1
|
Brealey JC, Kodama M, Rasmussen JA, Hansen SB, Santos-Bay L, Lecaudey LA, Hansen M, Fjære E, Myrmel LS, Madsen L, Bernhard A, Sveier H, Kristiansen K, Gilbert MTP, Martin MD, Limborg MT. Host-gut microbiota interactions shape parasite infections in farmed Atlantic salmon. mSystems 2024; 9:e0104323. [PMID: 38294254 PMCID: PMC10886447 DOI: 10.1128/msystems.01043-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Animals and their associated microbiota share long evolutionary histories. However, it is not always clear how host genotype and microbiota interact to affect phenotype. We applied a hologenomic approach to explore how host-microbiota interactions shape lifetime growth and parasite infection in farmed Atlantic salmon (Salmo salar). Multi-omics data sets were generated from the guts of 460 salmon, 82% of which were naturally infected with an intestinal cestode. A single Mycoplasma bacterial strain, MAG01, dominated the gut metagenome of large, non-parasitized fish, consistent with previous studies showing high levels of Mycoplasma in the gut microbiota of healthy salmon. While small and/or parasitized salmon also had high abundance of MAG01, we observed increased alpha diversity in these individuals, driven by increased frequency of low-abundance Vibrionaceae and other Mycoplasma species that carried known virulence genes. Colonization by one of these cestode-associated Mycoplasma strains was associated with host individual genomic variation in long non-coding RNAs. Integrating the multi-omic data sets revealed coordinated changes in the salmon gut mRNA transcriptome and metabolome that correlated with shifts in the microbiota of smaller, parasitized fish. Our results suggest that the gut microbiota of small and/or parasitized fish is in a state of dysbiosis that partly depends on the host genotype, highlighting the value of using a hologenomic approach to incorporate the microbiota into the study of host-parasite dynamics.IMPORTANCEStudying host-microbiota interactions through the perspective of the hologenome is gaining interest across all life sciences. Intestinal parasite infections are a huge burden on human and animal health; however, there are few studies investigating the role of the hologenome during parasite infections. We address this gap in the largest multi-omics fish microbiota study to date using natural cestode infection of farmed Atlantic salmon. We find a clear association between cestode infection, salmon lifetime growth, and perturbation of the salmon gut microbiota. Furthermore, we provide the first evidence that the genetic background of the host may partly determine how the gut microbiota changes during parasite-associated dysbiosis. Our study therefore highlights the value of a hologenomic approach for gaining a more in-depth understanding of parasitism.
Collapse
Affiliation(s)
- Jaelle C Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Miyako Kodama
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Jacob A Rasmussen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren B Hansen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Luisa Santos-Bay
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Laurène A Lecaudey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Aquaculture Department, SINTEF Ocean, Trondheim, Norway
| | - Martin Hansen
- Department of Environmental Science, Environmental Metabolomics Lab, Aarhus University, Roskilde, Denmark
| | - Even Fjære
- Institute of Marine Research, Bergen, Norway
| | | | - Lise Madsen
- Institute of Marine Research, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Norway, Bergen, Norway
| | | | | | - Karsten Kristiansen
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Brimsholm M, Fjelldal PG, Hansen T, Fraser TKW, Solberg M, Glover K, Koppang EO, Bjørgen H. Red and melanized focal changes in white skeletal muscle in Atlantic salmon (Salmo salar): Comparative analysis of farmed, wild and hybrid fish reared under identical conditions. JOURNAL OF FISH DISEASES 2023; 46:1377-1389. [PMID: 37675872 DOI: 10.1111/jfd.13856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
Selective breeding plays a vital role in the production of farmed Atlantic salmon and has shown success in many aspects. Still, challenges related to fish health and welfare continue to result in significant economic losses. One such challenge is red and melanized focal changes (RFC/MFC), which result from acute and chronic inflammation, respectively, in the skeletal muscle. Importantly, RFC/MFC has not been observed in wild Atlantic salmon, suggesting that both external and genetic factors may contribute to the development of inflammation. To investigate the underlying cause of RFC/MFC, we conducted a study involving 1854 Atlantic salmon of farmed, wild and hybrid origin. All fish were reared under identical conditions to minimize the influence of external factors. Throughout the production cycle, the fish was monitored for growth parameters and examined for RFC/MFC using macroscopic and histological analysis. We found no association between the experimental groups and the presence of RFC/MFC. Histological investigations revealed melano-macrophages in the soft tissue in freshwater smolt, although no macroscopic discoloration was observed. MFC showed granulomas in various stages, suggesting a complex progression of the condition. In summary, we conclude that RFC/MFC is primarily caused by external factors found in the rearing facilities of farmed Atlantic salmon.
Collapse
Affiliation(s)
- Malin Brimsholm
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Tom Hansen
- Matre Research Station, Institute of Marine Research, Matredal, Norway
| | | | - Monica Solberg
- Population Genetics Research Group, Institute of Marine Research, Bergen, Norway
| | - Kevin Glover
- Population Genetics Research Group, Institute of Marine Research, Bergen, Norway
| | - Erling Olaf Koppang
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Håvard Bjørgen
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
3
|
Juvenile semi-wild fish have a higher metabolic rate than farmed fish. Comp Biochem Physiol A Mol Integr Physiol 2023; 275:111328. [PMID: 36206849 DOI: 10.1016/j.cbpa.2022.111328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Fish from commercially farmed stocks are often released into the natural environment to supplement wild populations. This practice is often applied to salmonid fish as they are an essential fishery resource and also used for recreational angling. However, farmed fish tend to show lower survival rates after release than wild fish. For this reason, the release of semi-wild fish is increasingly used in Japan; these fish are generated using female fish from domesticated stocks and male fish of wild origin. The survival rate of released semi-wild fish is higher than that of farmed fish, but the reason for this is unknown. This study compared the metabolism and swimming performance of semi-wild and farmed masu salmon (Oncorynchus masou). The analyses showed that resting metabolic rate (RMR), maximum metabolic rate (MMR) and swimming speeds that minimize energy costs of travel (optimal swimming speed) were higher in semi-wild fish than in farmed fish. Critical swimming speed did not differ significantly between the two groups of fish. Semi-wild fish with high RMR may have a social status advantage over farmed fish because a previous study reported that SMR, which is the value closest to basal metabolism significantly affects feeding motivation. This means that individuals with higher social status may be more motivated to feed. As RMR is proportional to food requirements, then release programs should be planned taking food resources at the release site into consideration.
Collapse
|
4
|
Perry WB, Kaufmann J, Solberg MF, Brodie C, Coral Medina AM, Pillay K, Egerton A, Harvey A, Phillips KP, Coughlan J, Egan F, Grealis R, Hutton S, Leseur F, Ryan S, Poole R, Rogan G, Ryder E, Schaal P, Waters C, Wynne R, Taylor M, Prodöhl P, Creer S, Llewellyn M, McGinnity P, Carvalho G, Glover KA. Domestication-induced reduction in eye size revealed in multiple common garden experiments: The case of Atlantic salmon ( Salmo salar L.). Evol Appl 2021; 14:2319-2332. [PMID: 34603501 PMCID: PMC8477603 DOI: 10.1111/eva.13297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022] Open
Abstract
Domestication leads to changes in traits that are under directional selection in breeding programmes, though unintentional changes in nonproduction traits can also arise. In offspring of escaping fish and any hybrid progeny, such unintentionally altered traits may reduce fitness in the wild. Atlantic salmon breeding programmes were established in the early 1970s, resulting in genetic changes in multiple traits. However, the impact of domestication on eye size has not been studied. We measured body size corrected eye size in 4000 salmon from six common garden experiments conducted under artificial and natural conditions, in freshwater and saltwater environments, in two countries. Within these common gardens, offspring of domesticated and wild parents were crossed to produce 11 strains, with varying genetic backgrounds (wild, domesticated, F1 hybrids, F2 hybrids and backcrosses). Size-adjusted eye size was influenced by both genetic and environmental factors. Domesticated fish reared under artificial conditions had smaller adjusted eye size when compared to wild fish reared under identical conditions, in both the freshwater and marine environments, and in both Irish and Norwegian experiments. However, in parr that had been introduced into a river environment shortly after hatching and sampled at the end of their first summer, differences in adjusted eye size observed among genetic groups were of a reduced magnitude and were nonsignificant in 2-year-old sea migrating smolts sampled in the river immediately prior to sea entry. Collectively, our findings could suggest that where natural selection is present, individuals with reduced eye size are maladapted and consequently have reduced fitness, building on our understanding of the mechanisms that underlie a well-documented reduction in the fitness of the progeny of domesticated salmon, including hybrid progeny, in the wild.
Collapse
Affiliation(s)
- William Bernard Perry
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
- Water Research InstituteSchool of BiosciencesCardiff UniversityCardiffUK
- Population Genetics Research GroupInstitute of Marine ResearchBergenNorway
| | - Joshka Kaufmann
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | | | - Christopher Brodie
- Ecosystems and Environment Research CentreSchool of Environment and Life SciencesUniversity of SalfordSalfordUK
| | | | - Kirthana Pillay
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
| | - Anna Egerton
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
| | - Alison Harvey
- Population Genetics Research GroupInstitute of Marine ResearchBergenNorway
| | - Karl P. Phillips
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Jamie Coughlan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Fintan Egan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Ronan Grealis
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Steve Hutton
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Floriane Leseur
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Sarah Ryan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | | | - Ger Rogan
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Elizabeth Ryder
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Patrick Schaal
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
- Institute of BiodiversityAnimal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Catherine Waters
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Robert Wynne
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Martin Taylor
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Paulo Prodöhl
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen’s UniversityBelfastUK
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
| | - Martin Llewellyn
- Institute of BiodiversityAnimal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Philip McGinnity
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
| | - Kevin Alan Glover
- Population Genetics Research GroupInstitute of Marine ResearchBergenNorway
- Institute of BiologyUniversity of BergenBergenNorway
| |
Collapse
|
5
|
Palińska-Żarska K, Król J, Woźny M, Kamaszewski M, Szudrowicz H, Wiechetek W, Brzuzan P, Fopp-Bayat D, Żarski D. Domestication affected stress and immune response markers in Perca fluviatilis in the early larval stage. FISH & SHELLFISH IMMUNOLOGY 2021; 114:184-198. [PMID: 33940175 DOI: 10.1016/j.fsi.2021.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
It is already known that domestication modifies stress and immune responses in juveniles and adults of several fish species. However, there is a lack of information on whether these modulations result from adaptability along the life cycle or if they are pre-determined in very early developmental stages. To shed light on mechanisms that help to explain the process of domestication, a study was conducted to analyze comparatively Eurasian perch larval performance, stress, and immune status between wild and domesticated specimens. Eurasian perch larvae obtained from wild and domesticated (generation F5 reared in recirculating aquaculture systems) spawners were reared in the same conditions during the main rearing trial (MRT) and also subjected to a thermal challenge (TC). During the study, larval performance (including survival, growth performance, swim bladder inflation effectiveness, deformity rate), the expression of genes involved in immune and stress response, and the specific activity of oxidative stress enzymes (during MRT only) were analyzed. No significant differences in hatching rate, deformity rate, or swim bladder inflation effectiveness between wild and domesticated larvae were found, whereas specific growth rate, final total length, and wet body weight were significantly lower in wild larvae. Higher mortality was also observed in wild larvae during both MRT and TC. The data obtained in this study clearly indicated that during domestication, significant modifications in stress and immune response, such as complement component c3, were noted as early as just after hatching. Generally, domesticated fish were characterized by a lower stress response and improved immune response in comparison to the wild fish. This probably resulted from the domesticated larvae being better adapted to the conditions of artificial aquaculture. The data obtained provided information on how domestication affects fish in aquaculture, and they contribute to the development of efficient selective breeding programs of Eurasian perch and other freshwater teleosts.
Collapse
Affiliation(s)
- Katarzyna Palińska-Żarska
- Department of Ichthyology, Hydrobiology and Aquatic Ecology, Stanislaw Sakowicz Inland Fisheries Institute, Oczapowskiego 10, 10-719, Olsztyn, Poland.
| | - Jarosław Król
- Department of Salmonid Research, Stanislaw Sakowicz Inland Fisheries Institute, Oczapowskiego 10, 10-719, Olsztyn, Poland
| | - Maciej Woźny
- Department of Environmental Biotechnology, Institute of Engineering and Environment Protection, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709, Olsztyn, Poland
| | - Maciej Kamaszewski
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Hubert Szudrowicz
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Wiktoria Wiechetek
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland; Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Science, Instytucka 3, 05-110, Jabłonna, Poland
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, Institute of Engineering and Environment Protection, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709, Olsztyn, Poland
| | - Dorota Fopp-Bayat
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719, Olsztyn, Poland
| | - Daniel Żarski
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
6
|
Van Eenennaam AL, De Figueiredo Silva F, Trott JF, Zilberman D. Genetic Engineering of Livestock: The Opportunity Cost of Regulatory Delay. Annu Rev Anim Biosci 2020; 9:453-478. [PMID: 33186503 DOI: 10.1146/annurev-animal-061220-023052] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetically engineered (GE) livestock were first reported in 1985, and yet only a single GE food animal, the fast-growing AquAdvantage salmon, has been commercialized. There are myriad interconnected reasons for the slow progress in this once-promising field, including technical issues, the structure of livestock industries, lack of public research funding and investment, regulatory obstacles, and concern about public opinion. This review focuses on GE livestock that have been produced and documents the difficulties that researchers and developers have encountered en route. Additionally, the costs associated with delayed commercialization of GE livestock were modeled using three case studies: GE mastitis-resistant dairy cattle, genome-edited porcine reproductive and respiratory syndrome virus-resistant pigs, and the AquAdvantage salmon. Delays of 5 or 10 years in the commercialization of GE livestock beyond the normative 10-year GE product evaluation period were associated with billions of dollars in opportunity costs and reduced global food security.
Collapse
Affiliation(s)
| | | | - Josephine F Trott
- Department of Animal Science, University of California, Davis, California 95616, USA; ,
| | - David Zilberman
- Department of Agricultural and Resource Economics, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
7
|
Ayllon F, Solberg MF, Besnier F, Fjelldal PG, Hansen TJ, Wargelius A, Edvardsen RB, Glover KA. Autosomal sdY Pseudogenes Explain Discordances Between Phenotypic Sex and DNA Marker for Sex Identification in Atlantic Salmon. Front Genet 2020; 11:544207. [PMID: 33173531 PMCID: PMC7591749 DOI: 10.3389/fgene.2020.544207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
Despite the key role that sex-determination plays in evolutionary processes, it is still poorly understood in many species. In salmonids, which are among the best studied fishes, the master sex-determining gene sexually dimorphic on the Y-chromosome (sdY) has been identified. However, sdY displays unexplained discordance to the phenotypic sex, with a variable frequency of phenotypic females being reported as genetic males. Multiple sex determining loci in Atlantic salmon have also been reported, possibly as a result of recent transposition events in this species. We hypothesized the existence of an autosomal copy of sdY, causing apparent discordance between phenotypic and genetic sex, that is transmitted in accordance with autosomal inheritance. To test this, we developed a qPCR methodology to detect the total number of sdY copies present in the genome. Based on the observed phenotype/genotype frequencies and linkage analysis among 2,025 offspring from 64 pedigree-controlled families of accurately phenotyped Atlantic salmon, we identified both males and females carrying one or two autosomal copies of sdY in addition to the Y-specific copy present in males. Patterns across families were highly consistent with autosomal inheritance. These autosomal sdY copies appear to have lost the ability to function as a sex determining gene and were only occasionally assigned to the actual sex chromosome in any of the affected families.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kevin Alan Glover
- Institute of Marine Research, Bergen, Norway.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Perry WB, Solberg MF, Brodie C, Medina AC, Pillay KG, Egerton A, Harvey A, Creer S, Llewellyn M, Taylor M, Carvalho G, Glover KA. Disentangling the effects of sex, life history and genetic background in Atlantic salmon: growth, heart and liver under common garden conditions. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200811. [PMID: 33204455 PMCID: PMC7657880 DOI: 10.1098/rsos.200811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Livestock domestication has long been a part of agriculture, estimated to have first occurred approximately 10 000 years ago. Despite the plethora of traits studied, there is little understanding of the possible impacts domestication has had on internal organs, which are key determinants of survival. Moreover, the genetic basis of observed associated changes in artificial environments is still puzzling. Here we examine impacts of captivity on two organs in Atlantic salmon (Salar salar) that have been domesticated for approximately 50 years: heart and liver, in addition to growth. We studied multiple families of wild, domesticated, F1 and F2 hybrid, and backcrossed strains of S. salar in replicated common garden tanks during the freshwater and marine stages of development. Heart and liver weight were investigated, along with heart morphology metrics examined in just the wild, domesticated and F1 hybrid strains (heart height and width). Growth was positively linked with the proportion of the domesticated strain, and recombination in F2 hybrids (and the potential disruption of co-adapted gene complexes) did not influence growth. Despite the influence of domestication on growth, we found no evidence for domestication-driven divergence in heart or liver morphology. However, sexual dimorphism was detected in heart morphology, and after controlling for body size, females exhibited significantly larger heart weight and heart width when compared with males. Wild females also had an increased heart height when compared with wild males, and this was not observed in any other strain. Females sampled in saltwater showed significantly larger heart height with rounder hearts, than saltwater males. Collectively, these results demonstrate an additive basis of growth and, despite a strong influence of domestication on growth, no clear evidence of changes in heart or liver morphology associated with domestication was identified.
Collapse
Affiliation(s)
- William Bernard Perry
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Monica F. Solberg
- Population Genetics Research Group, Institute of Marine Research, PO Box 1870, Nordnes 5817, Bergen, Norway
| | - Christopher Brodie
- Mariani Molecular Ecology Laboratory, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 5UX, UK
| | - Angela C. Medina
- School of Microbiology, Food Science and Technology Building University College Cork, Cork T12 TP07, Ireland
| | - Kirthana G. Pillay
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Anna Egerton
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Alison Harvey
- Population Genetics Research Group, Institute of Marine Research, PO Box 1870, Nordnes 5817, Bergen, Norway
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Martin Llewellyn
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Martin Taylor
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kevin A. Glover
- Population Genetics Research Group, Institute of Marine Research, PO Box 1870, Nordnes 5817, Bergen, Norway
- Institute of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Svobodová J, Pinkasová H, Hyršl P, Dvořáčková M, Zita L, Kreisinger J. Differences in the growth rate and immune strategies of farmed and wild mallard populations. PLoS One 2020; 15:e0236583. [PMID: 32866175 PMCID: PMC7458304 DOI: 10.1371/journal.pone.0236583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/10/2020] [Indexed: 11/19/2022] Open
Abstract
Individuals reared in captivity are exposed to distinct selection pressures and evolutionary processes causing genetic and phenotypic divergence from wild populations. Consequently, restocking with farmed individuals may represent a considerable risk for the fitness of free-living populations. Supportive breeding on a massive scale has been established in many European countries to increase hunting opportunities for the most common duck species, the mallard (Anas platyrhynchos). It has previously been shown that mallards from breeding facilities differ genetically from wild populations and there is some indication of morphological differences. Using a common-garden experiment, we tested for differences in growth parameters between free-living populations and individuals from breeding facilities during the first 20 days of post-hatching development, a critical phase for survival in free-living populations. In addition, we compared their immune function by assessing two haematological parameters, H/L ratio and immature erythrocyte frequency, and plasma complement activity. Our data show that farmed ducklings exhibit larger morphological parameters, a higher growth rates, and higher complement activity. In haematological parameters, we observed high dynamic changes in duckling ontogeny in relation to their morphological parameters. In conclusion, our data demonstrate pronounced phenotype divergence between farmed and wild mallard populations that can be genetically determined. We argue that this divergence can directly or indirectly affect fitness of farmed individuals introduced to the breeding population as well as fitness of farmed x wild hybrids.
Collapse
Affiliation(s)
- Jana Svobodová
- Faculty of Environmental Sciences, Department of Ecology, Czech University of Life Sciences Prague, Prague, Czech Republic
- * E-mail:
| | - Hana Pinkasová
- Faculty of Science, Department of Zoology, Charles University, Prague, Czech Republic
| | - Pavel Hyršl
- Faculty of Science, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Monika Dvořáčková
- Faculty of Environmental Sciences, Department of Ecology, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Lukáš Zita
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Jakub Kreisinger
- Faculty of Science, Department of Zoology, Charles University, Prague, Czech Republic
| |
Collapse
|
10
|
Glover KA, Harvey AC, Hansen TJ, Fjelldal PG, Besnier FN, Bos JB, Ayllon F, Taggart JB, Solberg MF. Chromosome aberrations in pressure-induced triploid Atlantic salmon. BMC Genet 2020; 21:59. [PMID: 32505176 PMCID: PMC7276064 DOI: 10.1186/s12863-020-00864-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Triploid organisms have three sets of chromosomes. In Atlantic salmon, hydrostatic pressure treatment of newly fertilized eggs has been extensively used to produce triploids which are functionally sterile due to their unpaired chromosomes. These fish often perform poorly on commercial farms, sometimes without explanation. Inheritance patterns in individuals subjected to pressure treatment have not been investigated in Atlantic salmon thus far. However, work on other species suggests that this treatment can result in aberrant inheritance. We therefore studied this in Atlantic salmon by genotyping 16 polymorphic microsatellites in eyed eggs and juveniles which had been subjected to pressure-induction of triploidy. Communally reared juveniles including fish subjected to pressure-induction of triploidy and their diploid siblings were included as a control. RESULTS No diploid offspring were detected in any of the eggs or juveniles which were subjected to hydrostatic pressure; therefore, the induction of triploidy was highly successful. Aberrant inheritance was nevertheless observed in 0.9% of the eggs and 0.9% of the juveniles that had been subjected to pressure treatment. In the communally reared fish, 0.3% of the fish subjected to pressure treatment displayed aberrant inheritance, while their diploid controls displayed 0% aberrant inheritance. Inheritance errors included two eyed eggs lacking maternal DNA across all microsatellites, and, examples in both eggs and juveniles of either the maternal or paternal allele lacking in one of the microsatellites. All individuals displaying chromosome aberrations were otherwise triploid. CONCLUSIONS This is the first study to document aberrant inheritance in Atlantic salmon that have been subjected to pressure-induction of triploidy. Our experiments unequivocally demonstrate that even when induction of triploidy is highly successful, this treatment can cause chromosome aberrations in this species. Based upon our novel data, and earlier studies in other organisms, we hypothesize that in batches of Atlantic salmon where low to modest triploid induction rates have been reported, aberrant inheritance is likely to be higher than the rates observed here. Therefore, we tentatively suggest that this could contribute to the unexplained poor performance of triploid salmon that is occasionally reported in commercial aquaculture. These hypotheses require further investigation.
Collapse
Affiliation(s)
- K A Glover
- Institute of Marine Research, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - A C Harvey
- Institute of Marine Research, Bergen, Norway.
| | - T J Hansen
- Institute of Marine Research, Bergen, Norway
| | | | - F N Besnier
- Institute of Marine Research, Bergen, Norway
| | - J B Bos
- ZEBCARE, Nederweert, The Netherlands
| | - F Ayllon
- Institute of Marine Research, Bergen, Norway
| | | | - M F Solberg
- Institute of Marine Research, Bergen, Norway
| |
Collapse
|
11
|
Bicskei B, Taggart JB, Bron JE, Glover KA. Transcriptomic comparison of communally reared wild, domesticated and hybrid Atlantic salmon fry under stress and control conditions. BMC Genet 2020; 21:57. [PMID: 32471356 PMCID: PMC7257211 DOI: 10.1186/s12863-020-00858-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Domestication is the process by which organisms become adapted to the human-controlled environment. Since the selection pressures that act upon cultured and natural populations differ, adaptations that favour life in the domesticated environment are unlikely to be advantageous in the wild. Elucidation of the differences between wild and domesticated Atlantic salmon may provide insights into some of the genomic changes occurring during domestication, and, help to predict the evolutionary consequences of farmed salmon escapees interbreeding with wild conspecifics. In this study the transcriptome of the offspring of wild and domesticated Atlantic salmon were compared using a common-garden experiment under standard hatchery conditions and in response to an applied crowding stressor. RESULTS Transcriptomic differences between wild and domesticated crosses were largely consistent between the control and stress conditions, and included down-regulation of environmental information processing, immune and nervous system pathways and up-regulation of genetic information processing, carbohydrate metabolism, lipid metabolism and digestive and endocrine system pathways in the domesticated fish relative to their wild counterparts, likely reflective of different selection pressures acting in wild and cultured populations. Many stress responsive functions were also shared between crosses and included down-regulation of cellular processes and genetic information processing and up-regulation of some metabolic pathways, lipid and energy in particular. The latter may be indicative of mobilization and reallocation of energy resources in response to stress. However, functional analysis indicated that a number of pathways behave differently between domesticated and wild salmon in response to stress. Reciprocal F1 hybrids permitted investigation of inheritance patterns that govern transcriptomic differences between these genetically divergent crosses. Additivity and maternal dominance accounted for approximately 42 and 25% of all differences under control conditions for both hybrids respectively. However, the inheritance of genes differentially expressed between crosses under stress was less consistent between reciprocal hybrids, potentially reflecting maternal environmental effects. CONCLUSION We conclude that there are transcriptomic differences between the domesticated and wild salmon strains studied here, reflecting the different selection pressures operating on them. Our results indicate that stress may affect certain biological functions differently in wild, domesticated and hybrid crosses and these should be further investigated.
Collapse
Affiliation(s)
- Beatrix Bicskei
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA UK
| | - John B. Taggart
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA UK
| | - James E. Bron
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA UK
| | - Kevin A. Glover
- Institute of Marine Research, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
12
|
Effects of genetic origin on phenotypic divergence in Brook Trout populations stocked with domestic fish. Ecosphere 2020. [DOI: 10.1002/ecs2.3119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
13
|
Naval-Sanchez M, McWilliam S, Evans B, Yáñez JM, Houston RD, Kijas JW. Changed Patterns of Genomic Variation Following Recent Domestication: Selection Sweeps in Farmed Atlantic Salmon. Front Genet 2020; 11:264. [PMID: 32318091 PMCID: PMC7147387 DOI: 10.3389/fgene.2020.00264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/05/2020] [Indexed: 12/30/2022] Open
Abstract
The introduction of wild Atlantic salmon into captivity, and their subsequent artificial selection for production traits, has caused phenotypic differences between domesticated fish and their wild counterparts. Identification of regions of the genome underling these changes offers the promise of characterizing the early biological consequences of domestication. In the current study, we sequenced a population of farmed European Atlantic salmon and compared the observed patterns of SNP variation to those found in conspecific wild populations. This identified 139 genomic regions that contained significantly elevated SNP homozygosity in farmed fish when compared to their wild counterparts. The most extreme was adjacent to versican, a gene involved in control of neural crest cell migration. To control for false positive signals, a second and independent dataset of farmed and wild European Atlantic salmon was assessed using the same methodology. A total of 81 outlier regions detected in the first dataset showed significantly reduced homozygosity within the second one, strongly suggesting the genomic regions identified are enriched for true selection sweeps. Examination of the associated genes identified a number previously characterized as targets of selection in other domestic species and that have roles in development, behavior and olfactory system. These include arcvf, sema6, errb4, id2-like, and 6n1-like genes. Finally, we searched for evidence of parallel sweeps using a farmed population of North American origin. This failed to detect a convincing overlap to the putative sweeps present in European populations, suggesting the factors that drive patterns of variation under domestication and early artificial selection were largely independent. This is the first analysis on domestication of aquaculture species exploiting whole-genome sequence data and resulted in the identification of sweeps common to multiple independent populations of farmed European Atlantic salmon.
Collapse
Affiliation(s)
| | | | - Bradley Evans
- Salmon Enterprises of Tasmania Pty. Limited, Wayatinah, TAS, Australia
| | - José M Yáñez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - James W Kijas
- CSIRO Agriculture and Food, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Besnier F, Solberg MF, Harvey AC, Carvalho GR, Bekkevold D, Taylor MI, Creer S, Nielsen EE, Skaala Ø, Ayllon F, Dahle G, Glover KA. Epistatic regulation of growth in Atlantic salmon revealed: a QTL study performed on the domesticated-wild interface. BMC Genet 2020; 21:13. [PMID: 32033538 PMCID: PMC7006396 DOI: 10.1186/s12863-020-0816-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/28/2020] [Indexed: 12/23/2022] Open
Abstract
Background Quantitative traits are typically considered to be under additive genetic control. Although there are indications that non-additive factors have the potential to contribute to trait variation, experimental demonstration remains scarce. Here, we investigated the genetic basis of growth in Atlantic salmon by exploiting the high level of genetic diversity and trait expression among domesticated, hybrid and wild populations. Results After rearing fish in common-garden experiments under aquaculture conditions, we performed a variance component analysis in four mapping populations totaling ~ 7000 individuals from six wild, two domesticated and three F1 wild/domesticated hybrid strains. Across the four independent datasets, genome-wide significant quantitative trait loci (QTLs) associated with weight and length were detected on a total of 18 chromosomes, reflecting the polygenic nature of growth. Significant QTLs correlated with both length and weight were detected on chromosomes 2, 6 and 9 in multiple datasets. Significantly, epistatic QTLs were detected in all datasets. Discussion The observed interactions demonstrated that the phenotypic effect of inheriting an allele deviated between half-sib families. Gene-by-gene interactions were also suggested, where the combined effect of two loci resulted in a genetic effect upon phenotypic variance, while no genetic effect was detected when the two loci were considered separately. To our knowledge, this is the first documentation of epistasis in a quantitative trait in Atlantic salmon. These novel results are of relevance for breeding programs, and for predicting the evolutionary consequences of domestication-introgression in wild populations.
Collapse
Affiliation(s)
- Francois Besnier
- Population Genetics Research group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.
| | - Monica F Solberg
- Population Genetics Research group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Alison C Harvey
- Population Genetics Research group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.,Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UW, UK
| | - Gary R Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UW, UK
| | - Dorte Bekkevold
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Martin I Taylor
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UW, UK
| | - Einar E Nielsen
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Øystein Skaala
- Population Genetics Research group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Fernando Ayllon
- Population Genetics Research group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Geir Dahle
- Population Genetics Research group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.,Sea Lice Research Centre, Department of Biology, University of Bergen, Bergen, Norway
| | - Kevin A Glover
- Population Genetics Research group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.,Sea Lice Research Centre, Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
15
|
Solberg MF, Robertsen G, Sundt-Hansen LE, Hindar K, Glover KA. Domestication leads to increased predation susceptibility. Sci Rep 2020; 10:1929. [PMID: 32029847 PMCID: PMC7005312 DOI: 10.1038/s41598-020-58661-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/19/2020] [Indexed: 12/18/2022] Open
Abstract
Domestication involves adapting animals to the human-controlled environment. Genetic changes occurring during the domestication process may manifest themselves in phenotypes that render domesticated animals maladaptive for life in the wild. Domesticated Atlantic salmon frequently interbreed with wild conspecifics, and their offspring display reduced survival in the wild. However, the mechanism(s) contributing to their lower survival in the wild remains a subject of conjecture. Here, we document higher susceptibility to predation by brown trout in fast-growing domesticated salmon, as compared to their slow-growing wild conspecifics, demonstrating that directional selection for increased growth comes at a cost of decreased survival when under the risk of predation, as predicted by the growth/predation risk trade-off. Despite earlier documentation of altered risk-taking behavior, this study demonstrates for the first time that domestication of Atlantic salmon has lead to increased predation susceptibility, and that this consitutes a mechanism underpinning the observed survial differences in the wild.
Collapse
Affiliation(s)
- Monica F Solberg
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO, 5817, Bergen, Norway.
| | - Grethe Robertsen
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, NO, 7485, Trondheim, Norway
| | - Line E Sundt-Hansen
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, NO, 7485, Trondheim, Norway
| | - Kjetil Hindar
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, NO, 7485, Trondheim, Norway
| | - Kevin A Glover
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO, 5817, Bergen, Norway.,Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
16
|
Inside the Fish Brain: Cognition, Learning and Consciousness. Anim Welf 2020. [DOI: 10.1007/978-3-030-41675-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Podgorniak T, Brockmann S, Konstantinidis I, Fernandes JMO. Differences in the fast muscle methylome provide insight into sex-specific epigenetic regulation of growth in Nile tilapia during early stages of domestication. Epigenetics 2019; 14:818-836. [PMID: 31131688 PMCID: PMC6597363 DOI: 10.1080/15592294.2019.1618164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 01/14/2023] Open
Abstract
Growth is a complex trait whose variability within a population cannot be explained solely by genetic variation. Epigenetic regulation is often suggested as an important factor shaping the phenotype, but its association with growth can be highly context- and species-dependent. Nevertheless, the mechanisms involved in epigenetic regulation of growth in fish are poorly understood. We have used reduced representation bisulphite sequencing to determine the genome-wide CpG methylation patterns in male and female Nile tilapia of different sizes but at the same early stage of domestication. The average CpG methylation level in the reduced genome representation was 63% across groups but many sites displayed group-specific methylation patterns. The number of differentially methylated (DM) CpGs was much higher when the interaction between sex and weight was included rather than when these factors were considered separately. There were 1128 DM CpGs between large and small females and 970 DM CpGs between large and small males. We have found many growth-related genes associated with DM CpGs, namely map3k5 and akt3 in females and gadd45g and ppargc1a in males. Only 5% of CpG locations associated with growth were common to both sexes. In particular, the autophagy-related gene atg14 displayed a high association of methylation with growth exclusively in males. The sexually dimorphic association between atg14 methylation and growth may uncover novel metabolic mechanisms at play during mouth brooding in Nile tilapia females. Taken together, our data suggest that epigenetic regulation of growth in Nile tilapia involves different gene networks in males and females.
Collapse
Affiliation(s)
- Tomasz Podgorniak
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Sven Brockmann
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Ioannis Konstantinidis
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Jorge M. O. Fernandes
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
18
|
Wennevik V, Quintela M, Skaala Ø, Verspoor E, Prusov S, Glover KA. Population genetic analysis reveals a geographically limited transition zone between two genetically distinct Atlantic salmon lineages in Norway. Ecol Evol 2019; 9:6901-6921. [PMID: 31380023 PMCID: PMC6662299 DOI: 10.1002/ece3.5258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
Atlantic salmon is characterized by a high degree of population genetic structure throughout its native range. However, while populations inhabiting rivers in Norway and Russia make up a significant proportion of salmon in the Atlantic, thus far, genetic studies in this region have only encompassed low to modest numbers of populations. Here, we provide the first "in-depth" investigation of population genetic structuring in the species in this region. Analysis of 18 microsatellites on >9,000 fish from 115 rivers revealed highly significant population genetic structure throughout, following a hierarchical pattern. The highest and clearest level of division separated populations north and south of the Lofoten region in northern Norway. In this region, only a few populations displayed intermediate genetic profiles, strongly indicating a geographically limited transition zone. This was further supported by a dedicated cline analysis. Population genetic structure was also characterized by a pattern of isolation by distance. A decline in overall genetic diversity was observed from the south to the north, and two of the microsatellites showed a clear decrease in number of alleles across the observed transition zone. Together, these analyses support results from previous studies, that salmon in Norway originate from two main genetic lineages, one from the Barents-White Sea refugium that recolonized northern Norwegian and adjacent Russian rivers, and one from the eastern Atlantic that recolonized the rest of Norway. Furthermore, our results indicate that local conditions in the limited geographic transition zone between the two observed lineages, characterized by open coastline with no obvious barriers to gene flow, are strong enough to maintain the genetic differentiation between them.
Collapse
Affiliation(s)
| | | | | | - Eric Verspoor
- Rivers and Lochs Institute, Inverness CollegeUniversity of the Highlands and IslandsInvernessUK
| | - Sergey Prusov
- The Knipovich Polar Research Institute of Marine Fisheries and Oceanography (PINRO)MurmanskRussia
| | | |
Collapse
|
19
|
Skaala Ø, Besnier F, Borgstrøm R, Barlaup B, Sørvik AG, Normann E, Østebø BI, Hansen MM, Glover KA. An extensive common-garden study with domesticated and wild Atlantic salmon in the wild reveals impact on smolt production and shifts in fitness traits. Evol Appl 2019; 12:1001-1016. [PMID: 31080511 PMCID: PMC6503829 DOI: 10.1111/eva.12777] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 01/15/2023] Open
Abstract
Interactions between domesticated escapees and wild conspecifics represent a threat to the genetic integrity and fitness of native populations. For Atlantic salmon, the recurrent presence of large numbers of domesticated escapees in the wild makes it necessary to better understand their impacts on native populations. We planted 254,400 eggs from 75 families of domesticated, F1-hybrid, and wild salmon in a river containing up- and downstream traps. Additionally, 41,630 hatchery smolts of the same pedigrees were released into the river. Over 8 years, 6,669 out-migrating smolts and 356 returning adults were recaptured and identified to their families of origin with DNA. In comparison with wild salmon, domesticated fish had substantially lower egg to smolt survival (1.8% vs. 3.8% across cohorts), they migrated earlier in the year (11.8 days earlier across years), but they only displayed marginally larger smolt sizes and marginally lower smolt ages. Upon return to freshwater, domesticated salmon were substantially larger at age than wild salmon (2.4 vs. 2.0, 4.8 vs. 3.2, and 8.5 vs. 5.6 kg across sexes for 1, 2, and 3 sea-winter fish) and displayed substantially lower released smolt to adult survival (0.41% vs. 0.94% across releases). Overall, egg-to-returning adult survival ratios were 1:0.76:0.30 and 1:0.44:0.21 for wild:F1-hybrid:domesticated salmon, respectively, using two different types of data. This study represents the most updated and extensive analysis of domesticated, hybrid, and wild salmon in the wild and provides the first documentation of a clear genetic difference in the timing of smolt migration-an adaptive trait presumed to be linked with optimal timing of entry to seawater. We conclude that spawning and hybridization of domesticated escapees can lead to (i) reduced wild smolt output and therefore wild adult abundance, through resource competition in freshwater, (ii) reduced total adult abundance due to freshwater competition and reduced marine survival of domesticated salmon, and (iii) maladaptive changes in phenotypic traits.
Collapse
Affiliation(s)
| | | | - Reidar Borgstrøm
- Faculty of Environmental Sciences and Natural Resource ManagementÅsNorway
| | | | | | | | | | - Michael Møller Hansen
- Institute of Marine ResearchNordnes, BergenNorway
- Department of BioscienceAarhus UniversityAarhus CDenmark
| | - Kevin Alan Glover
- Institute of Marine ResearchNordnes, BergenNorway
- Department of Biological SciencesUniversity of BergenBergenNorway
| |
Collapse
|
20
|
Ayllon F, Solberg MF, Glover KA, Mohammadi F, Kjærner-Semb E, Fjelldal PG, Andersson E, Hansen T, Edvardsen RB, Wargelius A. The influence of vgll3 genotypes on sea age at maturity is altered in farmed mowi strain Atlantic salmon. BMC Genet 2019; 20:44. [PMID: 31060499 PMCID: PMC6501413 DOI: 10.1186/s12863-019-0745-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/25/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND In Atlantic salmon in the wild, age at maturity is strongly influenced by the vgll3 locus. Under farming conditions, light, temperature and feeding regimes are known significantly advance or delay age at maturity. However, the potential influence of the vgll3 locus on the maturation of salmon reared under farming conditions has been rarely investigated, especially in females. RESULTS Here, we reared domesticated salmon (mowi strain) with different vgll3 genotypes under standard farming conditions until they matured at either one, two or more than two sea winters. Interestingly, and in contrast to previous findings in the wild, we were not able to identify a link between vgll3 and age at maturity in females when reared under farming conditions. For males however, we found that the probability of delaying maturation from one to two sea winters was significantly lower in fish homozygous for the early allele compared to homozygous fish for the late allele, while the probability for heterozygous fish was intermediate. These data also contrast to previous findings in the wild where the early allele has been reported as dominant. However, we found that the probability of males delaying maturation from two to three sea winters was regulated in the same manner as the wild. CONCLUSIONS Collectively, our data suggest that increased growth rates in mowi salmon, caused by high feed intake and artificial light and temperature regimes together with other possible genetic/epigenetic components, may significantly influence the impact that the vgll3 locus has on age at maturity, especially in females. In turn, our results show that the vgll3 locus can only to a large extent be used in selective breeding to control age at maturation in mowi males. In summary, we here show that in contrast to the situation in wild salmon, under farming conditions vgll3 does not seem to influence age at maturity in mowi females whereas in mowi males, maturing as one or two sea winters it alters the early allele effect from dominant to intermediate.
Collapse
Affiliation(s)
- Fernando Ayllon
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Monica F Solberg
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Kevin A Glover
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.,Institute of Biology, University of Bergen, Bergen, Norway
| | - Faezeh Mohammadi
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Erik Kjærner-Semb
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Per Gunnar Fjelldal
- Institute of Marine research (IMR), Matre Aquaculture Research Station, 5984, Matredal, Norway
| | - Eva Andersson
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Tom Hansen
- Institute of Marine research (IMR), Matre Aquaculture Research Station, 5984, Matredal, Norway
| | - Rolf B Edvardsen
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Anna Wargelius
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.
| |
Collapse
|
21
|
Perry WB, Solberg MF, Besnier F, Dyrhovden L, Matre IH, Fjelldal PG, Ayllon F, Creer S, Llewellyn M, Taylor MI, Carvalho G, Glover KA. Evolutionary drivers of kype size in Atlantic salmon ( Salmo salar): domestication, age and genetics. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190021. [PMID: 31183145 PMCID: PMC6502380 DOI: 10.1098/rsos.190021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
The diversity of reproduction and associated mating patterns in Atlantic salmon (Salmo salar) has long captivated evolutionary biologists. Salmo salar exhibit strategies involving migration, bold mating behaviours and radical morphological and physiological change. One such radical change is the elongation and curvature of the lower jaw in sexually mature males into a hook-like appendage called the kype. The kype is a secondary sexual characteristic used in mating hierarchies and a prime candidate for sexual selection. As one of the core global aquaculture fish species, however, mate choice, and thus sexual selection, has been replaced by industrial artificial fertilization seeking to develop more commercially viable strains. Removal of mate choice provides a unique opportunity to examine the kype over successive generations in the absence of sexual selection. Here we use a large-scale common-garden experiment, incorporating six experimental strains (wild, farmed and wild × farmed hybrids), experiencing one to three sea winters, to assess the impact of age and genetic background. After controlling for allometry, fork length-adjusted kype height (AKH) was significantly reduced in the domesticated strain in comparison to two wild strains. Furthermore, genetic variation at a locus on linkage group SSA1 was associated with kype height, and a locus on linkage group SSA23 was associated with fork length-adjusted kype length (AKL). The reduction in fork length-AKH in domesticated salmon suggests that the kype is of importance in mate choice and that it has decreased due to relaxation of sexual selection. Fork length-AKL showed an increase in domesticated individuals, highlighting that it may not be an important cue in mate choice. These results give us insight into the evolutionary significance of the kype, as well as implications of genetic induced phenotypic change caused by domesticated individuals escaping into the natural environment.
Collapse
Affiliation(s)
- William Bernard Perry
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Monica Favnebøe Solberg
- Population Genetics Research Group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway
| | - Francois Besnier
- Population Genetics Research Group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway
| | - Lise Dyrhovden
- Matre Research Station, Institute of Marine Research, Matredal, Norway
| | - Ivar Helge Matre
- Matre Research Station, Institute of Marine Research, Matredal, Norway
| | - Per Gunnar Fjelldal
- Population Genetics Research Group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway
| | - Fernando Ayllon
- Population Genetics Research Group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Martin Llewellyn
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Martin I. Taylor
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kevin Alan Glover
- Population Genetics Research Group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway
- Institute of Biology, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
22
|
Andersen Ø, Vieira V, Dessen JE, Johnston IA. Influence of feed ration size on somatic and muscle growth in landlocked dwarf and farmed Atlantic salmon Salmo salar. JOURNAL OF FISH BIOLOGY 2019; 94:614-620. [PMID: 30810225 DOI: 10.1111/jfb.13942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
We examined the possible adaptation of the dwarf Bleke population of Atlantic salmon Salmo salar from Lake Byglandsfjord in southern Norway to limited food resources. The growth performance and muscle development in juvenile Bleke and farmed S. salar under satiated or restricted (50%) feeding were examined for 10 months, starting 3 weeks after first-feeding stage. Four-thousand fish were divided into four replicated groups and random samples of 16-40 fish per group were measured six times during the experiment. The two strains showed no significant difference in mean body mass when fed restricted ration, but the individual variation was considerably higher in the farmed fish. Both Bleke and farmed S. salar grew significantly faster when fed to satiation, but the farmed S. salar showed much higher gain in mass and were three times heavier (201.5 g vs 66.7 g) and possessed twice as many fast muscle fibres (179,682 vs 84,779) compared with landlocked S. salar after 10 months. Farmed fish fed full ration displayed both hypertrophic and hyperplasic muscle growth, while the increased growth in Bleke S. salar was entirely associated with a larger fibre diameter. The landlocked Bleke strain has apparently adapted to low food availability by minimising the metabolic costs of maintenance and growth through reduced dominance hierarchies and by an increase in average muscle fibre diameter relative to the ancestral condition.
Collapse
Affiliation(s)
- Øivind Andersen
- Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima AS), Aas, Norway
- Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Vera Vieira
- Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Scotland, UK
| | - Jens-Erik Dessen
- Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima AS), Aas, Norway
| | - Ian A Johnston
- Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Scotland, UK
| |
Collapse
|
23
|
Hagen IJ, Jensen AJ, Bolstad GH, Diserud OH, Hindar K, Lo H, Karlsson S. Supplementary stocking selects for domesticated genotypes. Nat Commun 2019; 10:199. [PMID: 30643117 PMCID: PMC6331577 DOI: 10.1038/s41467-018-08021-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 12/13/2018] [Indexed: 01/21/2023] Open
Abstract
Stocking of hatchery produced fish is common practise to mitigate declines in natural populations and may have unwanted genetic consequences. Here we describe a novel phenomenon arising where broodstock used for stocking may be introgressed with farmed individuals. We test how stocking affects introgression in a wild population of Atlantic salmon (Salmo salar) by quantifying how the number of adult offspring recaptured in a stocked river depend on parental introgression. We found that hatchery conditions favour farmed genotypes such that introgressed broodstock produce up to four times the number of adult offspring compared to non-introgressed broodstock, leading to increased introgression in the recipient spawning population. Our results provide the first empirical evidence that stocking can unintentionally favour introgressed individuals and through selection for domesticated genotypes compromise the fitness of stocked wild populations.
Collapse
Affiliation(s)
- Ingerid J Hagen
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485, Trondheim, Norway.
| | - Arne J Jensen
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485, Trondheim, Norway
| | - Geir H Bolstad
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485, Trondheim, Norway
| | - Ola H Diserud
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485, Trondheim, Norway
| | - Kjetil Hindar
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485, Trondheim, Norway
| | - Håvard Lo
- Norwegian Veterinary Institute, P.O. Box 5695 Torgarden, 7485, Trondheim, Norway
| | - Sten Karlsson
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485, Trondheim, Norway
| |
Collapse
|
24
|
Robertsen G, Reid D, Einum S, Aronsen T, Fleming IA, Sundt‐Hansen LE, Karlsson S, Kvingedal E, Ugedal O, Hindar K. Can variation in standard metabolic rate explain context-dependent performance of farmed Atlantic salmon offspring? Ecol Evol 2019; 9:212-222. [PMID: 30680108 PMCID: PMC6342125 DOI: 10.1002/ece3.4716] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 01/13/2023] Open
Abstract
Escaped farmed Atlantic salmon interbreed with wild Atlantic salmon, leaving offspring that often have lower success in nature than pure wild salmon. On top of this, presence of farmed salmon descendants can impair production of wild-type recruits. We hypothesize that both these effects connect with farmed salmon having acquired higher standard metabolic rates (SMR, the energetic cost of self-maintenance) during domestication. Fitness-related advantages of phenotypic traits associated with both high SMR and farmed salmon (e.g., social dominance) depend on environmental conditions, such as food availability. We hypothesize that farmed offspring have an advantage at high food availability due to, for example, dominance behavior but suffer increased risks of starvation when food is scarce because this behavior is energy-demanding. To test these hypotheses, we first compare embryo SMR of pure farmed, farmed-wild hybrids and pure wild offspring. Next, we test early-life performance (in terms of survival and growth) of hybrids relative to that of their wild half-siblings, as well as their competitive abilities, in semi-natural conditions of high and low food availability. Finally, we test how SMR affects early-life performance at high and low food availability. We find inconclusive support for the hypothesis that domestication has induced increased SMR. Further, wild and hybrid juveniles had similar survival and growth in the semi-natural streams. Yet, the presence of hybrids led to decreased survival of their wild half-siblings. Contrary to our hypothesis about context-dependency, these effects were not modified by food availability. However, wild juveniles with high SMR had decreased survival when food was scarce, but there was no such effect at high food availability. This study provides further proof that farmed salmon introgression may compromise the viability of wild salmon populations. We cannot, however, conclude that this is connected to alterations in the metabolic phenotype of farmed salmon.
Collapse
Affiliation(s)
| | - Donald Reid
- School of Life Sciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Sigurd Einum
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Tonje Aronsen
- Norwegian Institute for Nature ResearchTrondheimNorway
| | - Ian A. Fleming
- Department of Ocean SciencesMemorial University of NewfoundlandSt John’sNewfoundlandCanada
| | | | - Sten Karlsson
- Norwegian Institute for Nature ResearchTrondheimNorway
| | - Eli Kvingedal
- Norwegian Institute for Nature ResearchTrondheimNorway
| | - Ola Ugedal
- Norwegian Institute for Nature ResearchTrondheimNorway
| | - Kjetil Hindar
- Norwegian Institute for Nature ResearchTrondheimNorway
| |
Collapse
|
25
|
Harvey AC, Skilbrei OT, Besnier F, Solberg MF, Sørvik AGE, Glover KA. Implications for introgression: has selection for fast growth altered the size threshold for precocious male maturation in domesticated Atlantic salmon? BMC Evol Biol 2018; 18:188. [PMID: 30558529 PMCID: PMC6298023 DOI: 10.1186/s12862-018-1294-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 11/16/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Mature male parr (MMP) represent an important alternative life-history strategy in Atlantic salmon populations. Previous studies indicate that the maturation size threshold for male parr varies among wild populations and is influenced by individual growth, environmental conditions, and genetics. More than ten generations of breeding have resulted in domesticated salmon displaying many genetic differences to wild salmon, including greatly increased growth rates. This may have resulted in domesticated fish with the potential to outgrow the size threshold for early maturation, or evolution of the size threshold of the trait itself. To investigate this, we performed a common-garden experiment under farming conditions using 4680 salmon from 39 families representing four wild, two wild-domesticated hybrid, and two domesticated strains. RESULTS Domesticated salmon outgrew wild salmon 2-5-fold, and hybrids displayed intermediate growth. Overall, the numbers of MMP varied greatly among families and strains: averaging 4-12% in domesticated, 18-25% in hybrid, and 43-74% in the wild populations. However, when the influence of growth was accounted for, by dividing fish into lower and upper size modes, no difference in the incidence of MMP was detected among domesticated and wild strains in either size mode. In the lower size mode, hybrids displayed significantly lower incidences of mature males than their wild parental strains. No consistent differences in the body size of MMP, connected to domestication, was detected. CONCLUSIONS Our data demonstrate: 1- no evidence for the evolution of the size threshold for MMP in domesticated salmon, 2- the vastly lower incidence of MMP in domesticated strains under aquaculture conditions is primarily due to their genetically increased growth rate causing them to outgrow the size threshold for early maturation, 3- the incidence of MMP is likely to overlap among domesticated and wild salmon in the natural habitat where they typically display overlapping growth, although hybrid offspring may display lower incidences of mature male parr. These results have implications for wild salmon populations that are exposed to introgression from domesticated escapees.
Collapse
Affiliation(s)
- A C Harvey
- Institute of Marine Research, P. O. Box 1870, Nordnes, NO-5817, Bergen, Norway.
| | - O T Skilbrei
- Institute of Marine Research, P. O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - F Besnier
- Institute of Marine Research, P. O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - M F Solberg
- Institute of Marine Research, P. O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - A-G E Sørvik
- Institute of Marine Research, P. O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - K A Glover
- Institute of Marine Research, P. O. Box 1870, Nordnes, NO-5817, Bergen, Norway.,Department of Biology, University of Bergen, P. O. Box 7803, N-5020, Bergen, Norway
| |
Collapse
|
26
|
Jørgensen KM, Wennevik V, Eide Sørvik AG, Unneland L, Prusov S, Ayllon F, Glover KA. Investigating the frequency of triploid Atlantic salmon in wild Norwegian and Russian populations. BMC Genet 2018; 19:90. [PMID: 30285613 PMCID: PMC6171226 DOI: 10.1186/s12863-018-0676-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background Fish may display variations in ploidy, including three sets of chromosomes, known as triploidy. A recent study revealed a frequency of ~ 2% spontaneous (i.e., non-intentional) triploidy in domesticated Atlantic salmon produced in Norwegian aquaculture in the period 2007–2014. In contrast, the frequency of triploidy in wild salmon populations has not been studied thus far, and in wild populations of other organisms, it has been very rarely studied. In population genetic data sets, individuals that potentially display chromosome abnormalities, such as triploids with three alleles, are typically excluded on the premise that they may reflect polluted or otherwise compromised samples. Here, we critically re-investigated the microsatellite genetic profile of ~ 6000 wild Atlantic salmon sampled from 80 rivers in Norway and Russia, to investigate the frequency of triploid individuals in wild salmon populations for the first time. Results We detected a single triploid salmon, and five individuals displaying three alleles at one of the loci, thus regarded as putatively trisomic. This gave an overall frequency of triploid and putatively trisomic individuals in the data set of 0.017 and 0.083% respectively. The triploid salmon was an adult female, and had spent 2 years in freshwater and 2 years in the sea. Conclusions We conclude that the frequency of naturally-occurring triploid Atlantic salmon in wild Norwegian and Russian populations is very low, and many-fold lower than the frequency of spontaneous triploids observed in aquaculture. Our results suggest that aquaculture rearing conditions substantially increase the probability of triploidy to develop, and/or permits greater survival of triploid individuals, in comparison to the wild. Electronic supplementary material The online version of this article (10.1186/s12863-018-0676-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Vidar Wennevik
- Institute of Marine Research, Postboks 1870 Nordnes, N-5817, Bergen, Norway
| | | | - Laila Unneland
- Institute of Marine Research, Postboks 1870 Nordnes, N-5817, Bergen, Norway
| | - Sergey Prusov
- The Knipovich Polar Research Institute of Marine Fisheries and Oceanography (PINRO), Murmansk, 183038, Russia
| | - Fernando Ayllon
- Institute of Marine Research, Postboks 1870 Nordnes, N-5817, Bergen, Norway
| | - Kevin A Glover
- Institute of Marine Research, Postboks 1870 Nordnes, N-5817, Bergen, Norway.,Sea lice Research Centre, Department of Biology, University of Bergen, N-5020, Bergen, Norway
| |
Collapse
|
27
|
Gossieaux P, Sirois P, Bernatchez L, Garant D. Introgressive hybridization between wild and domestic individuals and its relationship with parasitism in brook charr Salvelinus fontinalis. JOURNAL OF FISH BIOLOGY 2018; 93:664-673. [PMID: 29992561 DOI: 10.1111/jfb.13752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
The effects of introgression on parasitism in brook charr Salvelinus fontinalis were investigated in 28 lakes with various levels of stocking in Québec, Canada. No effect of genetic background on parasitism was found at the individual level. Body length seemed to explain most of the variation observed at this level, with largest fish being more infected. However, lakes with the greater average domestic genetic background were found to display significantly lower parasite prevalence and diversity. Since our results indicate no effect of domestic genes at the individual level, the negative association with introgression found at the population level may be mainly attributed to differences in intrinsic environmental quality of lakes (e.g. fishing pressure, availability of food resources, abiotic characteristics).
Collapse
Affiliation(s)
- Philippine Gossieaux
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pascal Sirois
- Chaire de recherche sur les espèces aquatiques exploitées, Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, Québec, Québec, Canada
| | - Dany Garant
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
28
|
Glover KA, Solberg MF, Besnier F, Skaala Ø. Cryptic introgression: evidence that selection and plasticity mask the full phenotypic potential of domesticated Atlantic salmon in the wild. Sci Rep 2018; 8:13966. [PMID: 30228303 PMCID: PMC6143624 DOI: 10.1038/s41598-018-32467-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/03/2018] [Indexed: 01/13/2023] Open
Abstract
Domesticated Atlantic salmon grow much faster than wild salmon when reared together in fish tanks under farming conditions (size ratios typically 1:2-3). In contrast, domesticated salmon only display marginally higher growth than wild salmon when reared together in rivers (size ratios typically 1:1-1.2). This begs the question why? Is this a difference in the plastic response driven by divergent energy budgets between the two environments, or is it a result of selection, whereby domesticated salmon that display the greatest growth-potential are those at greatest risk of mortality in the wild? We reared domesticated, hybrid and wild salmon in a river until they smoltified at age 2 or 4, and thereafter in fish tanks for a further 2 years. In the river, there was no difference in the mean size between the groups. In contrast, after being transferred from the river to fish tanks, the domesticated salmon significantly outgrew the wild salmon (maximum size ratio of ~1:1.8). This demonstrates that selection alone cannot be responsible for the lack of growth differences observed between domesticated and wild salmon in rivers. Nevertheless, the final size ratios observed after rearing in tanks were lower than expected in that environment, thus suggesting that plasticity, as for selection, cannot be the sole mechanism. We therefore conclude that a combination of energy-budget plasticity, and selection via growth-potential mortality, cause the differences in growth reaction norms between domesticated and wild salmon across these contrasting environments. Our results imply that if phenotypic changes are not observed in wild populations following introgression of domesticated conspecifics, it does not mean that functional genetic changes have not occurred in the admixed population. Clearly, under the right environmental conditions, the underlying genetic changes will manifest themselves in the phenotype.
Collapse
Affiliation(s)
- Kevin A Glover
- Institute of Marine Research, P.O. Box 1870, N-5817, Bergen, Norway. .,University of Bergen, Department of Biology, P.O. Box 7803, N-5020, Bergen, Norway.
| | - Monica F Solberg
- Institute of Marine Research, P.O. Box 1870, N-5817, Bergen, Norway
| | - Francois Besnier
- Institute of Marine Research, P.O. Box 1870, N-5817, Bergen, Norway
| | - Øystein Skaala
- Institute of Marine Research, P.O. Box 1870, N-5817, Bergen, Norway
| |
Collapse
|
29
|
Self KE, Schreck CB, Cogliati KM, Billman EJ, Noakes DLG. Egg size and growth in steelhead Oncorhynchus mykiss. JOURNAL OF FISH BIOLOGY 2018; 93:465-468. [PMID: 30051474 DOI: 10.1111/jfb.13764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
The effects of egg size on early development and growth of steelhead Oncorhynchus mykiss were recorded for more than 200 days following hatching. Fish from smaller eggs hatched sooner and at a smaller size than fish from larger eggs, but fish from smaller eggs showed consistently higher growth rates than fish from larger eggs. Since many life-history attributes appear to be determined by size or growth rate at age during the first year, egg size could be a significant predictor of important changes in the life history of individuals.
Collapse
Affiliation(s)
- Katharine E Self
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon
- Oregon Hatchery Research Center, Alsea, Oregon
| | - Carl B Schreck
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon
| | - Karen M Cogliati
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon
| | - Eric J Billman
- Department of Biology, Brigham Young University Idaho, Rexburg, Idaho
| | - David L G Noakes
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon
- Oregon Hatchery Research Center, Alsea, Oregon
| |
Collapse
|
30
|
Supplementation stocking of Lake Trout (Salvelinus namaycush) in small boreal lakes: Ecotypes influence on growth and condition. PLoS One 2018; 13:e0200599. [PMID: 30001412 PMCID: PMC6042763 DOI: 10.1371/journal.pone.0200599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/01/2018] [Indexed: 11/30/2022] Open
Abstract
Supplementation stocking is a commonly used management tool to sustain exploited fish populations. Possible negative consequences of supplementation on local stocks are a concern for the conservation of wild fish populations. However, the direct impacts of supplementation on life history traits of local populations have rarely been investigated. In addition, intraspecific hybridization between contrasting ecotypes (planktivorous and piscivorous) has been seldom considered in supplementation plans. Here, we combined genetic (genotype-by-sequencing analysis) and life history traits to document the effects of supplementation on maximum length, growth rates, body condition and genetic admixture in stocked populations of two Lake Trout ecotypes from small boreal lakes in Quebec and Ontario, Canada. In both ecotypes, the length of stocked individuals was greater than local individuals and, in planktivorous-stocked populations, most stocked fish exhibited a planktivorous-like growth while 20% of fish exhibited piscivorous-like growth. The body condition index was positively related to the proportion of local genetic background, but this pattern was only observed in stocked planktivorous populations. We conclude that interactions and hybridization between contrasting ecotypes is a risk that could result in deleterious impacts and possible outbreeding depression. We discuss the implications of these findings for supplementation stocking.
Collapse
|
31
|
Castellani M, Heino M, Gilbey J, Araki H, Svåsand T, Glover KA. Modeling fitness changes in wild Atlantic salmon populations faced by spawning intrusion of domesticated escapees. Evol Appl 2018; 11:1010-1025. [PMID: 29928306 PMCID: PMC5999203 DOI: 10.1111/eva.12615] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/11/2018] [Indexed: 12/17/2022] Open
Abstract
Genetic interaction between domesticated escapees and wild conspecifics represents a persistent challenge to an environmentally sustainable Atlantic salmon aquaculture industry. We used a recently developed eco-genetic model (IBSEM) to investigate potential changes in a wild salmon population subject to spawning intrusion from domesticated escapees. At low intrusion levels (5%-10% escapees), phenotypic and demographic characteristics of the recipient wild population only displayed weak changes over 50 years and only at high intrusion levels (30%-50% escapees) were clear changes visible in this period. Our modeling also revealed that genetic changes in phenotypic and demographic characteristics were greater in situations where strayers originating from a neighboring wild population were domestication-admixed and changed in parallel with the focal wild population, as opposed to nonadmixed. While recovery in the phenotypic and demographic characteristics was observed in many instances after domesticated salmon intrusion was halted, in the most extreme intrusion scenario, the population went extinct. Based upon results from these simulations, together with existing knowledge, we suggest that a combination of reduced spawning success of domesticated escapees, natural selection purging maladapted phenotypes/genotypes from the wild population, and phenotypic plasticity, buffer the rate and magnitude of change in phenotypic and demographic characteristics of wild populations subject to spawning intrusion of domesticated escapees. The results of our simulations also suggest that under specific conditions, natural straying among wild populations may buffer genetic changes in phenotypic and demographic characteristics resulting from introgression of domesticated escapees and that variation in straying in time and space may contribute to observed differences in domestication-driven introgression among native populations.
Collapse
Affiliation(s)
| | - Mikko Heino
- Department of Biological SciencesUniversity of BergenBergenNorway
- Institute of Marine ResearchBergenNorway
- International Institute for Applied Systems Analysis (IIASA)LaxenburgAustria
| | - John Gilbey
- Freshwater Fisheries LaboratoryMarine ScotlandPitlochryUK
| | - Hitoshi Araki
- Research Faculty of AgricultureHokkaido UniversitySapporoJapan
| | | | - Kevin A. Glover
- Department of Biological SciencesUniversity of BergenBergenNorway
- Institute of Marine ResearchBergenNorway
| |
Collapse
|
32
|
Judging a salmon by its spots: environmental variation is the primary determinant of spot patterns in Salmo salar. BMC Ecol 2018; 18:14. [PMID: 29650003 PMCID: PMC5897946 DOI: 10.1186/s12898-018-0170-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In fish, morphological colour changes occur from variations in pigment concentrations and in the morphology, density, and distribution of chromatophores in the skin. However, the underlying mechanisms remain unresolved in most species. Here, we describe the first investigation into the genetic and environmental basis of spot pattern development in one of the world's most studied fishes, the Atlantic salmon. We reared 920 salmon from 64 families of domesticated, F1-hybrid and wild origin in two contrasting environments (Hatchery; tanks for the freshwater stage and sea cages for the marine stage, and River; a natural river for the freshwater stage and tanks for the marine stage). Fish were measured, photographed and spot patterns evaluated. RESULTS In the Hatchery experiment, significant but modest differences in spot density were observed among domesticated, F1-hybrid (1.4-fold spottier than domesticated) and wild salmon (1.7-fold spottier than domesticated). A heritability of 6% was calculated for spot density, and a significant QTL on linkage group SSA014 was detected. In the River experiment, significant but modest differences in spot density were also observed among domesticated, F1-hybrid (1.2-fold spottier than domesticated) and wild salmon (1.8-fold spottier than domesticated). Domesticated salmon were sevenfold spottier in the Hatchery vs. River experiment. While different wild populations were used for the two experiments, on average, these were 6.2-fold spottier in the Hatchery vs. River experiment. Fish in the Hatchery experiment displayed scattered to random spot patterns while fish in the River experiment displayed clustered spot patterns. CONCLUSIONS These data demonstrate that while genetics plays an underlying role, environmental variation represents the primary determinant of spot pattern development in Atlantic salmon.
Collapse
|
33
|
Bui S, Dalvin S, Dempster T, Skulstad OF, Edvardsen RB, Wargelius A, Oppedal F. Susceptibility, behaviour, and retention of the parasitic salmon louse (Lepeophtheirus salmonis) differ with Atlantic salmon population origin. JOURNAL OF FISH DISEASES 2018; 41:431-442. [PMID: 28921589 DOI: 10.1111/jfd.12707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Atlantic salmon populations across the world have diverse ecological and evolutionary histories, from wild anadromous or landlocked, to domestication and genetic modification. The natural host behaviours confer protection from infestation by ectoparasitic salmon lice Lepeophtheirus salmonis, yet whether genetic origin results in different behaviours and thus susceptibility to infestation is unknown. In common garden experiments, we tested antiparasite behaviours, susceptibility and retention of salmon lice in wild anadromous, wild landlocked, domesticated and genetically modified domesticated strains. Within domesticated strains, we tested two infestation histories (previously infested and naïve) and a new phenotype (albino colouring). Farmed stocks initially acquired 24%-44% higher levels of parasite density than the wild and landlocked strains. Burst swimming and displacement behaviours were higher in the domesticated groups, and jumping was more prevalent in the domesticated strains. At 34 days post-infestation, domesticated strains and the wild anadromous strain did not differ significantly from each other; however, landlocked salmon had increased infestation levels considerably. Domesticated strains lost ~20% (±9.9%-16.5%; 95% CI) of their initial parasite load, while parasite load increased by 5.5% (±30.1%) for wild salmon and 20.1% (±28.5%) in landlocked salmon. This study provides early evidence for diverged host-parasite interactions associated with domestication in this system.
Collapse
Affiliation(s)
- S Bui
- Sustainable Aquaculture Laboratory - Temperate and Tropical (SALTT), School of BioSciences, University of Melbourne, Parkville, Vic, Australia
- Institute of Marine Research, Bergen, Norway
| | - S Dalvin
- Institute of Marine Research, Bergen, Norway
| | - T Dempster
- Sustainable Aquaculture Laboratory - Temperate and Tropical (SALTT), School of BioSciences, University of Melbourne, Parkville, Vic, Australia
- Institute of Marine Research, Bergen, Norway
| | | | | | - A Wargelius
- Institute of Marine Research, Bergen, Norway
| | - F Oppedal
- Institute of Marine Research, Bergen, Norway
| |
Collapse
|
34
|
Horreo JL, Valiente AG, Ardura A, Blanco A, Garcia-Gonzalez C, Garcia-Vazquez E. Nature versus nurture? Consequences of short captivity in early stages. Ecol Evol 2017; 8:521-529. [PMID: 29321890 PMCID: PMC5756874 DOI: 10.1002/ece3.3555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/10/2023] Open
Abstract
Biological changes occurring as a consequence of domestication and/or captivity are not still deeply known. In Atlantic salmon (Salmo salar), endangered (Southern Europe) populations are enhanced by supportive breeding, which involves only 6 months of captive rearing following artificial spawning of wild-collected adults. In this work, we assess whether several fitness-correlated life-history traits (migratory behavior, straying rate, age at maturity, and growth) are affected by early exposure to the captive environment within a generation, before reproduction thus before genetic selection. Results showed significant differences in growth and migratory behavior (including straying), associated with this very short period of captivity in natural fish populations, changing even genetic variability (decreased in hatchery-reared adults) and the native population structure within and between rivers of the species. These changes appeared within a single generation, suggesting very short time of captivity is enough for initiating changes normally attributed to domestication. These results may have potential implications for the long-term population stability/viability of species subjected to restoration and enhancement processes and could be also considered for the management of zoo populations.
Collapse
Affiliation(s)
- Jose L Horreo
- Department of Biodiversity and Evolutionary Biology National Museum of Natural Sciences (CSIC) Madrid Spain
| | | | - Alba Ardura
- Department of Functional Biology University of Oviedo Oviedo Spain
| | - Aida Blanco
- Department of Functional Biology University of Oviedo Oviedo Spain
| | | | | |
Collapse
|
35
|
Hamoutene D, Perez-Casanova J, Burt K, Lush L, Caines J, Collier C, Hinks R. Early life traits of farm and wild Atlantic salmon Salmo salar and first generation hybrids in the south coast of Newfoundland. JOURNAL OF FISH BIOLOGY 2017; 90:2271-2288. [PMID: 28488356 DOI: 10.1111/jfb.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 03/01/2017] [Indexed: 06/07/2023]
Abstract
This study examined fertilization rates, survival and early life-trait differences of pure farm, wild and first generation (F1) hybrid origin embryos after crossing farm and wild Atlantic salmon Salmo salar. Results show that despite a trend towards higher in vitro fertilization success for wild females, differences in fertilization success in river water are not significantly different among crosses. In a hatchery environment, wild females' progeny (pure wild and hybrids with wild maternal parent) hatched 7-11 days earlier than pure farm crosses and hybrids with farm maternal parents. In addition, pure wild progeny had higher total lengths (LT ) at hatch than pure farm crosses and hybrids. Directions in trait differences need to be tested in a river environment, but results clearly show the maternal influence on early stages beyond egg-size differences. Differences in LT were no longer significant at 70 days post hatch (shortly after the onset of exogenous feeding) showing the need to investigate later developmental stages to better assess somatic growth disparities due to genetic differences. Higher mortality rates of the most likely hybrids (farm female × wild male hybrids) at egg and fry stages and their delayed hatch suggest that these F1 hybrids might be less likely to survive the early larval stages than wild stocks.
Collapse
Affiliation(s)
- D Hamoutene
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, P. O. Box 5667, St John's, NL, A1C 5X1, Canada
| | - J Perez-Casanova
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, P. O. Box 5667, St John's, NL, A1C 5X1, Canada
| | - K Burt
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, P. O. Box 5667, St John's, NL, A1C 5X1, Canada
| | - L Lush
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, P. O. Box 5667, St John's, NL, A1C 5X1, Canada
| | - J Caines
- Northern Harvest Sea Farms NL Ltd., P. O. Box 190, St Alban's, NL, A0H 2E0, Canada
| | - C Collier
- Gray Aqua Group Limited, P. O. Box 275, Conne River, NL, A0H 1J0, Canada
| | - R Hinks
- Natural Resources Miawpukek First Nations, MiawpukekMi'kamaweyMawi'omi, P. O. Box 10, Conne River, NL, A0H 1J0, Canada
| |
Collapse
|
36
|
Harvey AC, Fjelldal PG, Solberg MF, Hansen T, Glover KA. Ploidy elicits a whole-genome dosage effect: growth of triploid Atlantic salmon is linked to the genetic origin of the second maternal chromosome set. BMC Genet 2017; 18:34. [PMID: 28399816 PMCID: PMC5387229 DOI: 10.1186/s12863-017-0502-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/06/2017] [Indexed: 12/30/2022] Open
Abstract
Background The Atlantic salmon aquaculture industry is investigating the feasibility of using sterile triploids to mitigate genetic interactions with wild conspecifics, however, studies investigating diploid and triploid performance often show contrasting results. Studies have identified dosage and dosage-compensation effects for gene expression between triploid and diploid salmonids, but no study has investigated how ploidy and parent-origin effects interact on a polygenic trait in divergent lines of Atlantic salmon (i.e. slow growing wild versus fast growing domesticated phenotype). This study utilised two experiments relating to the freshwater growth of diploid and triploid groups of pure wild (0% domesticated genome), pure domesticated (100% domesticated genome), and F1 reciprocal hybrid (33%, 50% or 66% domesticated genome) salmon where triploidy was either artificially induced (experiment 1) or naturally developed/spontaneous (experiment 2). Results In both experiments, reciprocal hybrid growth was influenced by the dosage effect of the second maternal chromosome, with growth increasing as ploidy level increased in individuals with a domesticated dam (from 50% to 66% domesticated genome), and the inverse in individuals with a wild dam (from 50% to 33% domesticated genome). Conclusions We demonstrate that the combined effect of ploidy and parent-origin on growth, a polygenic trait, is regulated in an additive pattern. Therefore, in order to maximise growth potential, the aquaculture industry should consider placing more emphasis on the breeding value of the dam than the sire when producing triploid families for commercial production. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0502-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A C Harvey
- Institute of Marine Research, P. O. Box 1870, Nordnes, NO-5817, Bergen, Norway.
| | - P G Fjelldal
- Institute of Marine Research (IMR), Matre Research Station, NO-5984, Matredal, Norway
| | - M F Solberg
- Institute of Marine Research, P. O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - T Hansen
- Institute of Marine Research (IMR), Matre Research Station, NO-5984, Matredal, Norway
| | - K A Glover
- Institute of Marine Research, P. O. Box 1870, Nordnes, NO-5817, Bergen, Norway.,Department of Biology, University of Bergen, P. O. Box 7803, N-5020, Bergen, Norway
| |
Collapse
|
37
|
Bolstad GH, Hindar K, Robertsen G, Jonsson B, Sægrov H, Diserud OH, Fiske P, Jensen AJ, Urdal K, Næsje TF, Barlaup BT, Florø-Larsen B, Lo H, Niemelä E, Karlsson S. Gene flow from domesticated escapes alters the life history of wild Atlantic salmon. Nat Ecol Evol 2017; 1:124. [PMID: 28812692 DOI: 10.1038/s41559-017-0124] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/23/2017] [Indexed: 11/09/2022]
Abstract
Interbreeding between domesticated and wild animals occurs in several species. This gene flow has long been anticipated to induce genetic changes in life-history traits of wild populations, thereby influencing population dynamics and viability. Here, we show that individuals with high levels of introgression (domesticated ancestry) have altered age and size at maturation in 62 wild Atlantic salmon Salmo salar populations, including seven ancestral populations to breeding lines of the domesticated salmon. This study documents widespread changes to life-history traits in wild animal populations following gene flow from selectively bred, domesticated conspecifics. The continued high abundance of escaped, domesticated Atlantic salmon thus threatens wild Atlantic salmon populations by inducing genetic changes in fitness-related traits. Our results represent key evidence and a timely warning concerning the potential ecological impacts of the globally increasing use of domesticated animals.
Collapse
Affiliation(s)
- Geir H Bolstad
- Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway
| | - Kjetil Hindar
- Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway
| | - Grethe Robertsen
- Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway
| | - Bror Jonsson
- Norwegian Institute for Nature Research (NINA), NO-0349 Oslo, Norway
| | | | - Ola H Diserud
- Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway
| | - Peder Fiske
- Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway
| | - Arne J Jensen
- Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway
| | - Kurt Urdal
- Radgivende Biologer, NO-5003 Bergen, Norway
| | - Tor F Næsje
- Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway
| | | | | | - Håvard Lo
- Norwegian Veterinary Institute, NO-7485 Trondheim, Norway
| | - Eero Niemelä
- Natural Resources Institute Finland, FI-90014 Oulu, Finland
| | - Sten Karlsson
- Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway
| |
Collapse
|
38
|
Harvey AC, Solberg MF, Troianou E, Carvalho GR, Taylor MI, Creer S, Dyrhovden L, Matre IH, Glover KA. Plasticity in growth of farmed and wild Atlantic salmon: is the increased growth rate of farmed salmon caused by evolutionary adaptations to the commercial diet? BMC Evol Biol 2016; 16:264. [PMID: 27905882 PMCID: PMC5134087 DOI: 10.1186/s12862-016-0841-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/25/2016] [Indexed: 11/10/2022] Open
Abstract
Background Domestication of Atlantic salmon for commercial aquaculture has resulted in farmed salmon displaying substantially higher growth rates than wild salmon under farming conditions. In contrast, growth differences between farmed and wild salmon are much smaller when compared in the wild. The mechanisms underlying this contrast between environments remain largely unknown. It is possible that farmed salmon have adapted to the high-energy pellets developed specifically for aquaculture, contributing to inflated growth differences when fed on this diet. We studied growth and survival of 15 families of farmed, wild and F1 hybrid salmon fed three contrasting diets under hatchery conditions; a commercial salmon pellet diet, a commercial carp pellet diet, and a mixed natural diet consisting of preserved invertebrates commonly found in Norwegian rivers. Results For all groups, despite equal numbers of calories presented by all diets, overall growth reductions as high 68 and 83%, relative to the salmon diet was observed in the carp and natural diet treatments, respectively. Farmed salmon outgrew hybrid (intermediate) and wild salmon in all treatments. The relative growth difference between wild and farmed fish was highest in the carp diet (1: 2.1), intermediate in the salmon diet (1:1.9) and lowest in the natural diet (1:1.6). However, this trend was non-significant, and all groups displayed similar growth reaction norms and plasticity towards differing diets across the treatments. Conclusions No indication of genetic-based adaptation to the form or nutritional content of commercial salmon diets was detected in the farmed salmon. Therefore, we conclude that diet alone, at least in the absence of other environmental stressors, is not the primary cause for the large contrast in growth differences between farmed and wild salmon in the hatchery and wild. Additionally, we conclude that genetically-increased appetite is likely to be the primary reason why farmed salmon display higher growth rates than wild salmon when fed ad lib rations under hatchery conditions. Our results contribute towards an understanding of the potential genetic changes that have occurred in farmed salmon in response to domestication, and the potential mechanisms underpinning genetic and ecological interactions between farmed escapees and wild salmonids. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0841-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alison Catherine Harvey
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Deiniol Road, Bangor University, Bangor, LL57 2UW, UK
| | | | - Eva Troianou
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Gary Robert Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Deiniol Road, Bangor University, Bangor, LL57 2UW, UK
| | - Martin Ian Taylor
- School of Biological Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Deiniol Road, Bangor University, Bangor, LL57 2UW, UK
| | - Lise Dyrhovden
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Ivar Helge Matre
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Kevin Alan Glover
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.,Sea Lice Research Centre, Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
39
|
Domestication and ontogeny effects on the stress response in young chickens (Gallus gallus). Sci Rep 2016; 6:35818. [PMID: 27782164 PMCID: PMC5080622 DOI: 10.1038/srep35818] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/06/2016] [Indexed: 12/02/2022] Open
Abstract
Domestication is thought to increase stress tolerance. The connection between stressor exposure, glucocorticoids and behavioural responses has been studied in adults, where domestication effects are evident. Early stress exposure may induce detrimental effects both in short-and long term. Previous research has reported a lack of glucocorticoid response in newly hatched chickens (Gallus gallus), whereas others have found opposite results. Hence it remains unclear whether the HPA-axis is functional from hatch, and if domestication has affected the early post-hatch ontogeny of the stress response. Our aims were to investigate the early ontogeny of the HPA-axis and characterize behavioural and hormonal stress responses in ancestral Red Junglefowl and in two domestic layer strains. Plasma corticosteone and behavioural responses before and after physical restraint was measured on day one, nine, 16 and 23 post hatch. The results showed significant increases of corticosterone after stress in all three breeds at all the different ages. The HPA-response decreased with age and was lower in Red Junglefowl. Behavioural responses also decreased with age, and tended to be stronger in Red Junglefowl. In summary, the HPA-axis is reactive from day one, and domestication may have affected its development and reactivity, alongside with related behaviour responses.
Collapse
|
40
|
Vindas MA, Madaro A, Fraser TWK, Höglund E, Olsen RE, Øverli Ø, Kristiansen TS. Coping with a changing environment: the effects of early life stress. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160382. [PMID: 27853554 PMCID: PMC5098979 DOI: 10.1098/rsos.160382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/01/2016] [Indexed: 05/13/2023]
Abstract
Ongoing rapid domestication of Atlantic salmon implies that individuals are subjected to evolutionarily novel stressors encountered under conditions of artificial rearing, requiring new levels and directions of flexibility in physiological and behavioural coping mechanisms. Phenotypic plasticity to environmental changes is particularly evident at early life stages. We investigated the performance of salmon, previously subjected to an unpredictable chronic stress (UCS) treatment at an early age (10 month old parr), over several months and life stages. The UCS fish showed overall higher specific growth rates compared with unstressed controls after smoltification, a particularly challenging life stage, and after seawater transfer. Furthermore, subjecting fish to acute stress at the end of the experiment, we found that UCS groups had an overall lower hypothalamic catecholaminergic and brain stem serotonergic response to stress compared with control groups. In addition, serotonergic activity was negatively correlated with final growth rates, which implies that serotonin responsive individuals have growth disadvantages. Altogether, our results may imply that a subdued monoaminergic response in stressful farming environments may be beneficial, because in such situations individuals may be able to reallocate energy from stress responses into other life processes, such as growth.
Collapse
Affiliation(s)
- Marco A. Vindas
- Uni Environment, Uni Research AS, Bergen, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
- Author for correspondence: Marco A. Vindas e-mail:
| | | | - Thomas W. K. Fraser
- Department of Production Animal and Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Erik Höglund
- National Institute of Aquatic Resources, Technical University of Denmark, Hirtshals, Denmark
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Rolf E. Olsen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Øyvind Øverli
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | | |
Collapse
|
41
|
Harvey AC, Solberg MF, Glover KA, Taylor MI, Creer S, Carvalho GR. Plasticity in response to feed availability: Does feeding regime influence the relative growth performance of domesticated, wild and hybrid Atlantic salmon Salmo salar parr? JOURNAL OF FISH BIOLOGY 2016; 89:1754-1768. [PMID: 27460446 DOI: 10.1111/jfb.13076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
Abstract
Growth of farmed, wild and F1 hybrid Atlantic salmon parr Salmo salar was investigated under three contrasting feeding regimes in order to understand how varying levels of food availability affects relative growth. Treatments consisted of standard hatchery feeding (ad libitum), access to feed for 4 h every day, and access to feed for 24 h on three alternate days weekly. Mortality was low in all treatments, and food availability had no effect on survival of all groups. The offspring of farmed S. salar significantly outgrew the wild S. salar, while hybrids displayed intermediate growth. Furthermore, the relative growth differences between the farmed and wild S. salar did not change across feeding treatments, indicating a similar plasticity in response to feed availability. Although undertaken in a hatchery setting, these results suggest that food availability may not be the sole driver behind the observed reduced growth differences found between farmed and wild fishes under natural conditions.
Collapse
Affiliation(s)
- A C Harvey
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UW, U.K
| | - M F Solberg
- Institute of Marine Research, P. O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - K A Glover
- Institute of Marine Research, P. O. Box 1870, Nordnes, NO-5817, Bergen, Norway
- Department of Biology, Sea Lice Research Centre, University of Bergen, P. O. Box 7803, N-5020, Bergen, Norway
| | - M I Taylor
- School of Biological Sciences, University of East Anglia, NR4 7TJ, Norwich, U.K
| | - S Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UW, U.K
| | - G R Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UW, U.K
| |
Collapse
|
42
|
Pritchard VL, Erkinaro J, Kent MP, Niemelä E, Orell P, Lien S, Primmer CR. Single nucleotide polymorphisms to discriminate different classes of hybrid between wild Atlantic salmon and aquaculture escapees. Evol Appl 2016; 9:1017-31. [PMID: 27606009 PMCID: PMC4999531 DOI: 10.1111/eva.12407] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 06/07/2016] [Indexed: 12/14/2022] Open
Abstract
Many wild Atlantic salmon (Salmo salar) populations are threatened by introgressive hybridization from domesticated fish that have escaped from aquaculture facilities. A detailed understanding of the hybridization dynamics between wild salmon and aquaculture escapees requires discrimination of different hybrid classes; however, markers currently available to discriminate the two types of parental genome have limited power to do this. Using a high‐density Atlantic salmon single nucleotide polymorphism (SNP) array, in combination with pooled‐sample allelotyping and an Fst outlier approach, we identified 200 SNPs that differentiated an important Atlantic salmon stock from the escapees potentially hybridizing with it. By simulating multiple generations of wild–escapee hybridization, involving wild populations in two major phylogeographic lineages and a genetically diverse set of escapees, we showed that both the complete set of SNPs and smaller subsets could reliably assign individuals to different hybrid classes up to the third hybrid (F3) generation. This set of markers will be a useful tool for investigating the genetic interactions between native wild fish and aquaculture escapees in many Atlantic salmon populations.
Collapse
Affiliation(s)
| | | | - Matthew P Kent
- Centre for Integrative Genetics (CIGENE) Department of Animal and Aquacultural Sciences Norwegian University of Life Sciences Aas Norway
| | - Eero Niemelä
- Natural Resources Institute Finland (Luke) Utsjoki Finland
| | - Panu Orell
- Natural Resources Institute Finland (Luke) Utsjoki Finland
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE) Department of Animal and Aquacultural Sciences Norwegian University of Life Sciences Aas Norway
| | | |
Collapse
|
43
|
Harvey AC, Juleff G, Carvalho GR, Taylor MI, Solberg MF, Creer S, Dyrhovden L, Matre IH, Glover KA. Does density influence relative growth performance of farm, wild and F1 hybrid Atlantic salmon in semi-natural and hatchery common garden conditions? ROYAL SOCIETY OPEN SCIENCE 2016; 3:160152. [PMID: 27493772 PMCID: PMC4968464 DOI: 10.1098/rsos.160152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/27/2016] [Indexed: 06/06/2023]
Abstract
The conditions encountered by Atlantic salmon, Salmo salar L., in aquaculture are markedly different from the natural environment. Typically, farmed salmon experience much higher densities than wild individuals, and may therefore have adapted to living in high densities. Previous studies have demonstrated that farmed salmon typically outgrow wild salmon by large ratios in the hatchery, but these differences are much less pronounced in the wild. Such divergence in growth may be explained partly by the offspring of wild salmon experiencing higher stress and thus lower growth when compared under high-density farming conditions. Here, growth of farmed, wild and F1 hybrid salmon was studied at contrasting densities within a hatchery and semi-natural environment. Farmed salmon significantly outgrew hybrid and wild salmon in all treatments. Importantly, however, the reaction norms were similar across treatments for all groups. Thus, this study was unable to find evidence that the offspring of farmed salmon have adapted more readily to higher fish densities than wild salmon as a result of domestication. It is suggested that the substantially higher growth rate of farmed salmon observed in the hatchery compared with wild individuals may not solely be caused by differences in their ability to grow in high-density hatchery scenarios.
Collapse
Affiliation(s)
- Alison C. Harvey
- Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, Gwynedd LL57 2DG, UK
| | - Gareth Juleff
- Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, Gwynedd LL57 2DG, UK
| | - Gary R. Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, Gwynedd LL57 2DG, UK
| | - Martin I. Taylor
- Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, Gwynedd LL57 2DG, UK
- Biological Sciences, University of East Anglia, Norwich, UK
| | | | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, Gwynedd LL57 2DG, UK
| | | | | | - Kevin A. Glover
- Havforskningsinstituttet, Bergen, Norway
- Sea Lice Research Centre, Universitetet i Bergen Institutt for Biologi, Bergen, Norway
| |
Collapse
|
44
|
Bicskei B, Taggart JB, Glover KA, Bron JE. Comparing the transcriptomes of embryos from domesticated and wild Atlantic salmon (Salmo salar L.) stocks and examining factors that influence heritability of gene expression. Genet Sel Evol 2016; 48:20. [PMID: 26987528 PMCID: PMC4797325 DOI: 10.1186/s12711-016-0200-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Due to selective breeding, domesticated and wild Atlantic salmon are genetically diverged, which raises concerns about farmed escapees having the potential to alter the genetic composition of wild populations and thereby disrupting local adaptation. Documenting transcriptional differences between wild and domesticated stocks under controlled conditions is one way to explore the consequences of domestication and selection. We compared the transcriptomes of wild and domesticated Atlantic salmon embryos, by using a custom 44k oligonucleotide microarray to identify perturbed gene pathways between the two stocks, and to document the inheritance patterns of differentially-expressed genes by examining gene expression in their reciprocal hybrids. RESULTS Data from 24 array interrogations were analysed: four reciprocal cross types (W♀ × W♂, D♀ × W♂; W♀ × D♂, D♀ × D♂) × six biological replicates. A common set of 31,491 features on the microarrays passed quality control, of which about 62 % were assigned a KEGG Orthology number. A total of 6037 distinct genes were identified for gene-set enrichment/pathway analysis. The most highly enriched functional groups that were perturbed between the two stocks were cellular signalling and immune system, ribosome and RNA transport, and focal adhesion and gap junction pathways, relating to cell communication and cell adhesion molecules. Most transcripts that were differentially expressed between the stocks were governed by additive gene interaction (33 to 42 %). Maternal dominance and over-dominance were also prevalent modes of inheritance, with no convincing evidence for a stock effect. CONCLUSIONS Our data indicate that even at this relatively early developmental stage, transcriptional differences exist between the two stocks and affect pathways that are relevant to wild versus domesticated environments. Many of the identified differentially perturbed pathways are involved in organogenesis, which is expected to be an active process at the eyed egg stage. The dominant effects are more largely due to the maternal line than to the origin of the stock. This finding is particularly relevant in the context of potential introgression between farmed and wild fish, since female escapees tend to have a higher spawning success rate compared to males.
Collapse
Affiliation(s)
- Beatrix Bicskei
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - John B Taggart
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Kevin A Glover
- Institute of Marine Research, Bergen, Norway.,Department of Biology, University of Bergen, Bergen, Norway
| | - James E Bron
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
45
|
Solberg MF, Dyrhovden L, Matre IH, Glover KA. Thermal plasticity in farmed, wild and hybrid Atlantic salmon during early development: has domestication caused divergence in low temperature tolerance? BMC Evol Biol 2016; 16:38. [PMID: 26883947 PMCID: PMC4754860 DOI: 10.1186/s12862-016-0607-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/01/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In the past three decades, millions of domesticated Atlantic salmon Salmo salar L. have escaped from farms into the wild. Their offspring display reduced survival in the natural environment, which demonstrates that gene-flow is likely to have a negative effect on wild populations. However, inter-population differences in introgression of farmed salmon have been observed, and the underlying ecological mechanisms remain enigmatic. We hypothesised that domestication-driven divergence in tolerance to low temperatures during early development may contribute to lower survival of farmed salmon offspring in the wild, which in turn, may influence patterns of introgression among populations exposed to different temperature regimes. We reared the offspring of 35 families of wild, farmed and hybrid origin at three temperatures (3.9, 5.6 and 12°C) from the onset of exogenous feeding and throughout their first summer. Thermal reaction norms for growth and survival were investigated along the gradient. RESULTS The main results of this study, which is based upon the analysis of juvenile salmon from five wild strains, two farmed strains and two hybrid strains, can be summarised as; (i) salmon of all origins were able to successfully initiate feeding at all temperatures and similar survival reaction norms were detected in all strains across the temperature gradient; (ii) deviating growth reaction norms were detected between strains, although this result was most likely due to an overall lack of growth in the lower temperature treatments. CONCLUSIONS This study revealed no evidence of domesticated-driven divergence in low temperature tolerance in Atlantic salmon during early development. Although the potential interaction between low temperature and other river-specific factors cannot be excluded, our results indicate that the reduced survival of farmed offspring in the wild is not explained by farmed salmon displaying impaired abilities to initiate feeding at low temperatures. We therefore suggest that the observed inter-population patterns of introgression are not low-temperature driven and that other ecological or biological factors may explain why detection of farmed salmon in wild rivers is not synonymous with introgression. In general, our results support the literature indicating that phenotypic plasticity instead of thermal adaption has been selected for in Atlantic salmon.
Collapse
Affiliation(s)
| | - Lise Dyrhovden
- Matre Research Station, Institute of Marine Research, Matredal, Norway.
| | - Ivar Helge Matre
- Matre Research Station, Institute of Marine Research, Matredal, Norway.
| | - Kevin Alan Glover
- Population Genetics Research Group, Institute of Marine Research, Bergen, Norway.
- Department of Biology, Sea Lice Research Centre, University of Bergen, Bergen, Norway.
| |
Collapse
|
46
|
Glover KA, Bos JB, Urdal K, Madhun AS, Sørvik AGE, Unneland L, Seliussen BB, Skaala Ø, Skilbrei OT, Tang Y, Wennevik V. Genetic screening of farmed Atlantic salmon escapees demonstrates that triploid fish display reduced migration to freshwater. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1066-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Leggatt RA, Sundström LF, Vandersteen WE, Devlin RH. Alternate Directed Anthropogenic Shifts in Genotype Result in Different Ecological Outcomes in Coho Salmon Oncorhynchus kisutch Fry. PLoS One 2016; 11:e0148687. [PMID: 26848575 PMCID: PMC4744014 DOI: 10.1371/journal.pone.0148687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/20/2016] [Indexed: 11/19/2022] Open
Abstract
Domesticated and growth hormone (GH) transgenic salmon provide an interesting model to compare effects of selected versus engineered phenotypic change on relative fitness in an ecological context. Phenotype in domestication is altered via polygenic selection of traits over multiple generations, whereas in transgenesis is altered by a single locus in one generation. These established and emerging technologies both result in elevated growth rates in culture, and are associated with similar secondary effects such as increased foraging, decreased predator avoidance, and similar endocrine and gene expression profiles. As such, there is concern regarding ecological consequences should fish that have been genetically altered escape to natural ecosystems. To determine if the type of genetic change influences fitness components associated with ecological success outside of the culture environments they were produced for, we examined growth and survival of domesticated, transgenic, and wild-type coho salmon fry under different environmental conditions. In simple conditions (i.e. culture) with unlimited food, transgenic fish had the greatest growth, while in naturalized stream tanks (limited natural food, with or without predators) domesticated fish had greatest growth and survival of the three fish groups. As such, the largest growth in culture conditions may not translate to the greatest ecological effects in natural conditions, and shifts in phenotype over multiple rather than one loci may result in greater success in a wider range of conditions. These differences may arise from very different historical opportunities of transgenic and domesticated strains to select for multiple growth pathways or counter-select against negative secondary changes arising from elevated capacity for growth, with domesticated fish potentially obtaining or retaining adaptive responses to multiple environmental conditions not yet acquired in recently generated transgenic strains.
Collapse
Affiliation(s)
- Rosalind A. Leggatt
- Centre for Aquaculture and Environmental Research, Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
- * E-mail:
| | - L. Fredrik Sundström
- Centre for Aquaculture and Environmental Research, Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| | - Wendy E. Vandersteen
- Centre for Aquaculture and Environmental Research, Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| | - Robert H. Devlin
- Centre for Aquaculture and Environmental Research, Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| |
Collapse
|
48
|
Harvey AC, Glover KA, Taylor MI, Creer S, Carvalho GR. A common garden design reveals population-specific variability in potential impacts of hybridization between populations of farmed and wild Atlantic salmon, Salmo salar L. Evol Appl 2016; 9:435-49. [PMID: 26989435 PMCID: PMC4778114 DOI: 10.1111/eva.12346] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/13/2015] [Indexed: 11/30/2022] Open
Abstract
Released individuals can have negative impacts on native populations through various mechanisms, including competition, disease transfer and introduction of maladapted gene complexes. Previous studies indicate that the level of farmed Atlantic salmon introgression in native populations is population specific. However, few studies have explored the potential role of population diversity or river characteristics, such as temperature, on the consequences of hybridization. We compared freshwater growth of multiple families derived from two farmed, five wild and two F1 hybrid salmon populations at three contrasting temperatures (7°C, 12°C and 16°C) in a common garden experiment. As expected, farmed salmon outgrew wild salmon at all temperatures, with hybrids displaying intermediate growth. However, differences in growth were population specific and some wild populations performed better than others relative to the hybrid and farmed populations at certain temperatures. Therefore, the competitive balance between farmed and wild salmon may depend both on the thermal profile of the river and on the genetic characteristics of the respective farmed and wild strains. While limited to F1 hybridization, this study shows the merits in adopting a more complex spatially resolved approach to risk management of local populations.
Collapse
Affiliation(s)
- Alison C Harvey
- Molecular Ecology and Fisheries Genetics Laboratory School of Biological Sciences Bangor University Bangor UK
| | | | - Martin I Taylor
- Molecular Ecology and Fisheries Genetics Laboratory School of Biological Sciences Bangor University Bangor UK; School of Biological Sciences University of East Anglia Norwich UK
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory School of Biological Sciences Bangor University Bangor UK
| | - Gary R Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory School of Biological Sciences Bangor University Bangor UK
| |
Collapse
|
49
|
Heino M, Díaz Pauli B, Dieckmann U. Fisheries-Induced Evolution. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-112414-054339] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mikko Heino
- Department of Biology and Hjort Centre for Marine Ecosystem Dynamics, University of Bergen, N-5020 Bergen, Norway;
- Institute of Marine Research and Hjort Centre for Marine Ecosystem Dynamics, N-5817 Bergen, Norway
- Evolution and Ecology Program, International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria
| | - Beatriz Díaz Pauli
- Department of Biology and Hjort Centre for Marine Ecosystem Dynamics, University of Bergen, N-5020 Bergen, Norway;
| | - Ulf Dieckmann
- Evolution and Ecology Program, International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria
| |
Collapse
|
50
|
Ayllon F, Kjærner-Semb E, Furmanek T, Wennevik V, Solberg MF, Dahle G, Taranger GL, Glover KA, Almén MS, Rubin CJ, Edvardsen RB, Wargelius A. The vgll3 Locus Controls Age at Maturity in Wild and Domesticated Atlantic Salmon (Salmo salar L.) Males. PLoS Genet 2015; 11:e1005628. [PMID: 26551894 PMCID: PMC4638356 DOI: 10.1371/journal.pgen.1005628] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022] Open
Abstract
Wild and domesticated Atlantic salmon males display large variation for sea age at sexual maturation, which varies between 1-5 years. Previous studies have uncovered a genetic predisposition for variation of age at maturity with moderate heritability, thus suggesting a polygenic or complex nature of this trait. The aim of this study was to identify associated genetic loci, genes and ultimately specific sequence variants conferring sea age at maturity in salmon. We performed a genome wide association study (GWAS) using a pool sequencing approach (20 individuals per river and phenotype) of male salmon returning to rivers as sexually mature either after one sea winter (2009) or three sea winters (2011) in six rivers in Norway. The study revealed one major selective sweep, which covered 76 significant SNPs in which 74 were found in a 370 kb region of chromosome 25. Genotyping other smolt year classes of wild and domesticated salmon confirmed this finding. Genotyping domesticated fish narrowed the haplotype region to four SNPs covering 2386 bp, containing the vgll3 gene, including two missense mutations explaining 33-36% phenotypic variation. A single locus was found to have a highly significant role in governing sea age at maturation in this species. The SNPs identified may be both used as markers to guide breeding for late maturity in salmon aquaculture and in monitoring programs of wild salmon. Interestingly, a SNP in proximity of the VGLL3 gene in humans (Homo sapiens), has previously been linked to age at puberty suggesting a conserved mechanism for timing of puberty in vertebrates.
Collapse
Affiliation(s)
| | - Erik Kjærner-Semb
- Institute of Marine Research, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| | | | | | | | - Geir Dahle
- Institute of Marine Research, Bergen, Norway
| | | | - Kevin A. Glover
- Institute of Marine Research, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| | - Markus Sällman Almén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carl J Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|