1
|
Downs CJ, Sobolewski ME. The Promise of a Pointillist Perspective for Comparative Immunology. Physiology (Bethesda) 2024; 39:0. [PMID: 38808754 DOI: 10.1152/physiol.00012.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024] Open
Abstract
Most studies in comparative immunology involve investigations into the detailed mechanisms of the immune system of a nonmodel organism. Although this approach has been insightful, it has promoted a deep understanding of only a handful of species, thus inhibiting the recognition of broad taxonomic patterns. Here, we call for investigating the immune defenses of numerous species within a pointillist framework, that is, the meticulous, targeted collection of data from dozens of species and investigation of broad patterns of organismal, ecological, and evolutionary forces shaping those patterns. Without understanding basic immunological patterns across species, we are limited in our ability to extrapolate and/or translate our findings to other organisms, including humans. We illustrate this point by focusing predominantly on the biological scaling literature with some integrations of the pace of life literature, as these perspectives have been the most developed within this framework. We also highlight how the more traditional approach in comparative immunology works synergistically with a pointillist approach, with each approach feeding back into the other. We conclude that the pointillist approach promises to illuminate comprehensive theories about the immune system and enhance predictions in a wide variety of domains, including host-parasite dynamics and disease ecology.
Collapse
Affiliation(s)
- Cynthia J Downs
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States
| | - Marissa E Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
2
|
Nagel R, Pohle K, Jordán L, Tuponja I, Stainfield C, Toscani C, Fox-Clarke C, Costantini D, Czirják GÁ, Forcada J, Hoffman JI. Life-history stage influences immune investment and oxidative stress in response to environmental heterogeneity in Antarctic fur seals. Commun Biol 2024; 7:788. [PMID: 38951600 PMCID: PMC11217341 DOI: 10.1038/s42003-024-06499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Immune defenses are crucial for survival but costly to develop and maintain. Increased immune investment is therefore hypothesized to trade-off with other life-history traits. Here, we examined innate and adaptive immune responses to environmental heterogeneity in wild Antarctic fur seals. In a fully crossed, repeated measures design, we sampled 100 pups and their mothers from colonies of contrasting density during seasons of contrasting food availability. Biometric and cortisol data as well as blood for the analysis of 13 immune and oxidative status markers were collected at two key life-history stages. We show that immune responses of pups are more responsive than adults to variation in food availability, but not population density, and are modulated by cortisol and condition. Immune investment is associated with different oxidative status markers in pups and mothers. Our results suggest that early life stages show greater sensitivity to extrinsic and intrinsic effectors, and that immunity may be a strong target for natural selection even in low-pathogen environments such as Antarctica.
Collapse
Affiliation(s)
- Rebecca Nagel
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, 33501, Bielefeld, Germany.
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany.
- School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK.
| | - Katja Pohle
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
| | - Lilla Jordán
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
| | - Iva Tuponja
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, 33501, Bielefeld, Germany
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany
| | - Claire Stainfield
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
- Scotland's Rural College, Craibstone Estate, Ferguson Building, Aberdeen, AB21 9YA, UK
| | - Camille Toscani
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Cameron Fox-Clarke
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - David Costantini
- Department of Ecological and Biological Sciences, University of Tuscia, 01100, Viterbo, Italy
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
| | - Jaume Forcada
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Joseph I Hoffman
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, 33501, Bielefeld, Germany
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
- Center for Biotechnology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment, Bielefeld University and University of Münster, 33501, Bielefeld, Germany
| |
Collapse
|
3
|
DeAnglis IK, Andrews BR, Lock LR, Dyer KE, Yang A, Volokhov DV, Fenton MB, Simmons NB, Downs CJ, Becker DJ. Bat cellular immunity varies by year and dietary habit amidst land conversion. CONSERVATION PHYSIOLOGY 2024; 12:coad102. [PMID: 38293641 PMCID: PMC10823333 DOI: 10.1093/conphys/coad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 02/01/2024]
Abstract
Monitoring the health of wildlife populations is essential in the face of increased agricultural expansion and forest fragmentation. Loss of habitat and habitat degradation can negatively affect an animal's physiological state, possibly resulting in immunosuppression and increased morbidity or mortality. We sought to determine how land conversion may differentially impact cellular immunity and infection risk in Neotropical bats species regularly infected with bloodborne pathogens, and to evaluate how effects may vary over time and by dietary habit. We studied common vampire bats (Desmodus rotundus), northern yellow-shouldered bats (Sturnira parvidens) and Mesoamerican mustached bats (Pteronotus mesoamericanus), representing the dietary habits of sanguivory, frugivory and insectivory respectively, in northern Belize. We compared estimated total white blood cell count, leukocyte differentials, neutrophil to lymphocyte ratio and infection status with two bloodborne bacterial pathogens (Bartonella spp. and hemoplasmas) of 118 bats captured in a broadleaf, secondary forest over three years (2017-2019). During this period, tree cover decreased by 14.5% while rangeland expanded by 14.3%, indicating increasing habitat loss and fragmentation. We found evidence for bat species-specific responses of cellular immunity between years, with neutrophil counts significantly decreasing in S. parvidens from 2017 to 2018, but marginally increasing in D. rotundus. However, the odds of infection with Bartonella spp. and hemoplasmas between 2017 and 2019 did not differ between bat species, contrary to our prediction that pathogen prevalence may increase with land conversion. We conclude that each bat species invested differently in cellular immunity in ways that changed over years of increasing habitat loss and fragmentation. We recommend further research on the interactions between land conversion, immunity and infection across dietary habits of Neotropical bats for informed management and conservation.
Collapse
Affiliation(s)
- Isabella K DeAnglis
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Benjamin R Andrews
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Lauren R Lock
- School of Biological Sciences, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Kristin E Dyer
- School of Biological Sciences, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Anni Yang
- Department of Geography and Environmental Sustainability, University of Oklahoma, 100 East Boyd St, Norman, OK, 73019, USA
| | - Dmitriy V Volokhov
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - M Brock Fenton
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
| | - Cynthia J Downs
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Daniel J Becker
- School of Biological Sciences, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| |
Collapse
|
4
|
Fleischer R, Jones C, Ledezma-Campos P, Czirják GÁ, Sommer S, Gillespie TR, Vicente-Santos A. Gut microbial shifts in vampire bats linked to immunity due to changed diet in human disturbed landscapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167815. [PMID: 37852483 DOI: 10.1016/j.scitotenv.2023.167815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Anthropogenic land-use change alters wildlife habitats and modifies species composition, diversity, and contacts among wildlife, livestock, and humans. Such human-modified ecosystems have been associated with emerging infectious diseases, threatening human and animal health. However, human disturbance also creates new resources that some species can exploit. Common vampire bats (Desmodus rotundus) in Latin America constitute an important example, as their adaptation to human-modified habitats and livestock blood-feeding has implications for e.g., rabies transmission. Despite the well-known links between habitat degradation and disease emergence, few studies have explored how human-induced disturbance influences wildlife behavioural ecology and health, which can alter disease dynamics. To evaluate links among habitat disturbance, diet shifts, gut microbiota, and immunity, we quantified disturbance around roosting caves of common vampire bats in Costa Rica, measured their long-term diet preferences (livestock or wildlife blood) using stable isotopes of carbon and nitrogen, evaluated innate and adaptive immune markers, and characterized their gut microbiota. We observed that bats from roosting caves with more cattle farming nearby fed more on cattle blood. Moreover, gut microbial richness and the abundance of specific gut microbes differed according to feeding preferences. Interestingly, bats feeding primarily on wildlife blood harboured a higher abundance of the bacteria Edwardsiella sp., which tended to be associated with higher immunoglobulin G levels. Our results highlight how human land-use change may indirectly affect wildlife health and emerging infectious diseases through diet-induced shifts in microbiota, with implications for host immunity and potential consequences for susceptibility to pathogens.
Collapse
Affiliation(s)
- Ramona Fleischer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.
| | - Christie Jones
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA; Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Thomas R Gillespie
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA; Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA, USA
| | - Amanda Vicente-Santos
- Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Moeller KT, Brashears JA, Davies S, Demare G, Smith GD, Brusch Iv GA, Simpson RK, DeNardo DF. Corticosterone and immune responses to dehydration in squamate reptiles. J Exp Biol 2023; 226:jeb246257. [PMID: 37955054 DOI: 10.1242/jeb.246257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Many environments present some degree of seasonal water limitations; organisms that live in such environments must be adapted to survive periods without permanent water access. Often this involves the ability to tolerate dehydration, which can have adverse physiological effects and is typically considered a physiological stressor. While having many functions, the hormone corticosterone (CORT) is often released in response to stressors, yet increasing plasma CORT while dehydrated could be considered maladaptive, especially for species that experience predictable bouts of dehydration and have related coping mechanisms. Elevating CORT could reduce immunocompetence and have other negative physiological effects. Thus, such species likely have CORT and immune responses adapted to experiencing seasonal droughts. We evaluated how dehydration affects CORT and immune function in eight squamate species that naturally experience varied water limitation. We tested whether hydric state affected plasma CORT concentrations and aspects of immunocompetence (lysis, agglutination, bacterial killing ability and white blood cell counts) differently among species based on how seasonally water limited they are and whether this is constrained by phylogeny. The species represented four familial pairs, with one species of each pair inhabiting environments with frequent access to water and one naturally experiencing extended periods (>30 days) with no access to standing water. The effects of dehydration on CORT and immunity varied among species. Increases in CORT were generally not associated with reduced immunocompetence, indicating CORT and immunity might be decoupled in some species. Interspecies variations in responses to dehydration were more clearly grouped by phylogeny than by habitat type.
Collapse
Affiliation(s)
- Karla T Moeller
- School of Life Sciences , Arizona State University, Tempe, AZ 85281, USA
| | - Jacqueline A Brashears
- Natural Sciences Department, LaGuardia Community College, Long Island City, NY 11101, USA
| | - Scott Davies
- Department of Biological Sciences, Quinnipiac University, Hamden, CT 06518, USA
| | - Guillaume Demare
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Research, Invalidenstraße 43, 10115 Berlin, Germany
| | - Geoffrey D Smith
- Department of Biological Sciences, Utah Tech University, St George, UT 84770, USA
| | - George A Brusch Iv
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA
| | - Richard K Simpson
- Nature Conservancy of Canada, Ontario Region, 245 Eglinton Ave East, Suite 410, Toronto, ON, Canada, M4P 3J1
| | - Dale F DeNardo
- School of Life Sciences , Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
6
|
Dugovich BS, Beechler BR, Dolan BP, Crowhurst RS, Gonzales BJ, Powers JG, Hughson DL, Vu RK, Epps CW, Jolles AE. Population connectivity patterns of genetic diversity, immune responses and exposure to infectious pneumonia in a metapopulation of desert bighorn sheep. J Anim Ecol 2023. [PMID: 36637333 DOI: 10.1111/1365-2656.13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
Habitat fragmentation is an important driver of biodiversity loss and can be remediated through management actions aimed at maintenance of natural connectivity in metapopulations. Connectivity may protect populations from infectious diseases by preserving immunogenetic diversity and disease resistance. However, connectivity could exacerbate the risk of infectious disease spread across vulnerable populations. We tracked the spread of a novel strain of Mycoplasma ovipneumoniae in a metapopulation of desert bighorn sheep Ovis canadensis nelsoni in the Mojave Desert to investigate how variation in connectivity among populations influenced disease outcomes. M. ovipneumoniae was detected throughout the metapopulation, indicating that the relative isolation of many of these populations did not protect them from pathogen invasion. However, we show that connectivity among bighorn sheep populations was correlated with higher immunogenetic diversity, a protective immune response and lower disease prevalence. Variation in protective immunity predicted infection risk in individual bighorn sheep and was associated with heterozygosity at genetic loci linked to adaptive and innate immune signalling. Together, these findings may indicate that population connectivity maintains immunogenetic diversity in bighorn sheep populations in this system and has direct effects on immune responses in individual bighorn sheep and their susceptibility to infection by a deadly pathogen. Our study suggests that the genetic benefits of population connectivity could outweigh the risk of infectious disease spread and supports conservation management that maintains natural connectivity in metapopulations.
Collapse
Affiliation(s)
- Brian S Dugovich
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Brianna R Beechler
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Brian P Dolan
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Rachel S Crowhurst
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Ben J Gonzales
- California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Jenny G Powers
- National Park Service, Biological Resources Division, Fort Collins, Colorado, USA
| | - Debra L Hughson
- National Park Service, Mojave National Preserve, Barstow, California, USA
| | - Regina K Vu
- California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Clinton W Epps
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Anna E Jolles
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA.,Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
7
|
Claunch NM, Downs CJ, Schoenle LA, Oakey SJ, Ely T, Romagosa C, Briggs CW. Snap-freezing in the Field: Effect of Sample Holding Time on Performance of Bactericidal Assays. Integr Comp Biol 2022; 62:1693-1699. [PMID: 35294024 PMCID: PMC9801962 DOI: 10.1093/icb/icac007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/05/2023] Open
Abstract
Comparative analyses in biology rely on the quality of available data. Methodological differences among studies may introduce variation in results that obscure patterns. In the field of eco-immunology, functional immune assays such as antimicrobial capacity assays are widely used for among-species applications. Sample storage time and animal handling time can influence assay results in some species, but how sample holding time prior to freezing influences assay results is unknown. Sample holding time can vary widely in field studies on wild animals, prompting the need to understand the implications of such variation on assay results. We investigated the hypothesis that sample holding time prior to freezing influences assay results in six species (Leiocephalus carinatus, Iguana iguana, Loxodonta africana, Ceratotherium simum, Columba livia, and Buteo swainsoni) by comparing antibacterial capacity of serum with varying processing times prior to snap-freezing. Blood was collected once from each individual and aliquots were placed on ice and assigned different holding times (0, 30, 60, 180, and 240 min), after which each sample was centrifuged, then serum was separated and snap-frozen on dry ice and stored at -80ºC for 60 days prior to assaying. For each aliquot, we conducted antibacterial capacity assays with serial dilutions of serum inoculated with E. coli and extracted the dilution at 50% antibacterial capacity for analysis. We found a decrease in antibacterial capacity with increased holding time in one of the six species tested (B. swainsoni), driven in part by complete loss of antibacterial capacity in some individuals at the 240-min time point. While the majority of species' antibacterial capacity were not affected, our results demonstrate the need to conduct pilot assays spanning the anticipated variation in sample holding times to develop appropriate field protocols.
Collapse
Affiliation(s)
- Natalie M Claunch
- School of Natural Resources and Environment, University of Florida, Gainesville, FL 32601, USA
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Cynthia J Downs
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Laura A Schoenle
- Office of Undergraduate Biology, Cornell University, Ithaca, NY 14850, USA
| | - Samantha J Oakey
- College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Teresa Ely
- Golden Gate Raptor Observatory, Golden Gate National Parks Conservancy, Sausalito, CA 94965, USA
| | - Christina Romagosa
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
8
|
Differences in acute phase response to bacterial, fungal and viral antigens in greater mouse-eared bats (Myotis myotis). Sci Rep 2022; 12:15259. [PMID: 36088405 PMCID: PMC9464231 DOI: 10.1038/s41598-022-18240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
The acute phase response (APR) is an evolutionarily well-conserved part of the innate immune defense against pathogens. However, recent studies in bats yielded surprisingly diverse results compared to previous APR studies on both vertebrate and invertebrate species. This is especially interesting due to the known role of bats as reservoirs for viruses and other intracellular pathogens, while being susceptible to extracellular microorganisms such as some bacteria and fungi. To better understand these discrepancies and the reservoir-competence of bats, we mimicked bacterial, viral and fungal infections in greater mouse-eared bats (Myotis myotis) and quantified different aspects of the APR over a two-day period. Individuals reacted most strongly to a viral (PolyI:C) and a bacterial (LPS) antigen, reflected by an increase of haptoglobin levels (LPS) and an increase of the neutrophil-to-lymphocyte-ratio (PolyI:C and LPS). We did not detect fever, leukocytosis, body mass loss, or a change in the overall functioning of the innate immunity upon challenge with any antigen. We add evidence that bats respond selectively with APR to specific pathogens and that the activation of different parts of the immune system is species-specific.
Collapse
|
9
|
Odewahn R, Wright BR, Czirják GÁ, Higgins DP. Differences in constitutive innate immunity between divergent Australian marsupials. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104399. [PMID: 35307478 DOI: 10.1016/j.dci.2022.104399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Understanding immunity in wildlife populations is important from both One Health and conservation perspectives. The constitutive innate immune system is the first line of defence against pathogens, and comparisons among taxa can test the impact of evolution and life history on immune function. We investigated serum bacterial killing ability (BKA) of five marsupial species that employ varying life history strategies, demonstrated to influence immunity in other vertebrates. The brushtail possum and eastern grey kangaroo had the greatest BKA, while ringtail possums and koalas had the least. These differences were independent of social structure, captivity status and phylogeny, but were associated with diet and body size. Sex and disease status had no effect on BKA in koalas, however potential for differences between wild and captive koalas warrants further investigation. The current study has provided a foundation for future investigations into how adaptive and innate immunity interact in marsupials from an eco-evolutionary perspective.
Collapse
Affiliation(s)
- Rebecca Odewahn
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, NSW, Australia
| | - Belinda R Wright
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, NSW, Australia
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Damien P Higgins
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, NSW, Australia.
| |
Collapse
|
10
|
Rogers EJ, McGuire L, Longstaffe FJ, Clerc J, Kunkel E, Fraser E. Relating wing morphology and immune function to patterns of partial and differential bat migration using stable isotopes. J Anim Ecol 2022; 91:858-869. [PMID: 35218220 DOI: 10.1111/1365-2656.13681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
Migration is energetically expensive and is predicted to drive similar morphological adaptations and physiological trade-offs in migratory bats and birds. Previous studies suggest that fixed traits like wing morphology vary among species and individuals according to selective pressures on flight, while immune defenses can vary flexibly within individuals as energy is variably reallocated throughout the year. We assessed intraspecific variation in wing morphology and immune function in silver-haired bats (Lasionycteris noctivagans), a species that follows both partial and differential migration patterns. We hypothesized that if bats experience energy constraints associated with migration, then wing morphology and immune function should vary based on migratory tendency (sedentary or migratory) and migration distance. We predicted that long-distance migrants would have reduced immune function and more migration-adapted wing shapes compared to resident or short-distance migrating bats. We estimated breeding latitude of spring migrants using stable hydrogen isotope techniques. Our sample consisted primarily of male bats, which we categorized as residents, long-distance northern migrants, short-distance northern migrants, and southern migrants (apparent breeding location south of capture site). Controlling for individual condition and capture date, we related wing characteristics and immune indices among groups. Some, but not all, aspects of wing form and immune function varied between migrants and residents. Long-distance northern migrants had larger wings than short-distance northern migrants and lower wing loading than southern migrants. Compared with resident bats, short-distance northern migrants had reduced IgG while southern migrants had heightened neutrophils and neutrophil-to-lymphocyte ratios. Body fat, aspect ratio, wing tip shape, and bacteria killing ability did not vary with migration status or distance. In general, male silver-haired bats do not appear to mediate migration costs by substantially downregulating immune defenses or to be under stronger selection for wing forms adapted for fast, energy-efficient flight. Such phenotypic changes may be more adaptive for female silver-haired bats, which migrate farther and are more constrained by time in spring than males. Adaptations for aerial hawking and the use of heterothermy by migrating bats may also reduce the energetic cost of migration and the need for more substantial morphological and physiological trade-offs.
Collapse
Affiliation(s)
- Elizabeth J Rogers
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.,Organismic and Evolutionary Biology Program, University of Massachusetts, Amherst, MA, USA
| | - Liam McGuire
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.,Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Fred J Longstaffe
- Department of Earth Sciences, The University of Western Ontario, London, ON, Canada
| | - Jeff Clerc
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.,Normandeau Associates Inc, Gainesville, FL, USA
| | - Emma Kunkel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Erin Fraser
- Environmental Science Program, Memorial University of Newfoundland (Grenfell Campus), Corner Brook, NL, Canada
| |
Collapse
|
11
|
Soboleva AS, Alekseeva GS, Erofeeva MN, Klyuchnikova PS, Sorokin PA, Naidenko SV. Leukocytes count and profile during early postnatal ontogenesis in domestic cat: Effect of litter size and multiple paternity. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:637-648. [PMID: 34293237 DOI: 10.1002/jez.2508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/06/2022]
Abstract
Since blood cells count is the most important indicator of animals' physiological status, we investigated the effects of age, litter size, and multiple paternity on the total number of white blood cells, the number of their individual types (lymphocytes, neutrophils, eosinophils, monocytes), and the ratio of neutrophils to lymphocytes in domestic cat during early postnatal ontogenesis. The study was conducted on kittens living in outdoor conditions, aged from birth to 6 months. The number of white blood cells was evaluated using a hemoanalyzer, the leukocyte formula and the proportion of cell types were determined manually from blood smears. Age significantly affected the number of leukocytes in the first 3 months of kittens' age. The number and proportion of neutrophils were the highest after birth and gradually decreased during the first month. Lymphocytes number, on the contrary, increased during this period. Monocytes and eosinophils increased in number in the first 2 months. The litter size affected the number of leukocytes and neutrophils in the first 2 months of life, their number being significantly higher in kittens from the small litters than from the large ones. In kittens from the litters with multiple paternity, the number of leukocytes and the proportion of neutrophils was higher than in litters from a single male. Thus, age, litter size and type of paternity may affect the hematological indices in domestic cats, which must be taken into account during the estimation of the health status of kittens in domestic and wild cats.
Collapse
Affiliation(s)
- Alena S Soboleva
- Laboratory of Behaviour and Behavioural Ecology of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Galina S Alekseeva
- Laboratory of Behaviour and Behavioural Ecology of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Mariya N Erofeeva
- Laboratory of Behaviour and Behavioural Ecology of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Polina S Klyuchnikova
- Laboratory of Behaviour and Behavioural Ecology of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Pavel A Sorokin
- Inter-Laboratory Facility of Molecular Diagnostics, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Naidenko
- Laboratory of Behaviour and Behavioural Ecology of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Sandoval-Herrera NI, Mastromonaco GF, Becker DJ, Simmons NB, Welch KC. Inter- and intra-specific variation in hair cortisol concentrations of Neotropical bats. CONSERVATION PHYSIOLOGY 2021; 9:coab053. [PMID: 34267922 PMCID: PMC8278960 DOI: 10.1093/conphys/coab053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/13/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Quantifying hair cortisol has become popular in wildlife ecology for its practical advantages for evaluating stress. Before hair cortisol levels can be reliably interpreted, however, it is key to first understand the intrinsic factors explaining intra- and inter-specific variation. Bats are an ecologically diverse group of mammals that allow studying such variation. Given that many bat species are threatened or have declining populations in parts of their range, minimally invasive tools for monitoring colony health and identifying cryptic stressors are needed to efficiently direct conservation efforts. Here we describe intra- and inter-specific sources of variation in hair cortisol levels in 18 Neotropical bat species from Belize and Mexico. We found that fecundity is an important ecological trait explaining inter-specific variation in bat hair cortisol. Other ecological variables such as colony size, roost durability and basal metabolic rate did not explain hair cortisol variation among species. At the individual level, females exhibited higher hair cortisol levels than males and the effect of body mass varied among species. Overall, our findings help validate and accurately apply hair cortisol as a monitoring tool in free-ranging bats.
Collapse
Affiliation(s)
- Natalia I Sandoval-Herrera
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Ontario, M1C 1A4, Canada
| | | | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, 10024-5102, USA
| | - Kenneth C Welch
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Ontario, M1C 1A4, Canada
| |
Collapse
|
13
|
Cornelius Ruhs E, Becker DJ, Oakey SJ, Ogunsina O, Fenton MB, Simmons NB, Martin LB, Downs CJ. Body size affects immune cell proportions in birds and non-volant mammals, but not bats. J Exp Biol 2021; 224:269058. [PMID: 34104965 DOI: 10.1242/jeb.241109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/02/2021] [Indexed: 01/02/2023]
Abstract
Powered flight has evolved several times in vertebrates and constrains morphology and physiology in ways that likely have shaped how organisms cope with infections. Some of these constraints probably have impacts on aspects of immunology, such that larger fliers might prioritize risk reduction and safety. Addressing how the evolution of flight may have driven relationships between body size and immunity could be particularly informative for understanding the propensity of some taxa to harbor many virulent and sometimes zoonotic pathogens without showing clinical disease. Here, we used a comparative framework to quantify scaling relationships between body mass and the proportions of two types of white blood cells - lymphocytes and granulocytes (neutrophils/heterophils) - across 63 bat species, 400 bird species and 251 non-volant mammal species. By using phylogenetically informed statistical models on field-collected data from wild Neotropical bats and from captive bats, non-volant mammals and birds, we show that lymphocyte and neutrophil proportions do not vary systematically with body mass among bats. In contrast, larger birds and non-volant mammals have disproportionately higher granulocyte proportions than expected for their body size. Our inability to distinguish bat lymphocyte scaling from birds and bat granulocyte scaling from all other taxa suggests there may be other ecological explanations (i.e. not flight related) for the cell proportion scaling patterns. Future comparative studies of wild bats, birds and non-volant mammals of similar body mass should aim to further differentiate evolutionary effects and other aspects of life history on immune defense and its role in the tolerance of (zoonotic) infections.
Collapse
Affiliation(s)
- Emily Cornelius Ruhs
- Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Samantha J Oakey
- Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA
| | - Ololade Ogunsina
- Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA
| | - M Brock Fenton
- Department of Biology, Western University, London, ON, Canada, N6A 5B7
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024-5102, USA
| | - Lynn B Martin
- Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA
| | - Cynthia J Downs
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| |
Collapse
|
14
|
Moreno KR, Weinberg M, Harten L, Salinas Ramos VB, Herrera M LG, Czirják GÁ, Yovel Y. Sick bats stay home alone: fruit bats practice social distancing when faced with an immunological challenge. Ann N Y Acad Sci 2021; 1505:178-190. [PMID: 33876431 PMCID: PMC9290741 DOI: 10.1111/nyas.14600] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022]
Abstract
Along with its many advantages, social roosting imposes a major risk of pathogen transmission. How social animals reduce this risk is poorly documented. We used lipopolysaccharide challenge to imitate bacterial infection in both a captive and a free‐living colony of an extremely social, long‐lived mammal—the Egyptian fruit bat. We monitored behavioral and physiological responses using an arsenal of methods, including onboard GPS to track foraging, acceleration sensors to monitor movement, infrared video to record social behavior, and blood samples to measure immune markers. Sick‐like (immune‐challenged) bats exhibited an increased immune response, as well as classic illness symptoms, including fever, weight loss, anorexia, and lethargy. Notably, the bats also exhibited behaviors that would reduce pathogen transfer. They perched alone and appeared to voluntarily isolate themselves from the group by leaving the social cluster, which is extremely atypical for this species. The sick‐like individuals in the open colony ceased foraging outdoors for at least two nights, thus reducing transmission to neighboring colonies. Together, these sickness behaviors demonstrate a strong, integrative immune response that promotes recovery of infected individuals while reducing pathogen transmission inside and outside the roost, including spillover events to other species, such as humans.
Collapse
Affiliation(s)
- Kelsey R Moreno
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Maya Weinberg
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Lee Harten
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Valeria B Salinas Ramos
- Department of Agriculture, University of Naples Federico II, Naples, Italy.,Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - L Gerardo Herrera M
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Yossi Yovel
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Becker DJ, Speer KA, Korstian JM, Volokhov DV, Droke HF, Brown AM, Baijnauth CL, Padgett-Stewart T, Broders HG, Plowright RK, Rainwater TR, Fenton MB, Simmons NB, Chumchal MM. Disentangling interactions among mercury, immunity and infection in a Neotropical bat community. J Appl Ecol 2021; 58:879-889. [PMID: 33911313 PMCID: PMC8078557 DOI: 10.1111/1365-2664.13809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
1. Contaminants such as mercury are pervasive and can have immunosuppressive effects on wildlife. Impaired immunity could be important for forecasting pathogen spillover, as many land-use changes that generate mercury contamination also bring wildlife into close contact with humans and domestic animals. However, the interactions among contaminants, immunity and infection are difficult to study in natural systems, and empirical tests of possible directional relationships remain rare. 2. We capitalized on extreme mercury variation in a diverse bat community in Belize to test association among contaminants, immunity and infection. By comparing a previous dataset of bats sampled in 2014 with new data from 2017, representing a period of rapid agricultural land conversion, we first confirmed bat species more reliant on aquatic prey had higher fur mercury. Bats in the agricultural habitat also had higher mercury in recent years. We then tested covariation between mercury and cellular immunity and determined if such relationships mediated associations between mercury and bacterial pathogens. As bat ecology can dictate exposure to mercury and pathogens, we also assessed species-specific patterns in mercury-infection relationships. 3. Across the bat community, individuals with higher mercury had fewer neutrophils but not lymphocytes, suggesting stronger associations with innate immunity. However, the odds of infection for haemoplasmas and Bartonella spp. were generally lowest in bats with high mercury, and relationships between mercury and immunity did not mediate infection patterns. Mercury also showed species- and clade-specific relationships with infection, being associated with especially low odds for haemoplasmas in Pteronotus mesoamericanus and Dermanura phaeotis. For Bartonella spp., mercury was associated with particularly low odds of infection in the genus Pteronotus but high odds in the subfamily Stenodermatinae. 4. Synthesis and application. Lower general infection risk in bats with high mercury despite weaker innate defense suggests contaminant-driven loss of pathogen habitat (i.e. anemia) or vector mortality as possible causes. Greater attention to these potential pathways could help disentangle relationships among contaminants, immunity and infection in anthropogenic habitats and help forecast disease risks. Our results also suggest that contaminants may increase infection risk in some taxa but not others, emphasizing the importance of considering surveillance and management at different phylogenetic scales.
Collapse
Affiliation(s)
| | - Kelly A. Speer
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | | | - Dmitriy V. Volokhov
- Center for Biologies Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Hannah F. Droke
- Department of Global and Planetary Health, University of South Florida, Tampa, FL, USA
| | - Alexis M. Brown
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | - Catherene L. Baijnauth
- Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Ticha Padgett-Stewart
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Hugh G. Broders
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Thomas R. Rainwater
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC, USA
- Tom Yawkey Wildlife Center, Georgetown, SC, USA
| | - M. Brock Fenton
- Department of Biology, Western University, London, ON, Canada
| | - Nancy B. Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | | |
Collapse
|
16
|
Bats and bananas: Simplified diet of the nectar-feeding bat Glossophaga soricina (Phyllostomidae: Glossophaginae) foraging in Costa Rican banana plantations. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Power ML, Power S, Bertelsen MF, Jones G, Teeling EC. Wing: A suitable nonlethal tissue type for repeatable and rapid telomere length estimates in bats. Mol Ecol Resour 2020; 21:421-432. [PMID: 33049101 DOI: 10.1111/1755-0998.13276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022]
Abstract
Telomeres are used increasingly in ecology and evolution as biomarkers for ageing and environmental stress, and are typically measured from DNA extracted from nonlethally sampled blood. However, obtaining blood is not always possible in field conditions and only limited amounts can be taken from small mammals, such as bats, which moreover lack nucleated red blood cells and hence yield relatively low amounts of DNA. As telomere length can vary within species according to age and tissue, it is important to determine which tissues serve best as a representation of the organism as a whole. Here, we investigated whether wing tissue biopsies, a rapid and relatively noninvasive tissue collection method, could serve as a proxy for other tissues when measuring relative telomere length (rTL) in the Egyptian fruit bat (Rousettus aegyptiacus). Telomeres were measured from blood, brain, heart, kidney, liver lung, muscle and wing, and multiple wing biopsies were taken from the same individuals to determine intra-individual repeatability of rTL measured by using qPCR. Wing rTL correlated with rTL estimates from most tissues apart from blood. Blood rTL was not significantly correlated with rTL from any other tissue. Blood and muscle rTLs were significantly longer compared with other tissues, while lung displayed the shortest rTLs. Individual repeatability of rTL measures from wing tissue was high (>70%). Here we show the relationships between tissue telomere dynamics for the first time in a bat, and our results provide support for the use of wing tissue for rTL measurements.
Collapse
Affiliation(s)
- Megan L Power
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin, Ireland
| | - Sarahjane Power
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin, Ireland
| | - Mads F Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Emma C Teeling
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
18
|
Fuess LE, Palacio-Castro AM, Butler CC, Baker AC, Mydlarz LD. Increased Algal Symbiont Density Reduces Host Immunity in a Threatened Caribbean Coral Species, Orbicella faveolata. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.572942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
The immune response of bats differs between pre-migration and migration seasons. Sci Rep 2020; 10:17384. [PMID: 33060711 PMCID: PMC7562910 DOI: 10.1038/s41598-020-74473-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Maintaining a competent immune system is energetically costly and thus immunity may be traded against other costly traits such as seasonal migration. Here, we tested in long-distance migratory Nathusius’ pipistrelles (Pipistrellus nathusii), if selected branches of immunity are expressed differently in response to the energy demands and oxidative stress of aerial migration. During the migration period, we observed higher baseline lymphocyte and lower neutrophil levels than during the pre-migration period, but no stronger response of cellular effectors to an antigen challenge. Baseline plasma haptoglobin, as a component of the humoral innate immunity, remained similar during both seasons, yet baseline plasma haptoglobin levels increased by a factor of 7.8 in migratory bats during an immune challenge, whereas they did not change during the pre-migration period. Oxidative stress was higher during migration than during pre-migration, yet there was no association between blood oxidative status and immune parameters, and immune challenge did not trigger any changes in oxidative stress, irrespective of season. Our findings suggest that humoral effectors of the acute phase response may play a stronger role in the first-line defense against infections for migrating bats compared to non-migrating bats. We conclude that Nathusius’ pipistrelles allocate resources differently into the branches of their immune system, most likely following current demands resulting from tight energy budgets during migration.
Collapse
|
20
|
Ruhs EC, Martin LB, Downs CJ. The impacts of body mass on immune cell concentrations in birds. Proc Biol Sci 2020; 287:20200655. [PMID: 32900319 DOI: 10.1098/rspb.2020.0655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Body mass affects many biological traits, but its impacts on immune defences are fairly unknown. Recent research on mammals found that neutrophil concentrations disproportionately increased (scaled hypermetrically) with body mass, a result not predicted by any existing theory. Although the scaling relationship for mammals might predict how leucocyte concentrations scale with body mass in other vertebrates, vertebrate classes are distinct in many ways that might affect their current and historic interactions with parasites and hence the evolution of their immune systems. Subsequently, here, we asked which existing scaling hypothesis best-predicts relationships between body mass and lymphocyte, eosinophil and heterophil concentrations-the avian functional equivalent of neutrophils-among more than 100 species of birds. We then examined the predictive power of body mass relative to life-history variation, as extensive literature indicates that the timing of key life events has influenced immune system variation among species. Finally, we ask whether avian scaling patterns differ from the patterns we observed in mammals. We found that an intercept-only model best explained lymphocyte and eosinophil concentrations among birds, indicating that the concentrations of these cell types were both independent of body mass. For heterophils, however, body mass explained 31% of the variation in concentrations among species, much more than life-history variation (4%). As with mammalian neutrophils, avian heterophils scaled hypermetrically (b = 0.19 ± 0.05), but more steeply than mammals (approx. 1.5 ×; 0.11 ± 0.03). As such, we discuss why birds might require more broadly protective cells compared to mammals of the same body size. Overall, body mass appears to have strong influences on the architecture of immune systems.
Collapse
Affiliation(s)
| | - Lynn B Martin
- Global and Planetary Health, University of South Florida, Tampa, FL 33620, USA
| | - Cynthia J Downs
- Environmental & Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| |
Collapse
|
21
|
Melhado G, Herrera M LG, da Cruz-Neto AP. Bats respond to simulated bacterial infection during the active phase by reducing food intake. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:536-542. [PMID: 32691525 DOI: 10.1002/jez.2399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/27/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Sickness triggers a series of behavioral and physiological processes collectively known as acute phase response (APR). Bats are known as reservoirs of a broad variety of pathogens and the physiological changes resulting from APR activation have been tested predominantly during the resting phase (daytime) in several species exposed to lipopolysaccharide (LPS). In contrast, behavioral consequences of sickness for bats and other wild mammals have received less attention. We examined the physiological and behavioral consequences of APR activation in a fruit-eating bat (Carollia perspicillata) challenged with LPS during the active phase (nighttime). We measured changes in food intake, body mass, body temperature, total white blood cell counts, and the neutrophil/lymphocyte ratio (N/L). No fever and leukocytosis were observed in bats injected with LPS, but food intake decreased, bats lost body mass and their N/L ratio increased. The effect of LPS on daily energy balance is remarkable and, along with the increase in N/L ratio, it is assumed to be beneficial to fight disease. On the basis of our findings and those with other bats, it is probable that the physiological and behavioral components of the immune response to LPS follow circadian rhythms, but a formal test of this hypothesis is warranted.
Collapse
Affiliation(s)
- Gabriel Melhado
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brazil
| | - L Gerardo Herrera M
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional, Autónoma de México, San Patricio, Jalisco, México
| | - Ariovaldo P da Cruz-Neto
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brazil
| |
Collapse
|
22
|
Size Matters: Zoo Data Analysis Shows that the White Blood Cell Ratio Differs between Large and Small Felids. Animals (Basel) 2020; 10:ani10060940. [PMID: 32485881 PMCID: PMC7341519 DOI: 10.3390/ani10060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 01/26/2023] Open
Abstract
The total number of white blood cells (WBCs) is related the immune system. In mammals, it is affected by the body mass, but it is unclear how the numbers of different WBC types correlate with this parameter. We analyzed the effect of body mass on WBC number and ratio in felids, where species are similar in diet (warm-blood vertebrates) and reproductive strategy (promiscuity). Based on zoo veterinary data (ZIMS database) we analyzed the effect of body mass on WBC number and neutrophils/lymphocytes ratio in 26 species of felids. The number of WBCs correlated with the body masses of animals: large cats had more WBC, which may be due to greater risks of infection associated with larger body surface, lifespan and home range size. For the first time we found obvious differences in the number of WBC types. Large cats also had more neutrophils and monocytes but fewer lymphocytes than smaller cats. The ratio of neutrophils to lymphocytes is greater in large felids. This phenomenon may be related to diet (relative prey size and kill utilization time), which suggests regular contact of large cats with bacterial and protozoal pathogens in contrast to the small cats.
Collapse
|
23
|
Becker DJ, Downs CJ, Martin LB. Multi-Scale Drivers of Immunological Variation and Consequences for Infectious Disease Dynamics. Integr Comp Biol 2020; 59:1129-1137. [PMID: 31559436 DOI: 10.1093/icb/icz138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The immune system is the primary barrier to parasite infection, replication, and transmission following exposure, and variation in immunity can accordingly manifest in heterogeneity in traits that govern population-level infectious disease dynamics. While much work in ecoimmunology has focused on individual-level determinants of host immune defense (e.g., reproductive status and body condition), an ongoing challenge remains to understand the broader evolutionary and ecological contexts of this variation (e.g., phylogenetic relatedness and landscape heterogeneity) and to connect these differences into epidemiological frameworks. Ultimately, such efforts could illuminate general principles about the drivers of host defense and improve predictions and control of infectious disease. Here, we highlight recent work that synthesizes the complex drivers of immunological variation across biological scales of organization and scales these within-host differences to population-level infection outcomes. Such studies note the limitations involved in making species-level comparisons of immune phenotypes, stress the importance of spatial scale for immunology research, showcase several statistical tools for translating within-host data into epidemiological parameters, and provide theoretical frameworks for linking within- and between-host scales of infection processes. Building from these studies, we highlight several promising avenues for continued work, including the application of machine learning tools and phylogenetically controlled meta-analyses to immunology data and quantifying the joint spatial and temporal dependencies in immune defense using range expansions as model systems. We also emphasize the use of organismal traits (e.g., host tolerance, competence, and resistance) as a way to interlink various scales of analysis. Such continued collaboration and disciplinary cross-talk among ecoimmunology, disease ecology, and mathematical modeling will facilitate an improved understanding of the multi-scale drivers and consequences of variation in host defense.
Collapse
Affiliation(s)
- Daniel J Becker
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA 30602, USA
| | - Cynthia J Downs
- Department of Biology, Hamilton College, Clinton, NY 13323, USA
| | - Lynn B Martin
- Department of Global and Planetary Health, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
24
|
Becker DJ, Nachtmann C, Argibay HD, Botto G, Escalera-Zamudio M, Carrera JE, Tello C, Winiarski E, Greenwood AD, Méndez-Ojeda ML, Loza-Rubio E, Lavergne A, de Thoisy B, Czirják GÁ, Plowright RK, Altizer S, Streicker DG. Leukocyte Profiles Reflect Geographic Range Limits in a Widespread Neotropical Bat. Integr Comp Biol 2020; 59:1176-1189. [PMID: 30873523 PMCID: PMC6907035 DOI: 10.1093/icb/icz007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Quantifying how the environment shapes host immune defense is important for understanding which wild populations may be more susceptible or resistant to pathogens. Spatial variation in parasite risk, food and predator abundance, and abiotic conditions can each affect immunity, and these factors can also manifest at both local and biogeographic scales. Yet identifying predictors and the spatial scale of their effects is limited by the rarity of studies that measure immunity across many populations of broadly distributed species. We analyzed leukocyte profiles from 39 wild populations of the common vampire bat (Desmodus rotundus) across its wide geographic range throughout the Neotropics. White blood cell differentials varied spatially, with proportions of neutrophils and lymphocytes varying up to six-fold across sites. Leukocyte profiles were spatially autocorrelated at small and very large distances, suggesting that local environment and large-scale biogeographic factors influence cellular immunity. Generalized additive models showed that bat populations closer to the northern and southern limits of the species range had more neutrophils, monocytes, and basophils, but fewer lymphocytes and eosinophils, than bats sampled at the core of their distribution. Habitats with access to more livestock also showed similar patterns in leukocyte profiles, but large-scale patterns were partly confounded by time between capture and sampling across sites. Our findings suggest that populations at the edge of their range experience physiologically limiting conditions that predict higher chronic stress and greater investment in cellular innate immunity. High food abundance in livestock-dense habitats may exacerbate such conditions by increasing bat density or diet homogenization, although future spatially and temporally coordinated field studies with common protocols are needed to limit sampling artifacts. Systematically assessing immune function and response over space will elucidate how environmental conditions influence traits relevant to epidemiology and help predict disease risks with anthropogenic disturbance, land conversion, and climate change.
Collapse
Affiliation(s)
- Daniel J Becker
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA 30602, USA.,Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Cecilia Nachtmann
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Hernan D Argibay
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Germán Botto
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59715, USA.,Departamento de Metodos Cuantitativos, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Marina Escalera-Zamudio
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany.,Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - Jorge E Carrera
- Facultad de Ciencias, Universidad Nacional de Piura, Piura 20009, Peru.,Programa de Conservación de Murciélagos de Perú, Piura Lima-1, Peru
| | - Carlos Tello
- Association for the Conservation and Development of Natural Resources, Lima 15037, Peru.,Yunkawasi, Lima 15049, Peru
| | - Erik Winiarski
- Departamento de Histología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany.,Department of Veterinary Medicine, Freie Universität Berlin, Berlin 14163, Germany
| | - Maria L Méndez-Ojeda
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico
| | - Elizabeth Loza-Rubio
- Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City 05110, Mexico
| | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana F-97300, France
| | - Benoit de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana F-97300, France
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59715, USA
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA 30602, USA
| | - Daniel G Streicker
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.,Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| |
Collapse
|
25
|
Trillmich F, Guenther A, Jäckel M, Czirják GÁ. Reproduction affects immune defenses in the guinea pig even under ad libitum food. PLoS One 2020; 15:e0230081. [PMID: 32176718 PMCID: PMC7075551 DOI: 10.1371/journal.pone.0230081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/20/2020] [Indexed: 11/29/2022] Open
Abstract
Reproduction is one of the costliest processes in the life of an animal. Life history theory assumes that when resources are limiting allocation to reproduction will reduce allocation to other essential processes thereby inducing costs of reproduction. The immune system is vital for survival. If reproduction reduces investment in immune function, this could increase the risk of disease, morbidity and mortality. We here test in the guinea pig, if even under ad libitum food conditions, pregnancy and lactation reduce the activity of the adaptive and innate immune system compared to the reaction of non-reproducing animals. In response to a challenge with keyhole limpet haemocyanin the antibody-mediated adaptive immunity during (pregnancy and) lactation was reduced. Pregnant and lactating females showed higher levels of bacterial killing activity, an integrated measure of innate immunity, than non-reproducing females. However, two major effectors of the innate immunity, the natural antibody and the complement of pregnant and lactating females showed lower levels than in non-reproducing females. Pregnant and lactating females did not differ significantly in the expressed levels of innate immunity. Our results indicate that changes in the immune response during reproduction are physiological adjustments to predictable allocation problems, because they happen even under ad libitum food availability.
Collapse
Affiliation(s)
- Fritz Trillmich
- Department of Animal Behaviour, University Bielefeld, Bielefeld, Germany
| | - Anja Guenther
- Department of Animal Behaviour, University Bielefeld, Bielefeld, Germany
- Max-Planck Institute for Evolutionary Biology, Evolutionary Genetics, Plön, Germany
| | - Manuela Jäckel
- Department of Animal Behaviour, University Bielefeld, Bielefeld, Germany
| | - Gábor Á. Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
26
|
Rossetto F, Iglesias-Caballero M, Liedtke HC, Gomez-Mestre I, Berciano JM, Pérez-Suárez G, de Paz O, Ibáñez C, Echevarría JE, Casas I, Juste J. Mating strategy is determinant of adenovirus prevalence in European bats. PLoS One 2020; 15:e0226203. [PMID: 31910439 PMCID: PMC6946596 DOI: 10.1371/journal.pone.0226203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/21/2019] [Indexed: 11/18/2022] Open
Abstract
Adenoviruses are double-strained DNA viruses found in a great number of vertebrates, including humans. In order to understand their transmission dynamics, it is crucial, even from a human health perspective, to investigate how host traits influence their prevalence. Bats are important reservoirs for adenoviruses, and here we use the results of recent screenings in Western Europe to evaluate the association between characteristic traits of bat species and their probability of hosting adenoviruses, taking into account their phylogenetic relationships. Across species, we found an important phylogenetic component in the presence of adenoviruses and mating strategy as the most determinant factor conditioning the prevalence of adenoviruses across bat species. Contrary to other more stable mating strategies (e.g. harems), swarming could hinder transmission of adenoviruses since this strategy implies that contacts between individuals are too short. Alternatively, bat species with more promiscuous behavior may develop a stronger immune system. Outstandingly high prevalence of adenoviruses was reported for the Iberian species Pipistrellus pygmaeus, P. kuhlii and Nyctalus lasiopterus and we found that in the latter, males were more likely to be infected by adenoviruses than females, due to the immunosuppressing consequence of testosterone during the mating season. As a general trend across species, we found that the number of adenoviruses positive individuals was different across localities and that the difference in prevalence between populations was correlated with their geographic distances for two of the three studied bat species (P. pygmaeus and P.kuhlii). These results increase our knowledge about the transmission mechanisms of adenoviruses.
Collapse
Affiliation(s)
- Federica Rossetto
- Evolutionary Biology Unit, Estación Biológica Doñana (CSIC), Sevilla, Spain
| | | | | | - Ivan Gomez-Mestre
- Evolutionary Biology Unit, Estación Biológica Doñana (CSIC), Sevilla, Spain
| | | | - Gonzalo Pérez-Suárez
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Oscar de Paz
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Carlos Ibáñez
- Evolutionary Biology Unit, Estación Biológica Doñana (CSIC), Sevilla, Spain
| | - Juan E. Echevarría
- National Center of Microbiology, (ISCIII), Madrid, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | | - Javier Juste
- Evolutionary Biology Unit, Estación Biológica Doñana (CSIC), Sevilla, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
27
|
Downs CJ, Dochtermann NA, Ball R, Klasing KC, Martin LB. The Effects of Body Mass on Immune Cell Concentrations of Mammals. Am Nat 2020; 195:107-114. [DOI: 10.1086/706235] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Fritze M, Costantini D, Fickel J, Wehner D, Czirják GÁ, Voigt CC. Immune response of hibernating European bats to a fungal challenge. Biol Open 2019; 8:bio.046078. [PMID: 31649120 PMCID: PMC6826279 DOI: 10.1242/bio.046078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immunological responses of hibernating mammals are suppressed at low body temperatures, a possible explanation for the devastating effect of the white-nose syndrome on hibernating North American bats. However, European bats seem to cope well with the fungal causative agent of the disease. To better understand the immune response of hibernating bats, especially against fungal pathogens, we challenged European greater mouse-eared bats (Myotis myotis) by inoculating the fungal antigen zymosan. We monitored torpor patterns, immune gene expressions, different aspects of the acute phase response and plasma oxidative status markers, and compared them with sham-injected control animals at 30 min, 48 h and 96 h after inoculation. Torpor patterns, body temperatures, body masses, white blood cell counts, expression of immune genes, reactive oxygen metabolites and non-enzymatic antioxidant capacity did not differ between groups during the experiment. However, zymosan injected bats had significantly higher levels of haptoglobin than the control animals. Our results indicate that hibernating greater mouse-eared bats mount an inflammatory response to a fungal challenge, with only mild to negligible consequences for the energy budget of hibernation. Our study gives a first hint that hibernating European bats may have evolved a hibernation-adjusted immune response in order to balance the trade-off between competent pathogen elimination and a prudent energy-saving regime. Summary: Our experimental immunological study on European bats provides new information on the functionality of the immune system in hibernation. For this we challenged bats with a fungal antigen and measured different immunological parameters.
Collapse
Affiliation(s)
- Marcus Fritze
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany .,Institute of Biology, Free University of Berlin, Takustr. 6, 14195 Berlin, Germany
| | - David Costantini
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.,Unité Physiologie moléculaire et adaptation (PhyMA), Muséum National d'Histoire Naturelle, CNRS; CP32, 57 rue Cuvier 75005 Paris, France
| | - Jörns Fickel
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.,University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Dana Wehner
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.,Institute of Biology, Free University of Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Gábor Á Czirják
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Christian C Voigt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.,Institute of Biology, Free University of Berlin, Takustr. 6, 14195 Berlin, Germany
| |
Collapse
|
29
|
Szentiványi T, Christe P, Glaizot O. Bat Flies and Their Microparasites: Current Knowledge and Distribution. Front Vet Sci 2019; 6:115. [PMID: 31106212 PMCID: PMC6492627 DOI: 10.3389/fvets.2019.00115] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/27/2019] [Indexed: 12/31/2022] Open
Abstract
Bats are the second most diverse mammalian group, playing keystone roles in ecosystems but also act as reservoir hosts for numerous pathogens. Due to their colonial habits which implies close contacts between individuals, bats are often parasitized by multiple species of micro- and macroparasites. The particular ecology, behavior, and environment of bat species may shape patterns of intra- and interspecific pathogen transmission, as well as the presence of specific vectorial organisms. This review synthetizes information on a multi-level parasitic system: bats, bat flies and their microparasites. Bat flies (Diptera: Nycteribiidae and Streblidae) are obligate, hematophagous ectoparasites of bats consisting of ~500 described species. Diverse parasitic organisms have been detected in bat flies including bacteria, blood parasites, fungi, and viruses, which suggest their vectorial potential. We discuss the ecological epidemiology of microparasites, their potential physiological effects on both bats and bat flies, and potential research perspectives in the domain of bat pathogens. For simplicity, we use the term microparasite throughout this review, yet it remains unclear whether some bacteria are parasites or symbionts of their bat fly hosts.
Collapse
Affiliation(s)
- Tamara Szentiványi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Museum of Zoology, Lausanne, Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Olivier Glaizot
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Museum of Zoology, Lausanne, Switzerland
| |
Collapse
|
30
|
Downs CJ, Schoenle LA, Han BA, Harrison JF, Martin LB. Scaling of Host Competence. Trends Parasitol 2019; 35:182-192. [DOI: 10.1016/j.pt.2018.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 12/31/2022]
|
31
|
Becker DJ, Czirják GÁ, Rynda-Apple A, Plowright RK. Handling Stress and Sample Storage Are Associated with Weaker Complement-Mediated Bactericidal Ability in Birds but Not Bats. Physiol Biochem Zool 2019; 92:37-48. [PMID: 30481115 DOI: 10.1086/701069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Variation in immune defense influences infectious disease dynamics within and among species. Understanding how variation in immunity drives pathogen transmission among species is especially important for animals that are reservoir hosts for zoonotic pathogens. Bats, in particular, have a propensity to host serious viral zoonoses without developing clinical disease themselves. The immunological adaptations that allow bats to host viruses without disease may be related to their adaptations for flight (e.g., in metabolism and mediation of oxidative stress). A number of analyses report greater richness of zoonotic pathogens in bats than in other taxa, such as birds (i.e., mostly volant vertebrates) and rodents (i.e., nonvolant small mammals), but immunological comparisons between bats and these other taxa are rare. To examine interspecific differences in bacterial killing ability (BKA), a functional measure of overall constitutive innate immunity, we use a phylogenetic meta-analysis to compare how BKA responds to the acute stress of capture and to storage time of frozen samples across the orders Aves and Chiroptera. After adjusting for host phylogeny, sample size, and total microbe colony-forming units, we find preliminary evidence that the constitutive innate immune defense of bats may be more resilient to handling stress and storage time than that of birds. This pattern was also similar when we analyzed the proportion of nonnegative and positive effect sizes per species, using phylogenetic comparative methods. We discuss potential physiological and evolutionary mechanisms by which complement proteins may differ between species orders and suggest future avenues for comparative field studies of immunity between sympatric bats, birds, and rodents in particular.
Collapse
|
32
|
Cabrera-Martínez LV, Herrera M. LG, Cruz-Neto AP. The energetic cost of mounting an immune response for Pallas's long-tongued bat ( Glossophaga soricina). PeerJ 2018; 6:e4627. [PMID: 29888121 PMCID: PMC5993019 DOI: 10.7717/peerj.4627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
The acute phase response (APR) is the first line of defense of the vertebrate immune system against pathogens. Mounting an immune response is believed to be energetically costly but direct measures of metabolic rate during immune challenges contradict this assumption. The energetic cost of APR for birds is higher than for rodents, suggesting that this response is less expensive for mammals. However, the particularly large increase in metabolic rate after APR activation for a piscivorous bat (Myotis vivesi) suggests that immune response might be unusually costly for bats. Here we quantified the energetic cost and body mass change associated with APR for the nectarivorous Pallas's long-tongued bat (Glossophaga soricina). Activation of the APR resulted in a short-term decrease in body mass and an increase in resting metabolic rate (RMR) with a total energy cost of only 2% of the total energy expenditure estimated for G. soricina. This increase in RMR was far from the large increase measured for piscivorous bats; rather, it was similar to the highest values reported for birds. Overall, our results suggest that the costs of APR for bats may vary interspecifically. Measurement of the energy cost of vertebrate immune response is limited to a few species and further work is warranted to evaluate its significance for an animal's energy budget.
Collapse
Affiliation(s)
- Lucia V. Cabrera-Martínez
- Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brasil
| | - L. Gerardo Herrera M.
- Estacion de Biologia Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, San Patricio, Jalisco, México
| | - Ariovaldo P. Cruz-Neto
- Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brasil
| |
Collapse
|
33
|
Kizhina A, Uzenbaeva L, Antonova E, Belkin V, Ilyukha V, Khizhkin E. Hematological Parameters in Hibernating Eptesicus nilssonii (Mammalia: Chiroptera) Collected in Northern European Russia. ACTA CHIROPTEROLOGICA 2018. [DOI: 10.3161/15081109acc2018.20.1.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Aleksandra Kizhina
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, 11 Pushkinskaya Street, 185910 Petrozavodsk, Karelia, Russia
| | - Lyudmila Uzenbaeva
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, 11 Pushkinskaya Street, 185910 Petrozavodsk, Karelia, Russia
| | - Ekaterina Antonova
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, 11 Pushkinskaya Street, 185910 Petrozavodsk, Karelia, Russia
| | - Vladimir Belkin
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, 11 Pushkinskaya Street, 185910 Petrozavodsk, Karelia, Russia
| | - Viktor Ilyukha
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, 11 Pushkinskaya Street, 185910 Petrozavodsk, Karelia, Russia
| | - Evgeniy Khizhkin
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, 11 Pushkinskaya Street, 185910 Petrozavodsk, Karelia, Russia
| |
Collapse
|
34
|
Phelps KL, Kingston T. Environmental and biological context modulates the physiological stress response of bats to human disturbance. Oecologia 2018; 188:41-52. [PMID: 29858693 DOI: 10.1007/s00442-018-4179-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 05/29/2018] [Indexed: 11/28/2022]
Abstract
Environmental and biological context play significant roles in modulating physiological stress responses of individuals in wildlife populations yet are often overlooked when evaluating consequences of human disturbance on individual health and fitness. Furthermore, most studies gauge individual stress responses based on a single physiological biomarker, typically circulating glucocorticoid concentrations, which limits interpretation of the complex, multifaceted responses of individuals to stressors. We selected four physiological biomarkers to capture short-term and prolonged stress responses in a widespread cave-roosting bat, Hipposideros diadema, across multiple gradients of human disturbance in and around caves in the Philippines. We used conditional inference trees and random forest analysis to determine the role of environmental quality (cave complexity, available roosting area), assemblage composition (intra- and interspecific associations and species richness), and intrinsic characteristics of individuals (sex and reproductive status) in modulating responses to disturbance. Direct cave disturbance (hunting pressure and human visitation) was the primary driver of neutrophil-to-lymphocyte ratios, with lower ratios associated with increased disturbance, while context-specific factors were more important in explaining total leukocyte count, body condition, and ectoparasite load. Moreover, conditional inference trees revealed complex interactions among human disturbance and modulating factors. Cave complexity often ameliorated individual responses to human disturbance, whereas conspecific abundance often compounded responses. Our study demonstrates the importance of an integrated approach that incorporates environmental and biological context when identifying drivers of physiological responses, and that assesses responses to gradients of direct and indirect disturbance using multiple complementary biomarkers.
Collapse
Affiliation(s)
- Kendra L Phelps
- Department of Biological Sciences, Texas Tech University, Lubbock, USA. .,Southeast Asian Bat Conservation Research Unit, Lubbock, USA. .,EcoHealth Alliance, 460 West 34th Street, New York, NY, 10001, USA.
| | - Tigga Kingston
- Department of Biological Sciences, Texas Tech University, Lubbock, USA.,Southeast Asian Bat Conservation Research Unit, Lubbock, USA
| |
Collapse
|
35
|
Ruoss S, Becker NI, Otto MS, Czirják GÁ, Encarnação JA. Effect of sex and reproductive status on the immunity of the temperate bat Myotis daubentonii. Mamm Biol 2018; 94:120-126. [PMID: 32218715 PMCID: PMC7091572 DOI: 10.1016/j.mambio.2018.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
Abstract
Studies of immunity in bat species are rare. However, it is important to determine immunological variations to identify factors influencing the health status of these endangered mammals from an evolutionary, ecological, conservation, and public health point of view. Immunity is highly variable and can be influenced by both internal (e.g. hormone levels, energy demand) and external factors (e.g. pathogens, climate). As bats have some peculiar ecological, energetic, and putative immunological characteristics, they are outstanding study organisms for ecoimmunological studies. We tested if (i) female bats have a higher immunity than males similar to most other mammalian species and (ii) individuals differ according to their energy demand (e.g. reproductive status). To study these questions, we sampled female and male Myotis daubentonii with different reproductive states and estimated their bacterial killing activity, hemolysis/hemagglutination titer, immunoglobulin G (IgG) concentration, and total and differential white blood cell counts. These methods characterize the cellular and humoral branches of both the adaptive and the innate immune responses of these individuals. Reproductively active males had lower cellular immunity compared to non-reproductive individuals. Pregnant females had increased IgG concentrations while hemolysis was enhanced during lactation. No clear trade-off between immunity and reproduction was found; instead immunity of males and female bats seems to be modulated differently due to varying hormonal and energetic states. Our data suggest that both adaptive and innate immunity as well as individual differences (i.e. sex and reproductive state) need to be considered to get a comprehensive overall picture of immunity in wild mammals.
Collapse
Affiliation(s)
- Sara Ruoss
- Mammalian Ecology Group, Department of Animal Ecology and Systematics, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26 (IFZ), 35392 Giessen, Germany
| | - Nina I. Becker
- Institute for Applied Animal Ecology and Ecoinformatics (inatu.re), Im Brühl 2, 35457 Lollar, Germany
| | - Matthias S. Otto
- Mammalian Ecology Group, Department of Animal Ecology and Systematics, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26 (IFZ), 35392 Giessen, Germany
| | - Gábor Á. Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Jorge A. Encarnação
- Mammalian Ecology Group, Department of Animal Ecology and Systematics, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26 (IFZ), 35392 Giessen, Germany
- Institute for Applied Animal Ecology and Ecoinformatics (inatu.re), Im Brühl 2, 35457 Lollar, Germany
| |
Collapse
|
36
|
Becker DJ, Czirják GÁ, Volokhov DV, Bentz AB, Carrera JE, Camus MS, Navara KJ, Chizhikov VE, Fenton MB, Simmons NB, Recuenco SE, Gilbert AT, Altizer S, Streicker DG. Livestock abundance predicts vampire bat demography, immune profiles and bacterial infection risk. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170089. [PMID: 29531144 PMCID: PMC5882995 DOI: 10.1098/rstb.2017.0089] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/14/2022] Open
Abstract
Human activities create novel food resources that can alter wildlife-pathogen interactions. If resources amplify or dampen, pathogen transmission probably depends on both host ecology and pathogen biology, but studies that measure responses to provisioning across both scales are rare. We tested these relationships with a 4-year study of 369 common vampire bats across 10 sites in Peru and Belize that differ in the abundance of livestock, an important anthropogenic food source. We quantified innate and adaptive immunity from bats and assessed infection with two common bacteria. We predicted that abundant livestock could reduce starvation and foraging effort, allowing for greater investments in immunity. Bats from high-livestock sites had higher microbicidal activity and proportions of neutrophils but lower immunoglobulin G and proportions of lymphocytes, suggesting more investment in innate relative to adaptive immunity and either greater chronic stress or pathogen exposure. This relationship was most pronounced in reproductive bats, which were also more common in high-livestock sites, suggesting feedbacks between demographic correlates of provisioning and immunity. Infection with both Bartonella and haemoplasmas were correlated with similar immune profiles, and both pathogens tended to be less prevalent in high-livestock sites, although effects were weaker for haemoplasmas. These differing responses to provisioning might therefore reflect distinct transmission processes. Predicting how provisioning alters host-pathogen interactions requires considering how both within-host processes and transmission modes respond to resource shifts.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.
Collapse
Affiliation(s)
- Daniel J Becker
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Dmitriy V Volokhov
- Center for Biologics Evaluation & Research, U.S. Food & Drug Administration, Rockville, MD, USA
| | - Alexandra B Bentz
- Department of Poultry Science, University of Georgia, Athens, GA, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Jorge E Carrera
- Facultad de Ciencias, Universidad Nacional de Piura, Piura, Perú
- Programa de Conservación de Murciélagos de Perú, Piura, Perú
| | - Melinda S Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Kristen J Navara
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Vladimir E Chizhikov
- Center for Biologics Evaluation & Research, U.S. Food & Drug Administration, Rockville, MD, USA
| | - M Brock Fenton
- Department of Biology, Western University, London, Ontario, Canada
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Sergio E Recuenco
- Department of Preventive Medicine and Public Health, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Amy T Gilbert
- National Wildlife Research Center, United States Department of Agriculture, Fort Collins, CO, USA
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA 30602, USA
| | - Daniel G Streicker
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
37
|
|
38
|
Beck ML, Thompson M, Hopkins WA. Repeatability and sources of variation of the bacteria-killing assay in the common snapping turtle. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:293-301. [PMID: 29356460 DOI: 10.1002/jez.2089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/16/2017] [Accepted: 07/10/2017] [Indexed: 01/13/2023]
Abstract
Research on reptile ecoimmunology lags behind that on other vertebrates, despite the importance of such studies for conservation and evolution. Because the innate immune system is highly conserved across vertebrate lineages, assessments of its performance may be particularly useful in reptiles. The bacteria-killing assay requires a single, small blood sample and quantifies an individual's ability to kill microorganisms. The assay's construct validity and interpretability make it an attractive measure of innate immunity, but it requires proper optimization and sample storage. We optimized this assay for the common snapping turtle (Chelydra serpentina) to assess the repeatability of the assay and the effects of freezing and thawing on bactericidal capacity. We determined whether age (adult female and hatchlings) or incubation temperature influenced bactericidal capacity. We found that the assay was repeatable and that freezing plasma samples for 6 weeks at -80°C did not decrease bactericidal capacity nor did a single 30-min thaw and subsequent refreezing. However, we detected subtle interassay variation and results from one assay were 5-6% greater than those from the other two. Adult females had significantly greater bactericidal ability than hatchlings and we found no relationship between incubation temperature and bactericidal capacity. This assay is a useful tool in snapping turtles and may have applicability in other reptiles. However, species-specific optimization is required to ensure that variation among individuals exceeds interassay variation. Consideration should be given to optimization conditions that facilitate comparisons between or within groups, particularly groups that differ considerably in bactericidal capacity.
Collapse
Affiliation(s)
- Michelle L Beck
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia
| | - Molly Thompson
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia
| | - William A Hopkins
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
39
|
A Comparative Analysis of Viral Richness and Viral Sharing in Cave-Roosting Bats. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9030035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Weise P, Czirják GA, Lindecke O, Bumrungsri S, Voigt CC. Simulated bacterial infection disrupts the circadian fluctuation of immune cells in wrinkle-lipped bats ( Chaerephon plicatus). PeerJ 2017; 5:e3570. [PMID: 28791196 PMCID: PMC5545106 DOI: 10.7717/peerj.3570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/22/2017] [Indexed: 11/29/2022] Open
Abstract
Background Leukocyte concentrations follow a circadian pattern in mammals, with elevated values at times of potential contact with pathogens and parasites. We hypothesized that this pattern is disturbed after an immune challenge. Methods In Thailand, we captured wrinkle-lipped bats (Chaerephon plicatus), when they returned to their colony at dawn. We challenged half of the animals (experimental group) with bacterial lipopolysaccharides and treated the others only with the carrier liquid (control group). We then compared body mass changes and differences in circulating immune cell counts at 8 h post-treatment. Results In experimental animals, we observed an increase in total leukocyte and neutrophil numbers of 17% and 95%, respectively. In control animals, concentrations of leukocytes decreased by 44% and those of neutrophils remained constant. Experimental treatment had no effect on lymphocytes, yet changes in eosinophil numbers were explained by sex. Eosinophils decreased by 66% in females and by 62% in males. Basophils and monocytes were rarest among all observed cell types and analysis was either impossible because of low numbers or yielded no significant effects, respectively. Discussion Our findings show that a simulated bacterial infection triggered a neutrophil-associated immune response in wrinkle-lipped bats, indicating a disruption of the diurnal fluctuation of immune cells. Our study suggests that bats exhibit circadian rhythms in immune cell counts. The magnitude of these fluctuations may vary across species according to specific-specific infection risks associated with colony sizes or specific roosting habits.
Collapse
Affiliation(s)
- Philipp Weise
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Department of Biology, Humboldt Universität, Berlin, Germany
| | - Gábor A Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Oliver Lindecke
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Department of Animal Behaviour, Freie Universität Berlin, Berlin, Germany
| | - Sara Bumrungsri
- Department of Biology, Prince of Songkla University, Hat Yai, Thailand
| | - Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Department of Animal Behaviour, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
41
|
Stuckey MJ, Chomel BB, Galvez-Romero G, Olave-Leyva JI, Obregón-Morales C, Moreno-Sandoval H, Aréchiga-Ceballos N, Salas-Rojas M, Aguilar-Setién A. Bartonella Infection in Hematophagous, Insectivorous, and Phytophagous Bat Populations of Central Mexico and the Yucatan Peninsula. Am J Trop Med Hyg 2017; 97:413-422. [PMID: 28722567 DOI: 10.4269/ajtmh.16-0680] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Although emerging nonviral pathogens remain relatively understudied in bat populations, there is an increasing focus on identifying bat-associated bartonellae around the world. Many novel Bartonella strains have been described from both bats and their arthropod ectoparasites, including Bartonella mayotimonensis, a zoonotic agent of human endocarditis. This cross-sectional study was designed to describe novel Bartonella strains isolated from bats sampled in Mexico and evaluate factors potentially associated with infection. A total of 238 bats belonging to seven genera were captured in five states of Central Mexico and the Yucatan Peninsula. Animals were screened by bacterial culture from whole blood and/or polymerase chain reaction of DNA extracted from heart tissue or blood. Bartonella spp. were isolated or detected in 54 (22.7%) bats, consisting of 41 (38%) hematophagous, 10 (16.4%) insectivorous, and three (4.3%) phytophagous individuals. This study also identified Balantiopteryx plicata as another possible bat reservoir of Bartonella. Univariate and multivariate logistic regression models suggested that Bartonella infection was positively associated with blood-feeding diet and ectoparasite burden. Phylogenetic analysis identified a number of genetic variants across hematophagous, phytophagous, and insectivorous bats that are unique from described bat-borne Bartonella species. However, these strains were closely related to those bartonellae previously identified in bat species from Latin America.
Collapse
Affiliation(s)
- Matthew J Stuckey
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California
| | - Bruno B Chomel
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California
| | - Guillermo Galvez-Romero
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - José Ignacio Olave-Leyva
- Instituto de Ciencias Agropecuarias de la Universidad Autónoma del Estado de Hidalgo, Tulancingo, Mexico
| | - Cirani Obregón-Morales
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Hayde Moreno-Sandoval
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Nidia Aréchiga-Ceballos
- Laboratorio de Rabia, Instituto de Diagnóstico y Referencia Epidemiológicos, Mexico City, Mexico
| | - Mónica Salas-Rojas
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Alvaro Aguilar-Setién
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Mexican Social Security Institute (IMSS), Mexico City, Mexico
| |
Collapse
|
42
|
Seltmann A, Corman VM, Rasche A, Drosten C, Czirják GÁ, Bernard H, Struebig MJ, Voigt CC. Seasonal Fluctuations of Astrovirus, But Not Coronavirus Shedding in Bats Inhabiting Human-Modified Tropical Forests. ECOHEALTH 2017; 14:272-284. [PMID: 28500421 PMCID: PMC7087689 DOI: 10.1007/s10393-017-1245-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 05/21/2023]
Abstract
Emerging infectious diseases (EIDs) are considered a major threat to global health. Most EIDs appear to result from increased contact between wildlife and humans, especially when humans encroach into formerly pristine habitats. Habitat deterioration may also negatively affect the physiology and health of wildlife species, which may eventually lead to a higher susceptibility to infectious agents and/or increased shedding of the pathogens causing EIDs. Bats are known to host viruses closely related to important EIDs. Here, we tested in a paleotropical forest with ongoing logging and fragmentation, whether habitat disturbance influences the occurrence of astro- and coronaviruses in eight bat species. In contrast to our hypothesis, anthropogenic habitat disturbance was not associated with corona- and astrovirus detection rates in fecal samples. However, we found that bats infected with either astro- or coronaviruses were likely to be coinfected with the respective other virus. Additionally, we identified two more risk factors influencing astrovirus shedding. First, the detection rate of astroviruses was higher at the beginning of the rainy compared to the dry season. Second, there was a trend that individuals with a poor body condition had a higher probability of shedding astroviruses in their feces. The identification of risk factors for increased viral shedding that may potentially result in increased interspecies transmission is important to prevent viral spillovers from bats to other animals, including humans.
Collapse
Affiliation(s)
- Anne Seltmann
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany.
- Institute of Biology, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.
| | - Victor M Corman
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
- German Centre for Infection Research, partner site Bonn-Cologne, Bonn, Germany
| | - Andrea Rasche
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
- German Centre for Infection Research, partner site Bonn-Cologne, Bonn, Germany
| | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
- German Centre for Infection Research, partner site Bonn-Cologne, Bonn, Germany
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
| | - Henry Bernard
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Matthew J Struebig
- Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK
| | - Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| |
Collapse
|
43
|
Becker DJ, Chumchal MM, Bentz AB, Platt SG, Czirják GÁ, Rainwater TR, Altizer S, Streicker DG. Predictors and immunological correlates of sublethal mercury exposure in vampire bats. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170073. [PMID: 28484633 PMCID: PMC5414270 DOI: 10.1098/rsos.170073] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/21/2017] [Indexed: 05/21/2023]
Abstract
Mercury (Hg) is a pervasive heavy metal that often enters the environment from anthropogenic sources such as gold mining and agriculture. Chronic exposure to Hg can impair immune function, reducing the ability of animals to resist or recover from infections. How Hg influences immunity and susceptibility remains unknown for bats, which appear immunologically distinct from other mammals and are reservoir hosts of many pathogens of importance to human and animal health. We here quantify total Hg (THg) in hair collected from common vampire bats (Desmodus rotundus), which feed on blood and are the main reservoir hosts of rabies virus in Latin America. We examine how diet, sampling site and year, and bat demography influence THg and test the consequences of this variation for eight immune measures. In two populations from Belize, THg concentrations in bats were best explained by an interaction between long-term diet inferred from stable isotopes and year. Bats that foraged more consistently on domestic animals exhibited higher THg. However, relationships between diet and THg were evident only in 2015 but not in 2014, which could reflect recent environmental perturbations associated with agriculture. THg concentrations were low relative to values previously observed in other bat species but still correlated with bat immunity. Bats with higher THg had more neutrophils, weaker bacterial killing ability and impaired innate immunity. These patterns suggest that temporal variation in Hg exposure may impair bat innate immunity and increase susceptibility to pathogens such as bacteria. Unexpected associations between low-level Hg exposure and immune function underscore the need to better understand the environmental sources of Hg exposure in bats and the consequences for bat immunity and susceptibility.
Collapse
Affiliation(s)
- Daniel J. Becker
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
- e-mail:
| | | | | | - Steven G. Platt
- Wildlife Conservation Society, Myanmar Program, Yangon, Myanmar
| | - Gábor Á. Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Thomas R. Rainwater
- Tom Yawkey Wildlife Center and Belle W. Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC, USA
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| | - Daniel G. Streicker
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| |
Collapse
|
44
|
Seltmann A, Czirják GÁ, Courtiol A, Bernard H, Struebig MJ, Voigt CC. Habitat disturbance results in chronic stress and impaired health status in forest-dwelling paleotropical bats. CONSERVATION PHYSIOLOGY 2017; 5:cox020. [PMID: 28421138 PMCID: PMC5388297 DOI: 10.1093/conphys/cox020] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/16/2017] [Accepted: 03/09/2017] [Indexed: 05/09/2023]
Abstract
Anthropogenic habitat disturbance is a major threat to biodiversity worldwide. Yet, before population declines are detectable, individuals may suffer from chronic stress and impaired immunity in disturbed habitats, making them more susceptible to pathogens and adverse weather conditions. Here, we tested in a paleotropical forest with ongoing logging and fragmentation, whether habitat disturbance influences the body mass and immunity of bats. We measured and compared body mass, chronic stress (indicated by neutrophil to lymphocyte ratios) and the number of circulating immune cells between several bat species with different roost types living in recovering areas, actively logged forests, and fragmented forests in Sabah, Malaysia. In a cave-roosting species, chronic stress levels were higher in individuals from fragmented habitats compared with conspecifics from actively logged areas. Foliage-roosting species showed a reduced body mass and decrease in total white blood cell counts in actively logged areas and fragmented forests compared with conspecifics living in recovering habitats. Our study highlights that habitat disturbance may have species-specific effects on chronic stress and immunity in bats that are potentially related to the roost type. We identified foliage-roosting species as particularly sensitive to forest habitat deterioration. These species may face a heightened extinction risk in the near future if anthropogenic habitat alterations continue.
Collapse
Affiliation(s)
- Anne Seltmann
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Corresponding author: Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany. Tel: +49-30-5168-326; fax: +49-30-5126-104.
| | - Gábor Á. Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Alexandre Courtiol
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Henry Bernard
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Matthew J. Struebig
- Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, Kent CT2 7NR, UK
| | - Christian C. Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
45
|
Stockmaier S, Dechmann DKN, Page RA, O'Mara MT. No fever and leucocytosis in response to a lipopolysaccharide challenge in an insectivorous bat. Biol Lett 2016; 11:20150576. [PMID: 26333664 DOI: 10.1098/rsbl.2015.0576] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Bat immune systems may allow them to respond to zoonotic agents more efficiently than other mammals. As the first line of defence, the taxonomically conserved acute phase immune reaction of leucocytosis and fever is crucial for coping with infections, but it is unknown if this response is a key constituent to bat immunological success. We investigated the acute phase reaction to a standard lipopolysaccharide (LPS) challenge in Pallas's mastiff bats (Molossus molossus). Challenged bats lost mass, but in contrast to other mammals showed no leucocytosis or fever. There also was no influence on body temperature reduction during torpor. When compared to recent genome-wide assays for constituent immune genes, this lack of a conserved fever response to LPS contributes to a clearer understanding of the innate immune system in bat species and of the coevolution of bats with a wide diversity of pathogens.
Collapse
Affiliation(s)
- Sebastian Stockmaier
- Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Am Obstberg 1, Radolfzell 78315, Germany Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
| | - Dina K N Dechmann
- Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Am Obstberg 1, Radolfzell 78315, Germany Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
| | - Rachel A Page
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
| | - M Teague O'Mara
- Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Am Obstberg 1, Radolfzell 78315, Germany Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany Zukunftskolleg, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
| |
Collapse
|
46
|
Heinrich SK, Wachter B, Aschenborn OHK, Thalwitzer S, Melzheimer J, Hofer H, Czirják GÁ. Feliform carnivores have a distinguished constitutive innate immune response. Biol Open 2016; 5:550-5. [PMID: 27044323 PMCID: PMC4874346 DOI: 10.1242/bio.014902] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas), the brown hyena (Hyena brunnea), the caracal (Caracal caracal), the cheetah (Acinonyx jubatus), the leopard (Panthera pardus) and the lion (Panthera leo) using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system. Summary: The innate immunocompetence of six free-ranging carnivores is independent of their foraging behaviour, body mass or social organisation but reflects their phylogenetic relatedness.
Collapse
Affiliation(s)
- Sonja K Heinrich
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, Berlin 10315, Germany
| | - Bettina Wachter
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, Berlin 10315, Germany
| | - Ortwin H K Aschenborn
- Bwabwata Ecological Institute, Ministry of Environment and Tourism, Zambezi, Namibia
| | - Susanne Thalwitzer
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, Berlin 10315, Germany
| | - Jörg Melzheimer
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, Berlin 10315, Germany
| | - Heribert Hofer
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, Berlin 10315, Germany
| | - Gábor Á Czirják
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, Berlin 10315, Germany
| |
Collapse
|
47
|
Abstract
Recent studies have clearly shown that bats are the reservoir hosts of a wide diversity of novel viruses with representatives from most of the known animal virus families. In many respects bats make ideal reservoir hosts for viruses: they are the only mammals that fly, thus assisting in virus dispersal; they roost in large numbers, thus aiding transmission cycles; some bats hibernate over winter, thus providing a mechanism for viruses to persist between seasons; and genetic factors may play a role in the ability of bats to host viruses without resulting in clinical disease. Within the broad diversity of viruses found in bats are some important neurological pathogens, including rabies and other lyssaviruses, and Hendra and Nipah viruses, two recently described viruses that have been placed in a new genus, Henipaviruses in the family Paramyxoviridae. In addition, bats can also act as alternative hosts for the flaviviruses Japanese encephalitis and St Louis encephalitis viruses, two important mosquito-borne encephalitogenic viruses, and bats can assist in the dispersal and over-wintering of these viruses. Bats are also the reservoir hosts of progenitors of SARS and MERS coronaviruses, although other animals act as spillover hosts. This chapter presents the physiological and ecological factors affecting the ability of bats to act as reservoirs of neurotropic viruses, and describes the major transmission cycles leading to human infection.
Collapse
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|
48
|
Jacobs AC, Fair JM. Bacteria-killing ability of fresh blood plasma compared to frozen blood plasma. Comp Biochem Physiol A Mol Integr Physiol 2015; 191:115-118. [PMID: 26456418 DOI: 10.1016/j.cbpa.2015.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
Abstract
In recent years, the bacteria-killing assay (BKA) has become a popular technique among ecoimmunologists. New variations of that assay allow researchers to use smaller volumes of blood, an important consideration for those working on small-bodied animals. However, this version of the assay requires access to a lab with a nanodrop spectrophotometer, something that may not be available in the field. One possible solution is to freeze plasma for transport; however, this assumes that frozen plasma samples will give comparable results to fresh ones. We tested this assumption using plasma samples from three species of birds: chickens (Gallus gallus), ash-throated flycatchers (Myiarchus cinerascens), and western bluebirds (Sialia mexicana). Chicken plasma samples lost most or all of their bacterial killing ability after freezing. This did not happen in flycatchers and bluebirds; however, frozen plasma did not produce results comparable to those obtained using fresh plasma. We caution researchers using the BKA to use fresh samples whenever possible, and to validate the use of frozen samples on a species-by-species basis.
Collapse
Affiliation(s)
- Anne C Jacobs
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | - Jeanne M Fair
- Los Alamos National Laboratory, Global Security-Emerging Threats, Mailstop K404, Los Alamos, NM 87545, USA
| |
Collapse
|
49
|
Voigt CC, Kingston T. Zoonotic Viruses and Conservation of Bats. BATS IN THE ANTHROPOCENE: CONSERVATION OF BATS IN A CHANGING WORLD 2015. [PMCID: PMC7122997 DOI: 10.1007/978-3-319-25220-9_10] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many of the recently emerging highly virulent zoonotic diseases have a likely bat origin, for example Hendra, Nipah, Ebola and diseases caused by coronaviruses. Presumably because of their long history of coevolution, most of these viruses remain subclinical in bats, but have the potential to cause severe illnesses in domestic and wildlife animals and also humans. Spillovers from bats to humans either happen directly (via contact with infected bats) or indirectly (via intermediate hosts such as domestic or wildlife animals, by consuming food items contaminated by saliva, faeces or urine of bats, or via other environmental sources). Increasing numbers of breakouts of zoonotic viral diseases among humans and livestock have mainly been accounted to human encroachment into natural habitat, as well as agricultural intensification, deforestation and bushmeat consumption. Persecution of bats, including the destruction of their roosts and culling of whole colonies, has led not only to declines of protected bat species, but also to an increase in virus prevalence in some of these populations. Educational efforts are needed in order to prevent future spillovers of bat-borne viruses to humans and livestock, and to further protect bats from unnecessary and counterproductive culling.
Collapse
|
50
|
Tian J, Courtiol A, Schneeberger K, Greenwood AD, Czirják GÁ. Circulating white blood cell counts in captive and wild rodents are influenced by body mass rather than testes mass, a correlate of mating promiscuity. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12394] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jundong Tian
- Department of Wildlife Diseases Leibniz Institute for Zoo and Wildlife Research 10315 Berlin Germany
- Department of Veterinary Medicine Freie Universität Berlin 14163 Berlin Germany
| | - Alexandre Courtiol
- Department of Evolutionary Genetics Leibniz Institute for Zoo and Wildlife Research 10315 Berlin Germany
| | - Karin Schneeberger
- Department of Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research 10315 Berlin Germany
| | - Alex D. Greenwood
- Department of Wildlife Diseases Leibniz Institute for Zoo and Wildlife Research 10315 Berlin Germany
- Department of Veterinary Medicine Freie Universität Berlin 14163 Berlin Germany
| | - Gábor Á. Czirják
- Department of Wildlife Diseases Leibniz Institute for Zoo and Wildlife Research 10315 Berlin Germany
| |
Collapse
|