1
|
Abstract
AbstractSpatially fractionated radiation therapy (SFRT) challenges some of the classical dogmas in conventional radiotherapy. The highly modulated spatial dose distributions in SFRT have been shown to lead, both in early clinical trials and in small animal experiments, to a significant increase in normal tissue dose tolerances. Tumour control effectiveness is maintained or even enhanced in some configurations as compared with conventional radiotherapy. SFRT seems to activate distinct radiobiological mechanisms, which have been postulated to involve bystander effects, microvascular alterations and/or immunomodulation. Currently, it is unclear which is the dosimetric parameter which correlates the most with both tumour control and normal tissue sparing in SFRT. Additional biological experiments aiming at parametrizing the relationship between the irradiation parameters (beam width, spacing, peak-to-valley dose ratio, peak and valley doses) and the radiobiology are needed. A sound knowledge of the interrelation between the physical parameters in SFRT and the biological response would expand its clinical use, with a higher level of homogenisation in the realisation of clinical trials. This manuscript reviews the state of the art of this promising therapeutic modality, the current radiobiological knowledge and elaborates on future perspectives.
Collapse
|
2
|
Laissue JA. Elke Bräuer-Krisch: dedication, creativity and generosity: May 17, 1961-September 10, 2018. Int J Radiat Biol 2021; 98:280-287. [PMID: 34129423 DOI: 10.1080/09553002.2021.1941385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE This extraordinary woman worked her professional way from a radiation protection engineer to become the successful principal investigator of a prestigious international European project for a new radiation therapy (ERC Synergy grant, HORIZON 2020). The evaluation of the submitted proposal was very positive. The panel proposed that it be funded. Elke tragically passed away a few days before this conclusion of the panel. The present account describes her gradual career development; it includes many episodes that Elke personally chronicled in her curriculum of 2017. METHODS An internet literature search was performed using Google Scholar and other sources to assist in the writing of this narrative review and account. CONCLUSIONS In parallel to the development of the new Biomedical Beamline ID17 at the European Synchrotron Radiation Facility in Grenoble in the late nineties, Elke focused her interest and her personal and professional priorities on MRT, particularly on its clinical goals. She outlined her main objectives in several documents: (1) develop a new paradigm of cancer care by broadening the foundation for MRT. (2) Filling the gaps in basic biological knowledge about the mechanisms of MRT effects on normal and neoplastic tissues. (3) Broaden the preclinical level of evidence for the low normal organ toxicity of MRT versus standard X-ray irradiations; preclinical experiments involved the application of MRT to animal tumor patients, to animals of larger size than laboratory rodents, using larger radiation field sizes, and irradiating in a real-time scenario comparable to the one planned for human patients. (4) To foster the specific purpose of radiosurgical MRT of tumor patients at the ESRF that required development of new, specific state of the art modalities and tools for treatment planning, dosimetry, dose calculation, patient positioning and, of particular importance, redundant levels of patient safety. Just as she was about to take responsibility as principal investigator for a prestigious international European project on a new radiation therapy, death called Elke in.
Collapse
Affiliation(s)
- Jean A Laissue
- Institute of Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Griffin RJ, Ahmed MM, Amendola B, Belyakov O, Bentzen SM, Butterworth KT, Chang S, Coleman CN, Djonov V, Formenti SC, Glatstein E, Guha C, Kalnicki S, Le QT, Loo BW, Mahadevan A, Massaccesi M, Maxim PG, Mohiuddin M, Mohiuddin M, Mayr NA, Obcemea C, Petersson K, Regine W, Roach M, Romanelli P, Simone CB, Snider JW, Spitz DR, Vikram B, Vozenin MC, Abdel-Wahab M, Welsh J, Wu X, Limoli CL. Understanding High-Dose, Ultra-High Dose Rate, and Spatially Fractionated Radiation Therapy. Int J Radiat Oncol Biol Phys 2020; 107:766-778. [PMID: 32298811 DOI: 10.1016/j.ijrobp.2020.03.028] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
The National Cancer Institute's Radiation Research Program, in collaboration with the Radiosurgery Society, hosted a workshop called Understanding High-Dose, Ultra-High Dose Rate and Spatially Fractionated Radiotherapy on August 20 and 21, 2018 to bring together experts in experimental and clinical experience in these and related fields. Critically, the overall aims were to understand the biological underpinning of these emerging techniques and the technical/physical parameters that must be further defined to drive clinical practice through innovative biologically based clinical trials.
Collapse
Affiliation(s)
- Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mansoor M Ahmed
- Division of Cancer Treatment and Diagnosis, Rockville, Maryland
| | | | - Oleg Belyakov
- International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Søren M Bentzen
- Division of Biostatistics and Bioinformatics, University of Maryland, Baltimore, Maryland
| | - Karl T Butterworth
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, United Kingdom
| | - Sha Chang
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | | | - Valentin Djonov
- Bern Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Sylvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Eli Glatstein
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Shalom Kalnicki
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, California
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, California
| | - Anand Mahadevan
- Department of Radiation Oncology, Geisinger Health Systems, Danville, Pennsylvania
| | - Mariangela Massaccesi
- Department of Radiation Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Peter G Maxim
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | - Nina A Mayr
- Department of Radiation Oncology, University of Washington Medical Center, Seattle, Washington
| | | | - Kristoffer Petersson
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - William Regine
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mack Roach
- Department of Radiation Oncology & Urology, University of California, San Francisco, San Francisco, California
| | | | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York
| | - James W Snider
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Douglas R Spitz
- Free Radical & Radiation Biology Program, University of Iowa, Iowa City, Iowa
| | | | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital, Switzerland
| | - May Abdel-Wahab
- International Atomic Energy Agency Headquarters, Vienna International Centre, Vienna, Austria
| | - James Welsh
- Edward Hines VA Medical Center and Loyola University Stritch School of Medicine, Chicago, Illinois
| | - Xiaodong Wu
- Executive Medical Physics Associates, Miami, Florida; Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Charles L Limoli
- Department of Radiation Oncology, University of California-Irvine, Irvine, California.
| |
Collapse
|
4
|
Fernandez-Palomo C, Fazzari J, Trappetti V, Smyth L, Janka H, Laissue J, Djonov V. Animal Models in Microbeam Radiation Therapy: A Scoping Review. Cancers (Basel) 2020; 12:cancers12030527. [PMID: 32106397 PMCID: PMC7139755 DOI: 10.3390/cancers12030527] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Microbeam Radiation Therapy (MRT) is an innovative approach in radiation oncology where a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose beams which are tens of micrometres wide and separated by a few hundred micrometres. OBJECTIVE This scoping review was conducted to map the available evidence and provide a comprehensive overview of the similarities, differences, and outcomes of all experiments that have employed animal models in MRT. METHODS We considered articles that employed animal models for the purpose of studying the effects of MRT. We searched in seven databases for published and unpublished literature. Two independent reviewers screened citations for inclusion. Data extraction was done by three reviewers. RESULTS After screening 5688 citations and 159 full-text papers, 95 articles were included, of which 72 were experimental articles. Here we present the animal models and pre-clinical radiation parameters employed in the existing MRT literature according to their use in cancer treatment, non-neoplastic diseases, or normal tissue studies. CONCLUSIONS The study of MRT is concentrated in brain-related diseases performed mostly in rat models. An appropriate comparison between MRT and conventional radiotherapy (instead of synchrotron broad beam) is needed. Recommendations are provided for future studies involving MRT.
Collapse
Affiliation(s)
| | - Jennifer Fazzari
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| | - Verdiana Trappetti
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| | - Lloyd Smyth
- Department of Obstetrics & Gynaecology, University of Melbourne, 3057 Parkville, Australia;
| | - Heidrun Janka
- Medical Library, University Library Bern, University of Bern, 3012 Bern, Switzerland;
| | - Jean Laissue
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
- Correspondence: ; Tel.: +41-31-631-8432
| |
Collapse
|
5
|
Bartzsch S, Corde S, Crosbie JC, Day L, Donzelli M, Krisch M, Lerch M, Pellicioli P, Smyth LML, Tehei M. Technical advances in x-ray microbeam radiation therapy. Phys Med Biol 2020; 65:02TR01. [PMID: 31694009 DOI: 10.1088/1361-6560/ab5507] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the last 25 years microbeam radiation therapy (MRT) has emerged as a promising alternative to conventional radiation therapy at large, third generation synchrotrons. In MRT, a multi-slit collimator modulates a kilovoltage x-ray beam on a micrometer scale, creating peak dose areas with unconventionally high doses of several hundred Grays separated by low dose valley regions, where the dose remains well below the tissue tolerance level. Pre-clinical evidence demonstrates that such beam geometries lead to substantially reduced damage to normal tissue at equal tumour control rates and hence drastically increase the therapeutic window. Although the mechanisms behind MRT are still to be elucidated, previous studies indicate that immune response, tumour microenvironment, and the microvasculature may play a crucial role. Beyond tumour therapy, MRT has also been suggested as a microsurgical tool in neurological disorders and as a primer for drug delivery. The physical properties of MRT demand innovative medical physics and engineering solutions for safe treatment delivery. This article reviews technical developments in MRT and discusses existing solutions for dosimetric validation, reliable treatment planning and safety. Instrumentation at synchrotron facilities, including beam production, collimators and patient positioning systems, is also discussed. Specific solutions reviewed in this article include: dosimetry techniques that can cope with high spatial resolution, low photon energies and extremely high dose rates of up to 15 000 Gy s-1, dose calculation algorithms-apart from pure Monte Carlo Simulations-to overcome the challenge of small voxel sizes and a wide dynamic dose-range, and the use of dose-enhancing nanoparticles to combat the limited penetrability of a kilovoltage energy spectrum. Finally, concepts for alternative compact microbeam sources are presented, such as inverse Compton scattering set-ups and carbon nanotube x-ray tubes, that may facilitate the transfer of MRT into a hospital-based clinical environment. Intensive research in recent years has resulted in practical solutions to most of the technical challenges in MRT. Treatment planning, dosimetry and patient safety systems at synchrotrons have matured to a point that first veterinary and clinical studies in MRT are within reach. Should these studies confirm the promising results of pre-clinical studies, the authors are confident that MRT will become an effective new radiotherapy option for certain patients.
Collapse
Affiliation(s)
- Stefan Bartzsch
- Department of Radiation Oncology, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany. Helmholtz Centre Munich, Institute for Radiation Medicine, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Meyer J, Eley J, Schmid TE, Combs SE, Dendale R, Prezado Y. Spatially fractionated proton minibeams. Br J Radiol 2019; 92:20180466. [PMID: 30359081 PMCID: PMC6541186 DOI: 10.1259/bjr.20180466] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/26/2022] Open
Abstract
Extraordinary normal tissue response to highly spatially fractionated X-ray beams has been explored for over 25 years. More recently, alternative radiation sources have been developed and utilized with the aim to evoke comparable effects. These include protons, which lend themselves well for this endeavour due to their physical depth dose characteristics as well as corresponding variable biological effectiveness. This paper addresses the motivation for using protons to generate spatially fractionated beams and reviews the technological implementations and experimental results to date. This includes simulation and feasibility studies, collimation and beam characteristics, dosimetry and biological considerations as well as the results of in vivo and in vitro studies. Experimental results are emerging indicating an extraordinary normal tissue sparing effect analogous to what has been observed for synchrotron generated X-ray microbeams. The potential for translational research and feasibility of spatially modulated proton beams in clinical settings is discussed.
Collapse
Affiliation(s)
- Juergen Meyer
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - John Eley
- Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | - Remi Dendale
- Institut Curie, Centre de Protonthérapie d’Orsay, Orsay, France
| | - Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique, Universités Paris 11 and Paris 7, Campus d'Orsay, Orsay, France
| |
Collapse
|
7
|
Fardone E, Pouyatos B, Bräuer-Krisch E, Bartzsch S, Mathieu H, Requardt H, Bucci D, Barbone G, Coan P, Battaglia G, Le Duc G, Bravin A, Romanelli P. Synchrotron-generated microbeams induce hippocampal transections in rats. Sci Rep 2018; 8:184. [PMID: 29317649 PMCID: PMC5760574 DOI: 10.1038/s41598-017-18000-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022] Open
Abstract
Synchrotron-generated microplanar beams (microbeams) provide the most stereo-selective irradiation modality known today. This novel irradiation modality has been shown to control seizures originating from eloquent cortex causing no neurological deficit in experimental animals. To test the hypothesis that application of microbeams in the hippocampus, the most common source of refractory seizures, is safe and does not induce severe side effects, we used microbeams to induce transections to the hippocampus of healthy rats. An array of parallel microbeams carrying an incident dose of 600 Gy was delivered to the rat hippocampus. Immunohistochemistry of phosphorylated γ-H2AX showed cell death along the microbeam irradiation paths in rats 48 hours after irradiation. No evident behavioral or neurological deficits were observed during the 3-month period of observation. MR imaging showed no signs of radio-induced edema or radionecrosis 3 months after irradiation. Histological analysis showed a very well preserved hippocampal cytoarchitecture and confirmed the presence of clear-cut microscopic transections across the hippocampus. These data support the use of synchrotron-generated microbeams as a novel tool to slice the hippocampus of living rats in a minimally invasive way, providing (i) a novel experimental model to study hippocampal function and (ii) a new treatment tool for patients affected by refractory epilepsy induced by mesial temporal sclerosis.
Collapse
Affiliation(s)
- Erminia Fardone
- European Synchrotron Radiation Facility (ESRF), Grenoble, France.,Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Benoît Pouyatos
- Grenoble Institut des Neurosciences, Inserm U836, Université Joseph Fourier, Grenoble, France
| | | | - Stefan Bartzsch
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,The Institute of Cancer Research, London, United Kingdom
| | - Hervè Mathieu
- Grenoble Institut des Neurosciences, Inserm U836, Université Joseph Fourier, Grenoble, France
| | - Herwig Requardt
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | | | - Giacomo Barbone
- Department of Physics, Ludwig Maximilians University, Garching, Germany
| | - Paola Coan
- Department of Physics, Ludwig Maximilians University, Garching, Germany.,Department of Clinical Radiology, Ludwig Maximilians University, Munich, Germany
| | | | - Geraldine Le Duc
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Alberto Bravin
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Pantaleo Romanelli
- Brain Radiosurgery, Cyberknife Center, Centro Diagnostico Italiano (CDI), Milano, Italy.
| |
Collapse
|
8
|
Prezado Y, Jouvion G, Hardy D, Patriarca A, Nauraye C, Bergs J, González W, Guardiola C, Juchaux M, Labiod D, Dendale R, Jourdain L, Sebrie C, Pouzoulet F. Proton minibeam radiation therapy spares normal rat brain: Long-Term Clinical, Radiological and Histopathological Analysis. Sci Rep 2017; 7:14403. [PMID: 29089533 PMCID: PMC5663851 DOI: 10.1038/s41598-017-14786-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/16/2017] [Indexed: 11/16/2022] Open
Abstract
Proton minibeam radiation therapy (pMBRT) is a novel strategy for minimizing normal tissue damage resulting from radiotherapy treatments. This strategy partners the inherent advantages of protons for radiotherapy with the gain in normal tissue preservation observed upon irradiation with narrow, spatially fractionated beams. In this study, whole brains (excluding the olfactory bulb) of Fischer 344 rats (n = 16) were irradiated at the Orsay Proton Therapy Center. Half of the animals received standard proton irradiation, while the other half were irradiated with pMBRT at the same average dose (25 Gy in one fraction). The animals were followed-up for 6 months. A magnetic resonance imaging (MRI) study using a 7-T small-animal MRI scanner was performed along with a histological analysis. Rats treated with conventional proton irradiation exhibited severe moist desquamation, permanent epilation and substantial brain damage. In contrast, rats in the pMBRT group exhibited no skin damage, reversible epilation and significantly reduced brain damage; some brain damage was observed in only one out of the eight irradiated rats. These results demonstrate that pMBRT leads to an increase in normal tissue resistance. This net gain in normal tissue sparing can lead to the efficient treatment of very radio-resistant tumours, which are currently mostly treated palliatively.
Collapse
Affiliation(s)
- Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS); Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France.
| | - Gregory Jouvion
- Institut Pasteur, Histopathologie Humaine et Modèles Animaux, Institut Pasteur, 28 Rue du Docteur Roux, 75015, Paris, France
| | - David Hardy
- Institut Pasteur, Histopathologie Humaine et Modèles Animaux, Institut Pasteur, 28 Rue du Docteur Roux, 75015, Paris, France
| | - Annalisa Patriarca
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay, 91898, France
| | - Catherine Nauraye
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay, 91898, France
| | - Judith Bergs
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS); Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Wilfredo González
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS); Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Consuelo Guardiola
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS); Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Marjorie Juchaux
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS); Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Dalila Labiod
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
- Paris Sud University, Paris -Saclay University, 91405, Orsay, France
| | - Remi Dendale
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay, 91898, France
| | - Laurène Jourdain
- Imagerie par Résonance Magnétique Médicale et Multi-modalités (IR4M-UMR8081), Université Paris Sud, 91405, Orsay, France
| | - Catherine Sebrie
- Imagerie par Résonance Magnétique Médicale et Multi-modalités (IR4M-UMR8081), Université Paris Sud, 91405, Orsay, France
| | - Frederic Pouzoulet
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
- Paris Sud University, Paris -Saclay University, 91405, Orsay, France
| |
Collapse
|
9
|
Fardone E, Bravin A, Conti A, Bräuer-Krisch E, Requardt H, Bucci D, Le Duc G, Battaglia G, Romanelli P. Rat sensorimotor cortex tolerance to parallel transections induced by synchrotron-generated X-ray microbeams. Sci Rep 2017; 7:14290. [PMID: 29085040 PMCID: PMC5662592 DOI: 10.1038/s41598-017-14757-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/09/2017] [Indexed: 11/21/2022] Open
Abstract
Microbeam radiation therapy is a novel preclinical technique, which uses synchrotron-generated X-rays for the treatment of brain tumours and drug-resistant epilepsies. In order to safely translate this approach to humans, a more in-depth knowledge of the long-term radiobiology of microbeams in healthy tissues is required. We report here the result of the characterization of the rat sensorimotor cortex tolerance to microradiosurgical parallel transections. Healthy adult male Wistar rats underwent irradiation with arrays of parallel microbeams. Beam thickness, spacing and incident dose were 100 or 600 µm, 400 or 1200 µm and 360 or 150 Gy, respectively. Motor performance was carried over a 3-month period. Three months after irradiation rats were sacrificed to evaluate the effects of irradiation on brain tissues by histology and immunohistochemistry. Microbeam irradiation of sensorimotor cortex did not affect weight gain and motor performance. No gross signs of paralysis or paresis were also observed. The cortical architecture was not altered, despite the presence of cell death along the irradiation path. Reactive gliosis was evident in the microbeam path of rats irradiated with 150 Gy, whereas no increase was observed in rats irradiated with 360 Gy.
Collapse
Affiliation(s)
- Erminia Fardone
- European Synchrotron Radiation Facility, Grenoble, France.,Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Alberto Bravin
- European Synchrotron Radiation Facility, Grenoble, France.
| | - Alfredo Conti
- Department of Neurosurgery, University of Messina, Messina, Italy
| | | | | | | | | | | | - Pantaleo Romanelli
- Centro Diagnostico Italiano, Brain Radiosurgery, Cyberknife Center, Milano, Italy. .,AB Medica, Lainate, Italy.
| |
Collapse
|
10
|
Schültke E, Balosso J, Breslin T, Cavaletti G, Djonov V, Esteve F, Grotzer M, Hildebrandt G, Valdman A, Laissue J. Microbeam radiation therapy - grid therapy and beyond: a clinical perspective. Br J Radiol 2017; 90:20170073. [PMID: 28749174 PMCID: PMC5853350 DOI: 10.1259/bjr.20170073] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Microbeam irradiation is spatially fractionated radiation on a micrometer scale. Microbeam irradiation with therapeutic intent has become known as microbeam radiation therapy (MRT). The basic concept of MRT was developed in the 1980s, but it has not yet been tested in any human clinical trial, even though there is now a large number of animal studies demonstrating its marked therapeutic potential with an exceptional normal tissue sparing effect. Furthermore, MRT is conceptually similar to macroscopic grid based radiation therapy which has been used in clinical practice for decades. In this review, the potential clinical applications of MRT are analysed for both malignant and non-malignant diseases.
Collapse
Affiliation(s)
- Elisabeth Schültke
- 1 Department of Radiooncology, Rostock University Medical Center, Rostock, Germany
| | - Jacques Balosso
- 2 Departement of Radiation Oncology and Medical Physics, University Grenoble Alpes (UGA) and Centre Hospitalier Universitaire Grenoble Alpes (CHUGA), Grenoble, France
| | - Thomas Breslin
- 3 Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden.,4 Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Guido Cavaletti
- 5 Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valentin Djonov
- 6 Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Francois Esteve
- 2 Departement of Radiation Oncology and Medical Physics, University Grenoble Alpes (UGA) and Centre Hospitalier Universitaire Grenoble Alpes (CHUGA), Grenoble, France
| | - Michael Grotzer
- 7 Department of Oncology, University Children's Hospital of Zurich, Zurich, Switzerland
| | - Guido Hildebrandt
- 1 Department of Radiooncology, Rostock University Medical Center, Rostock, Germany
| | - Alexander Valdman
- 8 Department of Oncology and Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Jean Laissue
- 6 Institute of Anatomy, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Chen H, Wang B, Wang C, Cao W, Zhang J, Ma Y, Hong Y, Fu S, Wu F, Ying W. Dose-rate plays a significant role in synchrotron radiation X-ray-induced damage of rodent testes. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2016; 8:140-145. [PMID: 28078052 PMCID: PMC5209442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Synchrotron radiation (SR) X-ray has significant potential for applications in medical imaging and cancer treatment. However, the mechanisms underlying SR X-ray-induced tissue damage remain unclear. Previous studies on regular X-ray-induced tissue damage have suggested that dose-rate could affect radiation damage. Because SR X-ray has exceedingly high dose-rate compared to regular X-ray, it remains to be determined if dose-rate may affect SR X-ray-induced tissue damage. We used rodent testes as a model to investigate the role of dose-rate in SR X-ray-induced tissue damage. One day after SR X-ray irradiation, we determined the effects of the irradiation of the same dosage at two different dose-rates, 0.11 Gy/s and 1.1 Gy/s, on TUNEL signals, caspase-3 activation and DNA double-strand breaks (DSBs) of the testes. Compared to those produced by the irradiation at 0.11 Gy/s, irradiation at 1.1 Gy/s produced higher levels of DSBs, TUNEL signals, and caspase-3 activation in the testes. Our study has provided the first evidence suggesting that dose-rate could be a significant factor in SR X-ray-induced tissue damage, which may establish a valuable base for utilizing this factor to manipulate the tissue damage in SR X-ray-based medical applications.
Collapse
Affiliation(s)
- Heyu Chen
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong UniversityShanghai, P. R. China
| | - Ban Wang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong UniversityShanghai, P. R. China
| | - Caixia Wang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong UniversityShanghai, P. R. China
| | - Wei Cao
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong UniversityShanghai, P. R. China
| | - Jie Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong UniversityShanghai, P. R. China
| | - Yingxin Ma
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong UniversityShanghai, P. R. China
| | - Yunyi Hong
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong UniversityShanghai, P. R. China
| | - Shen Fu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer HospitalShanghai, P. R. China
| | - Fan Wu
- Department of Civil Engineering, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong UniversityShanghai, P. R. China
| | - Weihai Ying
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong UniversityShanghai, P. R. China
| |
Collapse
|
12
|
Pouyatos B, Nemoz C, Chabrol T, Potez M, Bräuer E, Renaud L, Pernet-Gallay K, Estève F, David O, Kahane P, Laissue JA, Depaulis A, Serduc R. Synchrotron X-ray microtransections: a non invasive approach for epileptic seizures arising from eloquent cortical areas. Sci Rep 2016; 6:27250. [PMID: 27264273 PMCID: PMC4893707 DOI: 10.1038/srep27250] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/13/2016] [Indexed: 11/09/2022] Open
Abstract
Synchrotron-generated X-ray (SRX) microbeams deposit high radiation doses to submillimetric targets whilst minimizing irradiation of neighboring healthy tissue. We developed a new radiosurgical method which demonstrably transects cortical brain tissue without affecting adjacent regions. We made such image-guided SRX microtransections in the left somatosensory cortex in a rat model of generalized epilepsy using high radiation doses (820 Gy) in thin (200 μm) parallel slices of tissue. This procedure, targeting the brain volume from which seizures arose, altered the abnormal neuronal activities for at least 9 weeks, as evidenced by a decrease of seizure power and coherence between tissue slices in comparison to the contralateral cortex. The brain tissue located between transections stayed histologically normal, while the irradiated micro-slices remained devoid of myelin and neurons two months after irradiation. This pre-clinical proof of concept highlights the translational potential of non-invasive SRX transections for treating epilepsies that are not eligible for resective surgery.
Collapse
Affiliation(s)
- B. Pouyatos
- Inserm, U1216, F-38000 Grenoble, France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Synapcell S.A.S – Bâtiment Biopolis – 5 avenue du Grand Sablon, La Tronche, France
| | | | - T. Chabrol
- Univ. Grenoble Alpes, EA RSRM, F-38000 Grenoble, France
| | - M. Potez
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
| | | | - L. Renaud
- CNRS; CE2F PRIM UMS3537; Marseille, France
- Aix Marseille Université; Centre d’Exploration Fonctionnelle et de Formation; France
| | - K. Pernet-Gallay
- Inserm, U1216, F-38000 Grenoble, France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
| | - F. Estève
- Univ. Grenoble Alpes, EA RSRM, F-38000 Grenoble, France
| | - O. David
- Inserm, U1216, F-38000 Grenoble, France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
| | - P. Kahane
- Inserm, U1216, F-38000 Grenoble, France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- CHU Grenoble Alpes, F-38000 Grenoble, France
| | | | - A. Depaulis
- Inserm, U1216, F-38000 Grenoble, France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
| | - R. Serduc
- Univ. Grenoble Alpes, EA RSRM, F-38000 Grenoble, France
| |
Collapse
|
13
|
Martínez-Rovira I, Fois G, Prezado Y. Dosimetric evaluation of new approaches in GRID therapy using nonconventional radiation sources. Med Phys 2015; 42:685-93. [PMID: 25652482 DOI: 10.1118/1.4905042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Spatial fractionation of the dose has proven to be a promising approach to increase the tolerance of healthy tissue, which is the main limitation of radiotherapy. A good example of that is GRID therapy, which has been successfully used in the management of large tumors with low toxicity. The aim of this work is to explore new avenues using nonconventional sources: GRID therapy by using kilovoltage (synchrotron) x-rays, the use of very high-energy electrons, and proton GRID therapy. They share in common the use of the smallest possible grid sizes in order to exploit the dose-volume effects. METHODS Monte Carlo simulations (penelope/peneasy and geant4/GATE codes) were used as a method to study dose distributions resulting from irradiations in different configurations of the three proposed techniques. As figure of merit, percentage (peak and valley) depth dose curves, penumbras, and central peak-to-valley dose ratios (PVDR) were evaluated. As shown in previous biological experiments, high PVDR values are requested for healthy tissue sparing. A superior tumor control may benefit from a lower PVDR. RESULTS High PVDR values were obtained in the healthy tissue for the three cases studied. When low energy photons are used, the treatment of deep-seated tumors can still be performed with submillimetric grid sizes. Superior PVDR values were reached with the other two approaches in the first centimeters along the beam path. The use of protons has the advantage of delivering a uniform dose distribution in the tumor, while healthy tissue benefits from the spatial fractionation of the dose. In the three evaluated techniques, there is a net reduction in penumbra with respect to radiosurgery. CONCLUSIONS The high PVDR values in the healthy tissue and the use of small grid sizes in the three presented approaches might constitute a promising alternative to treat tumors with such spatially fractionated radiotherapy techniques. The dosimetric results presented here support the interest of performing radiobiology experiments in order to evaluate these new avenues.
Collapse
Affiliation(s)
- I Martínez-Rovira
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage-15 rue Georges Clemenceau, Orsay cedex 91406, France
| | - G Fois
- Dipartimento di Fisica, Università degli Studi di Cagliari, Strada provinciale Monserrato Sestu km 0.700, Monserrato, Cagliari 09042, Italy
| | - Y Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage-15 rue Georges Clemenceau, Orsay cedex 91406, France
| |
Collapse
|
14
|
Microradiosurgical cortical transections generated by synchrotron radiation. Phys Med 2015; 31:642-6. [DOI: 10.1016/j.ejmp.2015.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/15/2015] [Accepted: 05/13/2015] [Indexed: 11/22/2022] Open
|
15
|
George PM, Steinberg GK. Novel Stroke Therapeutics: Unraveling Stroke Pathophysiology and Its Impact on Clinical Treatments. Neuron 2015; 87:297-309. [PMID: 26182415 PMCID: PMC4911814 DOI: 10.1016/j.neuron.2015.05.041] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stroke remains a leading cause of death and disability in the world. Over the past few decades our understanding of the pathophysiology of stroke has increased, but greater insight is required to advance the field of stroke recovery. Clinical treatments have improved in the acute time window, but long-term therapeutics remain limited. Complex neural circuits damaged by ischemia make restoration of function after stroke difficult. New therapeutic approaches, including cell transplantation or stimulation, focus on reestablishing these circuits through multiple mechanisms to improve circuit plasticity and remodeling. Other research targets intact networks to compensate for damaged regions. This review highlights several important mechanisms of stroke injury and describes emerging therapies aimed at improving clinical outcomes.
Collapse
Affiliation(s)
- Paul M George
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Zhang L, Yuan H, Inscoe C, Chtcheprov P, Hadsell M, Lee Y, Lu J, Chang S, Zhou O. Nanotube x-ray for cancer therapy: a compact microbeam radiation therapy system for brain tumor treatment. Expert Rev Anticancer Ther 2015; 14:1411-8. [PMID: 25417729 DOI: 10.1586/14737140.2014.978293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Microbeam radiation therapy (MRT) is a promising preclinical modality for cancer treatment, with remarkable preferential tumoricidal effects, that is, tumor eradication without damaging normal tissue functions. Significant lifespan extension has been demonstrated in brain tumor-bearing small animals treated with MRT. So far, MRT experiments can only be performed in a few synchrotron facilities around the world. Limited access to MRT facilities prevents this enormously promising radiotherapy technology from reaching the broader biomedical research community and hinders its potential clinical translation. We recently demonstrated, for the first time, the feasibility of generating microbeam radiation in a laboratory environment using a carbon nanotube x-ray source array and performed initial small animal studies with various brain tumor models. This new nanotechnology-enabled microbeam delivery method, although still in its infancy, has shown promise for achieving comparable therapeutic effects to synchrotron MRT and has offered a potential pathway for clinical translation.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang L, Yuan H, Burk LM, Inscoe CR, Hadsell MJ, Chtcheprov P, Lee YZ, Lu J, Chang S, Zhou O. Image-guided microbeam irradiation to brain tumour bearing mice using a carbon nanotube x-ray source array. Phys Med Biol 2014; 59:1283-303. [PMID: 24556798 DOI: 10.1088/0031-9155/59/5/1283] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microbeam radiation therapy (MRT) is a promising experimental and preclinical radiotherapy method for cancer treatment. Synchrotron based MRT experiments have shown that spatially fractionated microbeam radiation has the unique capability of preferentially eradicating tumour cells while sparing normal tissue in brain tumour bearing animal models. We recently demonstrated the feasibility of generating orthovoltage microbeam radiation with an adjustable microbeam width using a carbon nanotube based x-ray source array. Here we report the preliminary results from our efforts in developing an image guidance procedure for the targeted delivery of the narrow microbeams to the small tumour region in the mouse brain. Magnetic resonance imaging was used for tumour identification, and on-board x-ray radiography was used for imaging of landmarks without contrast agents. The two images were aligned using 2D rigid body image registration to determine the relative position of the tumour with respect to a landmark. The targeting accuracy and consistency were evaluated by first irradiating a group of mice inoculated with U87 human glioma brain tumours using the present protocol and then determining the locations of the microbeam radiation tracks using γ-H2AX immunofluorescence staining. The histology results showed that among 14 mice irradiated, 11 received the prescribed number of microbeams on the targeted tumour, with an average localization accuracy of 454 µm measured directly from the histology (537 µm if measured from the registered histological images). Two mice received one of the three prescribed microbeams on the tumour site. One mouse was excluded from the analysis due to tissue staining errors.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Synchrotron X ray induced axonal transections in the brain of rats assessed by high-field diffusion tensor imaging tractography. PLoS One 2014; 9:e88244. [PMID: 24505446 PMCID: PMC3914957 DOI: 10.1371/journal.pone.0088244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022] Open
Abstract
Since approximately two thirds of epileptic patients are non-eligible for surgery, local axonal fiber transections might be of particular interest for them. Micrometer to millimeter wide synchrotron-generated X-ray beamlets produced by spatial fractionation of the main beam could generate such fiber disruptions non-invasively. The aim of this work was to optimize irradiation parameters for the induction of fiber transections in the rat brain white matter by exposure to such beamlets. For this purpose, we irradiated cortex and external capsule of normal rats in the antero-posterior direction with a 4 mm×4 mm array of 25 to 1000 µm wide beamlets and entrance doses of 150 Gy to 500 Gy. Axonal fiber responses were assessed with diffusion tensor imaging and fiber tractography; myelin fibers were examined histopathologically. Our study suggests that high radiation doses (500 Gy) are required to interrupt axons and myelin sheaths. However, a radiation dose of 500 Gy delivered by wide minibeams (1000 µm) induced macroscopic brain damage, depicted by a massive loss of matter in fiber tractography maps. With the same radiation dose, the damage induced by thinner microbeams (50 to 100 µm) was limited to their paths. No macroscopic necrosis was observed in the irradiated target while overt transections of myelin were detected histopathologically. Diffusivity values were found to be significantly reduced. A radiation dose ≤ 500 Gy associated with a beamlet size of < 50 µm did not cause visible transections, neither on diffusion maps nor on sections stained for myelin. We conclude that a peak dose of 500 Gy combined with a microbeam width of 100 µm optimally induced axonal transections in the white matter of the brain.
Collapse
|
19
|
Abstract
PURPOSE This Monte Carlo simulation work aims at studying a new radiotherapy approach called proton-minibeam radiation therapy (pMBRT). The main objective of this proof of concept was the evaluation of the possible gain in tissue sparing, thanks to the spatial fractionation of the dose, which could be used to deposit higher and potentially curative doses in clinical cases where tissue tolerances are a limit for conventional methods. METHODS Monte Carlo simulations (GATE v.6) have been used as a method to calculate the ratio of the peak-to-valley doses (PVDR) for arrays of proton minibeams of 0.7 mm width and several center-to-center distances, at different depths in a water phantom. The beam penumbras were also evaluated as an important parameter for tissue sparing, for example, in the treatment of non-cancer diseases like epilepsy. Two proton energies were considered in this study: a clinically relevant energy (105 MeV) and a very high energy (1 GeV), to benefit from a reduced lateral scattering. For the latter case, an interlaced geometry was also evaluated. RESULTS Higher or similar PVDR than the ones obtained in x-rays minibeam radiation therapy were achieved in several pMBRT configurations. In addition, for the two energies studied, the beam penumbras are smaller than in the case of Gamma Knife radiosurgery. CONCLUSIONS The high PVDR obtained for some configurations and the small penumbras in comparison with existing radiosurgery techniques, suggest a potential gain in healthy tissue sparing in this new technique. Biological studies are warranted to assess the effects of pMBRT on both normal and tumoral tissues.
Collapse
Affiliation(s)
- Y Prezado
- IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, Orsay, France.
| | | |
Collapse
|