1
|
Wu YC, Lehtonen Š, Trontti K, Kauppinen R, Kettunen P, Leinonen V, Laakso M, Kuusisto J, Hiltunen M, Hovatta I, Freude K, Dhungana H, Koistinaho J, Rolova T. Human iPSC-derived pericyte-like cells carrying APP Swedish mutation overproduce beta-amyloid and induce cerebral amyloid angiopathy-like changes. Fluids Barriers CNS 2024; 21:78. [PMID: 39334385 PMCID: PMC11438249 DOI: 10.1186/s12987-024-00576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Patients with Alzheimer's disease (AD) frequently present with cerebral amyloid angiopathy (CAA), characterized by the accumulation of beta-amyloid (Aβ) within the cerebral blood vessels, leading to cerebrovascular dysfunction. Pericytes, which wrap around vascular capillaries, are crucial for regulating cerebral blood flow, angiogenesis, and vessel stability. Despite the known impact of vascular dysfunction on the progression of neurodegenerative diseases, the specific role of pericytes in AD pathology remains to be elucidated. METHODS To explore this, we generated pericyte-like cells from human induced pluripotent stem cells (iPSCs) harboring the Swedish mutation in the amyloid precursor protein (APPswe) along with cells from healthy controls. We initially verified the expression of classic pericyte markers in these cells. Subsequent functional assessments, including permeability, tube formation, and contraction assays, were conducted to evaluate the functionality of both the APPswe and control cells. Additionally, bulk RNA sequencing was utilized to compare the transcriptional profiles between the two groups. RESULTS Our study reveals that iPSC-derived pericyte-like cells (iPLCs) can produce Aβ peptides. Notably, cells with the APPswe mutation secreted Aβ1-42 at levels ten-fold higher than those of control cells. The APPswe iPLCs also demonstrated a reduced ability to support angiogenesis and maintain barrier integrity, exhibited a prolonged contractile response, and produced elevated levels of pro-inflammatory cytokines following inflammatory stimulation. These functional changes in APPswe iPLCs correspond with transcriptional upregulation in genes related to actin cytoskeleton and extracellular matrix organization. CONCLUSIONS Our findings indicate that the APPswe mutation in iPLCs mimics several aspects of CAA pathology in vitro, suggesting that our iPSC-based vascular cell model could serve as an effective platform for drug discovery aimed to ameliorate vascular dysfunction in AD.
Collapse
Affiliation(s)
- Ying-Chieh Wu
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Šárka Lehtonen
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland.
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Kalevi Trontti
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Riitta Kauppinen
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Pinja Kettunen
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Ville Leinonen
- NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine and Clinical Research, Kuopio University Hospital, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Hiramani Dhungana
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland.
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, 00014, Helsinki, Finland.
| | - Taisia Rolova
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
2
|
Ahmad N, Kiriako G, Saliba J, Abla K, El-Sabban M, Mhanna R. Engineering a 3D Biomimetic Peptides Functionalized-Polyethylene Glycol Hydrogel Model Cocultured with Endothelial Cells and Astrocytes: Enhancing In Vitro Blood-Brain Barrier Biomimicry. Mol Pharm 2024; 21:4664-4672. [PMID: 39133897 PMCID: PMC11372828 DOI: 10.1021/acs.molpharmaceut.4c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
The blood-brain barrier (BBB) poses a significant challenge for drug delivery and is linked to various neurovascular disorders. In vitro BBB models provide a tool to investigate drug permeation across the BBB and the barrier's response to external injury events. Yet, existing models lack fidelity in replicating the BBB's complexity, hindering a comprehensive understanding of its functions. This study introduces a three-dimensional (3D) model using polyethylene glycol (PEG) hydrogels modified with biomimetic peptides that represent recognition sequences of key proteins in the brain. Hydrogels were functionalized with recognition sequences for laminin (IKVAV) and fibronectin peptides (RGD) and chemically cross-linked with matrix metalloprotease-sensitive peptides (MMPs) to mimic the extracellular matrix of the BBB. Astrocytes and endothelial cells were seeded within and on the surface of the hydrogels, respectively. The barrier integrity was assessed through different tests including transendothelial electrical resistance (TEER), the permeability of sodium fluorescence (Na-F), the permeability of Evan's blue bound to albumin (EBA), and the expression of zonula occluden-1 (ZO-1) in seeded endothelial cells. Hydrogels with a combination of RGD and IKVAV peptides displayed superior performance, exhibiting significantly higher TEER values (55.33 ± 1.47 Ω·cm2) at day 5 compared to other 2D controls including HAECs-monoculture and HAECs-cocultured with NHAs seeded on well inserts and 3D controls including RGD hydrogel and RGD-IKVAV monoculture with HAECs and RGD hydrogel cocultured with HAECs and NHAs. The designed 3D system resulted in the lowest Evan's blue permeability at 120 min (0.215 ± 0.055 μg/mL) compared to controls. ZO-1 expression was significantly higher and formed a relatively larger network in the functionalized hydrogel cocultured with astrocytes and endothelial cells compared to the controls. Thus, the designed 3D model effectively recapitulates the main BBB structure and function in vitro and is expected to contribute to a deeper understanding of pathological CNS angiogenesis and the development of effective CNS medications.
Collapse
Affiliation(s)
- Nesrine Ahmad
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Georges Kiriako
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107-2020, Lebanon
| | - John Saliba
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107-2020, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Kawthar Abla
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Rami Mhanna
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
3
|
Floryanzia S, Lee S, Nance E. Isolation methods and characterization of primary rat neurovascular cells. J Biol Eng 2024; 18:39. [PMID: 38992711 PMCID: PMC11241874 DOI: 10.1186/s13036-024-00434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND There is significant interest in isolating cells of the blood-brain barrier (BBB) for use in in vitro screening of therapeutics and analyzing cell specific roles in neurovascular pathology. Primary brain cells play an advantageous role in BBB models; however, isolation procedures often do not produce cells at high enough yields for experiments. In addition, although numerous reports provide primary cell isolation methods, the field is lacking in documentation and detail of expected morphological changes that occur throughout culturing and there are minimal troubleshooting resources. Here, we present simplified, robust, and reproducible methodology for isolating astrocytes, pericytes, and endothelial cells, and demonstrate several morphological benchmarks for each cell type throughout the process and culture timeframe. We also analyze common considerations for developing neurovascular cell isolation procedures and recommend solutions for troubleshooting. RESULTS The presented methodology isolated astrocytes, pericytes, and endothelial cells and enabled cell attachment, maturation, and cell viability. We characterized milestones in cell maturation over 12 days in culture, a common timeline for applications of these cell types in BBB models. Phase contrast microscopy was used to show initial cell plating, attachment, and daily growth of isolated cells. Confocal microscopy images were analyzed to determine the identity of cell types and changes to cell morphology. Nuclear staining was also used to show the viability and proliferation of glial cells at four time points. Astrocyte branches became numerous and complex with increased culture time. Microglia, oligodendrocytes, and neurons were present in mixed glial cultures for 12 days, though the percentage of microglia and neurons expectedly decreased after passaging, with microglia demonstrating a less branched morphology. CONCLUSIONS Neurovascular cells can be isolated through our optimized protocols that minimize cell loss and encourage the adhesion and proliferation of isolated cells. By identifying timepoints of viable glia and neurons within an astrocyte-dominant mixed culture, these cells can be used to evaluate drug targeting, uptake studies, and response to pathological stimulus in the neurovascular unit.
Collapse
Affiliation(s)
- Sydney Floryanzia
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Seoyoung Lee
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Molecular Engineering and Sciences, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
4
|
Zou L, Xu X, Wang Y, Lin F, Zhang C, Liu R, Hou X, Wang J, Jiang X, Zhang Q, Li L. Neonatal Exposure to Polystyrene Nanoplastics Impairs Microglia-Mediated Synaptic Pruning and Causes Social Behavioral Defects in Adulthood. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11945-11957. [PMID: 38917348 DOI: 10.1021/acs.est.4c03231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The increasing prevalence and persistence of nanoplastics (NPs) have become critical environmental concerns. These particles have the potential to enter the food chain and accumulate in living organisms, which exerts their adverse effects on human health. The release of nanoparticles from feeding bottles raises concerns about potential health issues, especially for newborns exposed to NPs at the neonatal stage. In this study, we examined the impacts of neonatal exposure to polystyrene nanoplastics (PS-NPs) on neurodevelopment. Our study demonstrates that exposure to PS-NPs in newborn mice impairs microglial autophagic function and energy metabolism, leading to the disruption of microglia-mediated synaptic pruning during early neurodevelopment. These mice subsequently develop social behavioral defects in adulthood, suggesting the long-lasting effects of neonatal PS-NP exposure on brain development and behavior. Together, these data provide insights into the mechanism by which PS-NPs affect early neurodevelopment, thus emphasizing the crucial need to address plastic pollution globally.
Collapse
Affiliation(s)
- Le Zou
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xin Xu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuelan Wang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - FeiFan Lin
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chenyu Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210023, China
| | - Rui Liu
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiaoyu Hou
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jin Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, Jiangsu 210008, China
| | - Xiaohong Jiang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210023, China
| | - Qipeng Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Liang Li
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210023, China
| |
Collapse
|
5
|
Ortega Martínez E, Morales Hernández ME, Castillo-González J, González-Rey E, Ruiz Martínez MA. Dopamine-loaded chitosan-coated solid lipid nanoparticles as a promise nanocarriers to the CNS. Neuropharmacology 2024; 249:109871. [PMID: 38412889 DOI: 10.1016/j.neuropharm.2024.109871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/28/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Dopamine is unable to access the central nervous system through the bloodstream. Only its precursor can do so, and with an effectiveness below 100% of the dose administered, as it is metabolized before crossing the blood-brain barrier. In this study, we describe a new solid lipid nanocarrier system designed and developed for dopamine. The nanoparticles were prepared by the melt-emulsification method and then coated with chitosan. The nanocarriers developed had a droplet size of about 250 nm, a polydispersity index of 0.2, a positive surface charge (+30 mV), and a percentage encapsulation efficiency of 36.3 ± 5.4. Transmission and scanning electron microscopy verified uniformity of particle size with spherical morphology. Various types of tests were performed to confirm that the nanoparticles designed are suitable for carrying dopamine through the blood-brain barrier. In vitro tests demonstrated the ability of these nanocarriers to pass through endothelial cell monolayers without affecting their integrity. This study shows that the formulation of dopamine in chitosan-coated solid lipid nanoparticles is a potentially viable formulation strategy to achieve the bioavailability of the drug for the treatment of Parkinson's disease in the central nervous system.
Collapse
Affiliation(s)
- Elena Ortega Martínez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Ma Encarnación Morales Hernández
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain.
| | - Julia Castillo-González
- Institute of Parasitology and Biomedicine "Lopez-Neyra", CSIC, Avenida del Conocimiento s/n, 18016, Granada, Spain
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine "Lopez-Neyra", CSIC, Avenida del Conocimiento s/n, 18016, Granada, Spain
| | - Ma Adolfina Ruiz Martínez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| |
Collapse
|
6
|
Kambe J, Usuda K, Inoue R, Hirayama K, Ito M, Suenaga K, Masukado S, Liu H, Miyata S, Li C, Kimura I, Yamamoto Y, Nagaoka K. Hydrogen peroxide in breast milk is crucial for gut microbiota formation and myelin development in neonatal mice. Gut Microbes 2024; 16:2359729. [PMID: 38816999 PMCID: PMC11146441 DOI: 10.1080/19490976.2024.2359729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Early life environment influences mammalian brain development, a growing area of research within the Developmental Origins of Health and Disease framework, necessitating a deeper understanding of early life factors on children's brain development. This study introduces a mouse model, LAO1 knockout mice, to investigate the relationship between breast milk, the gut microbiome, and brain development. The results reveal that breast milk's reactive oxygen species (ROS) are vital in shaping the neonatal gut microbiota. Decreased hydrogen peroxide (H2O2) levels in milk disrupt the gut microbiome and lead to abnormal metabolite production, including D-glucaric acid. This metabolite inhibits hippocampal myelin formation during infancy, potentially contributing to behavioral abnormalities observed in adulthood. These findings suggest that H2O2 in breast milk is crucial for normal gut microbiota formation and brain development, with implications for understanding and potentially treating neurodevelopmental disorders in humans.
Collapse
Affiliation(s)
- Jun Kambe
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kento Usuda
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Kazuhiko Hirayama
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Masahiko Ito
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Ken Suenaga
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Sora Masukado
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hong Liu
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shiho Miyata
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuki Yamamoto
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
7
|
Castillo-González J, Ruiz JL, Serrano-Martínez I, Forte-Lago I, Ubago-Rodriguez A, Caro M, Pérez-Gómez JM, Benítez-Troncoso A, Andrés-León E, Sánchez-Navarro M, Luque RM, González-Rey E. Cortistatin deficiency reveals a dysfunctional brain endothelium with impaired gene pathways, exacerbated immune activation, and disrupted barrier integrity. J Neuroinflammation 2023; 20:226. [PMID: 37794493 PMCID: PMC10548650 DOI: 10.1186/s12974-023-02908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Brain activity governing cognition and behaviour depends on the fine-tuned microenvironment provided by a tightly controlled blood-brain barrier (BBB). Brain endothelium dysfunction is a hallmark of BBB breakdown in most neurodegenerative/neuroinflammatory disorders. Therefore, the identification of new endogenous molecules involved in endothelial cell disruption is essential to better understand BBB dynamics. Cortistatin is a neuroimmune mediator with anti-inflammatory and neuroprotective properties that exerts beneficial effects on the peripheral endothelium. However, its role in the healthy and injured brain endothelium remains to be evaluated. Herein, this study aimed to investigate the potential function of endogenous and therapeutic cortistatin in regulating brain endothelium dysfunction in a neuroinflammatory/neurodegenerative environment. METHODS Wild-type and cortistatin-deficient murine brain endothelium and human cells were used for an in vitro barrier model, where a simulated ischemia-like environment was mimicked. Endothelial permeability, junction integrity, and immune response in the presence and absence of cortistatin were evaluated using different size tracers, immunofluorescence labelling, qPCR, and ELISA. Cortistatin molecular mechanisms underlying brain endothelium dynamics were assessed by RNA-sequencing analysis. Cortistatin role in BBB leakage was evaluated in adult mice injected with LPS. RESULTS The endogenous lack of cortistatin predisposes endothelium weakening with increased permeability, tight-junctions breakdown, and dysregulated immune activity. We demonstrated that both damaged and uninjured brain endothelial cells isolated from cortistatin-deficient mice, present a dysregulated and/or deactivated genetic programming. These pathways, related to basic physiology but also crucial for the repair after damage (e.g., extracellular matrix remodelling, angiogenesis, response to oxygen, signalling, and metabolites transport), are dysfunctional and make brain endothelial barrier lacking cortistatin non-responsive to any further injury. Treatment with cortistatin reversed in vitro hyperpermeability, tight-junctions disruption, inflammatory response, and reduced in vivo BBB leakage. CONCLUSIONS The neuropeptide cortistatin has a key role in the physiology of the cerebral microvasculature and its presence is crucial to develop a canonical balanced response to damage. The reparative effects of cortistatin in the brain endothelium were accompanied by the modulation of the immune function and the rescue of barrier integrity. Cortistatin-based therapies could emerge as a novel pleiotropic strategy to ameliorate neuroinflammatory/neurodegenerative disorders with disrupted BBB.
Collapse
Affiliation(s)
- Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - José Luis Ruiz
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Ignacio Serrano-Martínez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Irene Forte-Lago
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Ana Ubago-Rodriguez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Marta Caro
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Jesús Miguel Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | | | - Eduardo Andrés-León
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Macarena Sánchez-Navarro
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain.
| |
Collapse
|
8
|
Matsumoto T, Matsumoto J, Matsushita Y, Arimura M, Aono K, Aoki M, Terada K, Mori M, Haramaki Y, Imatoh T, Yamauchi A, Migita K. Bortezomib Increased Vascular Permeability by Decreasing Cell-Cell Junction Molecules in Human Pulmonary Microvascular Endothelial Cells. Int J Mol Sci 2023; 24:10842. [PMID: 37446020 DOI: 10.3390/ijms241310842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Bortezomib (BTZ), a chemotherapeutic drug used to treat multiple myeloma, induces life-threatening side effects, including severe pulmonary toxicity. However, the mechanisms underlying these effects remain unclear. The objectives of this study were to (1) investigate whether BTZ influences vascular permeability and (2) clarify the effect of BTZ on the expression of molecules associated with cell-cell junctions using human pulmonary microvascular endothelial cells in vitro. Clinically relevant concentrations of BTZ induced limited cytotoxicity and increased the permeability of human pulmonary microvascular endothelial cell monolayers. BTZ decreased the protein expression of claudin-5, occludin, and VE-cadherin but not that of ZO-1 and β-catenin. Additionally, BTZ decreased the mRNA expression of claudin-5, occludin, ZO-1, VE-cadherin, and β-catenin. Our results suggest that BTZ increases the vascular permeability of the pulmonary microvascular endothelium by downregulating cell-cell junction molecules, particularly claudin-5, occludin, and VE-cadherin.
Collapse
Affiliation(s)
- Taichi Matsumoto
- Basic Medical Research Unit, St. Mary's Research Center, 422, Tsubuku-honmachi, Kurume 830-8543, Fukuoka, Japan
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Fukuoka, Japan
| | - Yuka Matsushita
- Department of Drug Informatics and Translational Research, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Fukuoka, Japan
| | - Moeno Arimura
- Department of Drug Informatics and Translational Research, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Fukuoka, Japan
| | - Kentaro Aono
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Fukuoka, Japan
| | - Mikiko Aoki
- Department of Pathology, Faculty of Medicine, Fukuoka University, 7-45-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Fukuoka, Japan
| | - Kazuki Terada
- Division of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1, Kamiohno, Himeji 670-8524, Hyogo, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Fukuoka, Japan
| | - Yutaka Haramaki
- Psychology Program, Graduate School of Humanities and Social Sciences, Hiroshima University, Kagamiyama, 1-1-1, Kagamiyama, Higashi-Hiroshima City 739-8512, Hiroshima, Japan
| | - Takuya Imatoh
- Department of Drug Informatics and Translational Research, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Fukuoka, Japan
| | - Atsushi Yamauchi
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Fukuoka, Japan
| | - Keisuke Migita
- Department of Drug Informatics and Translational Research, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Fukuoka, Japan
| |
Collapse
|
9
|
Senescence in brain pericytes attenuates blood-brain barrier function in vitro: A comparison of serially passaged and isolated pericytes from aged rat brains. Biochem Biophys Res Commun 2023; 645:154-163. [PMID: 36689812 DOI: 10.1016/j.bbrc.2023.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Aging is associated with the dysfunction of the blood-brain barrier (BBB), which comprises brain microvessel endothelial cells (BMECs), astrocytes, and pericytes. Pericytes are present at intervals along the walls of the brain capillaries and play a key role in maintaining BBB integrity. Accumulation of senescent cells and the senescence-associated secretory phenotype (SASP) in the brain facilitate the development of age-related neurodegenerative diseases with BBB dysfunction. However, the ability of pericytes to support BBB integrity and their correlation with cellular senescence or aging remain unknown. Here, we investigated cellular senescence in pericytes focusing on its impact on BBB function using BBB models comprising intact BMECs co-cultured with senescent pericytes, which were obtained through a serial passage or isolated from 18-month-old rats. To assess BBB function, transendothelial electrical resistance (TEER) and permeability of sodium fluorescein (Na-F) were studied. Both serially passaged pericytes (in passage 4, 7, and 10) and aged pericytes isolated from 18-month-old rats showed decreased TEER and enhanced permeability of BMECs to Na-F compared to that of normal pericytes (passage 2 or young). Furthermore, serially passaged and aged pericytes showed characteristic features of cellular senescence, including increased β-galactosidase activity, cell cycle arrest, enhanced expression of mRNA, and SASP factors. However, the senescence-induced mRNA expression profile of pericyte markers varied between serially passaged and aged pericytes. Hence, in vitro serial passages and isolation from naturally aged rodents differently influenced genetic and biochemical features of senescent brain pericytes. We conclude that senescent brain pericytes can induce BBB dysfunction and those isolated from aged rodents retain the senescence-specific properties. Our findings provide an alternative tool to investigate the senescence in brain pericytes in vitro.
Collapse
|
10
|
Aging decreases docosahexaenoic acid transport across the blood-brain barrier in C57BL/6J mice. PLoS One 2023; 18:e0281946. [PMID: 36795730 PMCID: PMC9934487 DOI: 10.1371/journal.pone.0281946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/05/2023] [Indexed: 02/17/2023] Open
Abstract
Nutrients are actively taken up by the brain via various transporters at the blood-brain barrier (BBB). A lack of specific nutrients in the aged brain, including decreased levels of docosahexaenoic acid (DHA), is associated with memory and cognitive dysfunction. To compensate for decreased brain DHA, orally supplied DHA must be transported from the circulating blood to the brain across the BBB through transport carriers, including major facilitator superfamily domain-containing protein 2a (MFSD2A) and fatty acid-binding protein 5 (FABP5) that transport esterified and non-esterified DHA, respectively. Although it is known that the integrity of the BBB is altered during aging, the impact of aging on DHA transport across the BBB has not been fully elucidated. We used 2-, 8-, 12-, and 24-month-old male C57BL/6 mice to evaluate brain uptake of [14C]DHA, as the non-esterified form, using an in situ transcardiac brain perfusion technique. Primary culture of rat brain endothelial cells (RBECs) was used to evaluate the effect of siRNA-mediated MFSD2A knockdown on cellular uptake of [14C]DHA. We observed that the 12- and 24-month-old mice exhibited significant reductions in brain uptake of [14C]DHA and decreased MFSD2A protein expression in the brain microvasculature compared with that of the 2-month-old mice; nevertheless, FABP5 protein expression was up-regulated with age. Brain uptake of [14C]DHA was inhibited by excess unlabeled DHA in 2-month-old mice. Transfection of MFSD2A siRNA into RBECs decreased the MFSD2A protein expression levels by 30% and reduced cellular uptake of [14C]DHA by 20%. These results suggest that MFSD2A is involved in non-esterified DHA transport at the BBB. Therefore, the decreased DHA transport across the BBB that occurs with aging could be due to age-related down-regulation of MFSD2A rather than FABP5.
Collapse
|
11
|
Mack ML, Huang W, Chang SL. Involvement of TRPM7 in Alcohol-Induced Damage of the Blood-Brain Barrier in the Presence of HIV Viral Proteins. Int J Mol Sci 2023; 24:1910. [PMID: 36768230 PMCID: PMC9916124 DOI: 10.3390/ijms24031910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Ethanol (EtOH) exerts its effects through various protein targets, including transient receptor potential melastatin 7 (TRPM7) channels, which play an essential role in cellular homeostasis. We demonstrated that TRPM7 is expressed in rat brain microvascular endothelial cells (rBMVECs), the major cellular component of the blood-brain barrier (BBB). Heavy alcohol drinking is often associated with HIV infection, however mechanisms underlying alcohol-induced BBB damage and HIV proteins, are not fully understood. We utilized the HIV-1 transgenic (HIV-1Tg) rat to mimic HIV-1 patients on combination anti-retroviral therapy (cART) and demonstrated TRPM7 expression in rBMVECs wass lower in adolescent HIV-1Tg rats compared to control animals, however control and HIV-1Tg rats expressed similar levels at 9 weeks, indicating persistent presence of HIV-1 proteins delayed TRPM7 expression. Binge exposure to EtOH (binge EtOH) decreased TRPM7 expression in control rBMVECs in a concentration-dependent manner, and abolished TRPM7 expression in HIV-1Tg rats. In human BMVECs (hBMVECs), TRPM7 expression was downregulated after treatment with EtOH, HIV-1 proteins, and in combination. Next, we constructed in vitro BBB models using BMVECs and found TRPM7 antagonists enhanced EtOH-mediated BBB integrity changes. Our study demonstrated alcohol decreased TRPM7 expression, whereby TRPM7 could be involved in the mechanisms underlying BBB alcohol-induced damage in HIV-1 patients on cART.
Collapse
Affiliation(s)
- Michelle L. Mack
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Wenfei Huang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Sulie L. Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| |
Collapse
|
12
|
Identification of Nanoparticle Properties for Optimal Drug Delivery across a Physiological Cell Barrier. Pharmaceutics 2023; 15:pharmaceutics15010200. [PMID: 36678829 PMCID: PMC9865979 DOI: 10.3390/pharmaceutics15010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Nanoparticles (NPs) represent an attractive strategy to overcome difficulties associated with the delivery of therapeutics. Knowing the optimal properties of NPs to address these issues could allow for improved in vivo responses. This work investigated NPs prepared from 5 materials of 3 sizes and 3 concentrations applied to a cell barrier model. The NPs permeability across a cell barrier and their effects on cell barrier integrity and cell viability were evaluated. The properties of these NPs, as determined in water (traditional) vs. media (realistic), were compared to cell responses. It was found that for all cellular activities, NP properties determined in media was the best predictor of the cell response. Notably, ZnO NPs caused significant alterations to cell viability across all 3 cell lines tested. Importantly, we report that the zeta potential of NPs correlates significantly with NP permeability and NP-induced changes in cell viability. NPs with physiological-based zeta potential of -12 mV result in good cell barrier penetration without considerable changes in cell viability.
Collapse
|
13
|
Rani V, Prabhu A. In vitro blood brain barrier models: Molecular aspects and therapeutic strategies in glioma management. Curr Res Transl Med 2023; 71:103376. [PMID: 36580825 DOI: 10.1016/j.retram.2022.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Glioma management is the most challenging task in clinical oncology due to numerous reasons. One of the major hurdles in glioma therapy is the presence of blood brain barrier which resists the entry of most of the drugs into the brain. However, in case of tumors, blood brain barrier integrity is compromised, which in turn can be advantageous in delivering the drugs, if the therapeutic module is strategically modified. For such improvised therapeutic strategy, it is necessary to understand the molecular composition and profiling of blood brain barrier and blood brain tumor barrier. This review mainly focuses on the composition, markers expressed on the blood brain barrier which will help the readers to understand its basic environment. It also gives a detailed account of the various in vitro models that are used to study the nature of the blood brain barrier and describes various strategies in improvising the drug delivery in glioma management.
Collapse
Affiliation(s)
- Vinitha Rani
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018 Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018 Karnataka, India.
| |
Collapse
|
14
|
Sakamoto K. Generation of KS-487 as a novel LRP1-binding cyclic peptide with higher affinity, higher stability and BBB permeability. Biochem Biophys Rep 2022; 32:101367. [PMID: 36237444 PMCID: PMC9552116 DOI: 10.1016/j.bbrep.2022.101367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
The blood–brain barrier (BBB) is a major hurdle in drug discovery for central nervous system (CNS) disorders. Particularly, mid-size molecules and macromolecules (e.g., peptides and antibodies) that modulate intractable drug targets such as protein-protein interaction are prevented from entering the CNS via BBB. The receptor-mediated transcytosis (RMT) pathway has been examined to deliver these molecules to CNS. Among the receptors, low-density lipoprotein receptor-related protein 1 (LRP1) has been emerged as one of the promising receptors for RMT. Although several LRP1-binding peptides have been reported, no drugs are available on the market based on the combination of reported LRP1-binding peptides and therapeutic molecules. One reason may be stability in vivo and BBB-permeability of the peptides. The present study aims to identify a novel LRP1-binding peptide for RMT, where we successfully generated a 15-mer cyclic peptide named KS-487. It explicitly bound to Cluster 4 domain of LRP1 with the binding EC50 value of 10.5 nM and was relatively stable in mouse plasma within 24 h. Moreover, its high BBB permeability was demonstrated using in vitro rat and monkey BBB models. By 24 h incubation, 13% and 17% of the added amount of KS-487 (10 μM) penetrated rat BBB and monkey BBB, respectively. KS-487 would be a potential candidate for the LRP1-mediated transcytosis-based drug delivery to CNS, as these values were significantly higher than those of the known LRP1-binding peptides—Angiopep-2 and L57. KS-487 exhibited higher BBB-permeability in vitro than Angiopep-2 and L57. About 28% of KS-487 remained intact after 24 h incubation in mouse plasma. About 15% of KS-487 crossed in vitro rat- and monkey-BBBs after 24 h incubation.
Collapse
|
15
|
MiR-370-3p aggravates blood–brain barrier injury and neuron apoptosis by targeting SMURF1 to activate the TLR4/MyD88/NF-κB signaling in sepsis-associated encephalopathy. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Neumaier F, Zlatopolskiy BD, Neumaier B. Drug Penetration into the Central Nervous System: Pharmacokinetic Concepts and In Vitro Model Systems. Pharmaceutics 2021; 13:1542. [PMID: 34683835 PMCID: PMC8538549 DOI: 10.3390/pharmaceutics13101542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Delivery of most drugs into the central nervous system (CNS) is restricted by the blood-brain barrier (BBB), which remains a significant bottleneck for development of novel CNS-targeted therapeutics or molecular tracers for neuroimaging. Consistent failure to reliably predict drug efficiency based on single measures for the rate or extent of brain penetration has led to the emergence of a more holistic framework that integrates data from various in vivo, in situ and in vitro assays to obtain a comprehensive description of drug delivery to and distribution within the brain. Coupled with ongoing development of suitable in vitro BBB models, this integrated approach promises to reduce the incidence of costly late-stage failures in CNS drug development, and could help to overcome some of the technical, economic and ethical issues associated with in vivo studies in animal models. Here, we provide an overview of BBB structure and function in vivo, and a summary of the pharmacokinetic parameters that can be used to determine and predict the rate and extent of drug penetration into the brain. We also review different in vitro models with regard to their inherent shortcomings and potential usefulness for development of fast-acting drugs or neurotracers labeled with short-lived radionuclides. In this regard, a special focus has been set on those systems that are sufficiently well established to be used in laboratories without significant bioengineering expertise.
Collapse
Affiliation(s)
- Felix Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Boris D. Zlatopolskiy
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| |
Collapse
|
17
|
Janssen L, Ai X, Zheng X, Wei W, Caglayan AB, Kilic E, Wang YC, Hermann DM, Venkataramani V, Bähr M, Doeppner TR. Inhibition of Fatty Acid Synthesis Aggravates Brain Injury, Reduces Blood-Brain Barrier Integrity and Impairs Neurological Recovery in a Murine Stroke Model. Front Cell Neurosci 2021; 15:733973. [PMID: 34483846 PMCID: PMC8415573 DOI: 10.3389/fncel.2021.733973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/27/2021] [Indexed: 01/22/2023] Open
Abstract
Inhibition of fatty acid synthesis (FAS) stimulates tumor cell death and reduces angiogenesis. When SH-SY5Y cells or primary neurons are exposed to hypoxia only, inhibition of FAS yields significantly enhanced cell injury. The pathophysiology of stroke, however, is not only restricted to hypoxia but also includes reoxygenation injury. Hence, an oxygen-glucose-deprivation (OGD) model with subsequent reoxygenation in both SH-SY5Y cells and primary neurons as well as a murine stroke model were used herein in order to study the role of FAS inhibition and its underlying mechanisms. SH-SY5Y cells and cortical neurons exposed to 10 h of OGD and 24 h of reoxygenation displayed prominent cell death when treated with the Acetyl-CoA carboxylase inhibitor TOFA or the fatty acid synthase inhibitor cerulenin. Such FAS inhibition reduced the reduction potential of these cells, as indicated by increased NADH2 +/NAD+ ratios under both in vitro and in vivo stroke conditions. As observed in the OGD model, FAS inhibition also resulted in increased cell death in the stroke model. Stroke mice treated with cerulenin did not only display increased brain injury but also showed reduced neurological recovery during the observation period of 4 weeks. Interestingly, cerulenin treatment enhanced endothelial cell leakage, reduced transcellular electrical resistance (TER) of the endothelium and contributed to poststroke blood-brain barrier (BBB) breakdown. The latter was a consequence of the activated NF-κB pathway, stimulating MMP-9 and ABCB1 transporter activity on the luminal side of the endothelium. In conclusion, FAS inhibition aggravated poststroke brain injury as consequence of BBB breakdown and NF-κB-dependent inflammation.
Collapse
Affiliation(s)
- Lisa Janssen
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Xiaoyu Ai
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Xuan Zheng
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Wei Wei
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ahmet B Caglayan
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Ertugrul Kilic
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Ya-Chao Wang
- The Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Vivek Venkataramani
- Department of Medicine II, University Hospital Frankfurt, Frankfurt, Germany.,Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
18
|
Dedoni S, Marras L, Olianas MC, Ingianni A, Onali P. Valproic acid upregulates the expression of the p75NTR/sortilin receptor complex to induce neuronal apoptosis. Apoptosis 2021; 25:697-714. [PMID: 32712736 PMCID: PMC7527367 DOI: 10.1007/s10495-020-01626-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The antiepileptic and mood stabilizer agent valproic acid (VPA) has been shown to exert anti-tumour effects and to cause neuronal damage in the developing brain through mechanisms not completely understood. In the present study we show that prolonged exposure of SH-SY5Y and LAN-1 human neuroblastoma cells to clinically relevant concentrations of VPA caused a marked induction of the protein and transcript levels of the common neurotrophin receptor p75NTR and its co-receptor sortilin, two promoters of apoptotic cell death in response to proneurotrophins. VPA induction of p75NTR and sortilin was associated with an increase in plasma membrane expression of the receptor proteins and was mimicked by cell treatment with several histone deacetylase (HDAC) inhibitors. VPA and HDAC1 knockdown decreased the level of EZH2, a core component of the polycomb repressive complex 2, and upregulated the transcription factor CASZ1, a positive regulator of p75NTR. CASZ1 knockdown attenuated VPA-induced p75NTR overexpression. Cell treatment with VPA favoured proNGF-induced p75NTR/sortilin interaction and the exposure to proNGF enhanced JNK activation and apoptotic cell death elicited by VPA. Depletion of p75NTR or addition of the sortilin agonist neurotensin to block proNGF/sortilin interaction reduced the apoptotic response to VPA and proNGF. Exposure of mouse cerebellar granule cells to VPA upregulated p75NTR and sortilin and induced apoptosis which was enhanced by proNGF. These results indicate that VPA upregulates p75NTR apoptotic cell signalling through an epigenetic mechanism involving HDAC inhibition and suggest that this effect may contribute to the anti-neuroblastoma and neurotoxic effects of VPA.
Collapse
Affiliation(s)
- Simona Dedoni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Luisa Marras
- Section of Microbiology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria C Olianas
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Angela Ingianni
- Section of Microbiology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy.
| |
Collapse
|
19
|
Eilenberger C, Rothbauer M, Selinger F, Gerhartl A, Jordan C, Harasek M, Schädl B, Grillari J, Weghuber J, Neuhaus W, Küpcü S, Ertl P. A Microfluidic Multisize Spheroid Array for Multiparametric Screening of Anticancer Drugs and Blood-Brain Barrier Transport Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004856. [PMID: 34105271 PMCID: PMC8188192 DOI: 10.1002/advs.202004856] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/30/2021] [Indexed: 05/08/2023]
Abstract
Physiological-relevant in vitro tissue models with their promise of better predictability have the potential to improve drug screening outcomes in preclinical studies. Despite the advances of spheroid models in pharmaceutical screening applications, variations in spheroid size and consequential altered cell responses often lead to nonreproducible and unpredictable results. Here, a microfluidic multisize spheroid array is established and characterized using liver, lung, colon, and skin cells as well as a triple-culture model of the blood-brain barrier (BBB) to assess the effects of spheroid size on (a) anticancer drug toxicity and (b) compound penetration across an advanced BBB model. The reproducible on-chip generation of 360 spheroids of five dimensions on a well-plate format using an integrated microlens technology is demonstrated. While spheroid size-related IC50 values vary up to 160% using the anticancer drugs cisplatin (CIS) or doxorubicin (DOX), reduced CIS:DOX drug dose combinations eliminate all lung microtumors independent of their sizes. A further application includes optimizing cell seeding ratios and size-dependent compound uptake studies in a perfused BBB model. Generally, smaller BBB-spheroids reveal an 80% higher compound penetration than larger spheroids while verifying the BBB opening effect of mannitol and a spheroid size-related modulation on paracellular transport properties.
Collapse
Affiliation(s)
- Christoph Eilenberger
- Faculty of Technical ChemistryVienna University of TechnologyGetreidemarkt 9Vienna1060Austria
| | - Mario Rothbauer
- Faculty of Technical ChemistryVienna University of TechnologyGetreidemarkt 9Vienna1060Austria
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaWähringer Gürtel 18‐20Vienna1090Austria
| | - Florian Selinger
- Faculty of Technical ChemistryVienna University of TechnologyGetreidemarkt 9Vienna1060Austria
| | - Anna Gerhartl
- AIT Austrian Institute of Technology GmbHCenter Health and BioresourcesCompetence Unit Molecular DiagnosticsGiefinggasse 4Vienna1210Austria
| | - Christian Jordan
- Faculty of Technical ChemistryVienna University of TechnologyGetreidemarkt 9Vienna1060Austria
| | - Michael Harasek
- Faculty of Technical ChemistryVienna University of TechnologyGetreidemarkt 9Vienna1060Austria
| | - Barbara Schädl
- Ludwig‐Boltzmann‐Institute for Experimental and Clinical TraumatologyDonaueschingenstraße 13Vienna1200Austria
| | - Johannes Grillari
- Ludwig‐Boltzmann‐Institute for Experimental and Clinical TraumatologyDonaueschingenstraße 13Vienna1200Austria
- Institute for Molecular BiotechnologyDepartment of BiotechnologyUniversity of Natural Resources and Life SciencesMuthgasse 18Vienna1190Austria
| | - Julian Weghuber
- School of EngineeringUniversity of Applied Sciences Upper AustriaStelzhamerstraße 23Wels4600Austria
- FFoQSI GmbH‐Austrian Competence Centre for Feed and Food QualitySafety and InnovationTechnopark 1CTulln3430Austria
| | - Winfried Neuhaus
- AIT Austrian Institute of Technology GmbHCenter Health and BioresourcesCompetence Unit Molecular DiagnosticsGiefinggasse 4Vienna1210Austria
| | - Seta Küpcü
- Institute of Synthetic BioarchitecturesDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesVienna, Muthgasse 11Vienna1190Austria
| | - Peter Ertl
- Faculty of Technical ChemistryVienna University of TechnologyGetreidemarkt 9Vienna1060Austria
| |
Collapse
|
20
|
Prashanth A, Donaghy H, Stoner SP, Hudson AL, Wheeler HR, Diakos CI, Howell VM, Grau GE, McKelvey KJ. Are In Vitro Human Blood-Brain-Tumor-Barriers Suitable Replacements for In Vivo Models of Brain Permeability for Novel Therapeutics? Cancers (Basel) 2021; 13:955. [PMID: 33668807 PMCID: PMC7956470 DOI: 10.3390/cancers13050955] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND High grade gliomas (HGG) are incapacitating and prematurely fatal diseases. To overcome the poor prognosis, novel therapies must overcome the selective and restricted permeability of the blood-brain barrier (BBB). This study critically evaluated whether in vitro human normal BBB and tumor BBB (BBTB) are suitable alternatives to "gold standard" in vivo models to determine brain permeability. METHODS A systematic review utilizing the PRISMA guidelines used English and full-text articles from the past 5 years in the PubMed, Embase, Medline and Scopus databases. Experimental studies employing human cell lines were included. RESULTS Of 1335 articles, the search identified 24 articles for evaluation after duplicates were removed. Eight in vitro and five in vivo models were identified with the advantages and disadvantages compared within and between models, and against patient clinical data where available. The greatest in vitro barrier integrity and stability, comparable to in vivo and clinical permeability data, were achieved in the presence of all cell types of the neurovascular unit: endothelial cells, astrocytes/glioma cells, pericytes and neurons. CONCLUSIONS In vitro co-culture BBB models utilizing stem cell-derived or primary cells are a suitable proxy for brain permeability studies in order to reduce animal use in medical research.
Collapse
Affiliation(s)
- Archana Prashanth
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia; (A.P.); (H.D.); (S.P.S.); (A.L.H.); (H.R.W.); (C.I.D.); (V.M.H.)
| | - Heather Donaghy
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia; (A.P.); (H.D.); (S.P.S.); (A.L.H.); (H.R.W.); (C.I.D.); (V.M.H.)
| | - Shihani P. Stoner
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia; (A.P.); (H.D.); (S.P.S.); (A.L.H.); (H.R.W.); (C.I.D.); (V.M.H.)
| | - Amanda L. Hudson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia; (A.P.); (H.D.); (S.P.S.); (A.L.H.); (H.R.W.); (C.I.D.); (V.M.H.)
| | - Helen R. Wheeler
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia; (A.P.); (H.D.); (S.P.S.); (A.L.H.); (H.R.W.); (C.I.D.); (V.M.H.)
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Connie I. Diakos
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia; (A.P.); (H.D.); (S.P.S.); (A.L.H.); (H.R.W.); (C.I.D.); (V.M.H.)
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Viive M. Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia; (A.P.); (H.D.); (S.P.S.); (A.L.H.); (H.R.W.); (C.I.D.); (V.M.H.)
| | - Georges E. Grau
- Vascular Immunology, Department of Pathology, School of Pathology, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Kelly J. McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia; (A.P.); (H.D.); (S.P.S.); (A.L.H.); (H.R.W.); (C.I.D.); (V.M.H.)
| |
Collapse
|
21
|
Chen S, Tang C, Ding H, Wang Z, Liu X, Chai Y, Jiang W, Han Y, Zeng H. Maf1 Ameliorates Sepsis-Associated Encephalopathy by Suppressing the NF- kB/NLRP3 Inflammasome Signaling Pathway. Front Immunol 2020; 11:594071. [PMID: 33424842 PMCID: PMC7785707 DOI: 10.3389/fimmu.2020.594071] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome has been identified as an important mediator of blood–brain-barrier disruption in sepsis-associated encephalopathy (SAE). However, no information is available concerning the critical upstream regulators of SAE. Methods Lipopolysaccharide (LPS) was used to establish an in vitro model of blood–brain barrier (BBB) disruption and an in vivo model of SAE. Disruption of BBB integrity was assessed by measuring the expression levels of tight-junction proteins. NLRP3 inflammasome activation, pro-inflammatory cytokines levels, and neuroapoptosis were measured using biochemical assays. Finally, the FITC-dextran Transwell assay and Evan’s blue dye assay were used to assess the effect of Maf1 on LPS-induced endothelial permeability in vitro and in vivo. Results We found that Maf1 significantly suppressed the brain inflammatory response and neuroapoptosis induced by LPS in vivo and in vitro. Notably, Maf1 downregulated activation of the NF-κB/p65-induced NLRP3 inflammasome and the expression of pro-inflammatory cytokines. In addition, we found that Maf1 and p65 directly bound to the NLRP3 gene promoter region and competitively regulated the function of NLRP3 in inflammations. Moreover, overexpression of NLRP3 reversed the effects of p65 on BBB integrity, apoptosis, and inflammation in response to LPS. Our study revealed novel role for Maf1 in regulating NF-κB-mediated inflammasome formation, which plays a prominent role in SAE. Conclusions Regulation of Maf1 might be a therapeutic strategy for SAE and other neurodegenerative diseases associated with inflammation.
Collapse
Affiliation(s)
- Shenglong Chen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chaogang Tang
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Hongguang Ding
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhonghua Wang
- Department of Gerontological Critical Care Medicine, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences/Guangdong Provincial Geriatrics Institute, Guangzhou, China
| | - Xinqiang Liu
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yunfei Chai
- Anesthesiology Department of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wenqiang Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yongli Han
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongke Zeng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
22
|
Zhang L, Graf I, Kuang Y, Zheng X, Haupt M, Majid A, Kilic E, Hermann DM, Psychogios MN, Weber MS, Ochs J, Bähr M, Doeppner TR. Neural Progenitor Cell-Derived Extracellular Vesicles Enhance Blood-Brain Barrier Integrity by NF-κB (Nuclear Factor-κB)-Dependent Regulation of ABCB1 (ATP-Binding Cassette Transporter B1) in Stroke Mice. Arterioscler Thromb Vasc Biol 2020; 41:1127-1145. [PMID: 33327747 PMCID: PMC7901534 DOI: 10.1161/atvbaha.120.315031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Extracellular vesicles (EVs) derived from neural progenitor cells enhance poststroke neurological recovery, albeit the underlying mechanisms remain elusive. Since previous research described an enhanced poststroke integrity of the blood-brain barrier (BBB) upon systemic transplantation of neural progenitor cells, we examined if neural progenitor cell-derived EVs affect BBB integrity and which cellular mechanisms are involved in the process. Approach and Results: Using in vitro models of primary brain endothelial cell (EC) cultures as well as co-cultures of brain ECs (ECs) and astrocytes exposed to oxygen glucose deprivation, we examined the effects of EVs or vehicle on microvascular integrity. In vitro data were confirmed using a mouse transient middle cerebral artery occlusion model. Cultured ECs displayed increased ABCB1 (ATP-binding cassette transporter B1) levels when exposed to oxygen glucose deprivation, which was reversed by treatment with EVs. The latter was due to an EV-induced inhibition of the NF-κB (nuclear factor-κB) pathway. Using a BBB co-culture model of ECs and astrocytes exposed to oxygen glucose deprivation, EVs stabilized the BBB and ABCB1 levels without affecting the transcellular electrical resistance of ECs. Likewise, EVs yielded reduced Evans blue extravasation, decreased ABCB1 expression as well as an inhibition of the NF-κB pathway, and downstream matrix metalloproteinase 9 (MMP-9) activity in stroke mice. The EV-induced inhibition of the NF-κB pathway resulted in a poststroke modulation of immune responses. Conclusions: Our findings suggest that EVs enhance poststroke BBB integrity via ABCB1 and MMP-9 regulation, attenuating inflammatory cell recruitment by inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Irina Graf
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Yaoyun Kuang
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Xuan Zheng
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Matteo Haupt
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (A.M.)
| | - Ertugrul Kilic
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Turkey (E.K., T.R.D.)
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany (D.M.H.)
| | | | - Martin S Weber
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany.,Department of Neuropathology (M.S.W., J.O.), University Medical Center Göttingen, Germany
| | - Jasmin Ochs
- Department of Neuropathology (M.S.W., J.O.), University Medical Center Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Thorsten R Doeppner
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany.,Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Turkey (E.K., T.R.D.)
| |
Collapse
|
23
|
Martinez-Lozada Z, Robinson MB. Reciprocal communication between astrocytes and endothelial cells is required for astrocytic glutamate transporter 1 (GLT-1) expression. Neurochem Int 2020; 139:104787. [PMID: 32650029 DOI: 10.1016/j.neuint.2020.104787] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/15/2020] [Accepted: 06/14/2020] [Indexed: 12/12/2022]
Abstract
Astrocytes have diverse functions that are supported by their anatomic localization between neurons and blood vessels. One of these functions is the clearance of extracellular glutamate. Astrocytes clear glutamate using two Na+-dependent glutamate transporters, GLT-1 (also called EAAT2) and GLAST (also called EAAT1). GLT-1 expression increases during synaptogenesis and is a marker of astrocyte maturation. Over 20 years ago, several groups demonstrated that astrocytes in culture express little or no GLT-1 and that neurons induce expression. We recently demonstrated that co-culturing endothelia with mouse astrocytes also induced expression of GLT-1 and GLAST. These increases were blocked by an inhibitor of γ-secretase. This and other observations are consistent with the hypothesis that Notch signaling is required, but the ligands involved were not identified. In the present study, we used rat astrocyte cultures to further define the mechanisms by which endothelia induce expression of GLT-1 and GLAST. We found that co-cultures of astrocytes and endothelia express higher levels of GLT-1 and GLAST protein and mRNA. That endothelia activate Hes5, a transcription factor target of Notch, in astrocytes. Using recombinant Notch ligands, anti-Notch ligand neutralizing antibodies, and shRNAs, we provide evidence that both Dll1 and Dll4 contribute to endothelia-dependent regulation of GLT-1. We also provide evidence that astrocytes secrete a factor(s) that induces expression of Dll4 in endothelia and that this effect is required for Notch-dependent induction of GLT-1. Together these studies indicate that reciprocal communication between astrocytes and endothelia is required for appropriate astrocyte maturation and that endothelia likely deploy additional non-Notch signals to induce GLT-1.
Collapse
Affiliation(s)
- Zila Martinez-Lozada
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA, 19104-4318
| | - Michael B Robinson
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA, 19104-4318; Systems Pharmacology and Translational Therapeutics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA.
| |
Collapse
|
24
|
Musafargani S, Mishra S, Gulyás M, Mahalakshmi P, Archunan G, Padmanabhan P, Gulyás B. Blood brain barrier: A tissue engineered microfluidic chip. J Neurosci Methods 2020; 331:108525. [DOI: 10.1016/j.jneumeth.2019.108525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022]
|
25
|
Bernard-Patrzynski F, Lécuyer MA, Puscas I, Boukhatem I, Charabati M, Bourbonnière L, Ramassamy C, Leclair G, Prat A, Roullin VG. Isolation of endothelial cells, pericytes and astrocytes from mouse brain. PLoS One 2019; 14:e0226302. [PMID: 31851695 PMCID: PMC6919623 DOI: 10.1371/journal.pone.0226302] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/22/2019] [Indexed: 11/24/2022] Open
Abstract
Primary cell isolation from the central nervous system (CNS) has allowed fundamental understanding of blood-brain barrier (BBB) properties. However, poorly described isolation techniques or suboptimal cellular purity has been a weak point of some published scientific articles. Here, we describe in detail how to isolate and enrich, using a common approach, endothelial cells (ECs) from adult mouse brains, as well as pericytes (PCs) and astrocytes (ACs) from newborn mouse brains. Our approach allowed the isolation of these three brain cell types with purities of around 90%. Furthermore, using our protocols, around 3 times more PCs and 2 times more ACs could be grown in culture, as compared to previously published protocols. The cells were identified and characterized using flow cytometry and confocal microscopy. The ability of ECs to form a tight monolayer was assessed for passages 0 to 3. The expression of claudin-5, occludin, zonula occludens-1, P-glycoprotein-1 and breast cancer resistance protein by ECs, as well as the ability of the cells to respond to cytokine stimuli (TNF-α, IFN-γ) was also investigated by q-PCR. The transcellular permeability of ECs was evaluated in the presence of pericytes or astrocytes in a Transwell® model by measuring the transendothelial electrical resistance (TEER), dextran-FITC and sodium fluorescein permeability. Overall, ECs at passages 0 and 1 featured the best properties valued in a BBB model. Furthermore, pericytes did not increase tightness of EC monolayers, whereas astrocytes did regardless of their seeding location. Finally, ECs resuspended in fetal bovine serum (FBS) and dimethyl sulfoxide (DMSO) could be cryopreserved in liquid nitrogen without affecting their phenotype nor their capacity to form a tight monolayer, thus allowing these primary cells to be used for various longitudinal in vitro studies of the blood-brain barrier.
Collapse
Affiliation(s)
| | - Marc-André Lécuyer
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
- Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, Göttingen, Germany
| | - Ina Puscas
- Faculty of Pharmacy, Université de Montréal, Montreal, Québec, Canada
| | - Imane Boukhatem
- Faculty of Pharmacy, Université de Montréal, Montreal, Québec, Canada
| | - Marc Charabati
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Lyne Bourbonnière
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Charles Ramassamy
- Institut National de la Recherche Scientifique, Armand-Frappier Institute, Laval, Québec, Canada
| | - Grégoire Leclair
- Faculty of Pharmacy, Université de Montréal, Montreal, Québec, Canada
| | - Alexandre Prat
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - V Gaëlle Roullin
- Faculty of Pharmacy, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
26
|
Idris F, Muharram SH, Zaini Z, Alonso S, Diah S. Invasion of a murine in vitro blood-brain barrier co-culture model by dengue virus serotypes 1 to 4. Arch Virol 2019; 164:1069-1083. [PMID: 30783772 DOI: 10.1007/s00705-019-04175-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/16/2019] [Indexed: 01/16/2023]
Abstract
The blood-brain barrier (BBB) is a physical barrier that restricts the passage of cells and molecules as well as pathogens into the central nervous system (CNS). Some viruses enter the CNS by disrupting the BBB, while others can reach the CNS without altering the integrity of the BBB. Even though dengue virus (DENV) is not a distinctive neurotropic virus, the virus is considered to be one of the leading causes of neurological manifestations. In this study, we found that DENV is able to compromise the integrity of a murine in vitro blood-brain barrier (BBB) model, resulting in hyperpermeability, as shown by a significant increase in sucrose and albumin permeability. Infection of brain endothelial cells (ECs) was facilitated by the presence of glycans, in particular, mannose and N-acetyl glucosamine residues, on cell surfaces and viral envelope proteins, and the requirement for glycan moieties for cell infection was serotype-specific. Direct viral disruption of brain ECs was observed, leading to a significant decrease in tight-junction protein expression and peripheral localization, which contributed to the changes in BBB permeability. In conclusion, the hyperpermeability and breaching mechanism of BBB by DENV are primarily due to direct consequences of viral infection of ECs, as shown in this in vitro study.
Collapse
Affiliation(s)
- Fakhriedzwan Idris
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Programme Life Sciences Institute, National University of Singapore, Singapore, Singapore. .,Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam.
| | - Siti Hanna Muharram
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Zainun Zaini
- Virology Laboratory, Clinical Laboratory Services, Ministry of Health, Gadong, Brunei Darussalam
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Programme Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Suwarni Diah
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| |
Collapse
|
27
|
Gussenhoven R, Klein L, Ophelders DRMG, Habets DHJ, Giebel B, Kramer BW, Schurgers LJ, Reutelingsperger CPM, Wolfs TGAM. Annexin A1 as Neuroprotective Determinant for Blood-Brain Barrier Integrity in Neonatal Hypoxic-Ischemic Encephalopathy. J Clin Med 2019; 8:jcm8020137. [PMID: 30682787 PMCID: PMC6406389 DOI: 10.3390/jcm8020137] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/08/2019] [Accepted: 01/20/2019] [Indexed: 12/13/2022] Open
Abstract
Blood-brain barrier (BBB) disruption is associated with hypoxia-ischemia (HI) induced brain injury and life-long neurological pathologies. Treatment options are limited. Recently, we found that mesenchymal stem/stromal cell derived extracellular vesicles (MSC-EVs) protected the brain in ovine fetuses exposed to HI. We hypothesized that Annexin A1 (ANXA1), present in MSC-EVs, contributed to their therapeutic potential by targeting the ANXA1/Formyl peptide receptor (FPR), thereby preventing loss of the BBB integrity. Cerebral ANXA1 expression and leakage of albumin into the fetal ovine brain parenchyma after HI were analyzed by immunohistochemistry. For mechanistic insights, barrier integrity of primary fetal endothelial cells was assessed after oxygen-glucose deprivation (OGD) followed by treatment with MSC-EVs or human recombinant ANXA1 in the presence or absence of FPR inhibitors. Our study revealed that BBB integrity was compromised after HI which was improved by MSC-EVs containing ANXA1. Treatment with these MSC-EVs or ANXA1 improved BBB integrity after OGD, an effect abolished by FPR inhibitors. Furthermore, endogenous ANXA1 was depleted within 24 h after induction of HI in cerebovasculature and ependyma and upregulated 72 h after HI in microglia. Targeting ANXA1/FPR with ANXA1 in the immature brain has great potential in preventing BBB loss and concomitant brain injury following HI.
Collapse
Affiliation(s)
- Ruth Gussenhoven
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.
- School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands.
| | - Luise Klein
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.
- School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands.
| | - Daan R M G Ophelders
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.
- School of Oncology and Developmental Biology (GROW), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands.
| | - Denise H J Habets
- School of Oncology and Developmental Biology (GROW), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands.
- Department of Obstetrics and Gynecology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.
- School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands.
- School of Oncology and Developmental Biology (GROW), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands.
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands.
| | - Chris P M Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands.
| | - Tim G A M Wolfs
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.
- School of Oncology and Developmental Biology (GROW), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands.
- Department of Biomedical Engineering (BMT), School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
28
|
Jiang R, Prell C, Lönnerdal B. Milk osteopontin promotes brain development by up-regulating osteopontin in the brain in early life. FASEB J 2018; 33:1681-1694. [PMID: 30199283 DOI: 10.1096/fj.201701290rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Osteopontin (OPN) is a pleiotropic protein and is abundantly present in milk. Its functions include immune modulation and cellular proliferation and differentiation. OPN is highly expressed in the brain. We investigated the effects of milk-derived OPN on brain development of mouse pups. Wild-type (WT) dams producing OPN+ milk and OPN knockout (KO) dams producing OPN- milk nursed WT pups (OPN+/+), yielding 2 pup treatment groups, OPN+ OPN+/+ and OPN- OPN+/+, for comparison. Preliminary studies supported use of this model by showing high concentrations of OPN in milk of WT dams and no OPN in milk of OPN KO dams, and production of similar amounts of milk by WT and KO dams. The ability of ingested milk OPN to enter the brain was revealed by appearance of orally gavaged [125I]-labeled and antibody-probed milk OPN in brains of pups. Brain OPN mRNA levels were similar in both nursed groups, but the brain OPN protein level was significantly lower in the OPN- OPN+/+ group at postnatal days 6 and 8. Behavior tests showed impaired memory and learning ability in OPN- OPN+/+ pups. In addition, our study revealed increased expression of myelination-related proteins and elevated proliferation and differentiation of NG-2 glia into oligodendrocytes in the brain of OPN+ OPN+/+ pups, accompanied by increased activation of ERK-1/2 and PI3K/Akt signaling. We concluded that milk OPN can play an important role in brain development and behavior in infancy by promoting myelination.-Jiang, R., Prell, C., Lönnerdal, B. Milk osteopontin promotes brain development by up-regulating osteopontin in the brain in early life.
Collapse
Affiliation(s)
- Rulan Jiang
- Department of Nutrition, University of California Davis, Davis, California, USA
| | - Christine Prell
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Bo Lönnerdal
- Department of Nutrition, University of California Davis, Davis, California, USA
| |
Collapse
|
29
|
Takata F, Dohgu S, Matsumoto J, Machida T, Sakaguchi S, Kimura I, Yamauchi A, Kataoka Y. Oncostatin M–induced blood‐brain barrier impairment is due to prolonged activation of STAT3 signaling in vitro. J Cell Biochem 2018; 119:9055-9063. [DOI: 10.1002/jcb.27162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/18/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences Faculty of Pharmaceutical Sciences Fukuoka University Fukuoka Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences Faculty of Pharmaceutical Sciences Fukuoka University Fukuoka Japan
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences Faculty of Pharmaceutical Sciences Fukuoka University Fukuoka Japan
| | - Takashi Machida
- Department of Pharmaceutical Care and Health Sciences Faculty of Pharmaceutical Sciences Fukuoka University Fukuoka Japan
| | - Shinya Sakaguchi
- Department of Pharmaceutical Care and Health Sciences Faculty of Pharmaceutical Sciences Fukuoka University Fukuoka Japan
| | - Ikuya Kimura
- Department of Pharmaceutical Care and Health Sciences Faculty of Pharmaceutical Sciences Fukuoka University Fukuoka Japan
| | - Atsushi Yamauchi
- Department of Pharmaceutical Care and Health Sciences Faculty of Pharmaceutical Sciences Fukuoka University Fukuoka Japan
| | - Yasufumi Kataoka
- Department of Pharmaceutical Care and Health Sciences Faculty of Pharmaceutical Sciences Fukuoka University Fukuoka Japan
| |
Collapse
|
30
|
Ethanol's Effects on Transient Receptor Potential Channel Expression in Brain Microvascular Endothelial Cells. J Neuroimmune Pharmacol 2018; 13:498-508. [PMID: 29987591 DOI: 10.1007/s11481-018-9796-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Abstract
Ethanol (EtOH), the main ingredient in alcoholic beverages, is well known for its behavioral, physiological, and immunosuppressive effects. There is evidence that EtOH acts through protein targets to exert its physiological effects; however, the mechanisms underlying EtOH's effects on inflammatory processes, particularly at the blood-brain barrier (BBB), are still poorly understood. Transient receptor potential (TRP) channels, the vanguards of human sensory systems, are novel molecular receptors significantly affected by EtOH, and are heavily expressed in brain microvascular endothelial cells (BMVECs), one of the cellular constituents of the BBB. EtOH's actions on endothelial TRP channels could affect intracellular Ca2+ and Mg2+ dynamics, which mediate leukocyte adhesion to endothelial cells and endothelial permeability at the BBB, thus altering immune and inflammatory responses. We examined the basal expression profiles of all 29 known mammalian TRP channels in mouse BMVECs and determined both EtOH concentration- and time-dependent effects on TRP expression using a PCR array. We also generated an in vitro BBB model to examine the involvement of a chosen TRP channel, TRP melastatin 7 (TRPM7), in EtOH-mediated alteration of BBB permeability. With the exception of the akyrin subfamily, members of five TRP subfamilies were expressed in mouse BMVECs, and their expression levels were modulated by EtOH in a concentration-dependent manner. In the in vitro BBB model, TRPM7 antagonists further enhanced EtOH-mediated alteration of BBB permeability. Because of the diversity of TRP channels in BMVECs that regulate cellular processes, EtOH can affect Ca2+/Mg2+ signaling, immune responses, lysosomal functions as well as BBB integrity.
Collapse
|
31
|
Parisi P. The relationship between mucosal damage in celiac disease and the risk of neurological and psychiatric conditions is much more complex than previously thought. Eur J Neurol 2018; 25:797-798. [PMID: 29509996 DOI: 10.1111/ene.13614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- P Parisi
- Pediatrics, Child Neurology, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University c/o Sant' Andrea Hospital, Rome, Italy
| |
Collapse
|
32
|
Hu J, Zhang X, Wen Z, Tan Y, Huang N, Cheng S, Zheng H, Cheng Y. Asn-Gly-Arg-modified polydopamine-coated nanoparticles for dual-targeting therapy of brain glioma in rats. Oncotarget 2018; 7:73681-73696. [PMID: 27655664 PMCID: PMC5342007 DOI: 10.18632/oncotarget.12047] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/26/2016] [Indexed: 01/02/2023] Open
Abstract
The blood-brain barrier (BBB) is the major clinical obstacle in the chemotherapeutic management of brain glioma. Here we synthesized a pH-sensitive dual-targeting doxorubicin (DOX) carrier to compromise tumor endothelial cells, enhance BBB transportation, and improve drug accumulation in glioma cells. The drug delivery system was constructed with polydopamine (PDA)-coated mesoporous silica nanoparticles (NPs, MSNs) and the PDA coating was functionalized with Asn-Gly-Arg (NGR), a ligand with specific affinity for cluster of differentiation 13 (CD13). MSN-DOX-PDA-NGR showed a higher intracellular accumulation in primary brain capillary endothelial cells (BCECs) and C6 cells and greater BBB permeability than the non-targeting NPs (MSN-DOX-PDA) did in vitro. Ex vivo and in vivo tests showed that MSN-DOX-PDA-NGR had a higher accumulation in intracranial tumorous tissue than the undecorated NPs did. Furthermore, the antiangiogenesis and antitumor efficacy of MSN-DOX-PDA-NGR were stronger than that of MSN-DOX-PDA. Therefore, these results indicate that the dual-targeting vehicles are potentially useful in brain glioma therapy.
Collapse
Affiliation(s)
- Jiangang Hu
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, 400016, China
| | - Zuhuang Wen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ying Tan
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ning Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Si Cheng
- Department of Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Huzhi Zheng
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yuan Cheng
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| |
Collapse
|
33
|
Choi JH, Cho HY, Choi JW. Microdevice Platform for In Vitro Nervous System and Its Disease Model. Bioengineering (Basel) 2017; 4:E77. [PMID: 28952555 PMCID: PMC5615323 DOI: 10.3390/bioengineering4030077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 01/09/2023] Open
Abstract
The development of precise microdevices can be applied to the reconstruction of in vitro human microenvironmental systems with biomimetic physiological conditions that have highly tunable spatial and temporal features. Organ-on-a-chip can emulate human physiological functions, particularly at the organ level, as well as its specific roles in the body. Due to the complexity of the structure of the central nervous system and its intercellular interaction, there remains an urgent need for the development of human brain or nervous system models. Thus, various microdevice models have been proposed to mimic actual human brain physiology, which can be categorized as nervous system-on-a-chip. Nervous system-on-a-chip platforms can prove to be promising technologies, through the application of their biomimetic features to the etiology of neurodegenerative diseases. This article reviews the microdevices for nervous system-on-a-chip platform incorporated with neurobiology and microtechnology, including microfluidic designs that are biomimetic to the entire nervous system. The emulation of both neurodegenerative disorders and neural stem cell behavior patterns in micro-platforms is also provided, which can be used as a basis to construct nervous system-on-a-chip.
Collapse
Affiliation(s)
- Jin-Ha Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea.
| | - Hyeon-Yeol Cho
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea.
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854, USA.
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea.
| |
Collapse
|
34
|
Lee ML, Martinez-Lozada Z, Krizman EN, Robinson MB. Brain endothelial cells induce astrocytic expression of the glutamate transporter GLT-1 by a Notch-dependent mechanism. J Neurochem 2017; 143:489-506. [PMID: 28771710 DOI: 10.1111/jnc.14135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 01/13/2023]
Abstract
Neuron-secreted factors induce astrocytic expression of the glutamate transporter, GLT-1 (excitatory amino acid transporter 2). In addition to their elaborate anatomic relationships with neurons, astrocytes also have processes that extend to and envelop the vasculature. Although previous studies have demonstrated that brain endothelia contribute to astrocyte differentiation and maturation, the effects of brain endothelia on astrocytic expression of GLT-1 have not been examined. In this study, we tested the hypothesis that endothelia induce expression of GLT-1 by co-culturing astrocytes from mice that utilize non-coding elements of the GLT-1 gene to control expression of reporter proteins with the mouse endothelial cell line, bEND.3. We found that endothelia increased steady state levels of reporter and GLT-1 mRNA/protein. Co-culturing with primary rat brain endothelia also increases reporter protein, GLT-1 protein, and GLT-1-mediated glutamate uptake. The Janus kinase/signal transducer and activator of transcription 3, bone morphogenic protein/transforming growth factor β, and nitric oxide pathways have been implicated in endothelia-to-astrocyte signaling; we provide multiple lines of evidence that none of these pathways mediate the effects of endothelia on astrocytic GLT-1 expression. Using transwells with a semi-permeable membrane, we demonstrate that the effects of the bEND.3 cell line are dependent upon contact. Notch has also been implicated in endothelia-astrocyte signaling in vitro and in vivo. The first step of Notch signaling requires cleavage of Notch intracellular domain by γ-secretase. We demonstrate that the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester blocks endothelia-induced increases in GLT-1. We show that the levels of Notch intracellular domain are higher in nuclei of astrocytes co-cultured with endothelia, an effect also blocked by N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester. Finally, infection of co-cultures with shRNA directed against recombination signal binding protein for immunoglobulin kappa J, a Notch effector, also reduces endothelia-dependent increases in enhanced green fluorescent protein and GLT-1. Together, these studies support a novel role for Notch in endothelia-dependent induction of GLT-1 expression. Cover Image for this issue: doi. 10.1111/jnc.13825.
Collapse
Affiliation(s)
- Meredith L Lee
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zila Martinez-Lozada
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth N Krizman
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael B Robinson
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Systems Pharmacology and Translational Therapeutics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
Lee ML, Martinez-Lozada Z, Krizman EN, Robinson MB. Brain endothelial cells induce astrocytic expression of the glutamate transporter GLT-1 by a Notch-dependent mechanism. J Neurochem 2017. [PMID: 28771710 DOI: 10.1111/jnc.13825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuron-secreted factors induce astrocytic expression of the glutamate transporter, GLT-1 (excitatory amino acid transporter 2). In addition to their elaborate anatomic relationships with neurons, astrocytes also have processes that extend to and envelop the vasculature. Although previous studies have demonstrated that brain endothelia contribute to astrocyte differentiation and maturation, the effects of brain endothelia on astrocytic expression of GLT-1 have not been examined. In this study, we tested the hypothesis that endothelia induce expression of GLT-1 by co-culturing astrocytes from mice that utilize non-coding elements of the GLT-1 gene to control expression of reporter proteins with the mouse endothelial cell line, bEND.3. We found that endothelia increased steady state levels of reporter and GLT-1 mRNA/protein. Co-culturing with primary rat brain endothelia also increases reporter protein, GLT-1 protein, and GLT-1-mediated glutamate uptake. The Janus kinase/signal transducer and activator of transcription 3, bone morphogenic protein/transforming growth factor β, and nitric oxide pathways have been implicated in endothelia-to-astrocyte signaling; we provide multiple lines of evidence that none of these pathways mediate the effects of endothelia on astrocytic GLT-1 expression. Using transwells with a semi-permeable membrane, we demonstrate that the effects of the bEND.3 cell line are dependent upon contact. Notch has also been implicated in endothelia-astrocyte signaling in vitro and in vivo. The first step of Notch signaling requires cleavage of Notch intracellular domain by γ-secretase. We demonstrate that the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester blocks endothelia-induced increases in GLT-1. We show that the levels of Notch intracellular domain are higher in nuclei of astrocytes co-cultured with endothelia, an effect also blocked by N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester. Finally, infection of co-cultures with shRNA directed against recombination signal binding protein for immunoglobulin kappa J, a Notch effector, also reduces endothelia-dependent increases in enhanced green fluorescent protein and GLT-1. Together, these studies support a novel role for Notch in endothelia-dependent induction of GLT-1 expression. Cover Image for this issue: doi. 10.1111/jnc.13825.
Collapse
Affiliation(s)
- Meredith L Lee
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zila Martinez-Lozada
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth N Krizman
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael B Robinson
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Systems Pharmacology and Translational Therapeutics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Contribution of thrombin-reactive brain pericytes to blood-brain barrier dysfunction in an in vivo mouse model of obesity-associated diabetes and an in vitro rat model. PLoS One 2017; 12:e0177447. [PMID: 28489922 PMCID: PMC5425209 DOI: 10.1371/journal.pone.0177447] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/27/2017] [Indexed: 12/14/2022] Open
Abstract
Diabetic complications are characterized by the dysfunction of pericytes located around microvascular endothelial cells. The blood–brain barrier (BBB) exhibits hyperpermeability with progression of diabetes. Therefore, brain pericytes at the BBB may be involved in diabetic complications of the central nervous system (CNS). We hypothesized that brain pericytes respond to increased brain thrombin levels in diabetes, leading to BBB dysfunction and diabetic CNS complications. Mice were fed a high-fat diet (HFD) for 2 or 8 weeks to induce obesity. Transport of i.v.-administered sodium fluorescein and 125I-thrombin across the BBB were measured. We evaluated brain endothelial permeability and expression of tight junction proteins in the presence of thrombin–treated brain pericytes using a BBB model of co-cultured rat brain endothelial cells and pericytes. Mice fed a HFD for 8 weeks showed both increased weight gain and impaired glucose tolerance. In parallel, the brain influx rate of sodium fluorescein was significantly greater than that in mice fed a normal diet. HFD feeding inhibited the decline in brain thrombin levels occurring during 6 weeks of feeding. In the HFD fed mice, plasma thrombin levels were significantly increased, by up to 22%. 125I-thrombin was transported across the BBB in normal mice after i.v. injection, with uptake further enhanced by co-injection of unlabeled thrombin. Thrombin-treated brain pericytes increased brain endothelial permeability and caused decreased expression of zona occludens-1 (ZO-1) and occludin and morphological disorganization of ZO-1. Thrombin also increased mRNA expression of interleukin-1β and 6 and tumor necrosis factor-α in brain pericytes. Thrombin can be transported from circulating blood through the BBB, maintaining constant levels in the brain, where it can stimulate pericytes to induce BBB dysfunction. Thus, the brain pericyte–thrombin interaction may play a key role in causing BBB dysfunction in obesity-associated diabetes and represent a therapeutic target for its CNS complications.
Collapse
|
37
|
Chong YJ, Musa NF, Ng CH, Shaari K, Israf DA, Tham CL. Barrier protective effects of 2,4,6-trihydroxy-3-geranyl acetophenone on lipopolysaccharides-stimulated inflammatory responses in human umbilical vein endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:248-255. [PMID: 27404229 DOI: 10.1016/j.jep.2016.07.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/06/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
PHARMOCOLOGICAL RELEVANCE 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA), is a phloroglucinol compound found naturally in Melicope ptelefolia. Melicope ptelefolia has been used traditionally for centuries as natural remedy for wound infections and inflammatory diseases. AIM OF THE STUDY Endothelial barrier dysfunction is a pathological hallmark of many diseases and can be caused by lipopolysaccharides (LPS) stimulation. Therefore, this study aims to investigate the possible barrier protective effects of tHGA upon LPS-stimulated inflammatory responses in human umbilical vein endothelial cells (HUVECs). MATERIALS AND METHODS HUVECs were pretreated with tHGA prior to LPS stimulation, where inflammatory parameters including permeability, monocyte adhesion and migration, and release of pro-inflammatory mediators were examined. Additionally, the effect of tHGA on F-actin rearrangement and adhesion protein expression of LPS-stimulated HUVECs was evaluated. RESULTS It was found that pretreatment with tHGA inhibited monocyte adhesion and transendothelial migration, reduced endothelial hyperpermeability and secretion of prostaglandin E2 (PGE2). Additionally, tHGA inhibited cytoskeletal rearrangement and adhesion protein expression on LPS-stimulated HUVECs. CONCLUSION As the regulation of endothelial barrier dysfunction can be one of the therapeutic strategies to improve the outcome of inflammation, tHGA may be able to preserve vascular barrier integrity of endothelial cells following LPS-stimulated dysfunction, thereby endorsing its potential usefulness in vascular inflammatory diseases.
Collapse
Affiliation(s)
- Yi Joong Chong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia
| | - Nazmi Firdaus Musa
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia
| | - Chean Hui Ng
- Faculty of Science, Universiti Putra Malaysia, Serdang 43300, Malaysia
| | - Khozirah Shaari
- Faculty of Science, Universiti Putra Malaysia, Serdang 43300, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia.
| |
Collapse
|
38
|
Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud PO, Deli MA, Förster C, Galla HJ, Romero IA, Shusta EV, Stebbins MJ, Vandenhaute E, Weksler B, Brodin B. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab 2016; 36:862-90. [PMID: 26868179 PMCID: PMC4853841 DOI: 10.1177/0271678x16630991] [Citation(s) in RCA: 525] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022]
Abstract
The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This "blood-brain barrier" function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood-brain barrier models with a focus on their validation regarding a set of well-established blood-brain barrier characteristics. As an ideal cell culture model of the blood-brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described.
Collapse
Affiliation(s)
- Hans C Helms
- Department of Pharmacy, University of Copenhagen, Denmark
| | - N Joan Abbott
- Institute of Pharmaceutical Science, King's College London, UK
| | - Malgorzata Burek
- Klinik und Poliklinik für Anästhesiologie, University of Wurzburg, Germany
| | | | - Pierre-Olivier Couraud
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria A Deli
- Institute of Biophysics, Biological Research Centre, HAS, Szeged, Hungary
| | - Carola Förster
- Klinik und Poliklinik für Anästhesiologie, University of Wurzburg, Germany
| | - Hans J Galla
- Institute of Biochemistry, University of Muenster, Germany
| | - Ignacio A Romero
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, WI, USA
| | - Matthew J Stebbins
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, WI, USA
| | | | - Babette Weksler
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, NY, USA
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Denmark
| |
Collapse
|
39
|
Wang Y, Wang N, Cai B, Wang GY, Li J, Piao XX. In vitro model of the blood-brain barrier established by co-culture of primary cerebral microvascular endothelial and astrocyte cells. Neural Regen Res 2016; 10:2011-7. [PMID: 26889191 PMCID: PMC4730827 DOI: 10.4103/1673-5374.172320] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Drugs for the treatment and prevention of nervous system diseases must permeate the blood-brain barrier to take effect. In vitro models of the blood-brain barrier are therefore important in the investigation of drug permeation mechanisms. However, to date, no unified method has been described for establishing a blood-brain barrier model. Here, we modified an in vitro model of the blood-brain barrier by seeding brain microvascular endothelial cells and astrocytes from newborn rats on a polyester Transwell cell culture membrane with 0.4-µm pores, and conducted transepithelial electrical resistance measurements, leakage tests and assays for specific blood-brain barrier enzymes. We show that the permeability of our model is as low as that of the blood-brain barrier in vivo. Our model will be a valuable tool in the study of the mechanisms of action of neuroprotective drugs.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Ning Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Biao Cai
- Key Laboratory of Xin'an Medicine, Ministry of Education; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Guang-Yun Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Jing Li
- Key Laboratory of Xin'an Medicine, Ministry of Education; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Xing-Xing Piao
- Key Laboratory of Xin'an Medicine, Ministry of Education; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| |
Collapse
|
40
|
Soares RV, Do TM, Mabondzo A, Pons G, Chhun S. Ontogeny of ABC and SLC transporters in the microvessels of developing rat brain. Fundam Clin Pharmacol 2016; 30:107-16. [PMID: 26662930 DOI: 10.1111/fcp.12175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/19/2015] [Accepted: 12/08/2015] [Indexed: 01/01/2023]
Abstract
The blood-brain barrier (BBB) is responsible for the control of solutes' concentration in the brain. Tight junctions and multiple ATP-binding cassette (ABC) and SoLute Carrier (SLC) efflux transporters protect brain cells from xenobiotics, therefore reducing brain exposure to intentionally administered drugs. In epilepsy, polymorphisms and overexpression of efflux transporters genes could be associated with pharmacoresistance. The ontogeny of these efflux transporters should also be addressed because their expression during development may be related to different brain exposure to antiepileptic drugs in the immature brain. We detected statistically significant higher expression of Abcb1b and Slc16a1 genes, and lower expression of Abcb1a and Abcg2 genes between the post-natal day 14 (P14) and the adult rat microvessels. P-gP efflux activity was also shown to be lower in P14 rats when compared with the adults. The P-gP proteins coded by rodent genes Abcb1a and Abcb1b are known to have different substrate affinities. The role of the Abcg2 gene is less clear in pharmacoresistance in epilepsy, nonetheless the coded protein Bcrp is frequently associated with drug resistance. Finally, we observed a higher expression of the Mct1 transporter gene in the P14 rat brain microvessels. Accordingly to our results, we suppose that age may be another factor influencing brain exposure to antiepileptics as a consequence of different expression patterns of efflux transporters between the adult and immature BBB.
Collapse
Affiliation(s)
- Ricardo V Soares
- Inserm U1129, Paris, France.,University Paris Descartes, Faculty of Medicine, Paris, France.,CEA, Direction des Sciences du Vivant, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Tuan M Do
- CEA, Direction des Sciences du Vivant, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Aloïse Mabondzo
- CEA, Direction des Sciences du Vivant, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Gérard Pons
- Inserm U1129, Paris, France.,University Paris Descartes, Faculty of Medicine, Paris, France
| | - Stéphanie Chhun
- University Paris Descartes, Faculty of Medicine, Paris, France.,Inserm U1151, INEM, Paris, France.,APHP, Hôpital Universitaire Necker-Enfants Malades, Laboratoire d'immunologie biologique, Paris, France
| |
Collapse
|
41
|
Deosarkar SP, Prabhakarpandian B, Wang B, Sheffield JB, Krynska B, Kiani MF. A Novel Dynamic Neonatal Blood-Brain Barrier on a Chip. PLoS One 2015; 10:e0142725. [PMID: 26555149 PMCID: PMC4640840 DOI: 10.1371/journal.pone.0142725] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/25/2015] [Indexed: 12/16/2022] Open
Abstract
Studies of neonatal neural pathologies and development of appropriate therapeutics are hampered by a lack of relevant in vitro models of neonatal blood-brain barrier (BBB). To establish such a model, we have developed a novel blood-brain barrier on a chip (B3C) that comprises a tissue compartment and vascular channels placed side-by-side mimicking the three-dimensional morphology, size and flow characteristics of microvessels in vivo. Rat brain endothelial cells (RBEC) isolated from neonatal rats were seeded in the vascular channels of B3C and maintained under shear flow conditions, while neonatal rat astrocytes were cultured under static conditions in the tissue compartment of the B3C. RBEC formed continuous endothelial lining with a central lumen along the length of the vascular channels of B3C and exhibited tight junction formation, as measured by the expression of zonula occludens-1 (ZO-1). ZO-1 expression significantly increased with shear flow in the vascular channels and with the presence of astrocyte conditioned medium (ACM) or astrocytes cultured in the tissue compartment. Consistent with in vivo BBB, B3C allowed endfeet-like astrocyte-endothelial cell interactions through a porous interface that separates the tissue compartment containing cultured astrocytes from the cultured RBEC in the vascular channels. The permeability of fluorescent 40 kDa dextran from vascular channel to the tissue compartment significantly decreased when RBEC were cultured in the presence of astrocytes or ACM (from 41.0±0.9 x 10−6 cm/s to 2.9±1.0 x 10−6 cm/s or 1.1±0.4 x 10−6 cm/s, respectively). Measurement of electrical resistance in B3C further supports that the addition of ACM significantly improves the barrier function in neonatal RBEC. Moreover, B3C exhibits significantly improved barrier characteristics compared to the transwell model and B3C permeability was not significantly different from the in vivo BBB permeability in neonatal rats. In summary, we developed a first dynamic in vitro neonatal BBB on a chip (B3C) that closely mimics the in vivo microenvironment, offers the flexibility of real time analysis, and is suitable for studies of BBB function as well as screening of novel therapeutics.
Collapse
Affiliation(s)
- Sudhir P. Deosarkar
- Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania, 19122, United States of America
| | | | - Bin Wang
- Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania, 19122, United States of America
- Department of Biomedical Engineering, Widener University, Chester, Pennsylvania, 19013, United States of America
| | - Joel B. Sheffield
- Department of Biology, Temple University, Philadelphia, Pennsylvania, 19122, United States of America
| | - Barbara Krynska
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, 19122, United States of America
| | - Mohammad F. Kiani
- Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania, 19122, United States of America
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, 19122, United States of America
- * E-mail:
| |
Collapse
|
42
|
Vitamin D prevents hypoxia/reoxygenation-induced blood-brain barrier disruption via vitamin D receptor-mediated NF-kB signaling pathways. PLoS One 2015; 10:e0122821. [PMID: 25815722 PMCID: PMC4376709 DOI: 10.1371/journal.pone.0122821] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/21/2015] [Indexed: 11/19/2022] Open
Abstract
Maintaining blood-brain barrier integrity and minimizing neuronal injury are critical components of any therapeutic intervention following ischemic stroke. However, a low level of vitamin D hormone is a risk factor for many vascular diseases including stroke. The neuroprotective effects of 1,25(OH)2D3 (vitamin D) after ischemic stroke have been studied, but it is not known whether it prevents ischemic injury to brain endothelial cells, a key component of the neurovascular unit. We analyzed the effect of 1,25(OH)2D3 on brain endothelial cell barrier integrity and tight junction proteins after hypoxia/reoxygenation in a mouse brain endothelial cell culture model that closely mimics many of the features of the blood-brain barrier in vitro. Following hypoxic injury in bEnd.3 cells, 1,25(OH)2D3 treatment prevented the decrease in barrier function as measured by transendothelial electrical resistance and permeability of FITC-dextran (40 kDa), the decrease in the expression of the tight junction proteins zonula occludin-1, claudin-5, and occludin, the activation of NF-kB, and the increase in matrix metalloproteinase-9 expression. These responses were blocked when the interaction of 1,25(OH) )2D3 with the vitamin D receptor (VDR) was inhibited by pyridoxal 5'-phosphate treatment. Our findings show a direct, VDR-mediated, protective effect of 1,25(OH) )2D3 against ischemic injury-induced blood-brain barrier dysfunction in cerebral endothelial cells.
Collapse
|
43
|
Sugiyama A, Sun J, Ueda K, Furukawa S, Takeuchi T. Effect of methotrexate on cerebellar development in infant rats. J Vet Med Sci 2015; 77:789-97. [PMID: 25754651 PMCID: PMC4527500 DOI: 10.1292/jvms.14-0475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Six-day-old rats were treated intraperitoneal injections with methotrexate 1
mg/kg, and the cerebellum was examined. Both the length and width of the vermis decreased
in the methotrexate-treated group instead of the control from 4 day after treatment (DAT)
onward. A significant reduction in the width of the external granular layer was detected
on 2 and 3 DAT in the methotrexate group. By 4 DAT, the width of the external granular
layer of the methotrexate group was indistinguishable from the control, and by 8 DAT, it
was greater than that of the control. The molecular layer of methotrexate group on 8 and
15 DAT was thinner than that of the control. On 1 DAT, in the methotrexate group, there
were many TUNEL and cleaved caspase-3-positive granular cells throughout the external
granular layer, and they decreased time-dependently. On 1 DAT, in the methotrexate group,
phospho-histone H3-positive cells in the external granular layer were fewer than in the
control and tended to increase on 2–4 DAT. The p21-positive-rate of the external granule
cells in the MTX group was higher than in the control on 1–4 DAT. These results suggested
that methotrexate exposure on postnatal day 6 induces a delay, slowing in the migration of
external granular cells to the inner granular layer, attributed to decrease or inhibition
in the production of external granular cells that had arisen from apoptosis and the
decrease in cell proliferative activity, resulting in cerebellar hypoplasia.
Collapse
Affiliation(s)
- Akihiko Sugiyama
- Laboratory of Veterinary Laboratory Medicine, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Minami 4-101 Koyama-cho, Tottori, Tottori 680-8553, Japan
| | | | | | | | | |
Collapse
|
44
|
Kenkel WM, Yee JR, Carter CS. Is oxytocin a maternal-foetal signalling molecule at birth? Implications for development. J Neuroendocrinol 2014; 26:739-49. [PMID: 25059673 DOI: 10.1111/jne.12186] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 01/08/2023]
Abstract
The neuropeptide oxytocin was first noted for its capacity to promote uterine contractions and facilitate delivery in mammals. The study of oxytocin has grown to include awareness that this peptide is a neuromodulator with broad effects throughout the body. Accumulating evidence suggests that oxytocin is a powerful signal to the foetus, helping to prepare the offspring for the extrauterine environment. Concurrently, the use of exogenous oxytocin or other drugs to manipulate labour has become common practice. The use of oxytocin to expedite labour and minimise blood loss improves both infant and maternal survival under some conditions. However, further investigations are needed to assess the developmental consequences of changes in oxytocin, such as those associated with pre-eclampsia or obstetric manipulations associated with birth. This review focuses on the role of endogenous and exogenous oxytocin as a neurochemical signal to the foetal nervous system. We also examine the possible developmental consequences, including those associated with autism spectrum disorder, that arise from exogenous oxytocin supplementation during labour.
Collapse
Affiliation(s)
- W M Kenkel
- Department of Psychology, Northeastern University, Boston, MA, USA
| | | | | |
Collapse
|
45
|
Wallace K, Tremble SM, Owens MY, Morris R, Cipolla MJ. Plasma from patients with HELLP syndrome increases blood-brain barrier permeability. Reprod Sci 2014; 22:278-84. [PMID: 25194151 DOI: 10.1177/1933719114549844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circulating inflammatory factors and endothelial dysfunction have been proposed to contribute to the pathophysiology of hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome. To date, the occurrence of neurological complications in these women has been reported, but few studies have examined whether impairment in blood-brain barrier (BBB) permeability or cerebrovascular reactivity is present in women having HELLP syndrome. We hypothesized that plasma from women with HELLP syndrome causes increased BBB permeability and cerebrovascular dysfunction. Posterior cerebral arteries from female nonpregnant rats were perfused with 20% serum from women with normal pregnancies (n = 5) or women with HELLP syndrome (n = 5), and BBB permeability and vascular reactivity were compared. Plasma from women with HELLP syndrome increased BBB permeability while not changing myogenic tone and reactivity to pressure. Addition of the nitric oxide (NO) synthase inhibitor N(ω)-nitro-L-arginine methyl ester caused constriction of arteries that was not different with the different plasmas nor was dilation to the NO donor sodium nitroprusside different between the 2 groups. However, dilation to the small- and intermediate-conductance, calcium-activated potassium channel activator NS309 was decreased in vessels exposed to HELLP plasma. Thus, increased BBB permeability in response to HELLP plasma was associated with selective endothelial dysfunction.
Collapse
Affiliation(s)
- Kedra Wallace
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sarah M Tremble
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA Department of Obstetrics, Gynecology & Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT, USA Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT, USA
| | - Michelle Y Owens
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Rachael Morris
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA Department of Obstetrics, Gynecology & Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT, USA Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
46
|
McCarthy RC, Park YH, Kosman DJ. sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin. EMBO Rep 2014; 15:809-15. [PMID: 24867889 DOI: 10.15252/embr.201338064] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A sequence within the E2 domain of soluble amyloid precursor protein (sAPP) stimulates iron efflux. This activity has been attributed to a ferroxidase activity suggested for this motif. We demonstrate that the stimulation of efflux supported by this peptide and by sAPPα is due to their stabilization of the ferrous iron exporter, ferroportin (Fpn), in the plasma membrane of human brain microvascular endothelial cells (hBMVEC). The peptide does not bind ferric iron explaining why it does not and thermodynamically cannot promote ferrous iron autoxidation. This peptide specifically pulls Fpn down from the plasma membrane of hBMVEC; based on these results, FTP, for ferroportin-targeting peptide, correctly identifies the function of this peptide. The data suggest that in stabilizing Fpn via the targeting due to the FTP sequence, sAPP will increase the flux of iron into the cerebral interstitium. This inference correlates with the observation of significant iron deposition in the amyloid plaques characteristic of Alzheimer's disease.
Collapse
Affiliation(s)
- Ryan C McCarthy
- Department of Biochemistry, School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, NY, USA
| | - Yun-Hee Park
- Department of Biochemistry, School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, NY, USA
| | - Daniel J Kosman
- Department of Biochemistry, School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
47
|
Wilhelm I, Krizbai IA. In vitro models of the blood-brain barrier for the study of drug delivery to the brain. Mol Pharm 2014; 11:1949-63. [PMID: 24641309 DOI: 10.1021/mp500046f] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The most important obstacle to the drug delivery into the brain is the presence of the blood-brain barrier, which limits the traffic of substances between the blood and the nervous tissue. Therefore, adequate in vitro models need to be developed in order to characterize the penetration properties of drug candidates into the central nervous system. This review article summarizes the presently used and the most promising in vitro BBB models based on the culture of brain endothelial cells. Robust models can be obtained using primary porcine brain endothelial cells and rodent coculture models, which have low paracellular permeability and express functional efflux transporters, showing good correlation of drug penetration data with in vivo results. Models mimicking the in vivo anatomophysiological complexity of the BBB are also available, including triple coculture (culture of brain endothelial cells in the presence of pericytes and astrocytes), dynamic, and microfluidic models; however, these are not suitable for rapid, high throughput studies. Potent human cell lines would be needed for easily available and reproducible models which avoid interspecies differences.
Collapse
Affiliation(s)
- Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences , Temesvári krt. 62, 6726 Szeged, Hungary
| | | |
Collapse
|
48
|
Köves K, Kántor O, Lakatos A, Szabó E, Kirilly E, Heinzlmann A, Szabó F. Advent and recent advances in research on the role of pituitary adenylate cyclase-activating polypeptide (PACAP) in the regulation of gonadotropic hormone secretion of female rats. J Mol Neurosci 2014; 54:494-511. [PMID: 24696167 DOI: 10.1007/s12031-014-0294-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/20/2014] [Indexed: 02/06/2023]
Abstract
PACAP (ADCYAP1) was isolated from ovine hypothalami. PACAP activates three distinct receptor types: G-protein coupled PAC1, VPAC1, and VPAC2 with seven transmembrane domains. Eight splice variants of PAC1 receptor are described. A part of the hypothalamic PACAP is released into the hypophyseal portal circulation. Both hypothalamic and pituitary PACAP are involved in the dynamic control of gonadotropic hormone secretion. In female rats, PACAP in the paraventricular nucleus is upregulated in the morning and pituitary PACAP is upregulated in the late evening of the proestrus stage of the reproductive cycle. PACAP mRNA peak in the hypothalamic PVN precedes the LHRH release into the portal circulation. It is supposed that PACAP peak is evoked by the elevated estrogen on proestrous morning. At the beginning of the so-called critical period of the same day, PACAP level starts to decline allowing LHRH release into the portal circulation, resulting in the LH surge that evokes ovulation. Just before the critical period, icv-administered exogenous PACAP blocks the LH surge and ovulation. The blocking effect of PACAP is mediated through CRF and endogenous opioids. The effect of the pituitary-born PACAP depends on the intracellular cross-talk between PACAP and LHRH.
Collapse
Affiliation(s)
- Katalin Köves
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Tűzoltó u. 58, H-1094, Budapest, Hungary,
| | | | | | | | | | | | | |
Collapse
|
49
|
Gonzales-Portillo GS, Sanberg PR, Franzblau M, Gonzales-Portillo C, Diamandis T, Staples M, Sanberg CD, Borlongan CV. Mannitol-enhanced delivery of stem cells and their growth factors across the blood-brain barrier. Cell Transplant 2014; 23:531-9. [PMID: 24480552 PMCID: PMC4083632 DOI: 10.3727/096368914x678337] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ischemic brain injury in adults and neonates is a significant clinical problem with limited therapeutic interventions. Currently, clinicians have only tPA available for stroke treatment and hypothermia for cerebral palsy. Owing to the lack of treatment options, there is a need for novel treatments such as stem cell therapy. Various stem cells including cells from embryo, fetus, perinatal, and adult tissues have proved effective in preclinical and small clinical trials. However, a limiting factor in the success of these treatments is the delivery of the cells and their by-products (neurotrophic factors) into the injured brain. We have demonstrated that mannitol, a drug with the potential to transiently open the blood-brain barrier and facilitate the entry of stem cells and trophic factors, as a solution to the delivery problem. The combination of stem cell therapy and mannitol may improve therapeutic outcomes in adult stroke and neonatal cerebral palsy.
Collapse
Affiliation(s)
- Gabriel S. Gonzales-Portillo
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Max Franzblau
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Chiara Gonzales-Portillo
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Theo Diamandis
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Meaghan Staples
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cyndy D. Sanberg
- Saneron CCEL Therapeutics, Saneron CCEL Therapeutics, Inc., Tampa, FL, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|