screening. Most of the current investigations of biointerfaces focus on nanovertical structures, and few involve nanoconcave structures. Here, we design both nanoconvex and nanoconcave devices to perform intracellular electrophysiological recordings. The amplitude, signal-to-noise ratio, duration, and repeatability of the recorded intracellular electrophysiological signals provide a multifaceted characterization of the cell-nanostructure interface. We demonstrate that devices based on both convex and concave nanostructures can create tight coupling, which facilitates high-quality and stable intracellular recordings and paves the way for precise electrophysiological study.
Collapse
Affiliation(s)
- Hao Wang
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Jiajin Xue
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Ying Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Keda Shi
- Department of Lung Transplantation and General Thoracic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiaru Fang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jilin Zheng
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Xuelian Lyu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Zhigang Gao
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Dongxin Xu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
3
|
Li N, Jin K, Chen T, Li X. A static force model to analyze the nuclear deformation on cell adhesion to vertical nanostructures. SOFT MATTER 2022; 18:6638-6644. [PMID: 36004571 DOI: 10.1039/d2sm00971d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Vertical nanostructures have been found to induce the deformation of the nuclear envelope during cell adhesion. However, there has been a lack of quantitative analysis of the influence of nanostructures morphology on the degree of nuclear deformation. Here, a theoretical model was proposed to investigate the mechanism of nuclear deformation by analyzing the mechanical force balance. Based on the established model, we analyzed the effects of the morphology of the nanopillar array on nuclear deformation and gave the quantitative relationship of the deformation depth of the nucleus with the pitch and radius of nanopillars. Our theoretical results seem to show broad agreements with experimental observations, which implies that the work can provide useful guidance to the design of nanostructures for biomedical applications.
Collapse
Affiliation(s)
- Nanxin Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Kun Jin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan 511500, China
| | - Xinlei Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
4
|
Zhang A, Fang J, Li X, Wang J, Chen M, Chen HJ, He G, Xie X. Cellular nanointerface of vertical nanostructure arrays and its applications. NANOSCALE ADVANCES 2022; 4:1844-1867. [PMID: 36133409 PMCID: PMC9419580 DOI: 10.1039/d1na00775k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/28/2021] [Indexed: 06/16/2023]
Abstract
Vertically standing nanostructures with various morphologies have been developed with the emergence of the micro-/nanofabrication technology. When cells are cultured on them, various bio-nano interfaces between cells and vertical nanostructures would impact the cellular activities, depending on the shape, density, and height of nanostructures. Many cellular pathway activation processes involving a series of intracellular molecules (proteins, RNA, DNA, enzymes, etc.) would be triggered by the cell morphological changes induced by nanostructures, affecting the cell proliferation, apoptosis, differentiation, immune activation, cell adhesion, cell migration, and other behaviors. In addition, the highly localized cellular nanointerface enhances coupled stimulation on cells. Therefore, understanding the mechanism of the cellular nanointerface can not only provide innovative tools for regulating specific cell functions but also offers new aspects to understand the fundamental cellular activities that could facilitate the precise monitoring and treatment of diseases in the future. This review mainly describes the fabrication technology of vertical nanostructures, analyzing the formation of cellular nanointerfaces and the effects of cellular nanointerfaces on cells' fates and functions. At last, the applications of cellular nanointerfaces based on various nanostructures are summarized.
Collapse
Affiliation(s)
- Aihua Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
| | - Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
- School of Biomedical Engineering, Sun Yat-Sen University Guangzhou 510006 China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University Guangzhou 510080 China
| | - Meiwan Chen
- Institute of Chinese Medical Sciences, University of Macau Taipa Macau SAR China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
- The First Affiliated Hospital of Sun Yat-Sen University Guangzhou 510080 China
| |
Collapse
|
5
|
Mariano A, Lubrano C, Bruno U, Ausilio C, Dinger NB, Santoro F. Advances in Cell-Conductive Polymer Biointerfaces and Role of the Plasma Membrane. Chem Rev 2022; 122:4552-4580. [PMID: 34582168 PMCID: PMC8874911 DOI: 10.1021/acs.chemrev.1c00363] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 02/07/2023]
Abstract
The plasma membrane (PM) is often described as a wall, a physical barrier separating the cell cytoplasm from the extracellular matrix (ECM). Yet, this wall is a highly dynamic structure that can stretch, bend, and bud, allowing cells to respond and adapt to their surrounding environment. Inspired by shapes and geometries found in the biological world and exploiting the intrinsic properties of conductive polymers (CPs), several biomimetic strategies based on substrate dimensionality have been tailored in order to optimize the cell-chip coupling. Furthermore, device biofunctionalization through the use of ECM proteins or lipid bilayers have proven successful approaches to further maximize interfacial interactions. As the bio-electronic field aims at narrowing the gap between the electronic and the biological world, the possibility of effectively disguising conductive materials to "trick" cells to recognize artificial devices as part of their biological environment is a promising approach on the road to the seamless platform integration with cells.
Collapse
Affiliation(s)
- Anna Mariano
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Claudia Lubrano
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Ugo Bruno
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Chiara Ausilio
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Nikita Bhupesh Dinger
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Francesca Santoro
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| |
Collapse
|
6
|
Chiappini C, Chen Y, Aslanoglou S, Mariano A, Mollo V, Mu H, De Rosa E, He G, Tasciotti E, Xie X, Santoro F, Zhao W, Voelcker NH, Elnathan R. Tutorial: using nanoneedles for intracellular delivery. Nat Protoc 2021; 16:4539-4563. [PMID: 34426708 DOI: 10.1038/s41596-021-00600-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
Intracellular delivery of advanced therapeutics, including biologicals and supramolecular agents, is complex because of the natural biological barriers that have evolved to protect the cell. Efficient delivery of therapeutic nucleic acids, proteins, peptides and nanoparticles is crucial for clinical adoption of emerging technologies that can benefit disease treatment through gene and cell therapy. Nanoneedles are arrays of vertical high-aspect-ratio nanostructures that can precisely manipulate complex processes at the cell interface, enabling effective intracellular delivery. This emerging technology has already enabled the development of efficient and non-destructive routes for direct access to intracellular environments and delivery of cell-impermeant payloads. However, successful implementation of this technology requires knowledge of several scientific fields, making it complex to access and adopt by researchers who are not directly involved in developing nanoneedle platforms. This presents an obstacle to the widespread adoption of nanoneedle technologies for drug delivery. This tutorial aims to equip researchers with the knowledge required to develop a nanoinjection workflow. It discusses the selection of nanoneedle devices, approaches for cargo loading and strategies for interfacing to biological systems and summarises an array of bioassays that can be used to evaluate the efficacy of intracellular delivery.
Collapse
Affiliation(s)
- Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
- London Centre for Nanotechnology, King's College London, London, UK.
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia
| | - Stella Aslanoglou
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia
- CSIRO Manufacturing, Clayton, Victoria, Australia
| | - Anna Mariano
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | - Valentina Mollo
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | - Huanwen Mu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Enrica De Rosa
- Center for Musculoskeletal Regeneration, Orthopedics & Sports Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
| | - Ennio Tasciotti
- IRCCS San Raffaele Pisana Hospital, Rome, Italy
- San Raffaele University, Rome, Italy
- Sclavo Pharma, Siena, Italy
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China.
| | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy.
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
- CSIRO Manufacturing, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
7
|
Harberts J, Siegmund M, Schnelle M, Zhang T, Lei Y, Yu L, Zierold R, Blick RH. Robust neuronal differentiation of human iPSC-derived neural progenitor cells cultured on densely-spaced spiky silicon nanowire arrays. Sci Rep 2021; 11:18819. [PMID: 34552130 PMCID: PMC8458299 DOI: 10.1038/s41598-021-97820-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/29/2021] [Indexed: 11/12/2022] Open
Abstract
Nanostructured cell culture substrates featuring nanowire (NW) arrays have been applied to a variety of basic cell lines and rodent neurons to investigate cellular behavior or to stimulate cell responses. However, patient-derived human neurons-a prerequisite for studying e.g. neurodegenerative diseases efficiently-are rarely employed due to sensitive cell culture protocols and usually long culturing periods. Here, we present human patient induced pluripotent stem cell-derived neurons cultured on densely-spaced spiky silicon NW arrays (600 NWs/ 100 µm[Formula: see text] with NW lengths of 1 µm) which show mature electrophysiological characteristics after only 20 days of culturing. Exemplary neuronal growth and network formation on the NW arrays are demonstrated using scanning electron microscopy and immunofluorescence microscopy. The cells and neurites rest in a fakir-like settling state on the NWs only in contact with the very NW tips shown by cross-sectional imaging of the cell/NW interface using focused ion beam milling and confocal laser scanning microscopy. Furthermore, the NW arrays promote the cell culture by slightly increasing the share of differentiated neurons determined by the quantification of immunofluorescence microscopy images. The electrophysiological functionality of the neurons is confirmed with patch-clamp recordings showing the excellent capability to fire action potentials. We believe that the short culturing time to obtain functional human neurons generated from patient-derived neural progenitor cells and the robustness of this differentiation protocol to produce these neurons on densely-spaced spiky nanowire arrays open up new pathways for stem cell characterization and neurodegenerative disease studies.
Collapse
Affiliation(s)
- Jann Harberts
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| | - Malte Siegmund
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Matteo Schnelle
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Ting Zhang
- School of Electronics Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Yakui Lei
- School of Electronics Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Linwei Yu
- School of Electronics Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Robert Zierold
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| | - Robert H Blick
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Material Science and Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
8
|
Milos F, Tullii G, Gobbo F, Lodola F, Galeotti F, Verpelli C, Mayer D, Maybeck V, Offenhäusser A, Antognazza MR. High Aspect Ratio and Light-Sensitive Micropillars Based on a Semiconducting Polymer Optically Regulate Neuronal Growth. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23438-23451. [PMID: 33983012 PMCID: PMC8161421 DOI: 10.1021/acsami.1c03537] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Many nano- and microstructured devices capable of promoting neuronal growth and network formation have been previously investigated. In certain cases, topographical cues have been successfully complemented with external bias, by employing electrically conducting scaffolds. However, the use of optical stimulation with topographical cues was rarely addressed in this context, and the development of light-addressable platforms for modulating and guiding cellular growth and proliferation remains almost completely unexplored. Here, we develop high aspect ratio micropillars based on a prototype semiconducting polymer, regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT), as an optically active, three-dimensional platform for embryonic cortical neurons. P3HT micropillars provide a mechanically compliant environment and allow a close contact with neuronal cells. The combined action of nano/microtopography and visible light excitation leads to effective optical modulation of neuronal growth and orientation. Embryonic neurons cultured on polymer pillars show a clear polarization effect and, upon exposure to optical excitation, a significant increase in both neurite and axon length. The biocompatible, microstructured, and light-sensitive platform developed here opens up the opportunity to optically regulate neuronal growth in a wireless, repeatable, and spatio-temporally controlled manner without genetic modification. This approach may be extended to other cell models, thus uncovering interesting applications of photonic devices in regenerative medicine.
Collapse
Affiliation(s)
- Frano Milos
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- RWTH
University Aachen, 52062 Aachen, Germany
| | - Gabriele Tullii
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| | - Federico Gobbo
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
- Physics
Department, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | - Francesco Lodola
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| | - Francesco Galeotti
- Istituto
di Scienze e Tecnologie Chimiche G. Natta (SCITEC), Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | - Chiara Verpelli
- Istituto
di Neuroscienze, Consiglio Nazionale delle
Ricerche, 20133 Milano, Italy
| | - Dirk Mayer
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Vanessa Maybeck
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- RWTH
University Aachen, 52062 Aachen, Germany
| | - Maria Rosa Antognazza
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| |
Collapse
|
9
|
Stupin DD, Kuzina EA, Abelit AA, Emelyanov AK, Nikolaev DM, Ryazantsev MN, Koniakhin SV, Dubina MV. Bioimpedance Spectroscopy: Basics and Applications. ACS Biomater Sci Eng 2021; 7:1962-1986. [PMID: 33749256 DOI: 10.1021/acsbiomaterials.0c01570] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this review, we aim to introduce the reader to the technique of electrical impedance spectroscopy (EIS) with a focus on its biological, biomaterials, and medical applications. We explain the theoretical and experimental aspects of the EIS with the details essential for biological studies, i.e., interaction of metal electrodes with biological matter and liquids, strategies of measurement rate increasing, noise reduction in bio-EIS experiments, etc. We also give various examples of successful bio-EIS practical implementations in science and technology, from whole-body health monitoring and sensors for vision prosthetic care to single living cell examination platforms, virus disease research, biomolecules detection, and implementation of novel biomaterials. The present review can be used as a bio-EIS tutorial for students as well as a handbook for scientists and engineers because of the extensive references covering the contemporary research papers in the field.
Collapse
Affiliation(s)
- Daniil D Stupin
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Ekaterina A Kuzina
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Anna A Abelit
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
| | - Anton K Emelyanov
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Pavlov First Saint Petersburg State Medical University, L'va Tolstogo Street. 6-8, Saint Petersburg 197022, Russia
| | - Dmitrii M Nikolaev
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Mikhail N Ryazantsev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, Saint Petersburg 198504, Russia
| | - Sergei V Koniakhin
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, SIGMA Clermont, Clermont-Ferrand F-63000, France
| | - Michael V Dubina
- Institute of Highly Pure Biopreparation of the Federal Medical-Biological Agency, Pudozhskaya 7, St. Petersburg 197110, Russia
| |
Collapse
|
10
|
Durán S, Duch M, Gómez-Martínez R, Fernández-Regúlez M, Agusil JP, Reina M, Müller C, San Paulo Á, Esteve J, Castel S, Plaza JA. Internalization and Viability Studies of Suspended Nanowire Silicon Chips in HeLa Cells. NANOMATERIALS 2020; 10:nano10050893. [PMID: 32392901 PMCID: PMC7279308 DOI: 10.3390/nano10050893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/09/2023]
Abstract
Micrometer-sized silicon chips have been demonstrated to be cell-internalizable, offering the possibility of introducing in cells even smaller nanoelements for intracellular applications. On the other hand, silicon nanowires on extracellular devices have been widely studied as biosensors or drug delivery systems. Here, we propose the integration of silicon nanowires on cell-internalizable chips in order to combine the functional features of both approaches for advanced intracellular applications. As an initial fundamental study, the cellular uptake in HeLa cells of silicon 3 µm × 3 µm nanowire-based chips with two different morphologies was investigated, and the results were compared with those of non-nanostructured silicon chips. Chip internalization without affecting cell viability was achieved in all cases; however, important cell behavior differences were observed. In particular, the first stage of cell internalization was favored by silicon nanowire interfaces with respect to bulk silicon. In addition, chips were found inside membrane vesicles, and some nanowires seemed to penetrate the cytosol, which opens the door to the development of silicon nanowire chips as future intracellular sensors and drug delivery systems.
Collapse
Affiliation(s)
- Sara Durán
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Cerdanyola, 08193 Barcelona, Spain; (S.D.); (M.D.); (R.G.-M.); (M.F.-R.); (J.P.A.); (J.E.)
| | - Marta Duch
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Cerdanyola, 08193 Barcelona, Spain; (S.D.); (M.D.); (R.G.-M.); (M.F.-R.); (J.P.A.); (J.E.)
| | - Rodrigo Gómez-Martínez
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Cerdanyola, 08193 Barcelona, Spain; (S.D.); (M.D.); (R.G.-M.); (M.F.-R.); (J.P.A.); (J.E.)
| | - Marta Fernández-Regúlez
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Cerdanyola, 08193 Barcelona, Spain; (S.D.); (M.D.); (R.G.-M.); (M.F.-R.); (J.P.A.); (J.E.)
| | - Juan Pablo Agusil
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Cerdanyola, 08193 Barcelona, Spain; (S.D.); (M.D.); (R.G.-M.); (M.F.-R.); (J.P.A.); (J.E.)
| | - Manuel Reina
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biología, Universitat de Barcelona, 08028 Barcelona, Spain; (M.R.); (C.M.); (S.C.)
| | - Claudia Müller
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biología, Universitat de Barcelona, 08028 Barcelona, Spain; (M.R.); (C.M.); (S.C.)
| | - Álvaro San Paulo
- Instituto de Microelectrónica de Madrid, IMM-CNM (CSIC), Isaac Newton 8, Tres Cantos, 28760 Madrid, Spain;
| | - Jaume Esteve
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Cerdanyola, 08193 Barcelona, Spain; (S.D.); (M.D.); (R.G.-M.); (M.F.-R.); (J.P.A.); (J.E.)
| | - Susana Castel
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biología, Universitat de Barcelona, 08028 Barcelona, Spain; (M.R.); (C.M.); (S.C.)
| | - José A. Plaza
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Cerdanyola, 08193 Barcelona, Spain; (S.D.); (M.D.); (R.G.-M.); (M.F.-R.); (J.P.A.); (J.E.)
- Correspondence: ; Tel.: +34-935-94-77-00
| |
Collapse
|
11
|
Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903862. [PMID: 31944430 PMCID: PMC7610849 DOI: 10.1002/adma.201903862] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Indexed: 04/14/2023]
Abstract
Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.
Collapse
Affiliation(s)
- Stuart G. Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Hyejeong Seong
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Julia E. Sero
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
12
|
Hansel CS, Holme MN, Gopal S, Stevens MM. Advances in high-resolution microscopy for the study of intracellular interactions with biomaterials. Biomaterials 2020; 226:119406. [DOI: 10.1016/j.biomaterials.2019.119406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
|
13
|
Li X, Matino L, Zhang W, Klausen L, McGuire AF, Lubrano C, Zhao W, Santoro F, Cui B. A nanostructure platform for live-cell manipulation of membrane curvature. Nat Protoc 2019; 14:1772-1802. [PMID: 31101905 PMCID: PMC6716504 DOI: 10.1038/s41596-019-0161-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/05/2019] [Indexed: 11/09/2022]
Abstract
Membrane curvatures are involved in essential cellular processes, such as endocytosis and exocytosis, in which they are believed to act as microdomains for protein interactions and intracellular signaling. These membrane curvatures appear and disappear dynamically, and their locations are difficult or impossible to predict. In addition, the size of these curvatures is usually below the diffraction limit of visible light, making it impossible to resolve their values using live-cell imaging. Therefore, precise manipulation of membrane curvature is important to understanding how membrane curvature is involved in intracellular processes. Recent studies show that membrane curvatures can be induced by surface topography when cells are in direct contact with engineered substrates. Here, we present detailed procedures for using nanoscale structures to manipulate membrane curvatures and probe curvature-induced phenomena in live cells. We first describe detailed procedures for the design of nanoscale structures and their fabrication using electron-beam (E-beam) lithography. The fabrication process takes 2 d, but the resultant chips can be cleaned and reused repeatedly over the course of 2 years. Then we describe how to use these nanostructures to manipulate local membrane curvatures and probe intracellular protein responses, discussing surface coating, cell plating, and fluorescence imaging in detail. Finally, we describe a procedure to characterize the nanostructure-cell membrane interface using focused ion beam and scanning electron microscopy (FIB-SEM). Nanotopography-based methods can induce stable membrane curvatures with well-defined curvature values and locations in live cells, which enables the generation of a library of curvatures for probing curvature-related intracellular processes.
Collapse
Affiliation(s)
- Xiao Li
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Laura Matino
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
- Department of Chemical Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Wei Zhang
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Lasse Klausen
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | - Claudia Lubrano
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy.
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Staufer O, Weber S, Bengtson CP, Bading H, Rustom A, Spatz JP. Adhesion Stabilized en Masse Intracellular Electrical Recordings from Multicellular Assemblies. NANO LETTERS 2019; 19:3244-3255. [PMID: 30950627 PMCID: PMC6727598 DOI: 10.1021/acs.nanolett.9b00784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Indexed: 05/02/2023]
Abstract
Coordinated collective electrochemical signals in multicellular assemblies, such as ion fluxes, membrane potentials, electrical gradients, and steady electric fields, play an important role in cell and tissue spatial organization during many physiological processes like wound healing, inflammatory responses, and hormone release. This mass of electric actions cumulates in an en masse activity within cell collectives which cannot be deduced from considerations at the individual cell level. However, continuously sampling en masse collective electrochemical actions of the global electrochemical activity of large-scale electrically coupled cellular assemblies with intracellular resolution over long time periods has been impeded by a lack of appropriate recording techniques. Here we present a bioelectrical interface consisting of low impedance vertical gold nanoelectrode interfaces able to penetrate the cellular membrane in the course of cellular adhesion, thereby allowing en masse recordings of intracellular electrochemical potentials that transverse electrically coupled NRK fibroblast, C2C12 myotube assemblies, and SH-SY5Y neuronal networks of more than 200,000 cells. We found that the intracellular electrical access of the nanoelectrodes correlates with substrate adhesion dynamics and that penetration, stabilization, and sealing of the electrode-cell interface involves recruitment of surrounding focal adhesion complexes and the anchoring of actin bundles, which form a caulking at the electrode base. Intracellular recordings were stable for several days, and monitoring of both basal activity as well as pharmacologically altered electric signals with high signal-to-noise ratios and excellent electrode coupling was performed.
Collapse
Affiliation(s)
- Oskar Staufer
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Sebastian Weber
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - C. Peter Bengtson
- Department
of Neurobiology, Interdisciplinary Center
for Neurosciences, Im
Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department
of Neurobiology, Interdisciplinary Center
for Neurosciences, Im
Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Amin Rustom
- Department
of Neurobiology, Interdisciplinary Center
for Neurosciences, Im
Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Joachim P. Spatz
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Kim H, Jang H, Kim B, Kim MK, Wie DS, Lee HS, Kim DR, Lee CH. Flexible elastomer patch with vertical silicon nanoneedles for intracellular and intratissue nanoinjection of biomolecules. SCIENCE ADVANCES 2018; 4:eaau6972. [PMID: 30430139 PMCID: PMC6226283 DOI: 10.1126/sciadv.aau6972] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/05/2018] [Indexed: 05/14/2023]
Abstract
Vertically ordered arrays of silicon nanoneedles (Si NNs), due to their nanoscale dimension and low cytotoxicity, could enable minimally invasive nanoinjection of biomolecules into living biological systems such as cells and tissues. Although production of these Si NNs on a bulk Si wafer has been achieved through standard nanofabrication technology, there exists a large mismatch at the interface between the rigid, flat, and opaque Si wafer and soft, curvilinear, and optically transparent biological systems. Here, we report a unique methodology that is capable of constructing vertically ordered Si NNs on a thin layer of elastomer patch to flexibly and transparently interface with biological systems. The resulting outcome provides important capabilities to form a mechanically elastic interface between Si NNs and biological systems, and simultaneously enables direct imaging of their real-time interactions under the transparent condition. We demonstrate its utility in intracellular, intradermal, and intramuscular nanoinjection of biomolecules into various kinds of biological cells and tissues at their length scales.
Collapse
Affiliation(s)
- Hyungjun Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hanmin Jang
- School of Mechanical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Bongjoong Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Min Ku Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Dae Seung Wie
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Heung Soo Lee
- School of Mechanical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, South Korea
- Corresponding author. (D.R.K.); (C.H.L.)
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Corresponding author. (D.R.K.); (C.H.L.)
| |
Collapse
|
16
|
McGuire AF, Santoro F, Cui B. Interfacing Cells with Vertical Nanoscale Devices: Applications and Characterization. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:101-126. [PMID: 29570360 PMCID: PMC6530470 DOI: 10.1146/annurev-anchem-061417-125705] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Measurements of the intracellular state of mammalian cells often require probes or molecules to breach the tightly regulated cell membrane. Mammalian cells have been shown to grow well on vertical nanoscale structures in vitro, going out of their way to reach and tightly wrap the structures. A great deal of research has taken advantage of this interaction to bring probes close to the interface or deliver molecules with increased efficiency or ease. In turn, techniques have been developed to characterize this interface. Here, we endeavor to survey this research with an emphasis on the interface as driven by cellular mechanisms.
Collapse
Affiliation(s)
- Allister F McGuire
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| | - Francesca Santoro
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125 Naples, Italy;
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
17
|
Lou HY, Zhao W, Zeng Y, Cui B. The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling. Acc Chem Res 2018; 51:1046-1053. [PMID: 29648779 DOI: 10.1021/acs.accounts.7b00594] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past decade, there has been growing interest in developing biosensors and devices with nanoscale and vertical topography. Vertical nanostructures induce spontaneous cell engulfment, which enhances the cell-probe coupling efficiency and the sensitivity of biosensors. Although local membranes in contact with the nanostructures are found to be fully fluidic for lipid and membrane protein diffusions, cells appear to actively sense and respond to the surface topography presented by vertical nanostructures. For future development of biodevices, it is important to understand how cells interact with these nanostructures and how their presence modulates cellular function and activities. How cells recognize nanoscale surface topography has been an area of active research for two decades before the recent biosensor works. Extensive studies show that surface topographies in the range of tens to hundreds of nanometers can significantly affect cell functions, behaviors, and ultimately the cell fate. For example, titanium implants having rough surfaces are better for osteoblast attachment and host-implant integration than those with smooth surfaces. At the cellular level, nanoscale surface topography has been shown by a large number of studies to modulate cell attachment, activity, and differentiation. However, a mechanistic understanding of how cells interact and respond to nanoscale topographic features is still lacking. In this Account, we focus on some recent studies that support a new mechanism that local membrane curvature induced by nanoscale topography directly acts as a biochemical signal to induce intracellular signaling, which we refer to as the curvature hypothesis. The curvature hypothesis proposes that some intracellular proteins can recognize membrane curvatures of a certain range at the cell-to-material interface. These proteins then recruit and activate downstream components to modulate cell signaling and behavior. We discuss current technologies allowing the visualization of membrane deformation at the cell membrane-to-substrate interface with nanometer precision and demonstrate that vertical nanostructures induce local curvatures on the plasma membrane. These local curvatures enhance the process of clathrin-mediated endocytosis and affect actin dynamics. We also present evidence that vertical nanostructures can induce significant deformation of the nuclear membrane, which can affect chromatin distribution and gene expression. Finally, we provide a brief perspective on the curvature hypothesis and the challenges and opportunities for the design of nanotopography for manipulating cell behavior.
Collapse
Affiliation(s)
- Hsin-Ya Lou
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Yongpeng Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
18
|
VAN Donselaar EG, Dorresteijn B, Popov-Čeleketić D, VAN DE Wetering WJ, Verrips TC, Boekhout T, Schneijdenberg CTWM, Xenaki AT, VAN DER Krift TP, Müller WH. Extremely thin layer plastification for focused-ion beam scanning electron microscopy: an improved method to study cell surfaces and organelles of cultured cells. J Microsc 2018; 270:359-373. [PMID: 29574724 DOI: 10.1111/jmi.12694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 02/01/2023]
Abstract
Since the recent boost in the usage of electron microscopy in life-science research, there is a great need for new methods. Recently minimal resin embedding methods have been successfully introduced in the sample preparation for focused-ion beam scanning electron microscopy (FIB-SEM). In these methods several possibilities are given to remove as much resin as possible from the surface of cultured cells or multicellular organisms. Here we introduce an alternative way in the minimal resin embedding method to remove excess of resin from two widely different cell types by the use of Mascotte filter paper. Our goal in correlative light and electron microscopic studies of immunogold-labelled breast cancer SKBR3 cells was to visualise gold-labelled HER2 plasma membrane proteins as well as the intracellular structures of flat and round cells. We found a significant difference (p < 0.001) in the number of gold particles of selected cells per 0.6 μm2 cell surface: on average a flat cell contained 2.46 ± 1.98 gold particles, and a round cell 5.66 ± 2.92 gold particles. Moreover, there was a clear difference in the subcellular organisation of these two cells. The round SKBR3 cell contained many organelles, such as mitochondria, Golgi and endoplasmic reticulum, when compared with flat SKBR3 cells. Our next goal was to visualise crosswall associated organelles, septal pore caps, of Rhizoctonia solani fungal cells by the combined use of a heavy metal staining and our extremely thin layer plastification (ETLP) method. At low magnifications this resulted into easily finding septa which appeared as bright crosswalls in the back-scattered electron mode in the scanning electron microscope. Then, a septum was selected for FIB-SEM. Cross-sectioned views clearly revealed the perforate septal pore cap of R. solani next to other structures, such as mitochondria, endoplasmic reticulum, lipid bodies, dolipore septum, and the pore channel. As the ETLP method was applied on two widely different cell types, the use of the ETLP method will be beneficial to correlative studies of other cell model systems and multicellular organisms.
Collapse
Affiliation(s)
- E G VAN Donselaar
- Department of Cell Biology, University Medical Center Utrecht (UMCU), Utrecht, the Netherlands
| | - B Dorresteijn
- Science Faculty, Biology Department, Utrecht University, Utrecht, the Netherlands
| | - D Popov-Čeleketić
- Science Faculty, Biology Department, Utrecht University, Utrecht, the Netherlands.,Visuals Consulting, Utrecht, the Netherlands
| | - W J VAN DE Wetering
- Science Faculty, Biology Department, Utrecht University, Utrecht, the Netherlands.,QVQ, Utrecht, the Netherlands
| | | | - T Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht Science Park, Utrecht, the Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | | | - A T Xenaki
- Science Faculty, Biology Department, Utrecht University, Utrecht, the Netherlands
| | - T P VAN DER Krift
- Science Faculty, Chemistry Department, Utrecht University, Utrecht, the Netherlands
| | - W H Müller
- Science Faculty, Chemistry Department, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
19
|
Cheng A, Chen H, Schwartz Z, Boyan BD. Imaging analysis of the interface between osteoblasts and microrough surfaces of laser-sintered titanium alloy constructs. J Microsc 2017; 270:41-52. [PMID: 28960365 DOI: 10.1111/jmi.12648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/07/2017] [Accepted: 09/07/2017] [Indexed: 11/30/2022]
Abstract
Previous work using focused ion beam (FIB) analysis of osteoblasts on smooth and microrough Ti surfaces showed that the average cell aspect ratio and distance from the surface are greater on the rough surface. In order to better interrogate the relationship between individual cells and their substrate using multiple imaging modalities, we developed a method that tracks the same cell across confocal laser scanning microscopy (CLSM) to correlate surface microroughness with cell morphology and cytoskeleton; scanning electron microscopy (SEM) to provide higher resolution for observation of nanoroughness as well as chemical mapping via energy dispersive X-ray spectroscopy; and transmission electron microscopy (TEM) for high-resolution imaging. FIB was used to prepare thin sections of the cell-material interface for TEM, or for three-dimensional electron tomography. Cells were cultured on laser-sintered Ti-6Al-4V substrates with polished or etched surfaces. Direct cell to surface attachments were observed across surfaces, though bridging across macroscale surface features occurred on rough substrates. Our results show that surface roughness, cell cytoskeleton and gross morphology can be correlated with the cell-material cross-sectional interface at the single cell level across multiple high-resolution imaging modalities. This work provides a platform method for further investigating mechanisms of the cell-material interface.
Collapse
Affiliation(s)
- A Cheng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, U.S.A.,Department of Biomedical Engineering, Peking University, Beijing, China
| | - H Chen
- Department of Biomedical Engineering, Peking University, Beijing, China
| | - Z Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, U.S.A.,Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, U.S.A
| | - B D Boyan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, U.S.A.,Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, U.S.A
| |
Collapse
|
20
|
Santoro F, Zhao W, Joubert LM, Duan L, Schnitker J, van de Burgt Y, Lou HY, Liu B, Salleo A, Cui L, Cui Y, Cui B. Revealing the Cell-Material Interface with Nanometer Resolution by Focused Ion Beam/Scanning Electron Microscopy. ACS NANO 2017; 11:8320-8328. [PMID: 28682058 PMCID: PMC5806611 DOI: 10.1021/acsnano.7b03494] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The interface between cells and nonbiological surfaces regulates cell attachment, chronic tissue responses, and ultimately the success of medical implants or biosensors. Clinical and laboratory studies show that topological features of the surface profoundly influence cellular responses; for example, titanium surfaces with nano- and microtopographical structures enhance osteoblast attachment and host-implant integration as compared to a smooth surface. To understand how cells and tissues respond to different topographical features, it is of critical importance to directly visualize the cell-material interface at the relevant nanometer length scale. Here, we present a method for in situ examination of the cell-to-material interface at any desired location, based on focused ion beam milling and scanning electron microscopy imaging to resolve the cell membrane-to-material interface with 10 nm resolution. By examining how cell membranes interact with topographical features such as nanoscale protrusions or invaginations, we discovered that the cell membrane readily deforms inward and wraps around protruding structures, but hardly deforms outward to contour invaginating structures. This asymmetric membrane response (inward vs outward deformation) causes the cleft width between the cell membrane and the nanostructure surface to vary by more than an order of magnitude. Our results suggest that surface topology is a crucial consideration for the development of medical implants or biosensors whose performances are strongly influenced by the cell-to-material interface. We anticipate that the method can be used to explore the direct interaction of cells/tissue with medical devices such as metal implants in the future.
Collapse
Affiliation(s)
- Francesca Santoro
- Department of Chemistry, Stanford University, Stanford, CA94305, USA
- Correspondence to: ,
| | - Wenting Zhao
- Department of Chemistry, Stanford University, Stanford, CA94305, USA
- Department of Material Science and Engineering, Stanford University, Stanford, CA94305, USA
| | | | - Liting Duan
- Department of Chemistry, Stanford University, Stanford, CA94305, USA
| | - Jan Schnitker
- Institute of Bioelectronics ICS/PGI-8, Forschungszentrum Juelich, Juelich, 52428, Germany
| | - Yoeri van de Burgt
- Department of Material Science and Engineering, Stanford University, Stanford, CA94305, USA
| | - Hsin-Ya Lou
- Department of Chemistry, Stanford University, Stanford, CA94305, USA
| | - Bofei Liu
- Department of Material Science and Engineering, Stanford University, Stanford, CA94305, USA
| | - Alberto Salleo
- Department of Material Science and Engineering, Stanford University, Stanford, CA94305, USA
| | - Lifeng Cui
- Department of Material Science and Engineering, Dongguan University of Technology, Guangdong 523808, China
| | - Yi Cui
- Department of Material Science and Engineering, Stanford University, Stanford, CA94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator, Menlo Park, CA94025, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA94305, USA
- Correspondence to: ,
| |
Collapse
|
21
|
Zimmerman JF, Parameswaran R, Murray G, Wang Y, Burke M, Tian B. Cellular uptake and dynamics of unlabeled freestanding silicon nanowires. SCIENCE ADVANCES 2016; 2:e1601039. [PMID: 28028534 PMCID: PMC5161427 DOI: 10.1126/sciadv.1601039] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/08/2016] [Indexed: 05/12/2023]
Abstract
The ability to seamlessly merge electronic devices with biological systems at the cellular length scale is an exciting prospect for exploring new fundamental cell biology and in designing next-generation therapeutic devices. Semiconductor nanowires are well suited for achieving this goal because of their intrinsic size and wide range of possible configurations. However, current studies have focused primarily on delivering substrate-bound nanowire devices through mechanical abrasion or electroporation, with these bulkier substrates negating many of the inherent benefits of using nanoscale materials. To improve on this, an important next step is learning how to distribute these devices in a drug-like fashion, where cells can naturally uptake and incorporate these electronic components, allowing for truly noninvasive device integration. We show that silicon nanowires (SiNWs) can potentially be used as such a system, demonstrating that label-free SiNWs can be internalized in multiple cell lines (96% uptake rate), undergoing an active "burst-like" transport process. Our results show that, rather than through exogenous manipulation, SiNWs are internalized primarily through an endogenous phagocytosis pathway, allowing cellular integration of these materials. To study this behavior, we have developed a robust set of methodologies for quantitatively examining high-aspect ratio nanowire-cell interactions in a time-dependent manner on both single-cell and ensemble levels. This approach represents one of the first dynamic studies of semiconductor nanowire internalization and offers valuable insight into designing devices for biomolecule delivery, intracellular sensing, and photoresponsive therapies.
Collapse
Affiliation(s)
- John F. Zimmerman
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Ramya Parameswaran
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Graeme Murray
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Yucai Wang
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Michael Burke
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
- Corresponding author.
| |
Collapse
|
22
|
Harding FJ, Surdo S, Delalat B, Cozzi C, Elnathan R, Gronthos S, Voelcker NH, Barillaro G. Ordered Silicon Pillar Arrays Prepared by Electrochemical Micromachining: Substrates for High-Efficiency Cell Transfection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29197-29202. [PMID: 27744675 DOI: 10.1021/acsami.6b07850] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ordered arrays of silicon nano- to microscale pillars are used to enable biomolecular trafficking into primary human cells, consistently demonstrating high transfection efficiency can be achieved with broader and taller pillars than reported to date. Cell morphology on the pillar arrays is often strikingly elongated. Investigation of the cellular interaction with the pillar reveals that cells are suspended on pillar tips and do not interact with the substrate between the pillars. Although cells remain suspended on pillar tips, acute local deformation of the cell membrane was noted, allowing pillar tips to penetrate the cell interior, while retaining cell viability.
Collapse
Affiliation(s)
- Frances J Harding
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, Mawson Lakes, University of South Australia , Adelaid, South Australia 5095, Australia
| | - Salvatore Surdo
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa , via G. Caruso 16, 56122 Pisa, Italy
| | - Bahman Delalat
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, Mawson Lakes, University of South Australia , Adelaid, South Australia 5095, Australia
| | - Chiara Cozzi
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa , via G. Caruso 16, 56122 Pisa, Italy
| | - Roey Elnathan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, Mawson Lakes, University of South Australia , Adelaid, South Australia 5095, Australia
| | - Stan Gronthos
- South Australian Health and Medical Research Institute , Adelaide 5005, South Australia, Australia
- Mesenchymal Stem Cell Group Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide , Adelaide, South Australia, Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, Mawson Lakes, University of South Australia , Adelaid, South Australia 5095, Australia
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa , via G. Caruso 16, 56122 Pisa, Italy
| |
Collapse
|
23
|
Bradley RS, Robinson IK, Yusuf M. 3D X-Ray Nanotomography of Cells Grown on Electrospun Scaffolds. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/09/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Robert S. Bradley
- Henry Moseley X-ray Imaging Facility; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Ian K. Robinson
- London Centre for Nanotechnology; University College London; Gower Street London WC1E 6BT UK
- Rutherford Appleton Laboratory; Didcot OX11 0FA UK
| | - Mohammed Yusuf
- London Centre for Nanotechnology; University College London; Gower Street London WC1E 6BT UK
- Rutherford Appleton Laboratory; Didcot OX11 0FA UK
| |
Collapse
|
24
|
Belu A, Schnitker J, Bertazzo S, Neumann E, Mayer D, Offenhäusser A, Santoro F. Ultra-thin resin embedding method for scanning electron microscopy of individual cells on high and low aspect ratio 3D nanostructures. J Microsc 2016; 263:78-86. [PMID: 26820619 DOI: 10.1111/jmi.12378] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 12/09/2015] [Indexed: 01/18/2023]
Abstract
The preparation of biological cells for either scanning or transmission electron microscopy requires a complex process of fixation, dehydration and drying. Critical point drying is commonly used for samples investigated with a scanning electron beam, whereas resin-infiltration is typically used for transmission electron microscopy. Critical point drying may cause cracks at the cellular surface and a sponge-like morphology of nondistinguishable intracellular compartments. Resin-infiltrated biological samples result in a solid block of resin, which can be further processed by mechanical sectioning, however that does not allow a top view examination of small cell-cell and cell-surface contacts. Here, we propose a method for removing resin excess on biological samples before effective polymerization. In this way the cells result to be embedded in an ultra-thin layer of epoxy resin. This novel method highlights in contrast to standard methods the imaging of individual cells not only on nanostructured planar surfaces but also on topologically challenging substrates with high aspect ratio three-dimensional features by scanning electron microscopy.
Collapse
Affiliation(s)
- A Belu
- Institute of Complex Systems and Peter Grünberg Institute (ICS-8/PGI-8) - Bioelectronics, Forschungszentrum Jülich GmbH, Jülich, and JARA-Fundamentals of Future Information Technology, Germany
| | - J Schnitker
- Institute of Complex Systems and Peter Grünberg Institute (ICS-8/PGI-8) - Bioelectronics, Forschungszentrum Jülich GmbH, Jülich, and JARA-Fundamentals of Future Information Technology, Germany
| | - S Bertazzo
- Department of Medical Physics & Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, U.K
| | - E Neumann
- Institute of Complex Systems and Peter Grünberg Institute (ICS-8/PGI-8) - Bioelectronics, Forschungszentrum Jülich GmbH, Jülich, and JARA-Fundamentals of Future Information Technology, Germany
| | - D Mayer
- Institute of Complex Systems and Peter Grünberg Institute (ICS-8/PGI-8) - Bioelectronics, Forschungszentrum Jülich GmbH, Jülich, and JARA-Fundamentals of Future Information Technology, Germany
| | - A Offenhäusser
- Institute of Complex Systems and Peter Grünberg Institute (ICS-8/PGI-8) - Bioelectronics, Forschungszentrum Jülich GmbH, Jülich, and JARA-Fundamentals of Future Information Technology, Germany
| | - F Santoro
- Institute of Complex Systems and Peter Grünberg Institute (ICS-8/PGI-8) - Bioelectronics, Forschungszentrum Jülich GmbH, Jülich, and JARA-Fundamentals of Future Information Technology, Germany
| |
Collapse
|
25
|
Cryo-planing of frozen-hydrated samples using cryo triple ion gun milling (CryoTIGM™). J Struct Biol 2015; 192:569-579. [PMID: 26549007 DOI: 10.1016/j.jsb.2015.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 11/23/2022]
Abstract
Cryo-SEM is a high throughput technique for imaging biological ultrastructure in its most pristine state, i.e. without chemical fixation, embedding, or drying. Freeze fracture is routinely used to prepare internal surfaces for cryo-SEM imaging. However, the propagation of the fracture plane is highly dependent on sample properties, and the resulting surface frequently shows substantial topography, which can complicate image analysis and interpretation. We have developed a broad ion beam milling technique, called cryogenic triple ion gun milling (CryoTIGM™ ['krī-ə-,tīm]), for cryo-planing frozen-hydrated biological specimens. Comparing sample preparation by CryoTIGM™ and freeze fracture in three model systems, Baker's yeast, mouse liver tissue, and whole sea urchin embryos, we find that CryoTIGM™ yields very large (∼700,000 μm(2)) and smooth sections that present ultrastructural details at similar or better quality than freeze-fractured samples. A particular strength of CryoTIGM™ is the ability to section samples with hard-soft contrast such as brittle calcite (CaCO3) spicules in the sea urchin embryo.
Collapse
|
26
|
Zimmerman JF, Murray GF, Wang Y, Jumper JM, Austin JR, Tian B. Free-Standing Kinked Silicon Nanowires for Probing Inter- and Intracellular Force Dynamics. NANO LETTERS 2015; 15:5492-8. [PMID: 26192816 DOI: 10.1021/acs.nanolett.5b01963] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Silicon nanowires (SiNWs) have emerged as a new class of materials with important applications in biology and medicine with current efforts having focused primarily on using substrate bound SiNW devices. However, developing devices capable of free-standing inter- and intracellular operation is an important next step in designing new synthetic cellular materials and tools for biophysical characterization. To demonstrate this, here we show that label free SiNWs can be internalized in multiple cell lines, forming robust cytoskeletal interfaces, and when kinked can serve as free-standing inter- and intracellular force probes capable of continuous extended (>1 h) force monitoring. Our results show that intercellular interactions exhibit ratcheting like behavior with force peaks of ∼69.6 pN/SiNW, while intracellular force peaks of ∼116.9 pN/SiNW were recorded during smooth muscle contraction. To accomplish this, we have introduced a simple single-capture dark-field/phase contrast optical imaging modality, scatter enhanced phase contrast (SEPC), which enables the simultaneous visualization of both cellular components and inorganic nanostructures. This approach demonstrates that rationally designed devices capable of substrate-independent operation are achievable, providing a simple and scalable method for continuous inter- and intracellular force dynamics studies.
Collapse
Affiliation(s)
- John F Zimmerman
- †Department of Chemistry, ‡The Institute for Biophysical Dynamics, and §The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Graeme F Murray
- †Department of Chemistry, ‡The Institute for Biophysical Dynamics, and §The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Yucai Wang
- †Department of Chemistry, ‡The Institute for Biophysical Dynamics, and §The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - John M Jumper
- †Department of Chemistry, ‡The Institute for Biophysical Dynamics, and §The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Jotham R Austin
- †Department of Chemistry, ‡The Institute for Biophysical Dynamics, and §The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Bozhi Tian
- †Department of Chemistry, ‡The Institute for Biophysical Dynamics, and §The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
27
|
Prinz CN. Interactions between semiconductor nanowires and living cells. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:233103. [PMID: 26010455 DOI: 10.1088/0953-8984/27/23/233103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Semiconductor nanowires are increasingly used for biological applications and their small dimensions make them a promising tool for sensing and manipulating cells with minimal perturbation. In order to interface cells with nanowires in a controlled fashion, it is essential to understand the interactions between nanowires and living cells. The present paper reviews current progress in the understanding of these interactions, with knowledge gathered from studies where living cells were interfaced with vertical nanowire arrays. The effect of nanowires on cells is reported in terms of viability, cell-nanowire interface morphology, cell behavior, changes in gene expression as well as cellular stress markers. Unexplored issues and unanswered questions are discussed.
Collapse
Affiliation(s)
- Christelle N Prinz
- Division of Solid State Physics, Nanometer Structure Consortium, Neuronano Research Center, Lund University, Box 118, 22 100 Lund, Sweden
| |
Collapse
|
28
|
Chiappini C, Martinez JO, De Rosa E, Almeida CS, Tasciotti E, Stevens MM. Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: exploring the biointerface. ACS NANO 2015; 9:5500-5509. [PMID: 25858596 PMCID: PMC4733661 DOI: 10.1021/acsnano.5b01490] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Nanoneedles display potential in mediating the delivery of drugs and biologicals, as well as intracellular sensing and single-cell stimulation, through direct access to the cell cytoplasm. Nanoneedles enable cytosolic delivery, negotiating the cell membrane and the endolysosomal system, thus overcoming these major obstacles to the efficacy of nanotherapeutics. The low toxicity and minimal invasiveness of nanoneedles have a potential for the sustained nonimmunogenic delivery of payloads in vivo, provided that the development of biocompatible nanoneedles with a simple deployment strategy is achieved. Here we present a mesoporous silicon nanoneedle array that achieves a tight interface with the cell, rapidly negotiating local biological barriers to grant temporary access to the cytosol with minimal impact on cell viability. The tightness of this interfacing enables both delivery of cell-impermeant quantum dots in vivo and live intracellular sensing of pH. Dissecting the biointerface over time elucidated the dynamics of cell association and nanoneedle biodegradation, showing rapid interfacing leading to cytosolic payload delivery within less than 30 minutes in vitro. The rapid and simple application of nanoneedles in vivo to the surface of tissues with different architectures invariably resulted in the localized delivery of quantum dots to the superficial cells and their prolonged retention. This investigation provides an understanding of the dynamics of nanoneedles' biointerface and delivery, outlining a strategy for highly local intracellular delivery of nanoparticles and cell-impermeant payloads within live tissues.
Collapse
Affiliation(s)
- Ciro Chiappini
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Jonathan O. Martinez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Enrica De Rosa
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Carina S. Almeida
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
29
|
Købler C, Poulsen SS, Saber AT, Jacobsen NR, Wallin H, Yauk CL, Halappanavar S, Vogel U, Qvortrup K, Mølhave K. Time-dependent subcellular distribution and effects of carbon nanotubes in lungs of mice. PLoS One 2015; 10:e0116481. [PMID: 25615613 PMCID: PMC4304811 DOI: 10.1371/journal.pone.0116481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/08/2014] [Indexed: 12/28/2022] Open
Abstract
Background and Methods Pulmonary deposited carbon nanotubes (CNTs) are cleared very slowly from the lung, but there is limited information on how CNTs interact with the lung tissue over time. To address this, three different multiwalled CNTs were intratracheally instilled into female C57BL/6 mice: one short (850 nm) and tangled, and two longer (4 μm and 5.7 μm) and thicker. We assessed the cellular interaction with these CNTs using transmission electron microscopy (TEM) 1, 3 and 28 days after instillation. Results TEM analysis revealed that the three CNTs followed the same overall progression pattern over time. Initially, CNTs were taken up either by a diffusion mechanism or via endocytosis. Then CNTs were agglomerated in vesicles in macrophages. Lastly, at 28 days post-exposure, evidence suggesting CNT escape from vesicle enclosures were found. The longer and thicker CNTs more often perturbed and escaped vesicular enclosures in macrophages compared to the smaller CNTs. Bronchoalveolar lavage (BAL) showed that the CNT exposure induced both an eosinophil influx and also eosinophilic crystalline pneumonia. Conclusion Two very different types of multiwalled CNTs had very similar pattern of cellular interactions in lung tissue, with the longer and thicker CNTs resulting in more severe effects in terms of eosinophil influx and incidence of eosinophilic crystalline pneumonia (ECP).
Collapse
Affiliation(s)
- Carsten Købler
- DTU Nanotech, Technical University of Denmark, Kgs. Lyngby, Denmark
- DTU CEN, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sarah S. Poulsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark
| | - Anne T. Saber
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | | | - Håkan Wallin
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Carole L. Yauk
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ontario, Canada
| | - Sabina Halappanavar
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ontario, Canada
| | - Ulla Vogel
- DTU Nanotech, Technical University of Denmark, Kgs. Lyngby, Denmark
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Klaus Qvortrup
- Department of Biomedical Sciences, CFIM, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Mølhave
- DTU Nanotech, Technical University of Denmark, Kgs. Lyngby, Denmark
- * E-mail:
| |
Collapse
|
30
|
Toma K, Kano H, Offenhäusser A. Label-free measurement of cell-electrode cleft gap distance with high spatial resolution surface plasmon microscopy. ACS NANO 2014; 8:12612-9. [PMID: 25423587 DOI: 10.1021/nn505521e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Understanding the interface between cells or tissues and artificial materials is of critical importance for a broad range of areas. For example, in neurotechnology, the interfaces between neurons and external devices create a link between technical and the nervous systems by stimulating or recording from neural tissue. Here, a more effective interface is required to enhance the electrical characteristics of neuronal recordings and stimulations. Up to now, the lack of a systematic characterization of cell-electrode interaction turns out to be the major bottleneck. In this work, we employed a recently developed surface plasmon microscope (SPM) to monitor in real-time the cell-metal interface and to measure in situ the gap distance of the cleft with the spatial resolution reaching to the optical diffraction limit. The SPM allowed determination of the distance of human embryonic kidney 293 cells cultured on gold surfaces coated with various peptides or proteins without any labeling. This method can dramatically simplify the interaction investigation at metal-living cell interface and should be incorporated into systematic characterization methods.
Collapse
Affiliation(s)
- Koji Toma
- Institute of Bioelectronics (ICS-8/PGI-8), Forschungszentrum Jülich GmbH , 52425 Jülich, Germany
| | | | | |
Collapse
|
31
|
Bonde S, Buch-Månson N, Rostgaard KR, Andersen TK, Berthing T, Martinez KL. Exploring arrays of vertical one-dimensional nanostructures for cellular investigations. NANOTECHNOLOGY 2014; 25:362001. [PMID: 25130133 DOI: 10.1088/0957-4484/25/36/362001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The endeavor of exploiting arrays of vertical one-dimensional (1D) nanostructures (NSs) for cellular applications has recently been experiencing a pronounced surge of activity. The interest is rooted in the intrinsic properties of high-aspect-ratio NSs. With a height comparable to a mammalian cell, and a diameter 100-1000 times smaller, NSs should intuitively reach far into a cell and, due to their small diameter, do so without compromising cell health. Single NSs would thus be expedient for measuring and modifying cell response. Further organization of these structures into arrays can provide up-scaled and detailed spatiotemporal information on cell activity, an achievement that would entail a massive leap forward in disease understanding and drug discovery. Numerous proofs-of-principle published recently have expanded the large toolbox that is currently being established in this rapidly advancing field of research. Encouragingly, despite the diversity of NS platforms and experimental conditions used thus far, general trends and conclusions from combining cells with NSs are beginning to crystallize. This review covers the broad spectrum of NS materials and dimensions used; the observed cellular responses with specific focus on adhesion, morphology, viability, proliferation, and migration; compares the different approaches used in the field to provide NSs with the often crucial cytosolic access; covers the progress toward biological applications; and finally, envisions the future of this technology. By maintaining the impressive rate and quality of recent progress, it is conceivable that the use of vertical 1D NSs may soon be established as a superior choice over other current techniques, with all the further benefits that may entail.
Collapse
Affiliation(s)
- Sara Bonde
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry and Nano-science Center, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
32
|
Cacchioli A, Ravanetti F, Alinovi R, Pinelli S, Rossi F, Negri M, Bedogni E, Campanini M, Galetti M, Goldoni M, Lagonegro P, Alfieri R, Bigi F, Salviati G. Cytocompatibility and cellular internalization mechanisms of SiC/SiO2 nanowires. NANO LETTERS 2014; 14:4368-4375. [PMID: 25026180 DOI: 10.1021/nl501255m] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
First evidence of in vitro cytocompatibility of SiC/SiO2 core-shell nanowires is reported. Different internalization mechanisms by adenocarcinomic alveolar basal epithelial cells, monocytic cell line derived from an acute monocytic leukemia, breast cancer cells, and normal human dermal fibroblasts are shown. The internalization occurs mainly for macropinocytosis and sporadically by direct penetration in all cell models considered, whereas it occurred for phagocytosis only in monocytic leukemia cells. The cytocompatibility of the nanowires is proved by the analysis of cell proliferation, cell cycle progression, and oxidative stress on the cells treated with NWs as compared to controls. Reactive oxygen species generation was detected as an early event that then quickly run out with a rapid decrease only in adenocarcinomic alveolar basal epithelial and human dermal fibroblasts cells. In all the cell lines, the intracellular presence of NWs induce the same molecular events but to a different extent: peroxidation of membrane lipids and oxidation of proteins. The NWs do not elicit either midterm (72 h) or long-term (10 days) cytotoxic activity leading to irreversible cellular damages or death. Our results are important in view of a possible use of SiC/SiO2 core-shell structures acting as biomolecule-delivery vectors or intracellular electrodes.
Collapse
Affiliation(s)
- A Cacchioli
- Department of Veterinary Science, Unit of Normal Veterinary Anatomy, University of Parma , Parma 43126, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jahed Z, Molladavoodi S, Seo BB, Gorbet M, Tsui TY, Mofrad MRK. Cell responses to metallic nanostructure arrays with complex geometries. Biomaterials 2014; 35:9363-71. [PMID: 25123921 DOI: 10.1016/j.biomaterials.2014.07.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/18/2014] [Indexed: 01/10/2023]
Abstract
Metallic nanopillar/nanowires are emerging as promising platforms for biological applications, as they allow for the direct characterization and regulation of cell function. Herein we study the response of cells to a versatile nanopillar platform. Nanopillar arrays of various shape, size, and spacing and different nanopillar-substrate interfacial strengths were fabricated and interfaced with fibroblasts and several unique cell-nanopillar interactions were observed using high resolution scanning electron microscopy. Nanopillar penetration, engulfment, tilting, lift off and membrane thinning, were observed by manipulating nanopillar material, size, shape and spacing. These unique cell responses to various nanostructures can be employed for a wide range of applications including the design of highly sensitive nano-electrodes for single-cell probing.
Collapse
Affiliation(s)
- Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, 208A Stanley Hall, Berkeley, CA 94720-1762, USA
| | - Sara Molladavoodi
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Brandon B Seo
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Maud Gorbet
- Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Ting Y Tsui
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, 208A Stanley Hall, Berkeley, CA 94720-1762, USA; Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA.
| |
Collapse
|
34
|
Santoro F, Dasgupta S, Schnitker J, Auth T, Neumann E, Panaitov G, Gompper G, Offenhäusser A. Interfacing electrogenic cells with 3D nanoelectrodes: position, shape, and size matter. ACS NANO 2014; 8:6713-23. [PMID: 24963873 DOI: 10.1021/nn500393p] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An in-depth understanding of the interface between cells and nanostructures is one of the key challenges for coupling electrically excitable cells and electronic devices. Recently, various 3D nanostructures have been introduced to stimulate and record electrical signals emanating from inside of the cell. Even though such approaches are highly sensitive and scalable, it remains an open question how cells couple to 3D structures, in particular how the engulfment-like processes of nanostructures work. Here, we present a profound study of the cell interface with two widely used nanostructure types, cylindrical pillars with and without a cap. While basic functionality was shown for these approaches before, a systematic investigation linking experimental data with membrane properties was not presented so far. The combination of electron microscopy investigations with a theoretical membrane deformation model allows us to predict the optimal shape and dimensions of 3D nanostructures for cell-chip coupling.
Collapse
Affiliation(s)
- Francesca Santoro
- Institute of Bioelectronics (ICS-8/PGI-8) and ‡Institute of Theoretical Soft Matter and Biophysics (ICS-2/IAS-2), Forschungszentrum Jülich , 52428 Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ha Q, Yang G, Ao Z, Han D, Niu F, Wang S. Rapid fibroblast activation in mammalian cells induced by silicon nanowire arrays. NANOSCALE 2014; 6:8318-8325. [PMID: 24932860 DOI: 10.1039/c4nr01415d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Activated tumor-associated fibroblasts (TAFs) with abundant fibroblast activation protein (FAP) expression attract tremendous attention in tumor progression studies. In this work, we report a rapid 24 h FAP activation method for fibroblasts using silicon nanowires (SiNWs) as culture substrates instead of growth factors or chemokines. In contrast with cells cultured on flat silicon which rarely express FAP, SiNW cultivated cells exhibit FAP levels similar to those found in cancerous tissue. We demonstrated that activated cells grown on SiNWs maintain their viability and proliferation in a time-dependent manner. Moreover, environmental scanning electron microscopy (ESEM) and focused ion beam and scanning electron microscopy (FIB-SEM) analysis clearly revealed that activated cells on SiNWs adapt to the structure of their substrates by filling inter-wire cavities via filopodia in contrast to cells cultured on flat silicon which spread freely. We further illustrated that the expression of FAP was rarely detected in activated cells after being re-cultured in Petri dishes, suggesting that the unique structure of SiNWs may have a certain influence on FAP activation.
Collapse
Affiliation(s)
- Qing Ha
- School of Public Health, Jilin University, Changchun 130021, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
36
|
Peddie CJ, Collinson LM. Exploring the third dimension: Volume electron microscopy comes of age. Micron 2014; 61:9-19. [DOI: 10.1016/j.micron.2014.01.009] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/30/2014] [Accepted: 01/30/2014] [Indexed: 12/12/2022]
|
37
|
Købler C, Saber AT, Jacobsen NR, Wallin H, Vogel U, Qvortrup K, Mølhave K. FIB-SEM imaging of carbon nanotubes in mouse lung tissue. Anal Bioanal Chem 2014; 406:3863-73. [PMID: 24448971 PMCID: PMC4039996 DOI: 10.1007/s00216-013-7566-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 11/29/2022]
Abstract
Ultrastructural characterisation is important for understanding carbon nanotube (CNT) toxicity and how the CNTs interact with cells and tissues. The standard method for this involves using transmission electron microscopy (TEM). However, in particular, the sample preparation, using a microtome to cut thin sample sections for TEM, can be challenging for investigation of regions with agglomerations of large and stiff CNTs because the CNTs cut with difficulty. As a consequence, the sectioning diamond knife may be damaged and the uncut CNTs are left protruding from the embedded block surface excluding them from TEM analysis. To provide an alternative to ultramicrotomy and subsequent TEM imaging, we studied focused ion beam scanning electron microscopy (FIB-SEM) of CNTs in the lungs of mice, and we evaluated the applicability of the method compared to TEM. FIB-SEM can provide serial section volume imaging not easily obtained with TEM, but it is time-consuming to locate CNTs in the tissue. We demonstrate that protruding CNTs after ultramicrotomy can be used to locate the region of interest, and we present FIB-SEM images of CNTs in lung tissue. FIB-SEM imaging was applied to lung tissue from mice which had been intratracheally instilled with two different multiwalled CNTs; one being short and thin, and the other longer and thicker. FIB-SEM was found to be most suitable for detection of the large CNTs (Ø ca. 70 nm), and to be well suited for studying CNT agglomerates in biological samples which is challenging using standard TEM techniques.
Collapse
Affiliation(s)
- Carsten Købler
- DTU Nanotech, Technical University of Denmark, Ørsteds Plads 345E, 2800, Kgs. Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
38
|
Persson H, Købler C, Mølhave K, Samuelson L, Tegenfeldt JO, Oredsson S, Prinz CN. Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:4006-16, 3905. [PMID: 23813871 PMCID: PMC4282547 DOI: 10.1002/smll.201300644] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/27/2013] [Indexed: 05/18/2023]
Abstract
Nanowires are commonly used as tools for interfacing living cells, acting as biomolecule-delivery vectors or electrodes. It is generally assumed that the small size of the nanowires ensures a minimal cellular perturbation, yet the effects of nanowires on cell migration and proliferation remain largely unknown. Fibroblast behaviour on vertical nanowire arrays is investigated, and it is shown that cell motility and proliferation rate are reduced on nanowires. Fibroblasts cultured on long nanowires exhibit failed cell division, DNA damage, increased ROS content and respiration. Using focused ion beam milling and scanning electron microscopy, highly curved but intact nuclear membranes are observed, showing no direct contact between the nanowires and the DNA. The nanowires possibly induce cellular stress and high respiration rates, which trigger the formation of ROS, which in turn results in DNA damage. These results are important guidelines to the design and interpretation of experiments involving nanowire-based transfection and electrical characterization of living cells.
Collapse
Affiliation(s)
- Henrik Persson
- The Nanometer Structure Consortium, Lund University, Box 118, 22100 LundSweden
- Division of Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden. E-mail:
| | - Carsten Købler
- Center for Electron Nanoscopy, Technical University of Denmark, Ørsteds Plads 345E, 2800 Kongens LyngbyDenmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads 345E, 2800 Kongens LyngbyDenmark
| | - Kristian Mølhave
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads 345E, 2800 Kongens LyngbyDenmark
| | - Lars Samuelson
- The Nanometer Structure Consortium, Lund University, Box 118, 22100 LundSweden
- Division of Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden. E-mail:
| | - Jonas O Tegenfeldt
- The Nanometer Structure Consortium, Lund University, Box 118, 22100 LundSweden
- Division of Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden. E-mail:
| | - Stina Oredsson
- The Nanometer Structure Consortium, Lund University, Box 118, 22100 LundSweden
- Department of Biology, Lund University, Sölvegatan 37, 223 62 LundSweden
| | - Christelle N Prinz
- The Nanometer Structure Consortium, Lund University, Box 118, 22100 LundSweden
- Neuronano Research Center, Lund University, Sölvegatan 19, 221 84 LundSweden
- Division of Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden. E-mail:
| |
Collapse
|
39
|
Adolfsson K, Persson H, Wallentin J, Oredsson S, Samuelson L, Tegenfeldt JO, Borgström MT, Prinz CN. Fluorescent nanowire heterostructures as a versatile tool for biology applications. NANO LETTERS 2013; 13:4728-4732. [PMID: 23984979 DOI: 10.1021/nl4022754] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanowires are increasingly used in biology, as sensors, as injection devices, and as model systems for toxicity studies. Currently, in situ visualization of nanowires in biological media is done using organic dyes, which are prone to photobleaching, or using microscopy methods which either yield poor resolution or require a sophisticated setup. Here we show that inherently fluorescent nanowire axial heterostructures can be used to localize and identify nanowires in cells and tissue. By synthesizing GaP-GaInP nanowire heterostructures, with nonfluorescent GaP segments and fluorescent GaInP segments, we created a barcode labeling system enabling the distinction of the nanowire morphological and chemical properties using fluorescence microscopy. The GaInP photoluminescence stability, combined with the fact that the nanowires can be coated with different materials while retaining their fluorescence, make these nanowires promising tools for biological and nanotoxicological studies.
Collapse
Affiliation(s)
- Karl Adolfsson
- Division of Solid State Physics-The Nanometer Structure Consortium, Lund University , 22100 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Grădinaru C, Lopacińska JM, Huth J, Kestler HA, Flyvbjerg H, Mølhave K. Assessment of automated analyses of cell migration on flat and nanostructured surfaces. Comput Struct Biotechnol J 2012; 1:e201207004. [PMID: 24688640 PMCID: PMC3962212 DOI: 10.5936/csbj.201207004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 11/04/2012] [Accepted: 11/07/2012] [Indexed: 11/24/2022] Open
Abstract
Motility studies of cells often rely on computer software that analyzes time-lapse recorded movies and establishes cell trajectories fully automatically. This raises the question of reproducibility of results, since different programs could yield significantly different results of such automated analysis. The fact that the segmentation routines of such programs are often challenged by nanostructured surfaces makes the question more pertinent. Here we illustrate how it is possible to track cells on bright field microscopy images with image analysis routines implemented in an open-source cell tracking program, PACT (Program for Automated Cell Tracking). We compare the automated motility analysis of three cell tracking programs, PACT, Autozell, and TLA, using the same movies as input for all three programs. We find that different programs track overlapping, but different subsets of cells due to different segmentation methods. Unfortunately, population averages based on such different cell populations, differ significantly in some cases. Thus, results obtained with one software package are not necessarily reproducible by other software.
Collapse
Affiliation(s)
- Cristian Grădinaru
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Joanna M Lopacińska
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Johannes Huth
- Neural Information Processing, University of Ulm, Ulm, Germany ; Department of Gastroenterology and Endocrinology, University Hospital of Marburg, Marburg, Germany
| | - Hans A Kestler
- Neural Information Processing, University of Ulm, Ulm, Germany ; Internal Medicine I - Gastroenterology, University Hospital Ulm, Ulm, Germany
| | - Henrik Flyvbjerg
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Kristian Mølhave
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|