1
|
Vrettou CS, Issaris V, Kokkoris S, Poupouzas G, Keskinidou C, Lotsios NS, Kotanidou A, Orfanos SE, Dimopoulou I, Vassiliou AG. Exploring Aquaporins in Human Studies: Mechanisms and Therapeutic Potential in Critical Illness. Life (Basel) 2024; 14:1688. [PMID: 39768394 PMCID: PMC11676363 DOI: 10.3390/life14121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Aquaporins (AQPs) are membrane proteins facilitating water and other small solutes to be transported across cell membranes. They are crucial in maintaining cellular homeostasis by regulating water permeability in various tissues. Moreover, they regulate cell migration, signaling pathways, inflammation, tumor growth, and metastasis. In critically ill patients, such as trauma, sepsis, and patients with acute respiratory distress syndrome (ARDS), which are frequently encountered in intensive care units (ICUs), water transport regulation is crucial for maintaining homeostasis, as dysregulation can lead to edema or dehydration, with the latter also implicating hemodynamic compromise. Indeed, AQPs are involved in fluid transport in various organs, including the lungs, kidneys, and brain, where their dysfunction can exacerbate conditions like ARDS, acute kidney injury (AKI), or cerebral edema. In this review, we discuss the implication of AQPs in the clinical entities frequently encountered in ICUs, such as systemic inflammation and sepsis, ARDS, AKI, and brain edema due to different types of primary brain injury from a clinical perspective. Current and possible future therapeutic implications are also considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alice G. Vassiliou
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.S.V.); (V.I.); (S.K.); (G.P.); (C.K.); (N.S.L.); (A.K.); (S.E.O.); (I.D.)
| |
Collapse
|
2
|
Hassan NH, Saleh D, Abo El-Khair SM, Almasry SM, Ibrahim A. The relation between autophagy modulation by intermittent fasting and aquaporin 2 expression in experimentally induced diabetic nephropathy in albino rat. Tissue Cell 2024; 88:102395. [PMID: 38692159 DOI: 10.1016/j.tice.2024.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Polyuria is an early sign of diabetic nephropathy (DN) that produces dehydration in diabetic patients. This could be caused by alteration of renal aquaporin 2 (AQP2) expression. This study aimed to describe the relation between autophagy modulation via intermittent fasting (IF) and renal AQP2 expression and polyuria in case of DN. We divided the rats into control, DN and IF groups. After 2 and 4 weeks of diabetes induction, blood glucose (BG), serum creatinine (Scr), urine volume, and 24 hours urine protein (UP) were examined. Diabetic nephropathy histopathological index (DNHI) was calculated to evaluate histopathological changes. Immunohistochemistry and real-time PCR were performed to measure the levels of AQP2 and the autophagy marker; LC3 in kidney tissue. DNHI was correlated to the PCR and immunoexpression of AQP2 and LC3. Intermittent fasting significantly decreased the BG, Scr, urine volume, 24 hours UP, and DNHI as compared diabetes. Diabetes significantly elevated the immunoreactivity and mRNA expression levels of AQP2 and LC3 as compared to the control. However, the IF decreased AQP2 and stimulated autophagy in cyclic fashion. Our data revealed significant positive correlations between AQP2 and LC3 at the level of immunoexpression and mRNA at 2nd weeks. Taken together, these data showed that autophagy stimulation didn't regulate AQP2 expression in case of diabetic nephropathy, however IF decreased polyuria through improvement of glycemic state.
Collapse
Affiliation(s)
- Nora Hisham Hassan
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt.
| | - Dalia Saleh
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt
| | - Salwa M Abo El-Khair
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Egypt
| | - Shaima M Almasry
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt
| | - Amira Ibrahim
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
3
|
Tsilosani A, Gao C, Chen E, Lightle AR, Shehzad S, Sharma M, Tran PV, Bates CM, Wallace DP, Zhang W. Pkd2 Deficiency in Embryonic Aqp2 + Progenitor Cells Is Sufficient to Cause Severe Polycystic Kidney Disease. J Am Soc Nephrol 2024; 35:398-409. [PMID: 38254271 PMCID: PMC11000715 DOI: 10.1681/asn.0000000000000309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
SIGNIFICANCE STATEMENT Autosomal dominant polycystic kidney disease (ADPKD) is a devastating disorder caused by mutations in polycystin 1 ( PKD1 ) and polycystin 2 ( PKD2 ). Currently, the mechanism for renal cyst formation remains unclear. Here, we provide convincing and conclusive data in mice demonstrating that Pkd2 deletion in embryonic Aqp2 + progenitor cells (AP), but not in neonate or adult Aqp2 + cells, is sufficient to cause severe polycystic kidney disease (PKD) with progressive loss of intercalated cells and complete elimination of α -intercalated cells, accurately recapitulating a newly identified cellular phenotype of patients with ADPKD. Hence, Pkd2 is a new potential regulator critical for balanced AP differentiation into, proliferation, and/or maintenance of various cell types, particularly α -intercalated cells. The Pkd2 conditional knockout mice developed in this study are valuable tools for further studies on collecting duct development and early steps in cyst formation. The finding that Pkd2 loss triggers the loss of intercalated cells is a suitable topic for further mechanistic studies. BACKGROUND Most cases of autosomal dominant polycystic kidney disease (ADPKD) are caused by mutations in PKD1 or PKD2. Currently, the mechanism for renal cyst formation remains unclear. Aqp2 + progenitor cells (AP) (re)generate ≥5 cell types, including principal cells and intercalated cells in the late distal convoluted tubules (DCT2), connecting tubules, and collecting ducts. METHODS Here, we tested whether Pkd2 deletion in AP and their derivatives at different developmental stages is sufficient to induce PKD. Aqp2Cre Pkd2f/f ( Pkd2AC ) mice were generated to disrupt Pkd2 in embryonic AP. Aqp2ECE/+Pkd2f/f ( Pkd2ECE ) mice were tamoxifen-inducted at P1 or P60 to inactivate Pkd2 in neonate or adult AP and their derivatives, respectively. All induced mice were sacrificed at P300. Immunofluorescence staining was performed to categorize and quantify cyst-lining cell types. Four other PKD mouse models and patients with ADPKD were similarly analyzed. RESULTS Pkd2 was highly expressed in all connecting tubules/collecting duct cell types and weakly in all other tubular segments. Pkd2AC mice had obvious cysts by P6 and developed severe PKD and died by P17. The kidneys had reduced intercalated cells and increased transitional cells. Transitional cells were negative for principal cell and intercalated cell markers examined. A complete loss of α -intercalated cells occurred by P12. Cysts extended from the distal renal segments to DCT1 and possibly to the loop of Henle, but not to the proximal tubules. The induced Pkd2ECE mice developed mild PKD. Cystic α -intercalated cells were found in the other PKD models. AQP2 + cells were found in cysts of only 13/27 ADPKD samples, which had the same cellular phenotype as Pkd2AC mice. CONCLUSIONS Hence, Pkd2 deletion in embryonic AP, but unlikely in neonate or adult Aqp2 + cells (principal cells and AP), was sufficient to cause severe PKD with progressive elimination of α -intercalated cells, recapitulating a newly identified cellular phenotype of patients with ADPKD. We proposed that Pkd2 is critical for balanced AP differentiation into, proliferation, and/or maintenance of cystic intercalated cells, particularly α -intercalated cells.
Collapse
Affiliation(s)
- Akaki Tsilosani
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| | - Chao Gao
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| | - Enuo Chen
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| | - Andrea R. Lightle
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York
| | - Sana Shehzad
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| | - Madhulika Sharma
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Pamela V. Tran
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Carlton M. Bates
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Darren P. Wallace
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| |
Collapse
|
4
|
Wei W, Zhao Y, Chai Y, Shou S, Jin H. A novel role of DOT1L in kidney diseases. Mol Biol Rep 2023; 50:5415-5423. [PMID: 37085741 DOI: 10.1007/s11033-023-08415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/29/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND We systematically summarized the structure and biological function of DOT1L in detail, and further discussed the role of DOT1L in kidney diseases through different mechanisms. METHODS AND RESULTS We first described the role of DOT1L in various kidney diseases including AKI, CKD, DN and kidney tumor diseases. CONCLUSIONS A better understanding of DOT1L as a histone methylase based on characteristics of regulating telomere silencing, transcriptional extension, DNA damage repair and cell cycle could lead to the development of new therapeutic targets for various kidney diseases, thereby improving the prognosis of kidney disease patients.
Collapse
Affiliation(s)
- Wei Wei
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yibo Zhao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
5
|
D’Agostino C, Parisis D, Chivasso C, Hajiabbas M, Soyfoo MS, Delporte C. Aquaporin-5 Dynamic Regulation. Int J Mol Sci 2023; 24:ijms24031889. [PMID: 36768212 PMCID: PMC9915196 DOI: 10.3390/ijms24031889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Aquaporin-5 (AQP5), belonging to the aquaporins (AQPs) family of transmembrane water channels, facilitates osmotically driven water flux across biological membranes and the movement of hydrogen peroxide and CO2. Various mechanisms have been shown to dynamically regulate AQP5 expression, trafficking, and function. Besides fulfilling its primary water permeability function, AQP5 has been shown to regulate downstream effectors playing roles in various cellular processes. This review provides a comprehensive overview of the current knowledge of the upstream and downstream effectors of AQP5 to gain an in-depth understanding of the physiological and pathophysiological processes involving AQP5.
Collapse
Affiliation(s)
- Claudia D’Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Dorian Parisis
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Rheumatology Department, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Muhammad Shahnawaz Soyfoo
- Rheumatology Department, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Correspondence:
| |
Collapse
|
6
|
Frisoni P, Diani L, De Simone S, Bosco MA, Cipolloni L, Neri M. Forensic Diagnosis of Freshwater or Saltwater Drowning Using the Marker Aquaporin 5: An Immunohistochemical Study. Medicina (B Aires) 2022; 58:medicina58101458. [PMID: 36295616 PMCID: PMC9610618 DOI: 10.3390/medicina58101458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: Aquaporins are a family of water channel proteins. In this study, the renal and intrapulmonary expression of aquaporin-5 (AQP5) was examined in forensic autopsy cases to evaluate it as a drowning marker and to differentiate between freshwater drowning and saltwater drowning. Materials and Methods: Cases were classified into three groups: freshwater drowning (FWD), saltwater drowning (SWD), and controls (CTR). Samples were obtained from forensic autopsies at less than 72 h postmortem (15 FWD cases, 15 SWD cases, and 17 other cases) and were subjected to histological and immunohistochemical investigations. Results: In FWD group, intrapulmonary AQP5 expression was significantly suppressed compared with SWD and CTR; there was no significant difference in AQP5 expression among the other two groups. The same differences in expression were also observed in the kidney. Conclusions: These observations suggest that AQP5 expression in alveolar cells was suppressed by hypotonic water to prevent hemodilution. Moreover, it is possible to hypothesize that in the kidney, with the appearance of hypo-osmotic plasma, AQP5 is hypo-expressed, as a vital reaction, to regulate the renal reabsorption of water. In conclusion, the analysis of renal and intrapulmonary AQP5 expression would be forensically useful for differentiation between FWD and SWD, or between FWD and death due to other causes.
Collapse
Affiliation(s)
- Paolo Frisoni
- Unit of Legal Medicine, Azienda USL di Ferrara, Via Arturo Cassoli 30, 44121 Ferrara, Italy
| | - Luca Diani
- Department of Biomedical, Metabolic and Neural Sciences, Institute of Legal Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy
| | - Stefania De Simone
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Antonella Bosco
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, 71122 Foggia, Italy
| | - Luigi Cipolloni
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, 71122 Foggia, Italy
- Correspondence:
| | - Margherita Neri
- Department of Medical Sciences, Section of Legal Medicine University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| |
Collapse
|
7
|
Insight into the Mammalian Aquaporin Interactome. Int J Mol Sci 2022; 23:ijms23179615. [PMID: 36077012 PMCID: PMC9456110 DOI: 10.3390/ijms23179615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
Aquaporins (AQPs) are a family of transmembrane water channels expressed in all living organisms. AQPs facilitate osmotically driven water flux across biological membranes and, in some cases, the movement of small molecules (such as glycerol, urea, CO2, NH3, H2O2). Protein-protein interactions play essential roles in protein regulation and function. This review provides a comprehensive overview of the current knowledge of the AQP interactomes and addresses the molecular basis and functional significance of these protein-protein interactions in health and diseases. Targeting AQP interactomes may offer new therapeutic avenues as targeting individual AQPs remains challenging despite intense efforts.
Collapse
|
8
|
Gao C, Zhang L, Chen E, Zhang W. Aqp2 + Progenitor Cells Maintain and Repair Distal Renal Segments. J Am Soc Nephrol 2022; 33:1357-1376. [PMID: 35318267 PMCID: PMC9257824 DOI: 10.1681/asn.2021081105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/08/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Adult progenitor cells presumably demonstrate clonogenicity, self-renewal, and multipotentiality, and can regenerate cells under various conditions. Definitive evidence demonstrating the existence of such progenitor cells in adult mammalian kidneys is lacking. METHOD We performed in vivo lineage tracing and thymidine analogue labeling using adult tamoxifen-inducible (Aqp2ECE/+ RFP/+, Aqp2ECE/+ Brainbow/+, and Aqp2ECE/+ Brainbow/Brainbow) and WT mice. The tamoxifen-inducible mice were analyzed between 1 and 300 days postinduction. Alternatively, WT and tamoxifen-induced mice were subjected to unilateral ureteral obstruction and thymidine analogue labeling and analyzed 2-14 days post-surgery. Multiple cell-specific markers were used for high-resolution immunofluorescence confocal microscopy to identify the cell types derived from Aqp2+ cells. RESULTS Like their embryonic counterparts, adult cells expressing Aqp2 and V-ATPase subunits B1 and B2 (Aqp2+ B1B2+) are the potential Aqp2+ progenitor cells (APs). Adult APs rarely divide to generate daughter cells, either maintaining the property of the AP (self-renewal) or differentiating into DCT2/CNT/CD cells (multipotentiality), forming single cell-derived, multiple-cell clones (clonogenicity) during tissue maintenance. APs selectively and continuously regenerate DCT2/CNT/CD cells in response to injury resulting from ureteral ligation. AP proliferation demonstrated direct correlation with Notch activation and was inversely correlated with development of kidney fibrosis. Derivation of both intercalated and DCT2 cells was found to be cell division-dependent and -independent, most likely through AP differentiation which requires cell division and through direct conversion of APs and/or regular principal cells without cell division, respectively. CONCLUSION Our study demonstrates that Aqp2+ B1B2+ cells behave as adult APs to maintain and repair DCT2/CNT1/CNT2/CD segments.
Collapse
Affiliation(s)
- Chao Gao
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| | - Long Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| | - Enuo Chen
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| |
Collapse
|
9
|
Wille CK, Sridharan R. Connecting the DOTs on Cell Identity. Front Cell Dev Biol 2022; 10:906713. [PMID: 35733849 PMCID: PMC9207516 DOI: 10.3389/fcell.2022.906713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/18/2022] [Indexed: 01/04/2023] Open
Abstract
DOT1-Like (DOT1L) is the sole methyltransferase of histone H3K79, a modification enriched mainly on the bodies of actively transcribing genes. DOT1L has been extensively studied in leukemia were some of the most frequent onco-fusion proteins contain portions of DOT1L associated factors that mislocalize H3K79 methylation and drive oncogenesis. However, the role of DOT1L in non-transformed, developmental contexts is less clear. Here we assess the known functional roles of DOT1L both in vitro cell culture and in vivo models of mammalian development. DOT1L is evicted during the 2-cell stage when cells are totipotent and massive epigenetic and transcriptional alterations occur. Embryonic stem cell lines that are derived from the blastocyst tolerate the loss of DOT1L, while the reduction of DOT1L protein levels or its catalytic activity greatly enhances somatic cell reprogramming to induced pluripotent stem cells. DOT1L knockout mice are embryonically lethal when organogenesis commences. We catalog the rapidly increasing studies of total and lineage specific knockout model systems that show that DOT1L is broadly required for differentiation. Reduced DOT1L activity is concomitant with increased developmental potential. Contrary to what would be expected of a modification that is associated with active transcription, loss of DOT1L activity results in more upregulated than downregulated genes. DOT1L also participates in various epigenetic networks that are both cell type and developmental stage specific. Taken together, the functions of DOT1L during development are pleiotropic and involve gene regulation at the locus specific and global levels.
Collapse
Affiliation(s)
- Coral K. Wille
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Coral K. Wille, , Rupa Sridharan,
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Coral K. Wille, , Rupa Sridharan,
| |
Collapse
|
10
|
Cheng Y, Chen Y, Wang G, Liu P, Xie G, Jing H, Chen H, Fan Y, Wang M, Zhou J. Protein Methylation in Diabetic Kidney Disease. Front Med (Lausanne) 2022; 9:736006. [PMID: 35647002 PMCID: PMC9133329 DOI: 10.3389/fmed.2022.736006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease (CKD) is defined by persistent urine aberrations, structural abnormalities, or impaired excretory renal function. Diabetes is the leading cause of CKD. Their common pathological manifestation is renal fibrosis. Approximately half of all patients with type 2 diabetes and one-third with type 1 diabetes will develop CKD. However, renal fibrosis mechanisms are still poorly understood, especially post-transcriptional and epigenetic regulation. And an unmet need remains for innovative treatment strategies for preventing, arresting, treating, and reversing diabetic kidney disease (DKD). People believe that protein methylation, including histone and non-histone, is an essential type of post-translational modification (PTM). However, prevalent reviews mainly focus on the causes such as DNA methylation. This review will take insights into the protein part. Furthermore, by emphasizing the close relationship between protein methylation and DKD, we will summarize the clinical research status and foresee the application prospect of protein methyltransferase (PMT) inhibitors in DKD treatment. In a nutshell, our review will contribute to a more profound understanding of DKD’s molecular mechanism and inspire people to dig into this field.
Collapse
Affiliation(s)
- Ye Cheng
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanna Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guodong Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Pei Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guiling Xie
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Huan Jing
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hongtao Chen
- Department of Anesthesiology, The Eighth People’s Hospital of Guangzhou, Guangzhou, China
| | - Youlin Fan
- Department of Anesthesiology, Guangzhou Panyu Central Hospital of Panyu District, Guangzhou, China
| | - Min Wang
- Department of Anesthesiology, The Gaoming People’s Hospital, Foshan, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Jun Zhou,
| |
Collapse
|
11
|
Zhou X, Chen H, Li J, Shi Y, Zhuang S, Liu N. The Role and Mechanism of Lysine Methyltransferase and Arginine Methyltransferase in Kidney Diseases. Front Pharmacol 2022; 13:885527. [PMID: 35559246 PMCID: PMC9086358 DOI: 10.3389/fphar.2022.885527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Methylation can occur in both histones and non-histones. Key lysine and arginine methyltransferases under investigation for renal disease treatment include enhancer of zeste homolog 2 (EZH2), G9a, disruptor of telomeric silencing 1-like protein (DOT1L), and protein arginine methyltransferases (PRMT) 1 and 5. Recent studies have shown that methyltransferases expression and activity are also increased in several animal models of kidney injury, such as acute kidney injury(AKI), obstructive nephropathy, diabetic nephropathy and lupus nephritis. The inhibition of most methyltransferases can attenuate kidney injury, while the role of methyltransferase in different animal models remains controversial. In this article, we summarize the role and mechanism of lysine methyltransferase and arginine methyltransferase in various kidney diseases and highlight methyltransferase as a potential therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinqing Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Dutta A, Das M. Deciphering the Role of Aquaporins in Metabolic Diseases: A Mini Review. Am J Med Sci 2022; 364:148-162. [DOI: 10.1016/j.amjms.2021.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 06/16/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022]
|
13
|
Gao C, Chen L, Chen E, Tsilosani A, Xia Y, Zhang W. Generation of Distal Renal Segments Involves a Unique Population of Aqp2 + Progenitor Cells. J Am Soc Nephrol 2021; 32:3035-3049. [PMID: 34667084 PMCID: PMC8638390 DOI: 10.1681/asn.2021030399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Progenitor cells have clonogenicity, self-renewal, and multipotential capacity, and they can generate multiple types of cells during development. Evidence demonstrating the existence of such progenitor cells for renal distal segments is lacking. METHODS To identify Aqp2 + progenitor (AP) cells, we performed in vivo lineage tracing using both constitutive ( Aqp2Cre RFP/+ ) and Tamoxifen-inducible ( Aqp2 ECE/+ RFP/+ , Aqp2 ECE/+ Brainbow/+ , and Aqp2 ECE/+ Brainbow/Brainbow ) mouse models. Aqp2Cre RFP/+ mice were analyzed from E14.5 to adult stage. The inducible models were induced at P1 and examined at P3 and P42, respectively. Multiple segment- or cell-specific markers were used for high-resolution immunofluorescence confocal microscopy analyses to identify the cell types derived from Aqp2 + cells. RESULTS Both Aqp2Cre and Aqp2 ECE/+ faithfully indicate the activation of the endogenous Aqp2 promoter for lineage tracing. A subset of Aqp2 + cells behaves as potential AP. Aqp2Cre -based lineage tracing revealed that embryonic APs generate five types of cells, which form the late distal convoluted tubule (DCT2), connecting tubule segments 1 and 2 (CNT1 and CNT2, respectively), and collecting ducts (CDs). The α - and β -intercalated cells were apparently derived from embryonic AP in a stepwise manner. Aqp2 ECE/+ -based lineage tracing identified cells coexpressing Aqp2 and V-ATPase subunits B1 and B2 as the potential AP. Neonate APs generate daughter cells either inheriting their property (self-renewal) or evolving into various DCT2, CNT, or CD cells (multipotentiality), forming single cell-derived multiple-cell clones (clonogenicity) during development. CONCLUSION Our study demonstrates that unique Aqp2 + B1B2 + cells are the potential APs to generate DCT2, CNT, CNT2, and CD segments.
Collapse
Affiliation(s)
- Chao Gao
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Enuo Chen
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York
| | - Akaki Tsilosani
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Wenzheng Zhang
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York
| |
Collapse
|
14
|
Abstract
Epigenetics examines heritable changes in DNA and its associated proteins except mutations in gene sequence. Epigenetic regulation plays fundamental roles in kidney cell biology through the action of DNA methylation, chromatin modification via epigenetic regulators and non-coding RNA species. Kidney diseases, including acute kidney injury, chronic kidney disease, diabetic kidney disease and renal fibrosis are multistep processes associated with numerous molecular alterations even in individual kidney cells. Epigenetic alterations, including anomalous DNA methylation, aberrant histone alterations and changes of microRNA expression all contribute to kidney pathogenesis. These changes alter the genome-wide epigenetic signatures and disrupt essential pathways that protect renal cells from uncontrolled growth, apoptosis and development of other renal associated syndromes. Molecular changes impact cellular function within kidney cells and its microenvironment to drive and maintain disease phenotype. In this chapter, we briefly summarize epigenetic mechanisms in four kidney diseases including acute kidney injury, chronic kidney disease, diabetic kidney disease and renal fibrosis. We primarily focus on current knowledge about the genome-wide profiling of DNA methylation and histone modification, and epigenetic regulation on specific gene(s) in the pathophysiology of these diseases and the translational potential of identifying new biomarkers and treatment for prevention and therapy. Incorporating epigenomic testing into clinical research is essential to elucidate novel epigenetic biomarkers and develop precision medicine using emerging therapies.
Collapse
|
15
|
Shuai L, Li BH, Jiang HW, Yang L, Li J, Li JY. DOT1L Regulates Thermogenic Adipocyte Differentiation and Function via Modulating H3K79 Methylation. Diabetes 2021; 70:1317-1333. [PMID: 33795413 DOI: 10.2337/db20-1110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022]
Abstract
Brown and beige adipocytes are characterized as thermogenic adipocytes and have great potential for treating obesity and associated metabolic diseases. In this article, we identify a conserved mammalian lysine 79 of histone H3 (H3K79) methyltransferase, disruptor of telomeric silencing-1 like (DOT1L), as a new epigenetic regulator that controls thermogenic adipocyte differentiation and function. We show that deletion of DOT1L in thermogenic adipocytes potently protects mice from diet-induced obesity, improves glucose homeostasis, alleviates hepatic steatosis, and facilitates adaptive thermogenesis in vivo. Loss of DOT1L in primary preadipocytes significantly promotes brown and beige adipogenesis and thermogenesis in vitro. Mechanistically, DOT1L epigenetically regulates the brown adipose tissue-selective gene program by modulating H3K79 methylation, in particular H3K79me2 modification. Thus, our study demonstrates that DOT1L exerts an important role in energy homeostasis by regulating thermogenic adipocyte differentiation and function.
Collapse
Affiliation(s)
- Lin Shuai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bo-Han Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Wen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lin Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jing-Ya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
16
|
Azad AK, Raihan T, Ahmed J, Hakim A, Emon TH, Chowdhury PA. Human Aquaporins: Functional Diversity and Potential Roles in Infectious and Non-infectious Diseases. Front Genet 2021; 12:654865. [PMID: 33796134 PMCID: PMC8007926 DOI: 10.3389/fgene.2021.654865] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are integral membrane proteins and found in all living organisms from bacteria to human. AQPs mainly involved in the transmembrane diffusion of water as well as various small solutes in a bidirectional manner are widely distributed in various human tissues. Human contains 13 AQPs (AQP0-AQP12) which are divided into three sub-classes namely orthodox aquaporin (AQP0, 1, 2, 4, 5, 6, and 8), aquaglyceroporin (AQP3, 7, 9, and 10) and super or unorthodox aquaporin (AQP11 and 12) based on their pore selectivity. Human AQPs are functionally diverse, which are involved in wide variety of non-infectious diseases including cancer, renal dysfunction, neurological disorder, epilepsy, skin disease, metabolic syndrome, and even cardiac diseases. However, the association of AQPs with infectious diseases has not been fully evaluated. Several studies have unveiled that AQPs can be regulated by microbial and parasitic infections that suggest their involvement in microbial pathogenesis, inflammation-associated responses and AQP-mediated cell water homeostasis. This review mainly aims to shed light on the involvement of AQPs in infectious and non-infectious diseases and potential AQPs-target modulators. Furthermore, AQP structures, tissue-specific distributions and their physiological relevance, functional diversity and regulations have been discussed. Altogether, this review would be useful for further investigation of AQPs as a potential therapeutic target for treatment of infectious as well as non-infectious diseases.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jahed Ahmed
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Al Hakim
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tanvir Hossain Emon
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | |
Collapse
|
17
|
Kengkoom K, Angkhasirisap W, Kanjanapruthipong T, Tungtrakanpoung R, Tuentam K, Phansom N, Ampawong S. Streptozotocin induces alpha-2u globulin nephropathy in male rats during diabetic kidney disease. BMC Vet Res 2021; 17:105. [PMID: 33663503 PMCID: PMC7934450 DOI: 10.1186/s12917-021-02814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 02/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alpha-2u globulin nephropathy mainly shows toxicological pathology only in male rats induced by certain chemicals and drugs, such as levamisole (antiparasitic and anticancer drugs). Streptozotocin (STZ) is also an anticancer-antibiotic agent that has been used for decades to induce a diabetic kidney disease model in rodents. The purpose of this study is to determine if STZ causes alpha-2u globulin nephropathy in male rats during an advanced stage of diabetic kidney disease. Alpha-2u globulin nephropathy, water absorption and filtration capacities (via aquaporin [AQP]-1, - 2, - 4 and - 5) and mitochondrial function (through haloacid dehalogenase-like hydrolase domain-containing protein [HDHD]-3 and NADH-ubiquinone oxidoreductase 75 kDa subunit [NDUFS]-1 proteins) were examined in STZ-induced diabetic Wistar rat model. RESULTS More than 80% of severe clinical illness rats induced by STZ injection simultaneously exhibited alpha-2u globulin nephropathy with mitochondrial degeneration and filtration apparatus especially pedicels impairment. They also showed significantly upregulated AQP-1, - 2, - 4 and - 5, HDHD-3 and NDUFS-1 compared with those of the rats without alpha-2u globulin nephropathy. CONCLUSIONS STZ-induced alpha-2u globulin nephropathy during diabetic kidney disease in association with deterioration of pedicels, renal tubular damage with adaptation and mitochondrial driven apoptosis.
Collapse
Affiliation(s)
- Kanchana Kengkoom
- Academic Service Division, National Laboratory Animal Center, Mahidol University, 999, Salaya, Puttamonthon, Nakorn Pathom, 73170 Thailand
| | - Wannee Angkhasirisap
- Academic Service Division, National Laboratory Animal Center, Mahidol University, 999, Salaya, Puttamonthon, Nakorn Pathom, 73170 Thailand
| | - Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6, Ratchawithi Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Rongdej Tungtrakanpoung
- Department of Biology, Faculty of Science, Naresuan University, 99, Moo 9, Phitsanulok-NakornSawan Road, Phitsanulok, 65000 Thailand
| | - Khwanchanok Tuentam
- Department of Biology, Faculty of Science, Naresuan University, 99, Moo 9, Phitsanulok-NakornSawan Road, Phitsanulok, 65000 Thailand
| | - Naphatson Phansom
- Department of Biology, Faculty of Science, Naresuan University, 99, Moo 9, Phitsanulok-NakornSawan Road, Phitsanulok, 65000 Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6, Ratchawithi Road, Ratchathewi, Bangkok, 10400 Thailand
| |
Collapse
|
18
|
AQP2: Mutations Associated with Congenital Nephrogenic Diabetes Insipidus and Regulation by Post-Translational Modifications and Protein-Protein Interactions. Cells 2020; 9:cells9102172. [PMID: 32993088 PMCID: PMC7599609 DOI: 10.3390/cells9102172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
, the molecular defects in the AVPR2 and AQP2 mutants, post-translational modifications (i.e., phosphorylation, ubiquitination, and glycosylation) and various protein-protein interactions that regulate phosphorylation, ubiquitination, tetramerization, trafficking, stability, and degradation of AQP2.
Collapse
|
19
|
Zhang L, Chen L, Gao C, Chen E, Lightle AR, Foulke L, Zhao B, Higgins PJ, Zhang W. Loss of Histone H3 K79 Methyltransferase Dot1l Facilitates Kidney Fibrosis by Upregulating Endothelin 1 through Histone Deacetylase 2. J Am Soc Nephrol 2019; 31:337-349. [PMID: 31843983 DOI: 10.1681/asn.2019070739] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The progression rate of CKD varies substantially among patients. The genetic and epigenetic contributions that modify how individual patients respond to kidney injury are largely unknown. Emerging evidence has suggested that histone H3 K79 methyltransferase Dot1l has an antifibrotic effect by repressing Edn1, which encodes endothelin 1 in the connecting tubule/collecting duct. METHODS To determine if deletion of the Dot1l gene is a genetic and epigenetic risk factor through regulating Edn1, we studied four groups of mice: wild-type mice, connecting tubule/collecting duct-specific Dot1l conditional knockout mice (Dot1lAC ), Dot1l and Edn1 double-knockout mice (DEAC ), and Edn1 connecting tubule/collecting duct-specific conditional knockout mice (Edn1AC ), under three experimental conditions (streptozotocin-induced diabetes, during normal aging, and after unilateral ureteral obstruction). We used several approaches (colocalization, glutathione S-transferase pulldown, coimmunoprecipitation, yeast two-hybrid, gel shift, and chromatin immunoprecipitation assays) to identify and confirm interaction of Dot1a (the major Dot1l splicing variant in the mouse kidney) with histone deacetylase 2 (HDAC2), as well as the function of the Dot1a-HDAC2 complex in regulating Edn1 transcription. RESULTS In each case, Dot1lAC mice developed more pronounced kidney fibrosis and kidney malfunction compared with wild-type mice. These Dot1lAC phenotypes were ameliorated in the double-knockout DEAC mice. The interaction between Dot1a and HDAC2 prevents the Dot1a-HDAC2 complex from association with DNA, providing a counterbalancing mechanism governing Edn1 transcription by modulating H3 K79 dimethylation and H3 acetylation at the Edn1 promoter. CONCLUSIONS Our study confirms Dot1l to be a genetic and epigenetic modifier of kidney fibrosis, reveals a new mechanism regulating Edn1 transcription by Dot1a and HDAC2, and reinforces endothelin 1 as a therapeutic target of kidney fibrosis.
Collapse
Affiliation(s)
- Long Zhang
- Departments of Regenerative and Cancer Cell Biology and
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland; and
| | - Chao Gao
- Departments of Regenerative and Cancer Cell Biology and
| | - Enuo Chen
- Departments of Regenerative and Cancer Cell Biology and
| | - Andrea R Lightle
- Pathology and Laboratory Medicine, Albany Medical College, Albany, New York
| | - Llewellyn Foulke
- Pathology and Laboratory Medicine, Albany Medical College, Albany, New York
| | - Bihong Zhao
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | | | | |
Collapse
|
20
|
Yu C, Zhuang S. Histone Methyltransferases as Therapeutic Targets for Kidney Diseases. Front Pharmacol 2019; 10:1393. [PMID: 31866860 PMCID: PMC6908484 DOI: 10.3389/fphar.2019.01393] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence has demonstrated that epigenetic regulation plays a vital role in gene expression under normal and pathological conditions. Alterations in the expression and activation of histone methyltransferases (HMTs) have been reported in preclinical models of multiple kidney diseases, including acute kidney injury, chronic kidney disease, diabetic nephropathy, polycystic kidney disease, and renal cell carcinoma. Pharmacological inhibition of these enzymes has shown promise in preclinical models of those renal diseases. In this review, we summarize recent knowledge regarding expression and activation of various HMTs and their functional roles in some kidney diseases. The preclinical activity of currently available HMT inhibitors and the mechanisms of their actions are highlighted.
Collapse
Affiliation(s)
- Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
21
|
Su W, Cao R, Zhang XY, Guan Y. Aquaporins in the kidney: physiology and pathophysiology. Am J Physiol Renal Physiol 2019; 318:F193-F203. [PMID: 31682170 DOI: 10.1152/ajprenal.00304.2019] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The kidney is the central organ involved in maintaining water and sodium balance. In human kidneys, nine aquaporins (AQPs), including AQP1-8 and AQP11, have been found and are differentially expressed along the renal tubules and collecting ducts with distinct and critical roles in the regulation of body water homeostasis and urine concentration. Dysfunction and dysregulation of these AQPs result in various water balance disorders. This review summarizes current understanding of physiological and pathophysiological roles of AQPs in the kidney, with a focus on recent progress on AQP2 regulation by the nuclear receptor transcriptional factors. This review also provides an overview of AQPs as clinical biomarkers and therapeutic targets for renal diseases.
Collapse
Affiliation(s)
- Wen Su
- Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Rong Cao
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Xiao-Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Youfei Guan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
22
|
Pituitary Hormones (FSH, LH, PRL, and GH) Differentially Regulate AQP5 Expression in Porcine Ovarian Follicular Cells. Int J Mol Sci 2019; 20:ijms20194914. [PMID: 31623386 PMCID: PMC6801619 DOI: 10.3390/ijms20194914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022] Open
Abstract
This study aimed to examine the effect of follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), and growth hormone (GH) on Aquaporin 5 (AQP5) expression in granulosa (Gc) and theca cells (Tc) from medium (MF) and large (LF) ovarian follicles of pigs. The results showed that GH significantly decreased the expression of AQP5 in Gc from MF in relation to the control. In the Gc of large follicles, PRL stimulated the expression of AQP5. However, the increased expression of AQP5 in the Tc of LF was indicated by GH and PRL in relation to the control. A significantly higher expression of the AQP5 protein in the Gc from MF and LF was indicated by FSH and PRL. In co-cultures, an increased expression of AQP5 was observed in the Gc from LF incubated with LH, PRL, and GH. A significantly increased expression of AQP5 was also observed in co-cultures of Tc from all type of follicles incubated with LH, whereas PRL stimulated the expression of AQP5 in Tc from MF. Moreover, AQP5 protein expression increased in the co-culture isolated from MF and LF after treatment with FSH, LH, PRL, and GH. AQP5 immunoreactivity was observed in the cytoplasm, mainly in the perinuclear region and endosomes, as well as in the cell membranes of Gc and Tc from the LF and MF.
Collapse
|
23
|
Gao C, Zhang W. Urinary AQP5 is independently associated with eGFR decline in patients with type 2 diabetes and nephropathy. Diabetes Res Clin Pract 2019; 155:107805. [PMID: 31377226 PMCID: PMC7509983 DOI: 10.1016/j.diabres.2019.107805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/02/2019] [Accepted: 07/30/2019] [Indexed: 11/28/2022]
Abstract
AIMS Intrarenal Aquaporin 5 (AQP5) is upregulated in patients with diabetic nephropathy. Here we investigate whether urinary AQP5 is independently associated with estimated glomerular filtration rate (eGFR) decline in patients with type 2 diabetes and nephropathy. METHODS Baseline urine samples (n = 997) from patients with type 2 diabetes and nephropathy of the sulodexide macroalbuminuria trial were measured for AQP5 through enzyme-linked immunosorbent assays. Pearson correlation and multiple linear regression between AQP5 with eGFR slope (calculated by ≥3 serum creatinine during follow-up) was performed, and association with fast renal function decline, defined as eGFR slope less than 3.0 mL/min/1.73 m2/year, was determined by logistic regression. RESULTS Follow-up eGFR data >1.4 years from n = 700 were available for analyses. AQP5 was undetectable in 138 patients. Tertiles of AQP5 were 0.4 [0-2.2], 7.3 [5.9-9.1], and 16.0 [13.0-21.6] (ng/mL), respectively (p < 0.01). Patients in the highest tertile of AQP5 had significantly higher total cholesterol, lower baseline eGFR, and higher levels of albuminuria compared to the lowest tertile. AQP5 was inversely correlated with eGFR slope (Pearson's r = -0.12, p < 0.001), and independent of clinical risk factors age, sex, race, and baseline systolic and diastolic blood pressure, hemoglobin A1c, total cholesterol, eGFR, and urine albumin-to-creatinine ratio (β = -0.05, p < 0.004). Furthermore, AQP5 was significantly associated with fast eGFR decline (Odds Ratio = 1.03 (95% Confidence Interval 1.003-1.06), p < 0.03). CONCLUSION Our data suggest that baseline AQP5 is independently associated with the progression of eGFR decline in patients with type 2 diabetes and nephropathy.
Collapse
Affiliation(s)
- Chao Gao
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, USA
| | - Wenzheng Zhang
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
24
|
Michałek K, Grabowska M. Investigating cellular location of aquaporins in the bovine kidney. A new view on renal physiology in cattle. Res Vet Sci 2019; 125:162-169. [PMID: 31233960 DOI: 10.1016/j.rvsc.2019.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
To date, 13 aquaporin isoforms (AQPs) have been discovered in mammals, of which as many as 9 are located in epithelial cells lining the individual sections of the nephron and collecting tubules. Detailed analysis of the location and expression of AQPs in the kidneys of laboratory animals and humans allowed to define the key role of these proteins in renal excretion of water and other small molecules. Unfortunately, despite the significant advances in knowledge in this area, still little is known about this subject in livestock, including cattle. Therefore, the aim of the study was to determine the expression and AQPs location in the nephron segment in the bovine kidney by immunohistochemistry and Western blot. The distribution of a total of 8 aquaporins was determined as a result of the conducted experiments. The results obtained in the present study clearly indicate that aquaporins in cattle are involved in the renal regulation of water excretion and maintenance of proper acid-base balance. Undoubtedly, changes in the distribution and expression of AQPs in bovine kidneys may be the cause of water balance disorders and disruption of the normal body fluid composition. Kidney diseases in cattle are poorly described in veterinary medicine. Knowledge of cellular location and expression of all AQPs in the bovine kidney under normal physiological condition allows a deeper understanding of the renal regulation of body homeostasis. It creates new perspective for diagnosis and pharmacotherapy in cattle in the future.
Collapse
Affiliation(s)
- Katarzyna Michałek
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland.
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland
| |
Collapse
|
25
|
Aquaporins in Renal Diseases. Int J Mol Sci 2019; 20:ijms20020366. [PMID: 30654539 PMCID: PMC6359174 DOI: 10.3390/ijms20020366] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Aquaporins (AQPs) are a family of highly selective transmembrane channels that mainly transport water across the cell and some facilitate low-molecular-weight solutes. Eight AQPs, including AQP1, AQP2, AQP3, AQP4, AQP5, AQP6, AQP7, and AQP11, are expressed in different segments and various cells in the kidney to maintain normal urine concentration function. AQP2 is critical in regulating urine concentrating ability. The expression and function of AQP2 are regulated by a series of transcriptional factors and post-transcriptional phosphorylation, ubiquitination, and glycosylation. Mutation or functional deficiency of AQP2 leads to severe nephrogenic diabetes insipidus. Studies with animal models show AQPs are related to acute kidney injury and various chronic kidney diseases, such as diabetic nephropathy, polycystic kidney disease, and renal cell carcinoma. Experimental data suggest ideal prospects for AQPs as biomarkers and therapeutic targets in clinic. This review article mainly focuses on recent advances in studying AQPs in renal diseases.
Collapse
|
26
|
Chen L, Gao C, Zhang L, Zhang Y, Chen E, Zhang W. Highly tamoxifen-inducible principal cell-specific Cre mice with complete fidelity in cell specificity and no leakiness. Am J Physiol Renal Physiol 2018; 314:F572-F583. [PMID: 29357435 PMCID: PMC5966762 DOI: 10.1152/ajprenal.00436.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/22/2022] Open
Abstract
An ideal inducible system should be cell specific and have absolutely no background recombination without induction (i.e., no leakiness), a high recombination rate after induction, and complete fidelity in cell specificity (i.e., restricted recombination exclusively in cells where the driver gene is expressed). However, such an ideal mouse model remains unavailable for collecting duct research. Here, we report a mouse model that meets these criteria. In this model, a cassette expressing ERT2CreERT2 ( ECE) is inserted at the ATG of the endogenous Aqp2 locus to disrupt Aqp2 function and to express ECE under the control of the Aqp2 promoter. The resulting allele is named Aqp2ECE. There was no indication of a significant impact of disruption of a copy of Aqp2 on renal function and blood pressure control in adult Aqp2ECE/+ heterozygotes. Without tamoxifen, Aqp2ECE did not activate a Cre-dependent red fluorescence protein (RFP) reporter in adult kidneys. A single injection of tamoxifen (2 mg) to adult mice enabled Aqp2ECE to induce robust RFP expression in the whole kidney 24 h postinjection, with the highest recombination efficiency of 95% in the inner medulla. All RFP-labeled cells expressed principal cell markers (Aqp2 and Aqp3), but not intercalated cell markers (V-ATPase B1B2, and carbonic anhydrase II). Hence, Aqp2ECE confers principal cell-specific tamoxifen-inducible recombination with absolutely no leakiness, high inducibility, and complete fidelity in cell specificity, which should be an important tool for temporospatial control of target genes in the principal cells and for Aqp2+ lineage tracing in adult mice.
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute , Bethesda, Maryland
| | - Chao Gao
- Department of Regenerative and Cancer Cell Biology, Albany Medical College , Albany, New York
| | - Long Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College , Albany, New York
| | - Ye Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College , Albany, New York
| | - Enuo Chen
- Department of Regenerative and Cancer Cell Biology, Albany Medical College , Albany, New York
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College , Albany, New York
| |
Collapse
|
27
|
Laloux T, Junqueira B, Maistriaux LC, Ahmed J, Jurkiewicz A, Chaumont F. Plant and Mammal Aquaporins: Same but Different. Int J Mol Sci 2018; 19:E521. [PMID: 29419811 PMCID: PMC5855743 DOI: 10.3390/ijms19020521] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Aquaporins (AQPs) constitute an ancient and diverse protein family present in all living organisms, indicating a common ancient ancestor. However, during evolution, these organisms appear and evolve differently, leading to different cell organizations and physiological processes. Amongst the eukaryotes, an important distinction between plants and animals is evident, the most conspicuous difference being that plants are sessile organisms facing ever-changing environmental conditions. In addition, plants are mostly autotrophic, being able to synthesize carbohydrates molecules from the carbon dioxide in the air during the process of photosynthesis, using sunlight as an energy source. It is therefore interesting to analyze how, in these different contexts specific to both kingdoms of life, AQP function and regulation evolved. This review aims at highlighting similarities and differences between plant and mammal AQPs. Emphasis is given to the comparison of isoform numbers, their substrate selectivity, the regulation of the subcellular localization, and the channel activity.
Collapse
Affiliation(s)
- Timothée Laloux
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Bruna Junqueira
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Laurie C Maistriaux
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Jahed Ahmed
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Agnieszka Jurkiewicz
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| |
Collapse
|
28
|
Papadopoulou-Marketou N, Kanaka-Gantenbein C, Marketos N, Chrousos GP, Papassotiriou I. Biomarkers of diabetic nephropathy: A 2017 update. Crit Rev Clin Lab Sci 2017; 54:326-342. [DOI: 10.1080/10408363.2017.1377682] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nektaria Papadopoulou-Marketou
- Diabetes Centre of the Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Athens, Greece
- Department of Endocrinology, Department of Medical and Health Sciences, Linkoping University, Linkoping, Sweden
| | - Christina Kanaka-Gantenbein
- Diabetes Centre of the Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Athens, Greece
| | | | - George P. Chrousos
- Diabetes Centre of the Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Athens, Greece
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, “Aghia Sophia” Children’s Hospital, Athens, Greece
| |
Collapse
|
29
|
Rossi L, Nicoletti MC, Carmosino M, Mastrofrancesco L, Di Franco A, Indrio F, Lella R, Laviola L, Giorgino F, Svelto M, Gesualdo L, Procino G. Urinary Excretion of Kidney Aquaporins as Possible Diagnostic Biomarker of Diabetic Nephropathy. J Diabetes Res 2017; 2017:4360357. [PMID: 28246612 PMCID: PMC5299189 DOI: 10.1155/2017/4360357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/23/2016] [Accepted: 12/26/2016] [Indexed: 11/17/2022] Open
Abstract
Diabetic nephropathy (DN) is a microangiopathic complication of diabetes mellitus (DM) affecting one-third of diabetic patients. The large variability in the clinical presentation of renal involvement in patients with DM makes kidney biopsy a prerequisite for a correct diagnosis. However, renal biopsy is an invasive procedure associated with risk of major complications. Numerous studies aimed to identify a noninvasive biomarker of DN but, so far, none of these is considered to be sufficiently specific and sensitive. Water channel aquaporins (AQPs), expressed at the plasma membrane of epithelial tubular cells, are often dysregulated during DN. In this work, we analyzed the urine excretion of AQP5 and AQP2 (uAQP5 and uAQP2), via exosomes, in 35 diabetic patients: 12 normoalbuminuric with normal renal function (DM), 11 with proteinuric nondiabetic nephropathy (NDN), and 12 with histological diagnosis and classification of DN. ELISA and WB analysis independently showed that uAQP5 was significantly increased in DN patients. Interestingly, linear regression analysis showed a positive correlation between uAQP5 and the histological class of DN. The same analysis, focusing on uAQP2, showed comparable results. Taken together, these data suggest a possible use of AQP5 and AQP2 as novel noninvasive biomarkers to help in classifying the clinical stage of DN.
Collapse
Affiliation(s)
| | - Maria Celeste Nicoletti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Monica Carmosino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Lisa Mastrofrancesco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | | | | | | | | | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
- *Giuseppe Procino:
| |
Collapse
|
30
|
Wu YS, Chen YT, Bao YT, Li ZM, Zhou XJ, He JN, Dai SJ, Li CY. Identification and Verification of Potential Therapeutic Target Genes in Berberine-Treated Zucker Diabetic Fatty Rats through Bioinformatics Analysis. PLoS One 2016; 11:e0166378. [PMID: 27846294 PMCID: PMC5112949 DOI: 10.1371/journal.pone.0166378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/27/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Berberine is used to treat diabetes and dyslipidemia. However, the effect of berberine on specific diabetes treatment targets is unknown. In the current study, we investigated the effect of berberine on the random plasma glucose, glycated hemoglobin (HbA1C), AST, ALT, BUN and CREA levels of Zucker diabetic fatty (ZDF) rats, and we identified and verified the importance of potential therapeutic target genes to provide molecular information for further investigation of the mechanisms underlying the anti-diabetic effects of berberine. METHODS ZDF rats were randomly divided into control (Con), diabetic (DM) and berberine-treated (300 mg⋅kg-1, BBR) groups. After the ZDF rats were treated with BBR for 12 weeks, its effect on the random plasma glucose and HbA1C levels was evaluated. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), CREA and OGTT were measured from blood, respectively. The levels of gene expression in liver samples were analyzed using an Agilent rat gene expression 4x44K microarray. The differentially expressed genes (DEGs) were screened as those with log2 (Con vs DM) ≥ 1 and log2 (BBR vs DM) ≥ 1 expression levels, which were the genes with up-regulated expression, and those with log2 (Con vs DM) ≤ -1 and log2 (BBR vs DM) ≤ -1 expression levels, which were the genes with down-regulated expression; the changes in gene expression were considered significant at P<0.05. The functions of the DEGs were determined using gene ontology (GO) and pathway analysis. Furthermore, a protein-protein interaction (PPI) network was constructed using STRING and Cytoscape software. The expression levels of the key node genes in the livers of the ZDF rats were also analyzed using qRT-PCR. RESULTS We found that 12 weeks of berberine treatment significantly decreased the random plasma glucose, HbA1C levels and improved glucose tolerance. There was a tendency for berberine to reduce AST, ALT, BUN except increase CREA levels. In the livers of the BBR group, we found 154 DEGs, including 91 genes with up-regulated expression and 63 genes with down-regulated expression. In addition, GO enrichment analysis showed significant enrichment of the DEGs in the following categories: metabolic process, localization, cellular process, biological regulation and response to stimulus process. After the gene screening, KEGG pathway analysis showed that the target genes are involved in multiple pathways, including the lysine degradation, glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate and pyruvate metabolism pathways. By combining the results of PPI network and KEGG pathway analyses, we identified seven key node genes. The qRT-PCR results confirmed that the expression of the RHOA, MAPK4 and DLAT genes was significantly down-regulated compared with the levels in DM group, whereas the expression of the SgK494, DOT1L, SETD2 and ME3 genes was significantly up-regulated in the BBR group. CONCLUSION Berberine can significantly improve glucose metabolism and has a protective effects of liver and kidney function in ZDF rats. The qRT-PCR results for the crucial DEGs validated the microarray results. These results suggested that the RHOA, MAPK4, SGK494, DOT1L, SETD2, ME3 and DLAT genes are potential therapeutic target genes for the treatment of diabetes.
Collapse
Affiliation(s)
- Yang Sheng Wu
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yi-Tao Chen
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yu-Ting Bao
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhe-Ming Li
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiao-Jie Zhou
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Jia-Na He
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Shi-Jie Dai
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Chang yu Li
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- * E-mail:
| |
Collapse
|
31
|
Sjöhamn J, Båth P, Neutze R, Hedfalk K. Applying bimolecular fluorescence complementation to screen and purify aquaporin protein:protein complexes. Protein Sci 2016; 25:2196-2208. [PMID: 27643892 PMCID: PMC5119558 DOI: 10.1002/pro.3046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022]
Abstract
Protein:protein interactions play key functional roles in the molecular machinery of the cell. A major challenge for structural biology is to gain high‐resolution structural insight into how membrane protein function is regulated by protein:protein interactions. To this end we present a method to express, detect, and purify stable membrane protein complexes that are suitable for further structural characterization. Our approach utilizes bimolecular fluorescence complementation (BiFC), whereby each protein of an interaction pair is fused to nonfluorescent fragments of yellow fluorescent protein (YFP) that combine and mature as the complex is formed. YFP thus facilitates the visualization of protein:protein interactions in vivo, stabilizes the assembled complex, and provides a fluorescent marker during purification. This technique is validated by observing the formation of stable homotetramers of human aquaporin 0 (AQP0). The method's broader applicability is demonstrated by visualizing the interactions of AQP0 and human aquaporin 1 (AQP1) with the cytoplasmic regulatory protein calmodulin (CaM). The dependence of the AQP0‐CaM complex on the AQP0 C‐terminus is also demonstrated since the C‐terminal truncated construct provides a negative control. This screening approach may therefore facilitate the production and purification of membrane protein:protein complexes for later structural studies by X‐ray crystallography or single particle electron microscopy.
Collapse
Affiliation(s)
- Jennie Sjöhamn
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, SE-405 30, Sweden
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, SE-405 30, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, SE-405 30, Sweden
| | - Kristina Hedfalk
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, SE-405 30, Sweden
| |
Collapse
|
32
|
Skowronski MT, Skowronska A, Rojek A, Oklinski MK, Nielsen S. Prolonged Starvation Causes Up-Regulation of AQP1 in Adipose Tissue Capillaries of AQP7 Knock-Out Mice. Int J Mol Sci 2016; 17:ijms17071101. [PMID: 27455244 PMCID: PMC4964477 DOI: 10.3390/ijms17071101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/21/2016] [Accepted: 07/06/2016] [Indexed: 11/16/2022] Open
Abstract
Aquaporins (AQPs) are membrane proteins involved in the regulation of cellular transport and the balance of water and glycerol and cell volume in the white adipose tissue (WAT). In our previous study, we found the co-expression of the AQP1 water channel and AQP7 in the mouse WAT. In our present study, we aimed to find out whether prolonged starvation influences the AQP1 expression of AQP7 knock-out mice (AQP7 KO) in the WAT. To resolve this hypothesis, immunoperoxidase, immunoblot and immunogold microscopy were used. AQP1 expression was found with the use of immunohistochemistry and was confirmed by immunogold microscopy in the vessels of mouse WAT of all studied groups. Semi-quantitative immunoblot and quantitative immunogold microscopy showed a significant increase (by 2.5- to 3-fold) in the abundance of AQP1 protein expression in WAT in the 72 h starved AQP7 KO mice as compared to AQP7+/+ (p < 0.05) and AQP7−/− (p < 0.01) controls, respectively. In conclusion, the AQP1 water channel located in the vessels of WAT is up-regulated in response to prolonged starvation in the WAT of AQP7 KO mice. The present data suggest that an interaction of different AQP isoforms is required for maintaining proper water homeostasis within the mice WAT.
Collapse
Affiliation(s)
- Mariusz T Skowronski
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, Olsztyn 10-752, Poland.
| | - Agnieszka Skowronska
- Department of Human Physiology, University of Warmia and Mazury in Olsztyn, Olsztyn 10-752, Poland.
| | - Aleksandra Rojek
- Department of Health Science and Technology, Aalborg University, Aalborg 9220, Denmark.
| | - Michal K Oklinski
- Department of Health Science and Technology, Aalborg University, Aalborg 9220, Denmark.
| | - Søren Nielsen
- Department of Health Science and Technology, Aalborg University, Aalborg 9220, Denmark.
| |
Collapse
|
33
|
Lu Y, Chen L, Zhao B, Xiao Z, Meng T, Zhou Q, Zhang W. Urine AQP5 is a potential novel biomarker of diabetic nephropathy. J Diabetes Complications 2016; 30:819-25. [PMID: 27103565 PMCID: PMC5715662 DOI: 10.1016/j.jdiacomp.2016.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/10/2016] [Accepted: 03/21/2016] [Indexed: 11/21/2022]
Abstract
AIMS To investigate if urinary AQP5 serves as a new potential biomarker of diabetic nephropathy. METHODS Using an AQP5-specific enzyme-linked immunosorbent assay, we measured serum and urine AQP5 first in a cohort consisting of normal controls (n=26) and patients with diabetes mellitus (n=25) or diabetic nephropathy (n=33) and then in a validation cohort possessing normal controls (n=10), patients with diabetes mellitus (n=10) or diabetic nephropathy (n=14), and patients with chronic kidney disease of unknown etiology (n=10). We used various statistical methods including Pearson's correlation coefficient, ANOVA with Holm-Sidak test, Receiver Operator Curve, and multiple logistic regression to analyze the data. RESULTS Urine AQP5/creatinine 1) is significantly higher in diabetic nephropathy than in other two groups, and in diabetic nephropathy stage V than in stage III; 2) correlates with serum creatinine, urine albumin, and multiple other known risk factors of the disease; and 3) improves the clinical models in distinguishing diabetic nephropathy from normal controls and diabetic mellitus. CONCLUSION Our data suggest that urine AQP5/creatinine may possess diagnostic and prognostic values as a biomarker of diabetic nephropathy.
Collapse
Affiliation(s)
- Yiyang Lu
- Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, NHLBI, Bethesda, MD 20892-1603, USA
| | - Binhong Zhao
- Department of Pathology and Laboratory medicine, The University of Texas, Medical School at Houston, 6431 Fannin Street, Houston, TX 77030
| | - Zhou Xiao
- Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Ting Meng
- Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Qiaoling Zhou
- Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wenzheng Zhang
- Albany Medical College, MC-165, 47 New Scotland Avenue, Albany, New York 12208.
| |
Collapse
|
34
|
Vukićević T, Schulz M, Faust D, Klussmann E. The Trafficking of the Water Channel Aquaporin-2 in Renal Principal Cells-a Potential Target for Pharmacological Intervention in Cardiovascular Diseases. Front Pharmacol 2016; 7:23. [PMID: 26903868 PMCID: PMC4749865 DOI: 10.3389/fphar.2016.00023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/25/2016] [Indexed: 01/13/2023] Open
Abstract
Arginine-vasopressin (AVP) stimulates the redistribution of water channels, aquaporin-2 (AQP2) from intracellular vesicles into the plasma membrane of renal collecting duct principal cells. By this AVP directs 10% of the water reabsorption from the 170 L of primary urine that the human kidneys produce each day. This review discusses molecular mechanisms underlying the AVP-induced redistribution of AQP2; in particular, it provides an overview over the proteins participating in the control of its localization. Defects preventing the insertion of AQP2 into the plasma membrane cause diabetes insipidus. The disease can be acquired or inherited, and is characterized by polyuria and polydipsia. Vice versa, up-regulation of the system causing a predominant localization of AQP2 in the plasma membrane leads to excessive water retention and hyponatremia as in the syndrome of inappropriate antidiuretic hormone secretion (SIADH), late stage heart failure or liver cirrhosis. This article briefly summarizes the currently available pharmacotherapies for the treatment of such water balance disorders, and discusses the value of newly identified mechanisms controlling AQP2 for developing novel pharmacological strategies. Innovative concepts for the therapy of water balance disorders are required as there is a medical need due to the lack of causal treatments.
Collapse
Affiliation(s)
- Tanja Vukićević
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Maike Schulz
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Dörte Faust
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz AssociationBerlin, Germany; German Centre for Cardiovascular ResearchBerlin, Germany
| |
Collapse
|
35
|
Vlaming H, van Leeuwen F. The upstreams and downstreams of H3K79 methylation by DOT1L. Chromosoma 2016; 125:593-605. [PMID: 26728620 DOI: 10.1007/s00412-015-0570-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 12/14/2022]
Abstract
Histone modifications regulate key processes of eukaryotic genomes. Misregulation of the enzymes that place these modifications can lead to disease. An example of this is DOT1L, the enzyme that can mono-, di-, and trimethylate the nucleosome core on lysine 79 of histone H3 (H3K79). DOT1L plays a role in development and its misregulation has been implicated in several cancers, most notably leukemias caused by a rearrangement of the MLL gene. A DOT1L inhibitor is in clinical trials for these leukemias and shows promising results, yet we are only beginning to understand DOT1L's function and regulation in the cell. Here, we review what happens upstream and downstream of H3K79 methylation. H3K79 methylation levels are highest in transcribed genes, where H2B ubiquitination can promote DOT1L activity. In addition, DOT1L can be targeted to transcribed regions of the genome by several of its interaction partners. Although methylation levels strongly correlate with transcription, the mechanistic link between the two is unclear and probably context-dependent. Methylation of H3K79 may act through recruiting or repelling effector proteins, but we do not yet know which effectors mediate DOT1L's functions. Understanding DOT1L biology better will help us to understand the effects of DOT1L inhibitors and may allow the development of alternative strategies to target the DOT1L pathway.
Collapse
Affiliation(s)
- Hanneke Vlaming
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands.
| |
Collapse
|
36
|
Xiao Z, Chen L, Zhou Q, Zhang W. Dot1l deficiency leads to increased intercalated cells and upregulation of V-ATPase B1 in mice. Exp Cell Res 2015; 344:167-75. [PMID: 26404731 DOI: 10.1016/j.yexcr.2015.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/16/2015] [Accepted: 09/19/2015] [Indexed: 01/19/2023]
Abstract
The collecting duct in the mammalian kidney consists of principal cells (PCs) and intercalated cells (ICs), which regulate electrolyte/fluid and acid/base balance, respectively. The epigenetic regulators of PC and IC differentiation remain obscure. We previously used Aqp2 and V-ATPase B1B2 to label PCs and ICs, respectively. We found that mice with histone H3 K79 methyltransferase Dot1l disrupted in Aqp2-expressing cells (Dot1l(AC)) vs. Dot1l(f/f) possessed ~20% more ICs coupled with a similar decrease in PCs. Here, we performed multiple double immunofluorescence staining using various PC and IC markers and confirmed that this finding. Both α-IC and β-IC populations were significantly expanded in Dot1l(AC) vs. Dot1l(f/f). These changes are associated with significantly upregulated V-ATPase B1 and B2, but not Aqp2, AE1, and Pendrin. Chromatin immunoprecipitation assay unveiled a significant reduction of Dot1l and H3K79 di-methylation bound at the Atp6v1b1 5' flanking region. Overexpression of Dot1a significantly downregulated a stably-transfected luciferase reporter driven by the Atp6v1b1 promoter in IMCD3 cells. This downregulation was impaired, but not completely abolished when a methyltransferase-dead mutant was overexpressed. Taken together, our data suggest that Dot1l is a new epigenetic regulator of PC and IC differentiation and Atp6v1b1 is a new transcriptional target of Dot1l.
Collapse
Affiliation(s)
- Zhou Xiao
- Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Lihe Chen
- Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qiaoling Zhou
- Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wenzheng Zhang
- Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Kitchen P, Day RE, Salman MM, Conner MT, Bill RM, Conner AC. Beyond water homeostasis: Diverse functional roles of mammalian aquaporins. Biochim Biophys Acta Gen Subj 2015; 1850:2410-21. [PMID: 26365508 DOI: 10.1016/j.bbagen.2015.08.023] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/25/2015] [Accepted: 08/30/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Aquaporin (AQP) water channels are best known as passive transporters of water that are vital for water homeostasis. SCOPE OF REVIEW AQP knockout studies in whole animals and cultured cells, along with naturally occurring human mutations suggest that the transport of neutral solutes through AQPs has important physiological roles. Emerging biophysical evidence suggests that AQPs may also facilitate gas (CO2) and cation transport. AQPs may be involved in cell signalling for volume regulation and controlling the subcellular localization of other proteins by forming macromolecular complexes. This review examines the evidence for these diverse functions of AQPs as well their physiological relevance. MAJOR CONCLUSIONS As well as being crucial for water homeostasis, AQPs are involved in physiologically important transport of molecules other than water, regulation of surface expression of other membrane proteins, cell adhesion, and signalling in cell volume regulation. GENERAL SIGNIFICANCE Elucidating the full range of functional roles of AQPs beyond the passive conduction of water will improve our understanding of mammalian physiology in health and disease. The functional variety of AQPs makes them an exciting drug target and could provide routes to a range of novel therapies.
Collapse
Affiliation(s)
- Philip Kitchen
- Molecular Organisation and Assembly in Cells Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Rebecca E Day
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Mootaz M Salman
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Matthew T Conner
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Roslyn M Bill
- School of Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Alex C Conner
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
38
|
Abstract
Aldosterone is a major regulator of Na(+) absorption and acts primarily by controlling the epithelial Na(+) channel (ENaC) function at multiple levels including transcription. ENaC consists of α, β, and γ subunits. In the classical model, aldosterone enhances transcription primarily by activating mineralocorticoid receptor (MR). However, how aldosterone induces chromatin alternation and thus leads to gene activation or repression remains largely unknown. Emerging evidence suggests that Dot1a-Af9 complex plays an important role in repression of αENaC by directly binding and modulating targeted histone H3 K79 hypermethylation at the specific subregions of αENaC promoter. Aldosterone impairs Dot1a-Af9 formation by decreasing expression of Dot1a and Af9 and by inducing Sgk1, which, in turn, phosphorylates Af9 at S435 to weaken Dot1a-Af9 interaction. MR counterbalances Dot1a-Af9 action by competing with Dot1a for binding Af9. Af17 derepresses αENaC by competitively interacting with Dot1a and facilitating Dot1a nuclear export. Consistently, MR(-/-) mice have impaired ENaC expression at day 5 after birth, which may contribute to progressive development of pseudohypoaldosteronism type 1 in a later stage. Af17(-/-) mice have decreased ENaC expression, renal Na(+) retention, and blood pressure. In contrast, Dot1l(AC) mice have increased αENaC expression, despite a 20% reduction of the principal cells. This chapter reviews these findings linking aldosterone action to ENaC transcription through chromatin modification. Future direction toward the understanding the role of Dot1a-Af9 complex beyond ENaC regulation, in particular, in renal fibrosis is also briefly discussed.
Collapse
Affiliation(s)
- Lihe Chen
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA; Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Xi Zhang
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Wenzheng Zhang
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA; Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas, USA.
| |
Collapse
|
39
|
Madeira A, Mósca AF, Moura TF, Soveral G. Aquaporin-5 is expressed in adipocytes with implications in adipose differentiation. IUBMB Life 2015; 67:54-60. [PMID: 25631586 DOI: 10.1002/iub.1345] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/12/2014] [Accepted: 12/28/2014] [Indexed: 11/07/2022]
Abstract
Aquaporins (AQPs) are membrane channels widely distributed in nature. Typically, multiple isoforms are expressed in a single tissue. The adipose tissue is no exception where several AQP members have been identified. The importance of overlapped AQPs expression is unclear, yet interisoforms interactions might be required for key cellular functions. Recently, AQP5 was described as a regulator of other AQP isoforms. Therefore, we hypothesized for a role of AQP5 in adipocyte biology. Gene expression analysis revealed the presence of AQP5 in both 3T3-L1 fibroblasts and adipocytes, being more abundant in the later. AQP5 depletion impaired adipocyte differentiation, which was confirmed by decreased expression of specific differentiation markers. By overexpressing the human AQP5 in mature adipocytes it was possible to ascertain its role as a water channel in a gain-of-function scenario. To our knowledge, this is the first time that AQP5 is reported on adipose tissue. Our data revealed AQP5 as a new player in adipose tissue biology.
Collapse
Affiliation(s)
- Ana Madeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; Department of Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | | | | | | |
Collapse
|
40
|
Activation of muscarinic receptors in rat parotid acinar cells induces AQP5 trafficking to nuclei and apical plasma membrane. Biochim Biophys Acta Gen Subj 2015; 1850:784-93. [PMID: 25603543 DOI: 10.1016/j.bbagen.2015.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/24/2014] [Accepted: 01/12/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND The subcellular distribution of aquaporin-5 (AQP5) in rat parotid acinar cells in response to muscarinic acetylcholine receptor (mAChR) activation remains unclear. METHODS Immunoconfocal and immunoelectron microscopy were used to visualize the distribution of AQP5 in parotid acinar cells. Western blotting was used to analyze AQP5 levels in membranes. To clarify the characteristics of membrane domains associated with AQP5, detergent solubility and sucrose-density flotation experiments were performed. RESULTS Under control conditions, AQP5 was diffusely distributed on the apical plasma membrane (APM) and apical plasmalemmal region and throughout the cytoplasm. Upon mAChR activation, AQP5 was predominantly located in the nucleus, APM and lateral plasma membrane (LPM). Subsequently, localization of AQP5 in the nucleus, APM and LPM was decreased. Prolonged atropine treatment inhibited mAChR agonist-induced translocation of AQP5 to the nucleus, APM and LPM. AQP5 levels were enhanced in isolated nuclei and nuclear membranes prepared from parotid tissues incubated with mAChR agonist. mAChR agonist induced AQP5 levels in both soluble and insoluble nuclear fractions solubilized with Triton X-100 or Lubrol WX. Small amounts of AQP5 in nuclei were detected using low-density sucrose gradient. When AQP5 was present in the nuclear membrane, nuclear size decreased. CONCLUSION The activation of mAChR induced AQP5 translocation to the nucleus, APM and LPM, and AQP5 may trigger water transport across the nuclear membrane and plasma membrane in rat parotid acinar cells. GENERAL SIGNIFICANCE AQP5 translocates to the nuclear membrane and may trigger the movement of water, inducing shrinkage of the nucleus and the start of nuclear functions.
Collapse
|
41
|
Abstract
The apical membrane epithelial Na(+) channel subunit (ENaC) in series with the basolateral Na(+)/K(+)-adenosine triphosphatase mediates collecting duct Na(+) reabsorption. Aldosterone induces αENaC gene transcription, which appears to be rate limiting for ENaC activity in this segment. Although this response has long been assumed to be solely the result of liganded nuclear hormone receptors trans-activating αENaC, epigenetic controls of basal and aldosterone-induced transcription of αENaC in the collecting duct recently were described. These epigenetic pathways involve dynamic nuclear repressor complexes targeted to specific subregions of the αENaC promoter and consisting of the histone methyltransferase disrupter of telomeric silencing (Dot)1a together with the transcriptional factor Af9 or the nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase Sirt1, key co-regulatory proteins, including serum- and glucocorticoid-induced kinase-1 and the putative transcription factor Af17, and targeted chromatin modifications. The complexes, through the action of Dot1a, maintain chromatin associated with the αENaC promoter in a stable hypermethylated state, constraining αENaC transcription under basal conditions. Aldosterone and serum- and glucocorticoid-induced kinase-1, itself, activate αENaC transcription in large part by disrupting or diminishing the Dot1a-Af9 and Dot1a-Sirt1 complexes and their effects on chromatin. Mouse models indicate potential roles of the Dot1a pathways in renal salt excretion and hypertension.
Collapse
Affiliation(s)
- Bruce C Kone
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, The University of Texas Medical School, Houston, TX.
| |
Collapse
|
42
|
Kim W, Choi M, Kim JE. The histone methyltransferase Dot1/DOT1L as a critical regulator of the cell cycle. Cell Cycle 2014; 13:726-38. [PMID: 24526115 PMCID: PMC3979909 DOI: 10.4161/cc.28104] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dot1/DOT1L catalyzes the methylation of histone H3 lysine 79 (H3K79), which regulates diverse cellular processes, such as development, reprogramming, differentiation, and proliferation. In regards to these processes, studies of Dot1/DOT1L-dependent H3K79 methylation have mainly focused on the transcriptional regulation of specific genes. Although the gene transcription mediated by Dot1/DOT1L during the cell cycle is not fully understood, H3K79 methylation plays a critical role in the progression of G 1 phase, S phase, mitosis, and meiosis. This modification may contribute to the chromatin structure that controls gene expression, replication initiation, DNA damage response, microtubule reorganization, chromosome segregation, and heterochromatin formation. Overall, Dot1/DOT1L is required to maintain genomic and chromosomal stability. This review summarizes the several functions of Dot1/DOT1L and highlights its role in cell cycle regulation.
Collapse
Affiliation(s)
- Wootae Kim
- Department of Pharmacology; School of Medicine; Kyung Hee University; Seoul, Republic of Korea; Department of Biomedical Science; Graduate School; Kyung Hee University; Seoul, Republic of Korea
| | - Minji Choi
- Department of Pharmacology; School of Medicine; Kyung Hee University; Seoul, Republic of Korea; Department of Biomedical Science; Graduate School; Kyung Hee University; Seoul, Republic of Korea
| | - Ja-Eun Kim
- Department of Pharmacology; School of Medicine; Kyung Hee University; Seoul, Republic of Korea; Department of Biomedical Science; Graduate School; Kyung Hee University; Seoul, Republic of Korea
| |
Collapse
|
43
|
Sun GD, Cui WP, Guo QY, Miao LN. Histone lysine methylation in diabetic nephropathy. J Diabetes Res 2014; 2014:654148. [PMID: 25215303 PMCID: PMC4158558 DOI: 10.1155/2014/654148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/14/2014] [Indexed: 01/21/2023] Open
Abstract
Diabetic nephropathy (DN) belongs to debilitating microvascular complications of diabetes and is the leading cause of end-stage renal diseases worldwide. Furthermore, outcomes from the DCCT/EDIC study showed that DN often persists and progresses despite intensive glucose control in many diabetes patients, possibly as a result of prior episode of hyperglycemia, which is called "metabolic memory." The underlying mechanisms responsible for the development and progression of DN remain poorly understood. Activation of multiple signaling pathways and key transcription factors can lead to aberrant expression of DN-related pathologic genes in target renal cells. Increasing evidence suggests that epigenetic mechanisms in chromatin such as DNA methylation, histone acetylation, and methylation can influence the pathophysiology of DN and metabolic memory. Exciting researches from cell culture and experimental animals have shown that key histone methylation patterns and the related histone methyltransferases and histone demethylases can play important roles in the regulation of inflammatory and profibrotic genes in renal cells under diabetic conditions. Because histone methylation is dynamic and potentially reversible, it can provide a window of opportunity for the development of much-needed novel therapeutic potential for DN in the future. In this minireview, we discuss recent advances in the field of histone methylation and its roles in the pathogenesis and progression of DN.
Collapse
Affiliation(s)
- Guang-dong Sun
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
- *Guang-dong Sun: and
| | - Wen-peng Cui
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Qiao-yan Guo
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Li-ning Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
- *Li-ning Miao:
| |
Collapse
|
44
|
Unraveling aquaporin interaction partners. Biochim Biophys Acta Gen Subj 2013; 1840:1614-23. [PMID: 24252279 DOI: 10.1016/j.bbagen.2013.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/07/2013] [Accepted: 11/12/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Insight into protein-protein interactions (PPIs) is highly desirable in order to understand the physiology of cellular events. This understanding is one of the challenges in biochemistry and molecular biology today, especially for eukaryotic membrane proteins where hurdles of production, purification and structural determination must be passed. SCOPE OF REVIEW We have explored the common strategies used to find medically relevant interaction partners of aquaporins (AQPs). The most frequently used methods to detect direct contact, yeast two-hybrid interaction assay and co-precipitation, are described together with interactions specifically found for the selected targets AQP0, AQP2, AQP4 and AQP5. MAJOR CONCLUSIONS The vast majority of interactions involve the aquaporin C-terminus and the characteristics of the interaction partners are strikingly diverse. While the well-established methods for PPIs are robust, a novel approach like bimolecular fluorescence complementation (BiFC) is attractive for screening many conditions as well as transient interactions. The ultimate goal is structural evaluation of protein complexes in order to get mechanistic insight into how proteins communicate at a molecular level. GENERAL SIGNIFICANCE What we learn from the human aquaporin field in terms of method development and communication between proteins can be of major use for any integral membrane protein of eukaryotic origin. This article is part of a Special Issue entitled Aquaporins.
Collapse
|
45
|
Zhang X, Zhou Q, Chen L, Berger S, Wu H, Xiao Z, Pearce D, Zhou X, Zhang W. Mineralocorticoid receptor antagonizes Dot1a-Af9 complex to increase αENaC transcription. Am J Physiol Renal Physiol 2013; 305:F1436-44. [PMID: 24026182 DOI: 10.1152/ajprenal.00202.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aldosterone is a major regulator of Na(+) absorption and acts by activating the mineralocorticoid receptor (MR) to stimulate the epithelial Na(+) channel (ENaC). MR(-/-) mice exhibited pseudohypoaldosteronism type 1 (hyponatremia, hyperkalemia, salt wasting, and high levels of aldosterone) and died around postnatal day 10. However, if and how MR regulates ENaC transcription remain incompletely understood. Our earlier work demonstrated that aldosterone activates αENaC transcription by reducing expression of Dot1a and Af9 and by impairing Dot1a-Af9 interaction. Most recently, we reported identification of a major Af9 binding site in the αENaC promoter and upregulation of αENaC mRNA expression in mouse kidneys lacking Dot1a. Despite these findings, the putative antagonism between the MR/aldosterone and Dot1a-Af9 complexes has never been addressed. The molecular defects leading to PHA-1 in MR(-/-) mice remain elusive. Here, we report that MR competes with Dot1a to bind Af9. MR/aldosterone and Dot1a-Af9 complexes mutually counterbalance ENaC mRNA expression in inner medullary collecting duct 3 (IMCD3) cells. Real-time RT-quantitative PCR revealed that 5-day-old MR(-/-) vs. MR(+/+) mice had significantly lower αENaC mRNA levels. This change was associated with an increased Af9 binding and H3 K79 hypermethylation in the αENaC promoter. Therefore, this study identified MR as a novel binding partner and regulator of Af9 and a novel mechanism coupling MR-mediated activation with relief of Dot1a-Af9-mediated repression via MR-Af9 interaction. Impaired ENaC expression due to failure to inhibit Dot1a-Af9 may play an important role in the early stages of PHA-1 (before postnatal day 8) in MR(-/-) mice.
Collapse
Affiliation(s)
- Xi Zhang
- Dept. of Internal Medicine, Univ. of Texas Medical School at Houston, 6431 Fannin, MSB 5.135, Houston, TX 77030.
| | | | | | | | | | | | | | | | | |
Collapse
|